TWI289214B - Chiral photonic and multi-wavelength chiral photonic filter - Google Patents

Chiral photonic and multi-wavelength chiral photonic filter Download PDF

Info

Publication number
TWI289214B
TWI289214B TW94147082A TW94147082A TWI289214B TW I289214 B TWI289214 B TW I289214B TW 94147082 A TW94147082 A TW 94147082A TW 94147082 A TW94147082 A TW 94147082A TW I289214 B TWI289214 B TW I289214B
Authority
TW
Taiwan
Prior art keywords
pitch
spiral
different
defect
photonic crystal
Prior art date
Application number
TW94147082A
Other languages
Chinese (zh)
Other versions
TW200724982A (en
Inventor
Lien-Wen Chen
Jiun-Yeu Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94147082A priority Critical patent/TWI289214B/en
Publication of TW200724982A publication Critical patent/TW200724982A/en
Application granted granted Critical
Publication of TWI289214B publication Critical patent/TWI289214B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to a chiral photonic structure, comprising a first portion and a second portion. The first portion has a plurality of first pitches that vary continuously. The second portion is connected to the first portion and forms a defect plane therebetween. The second portion has a plurality of second pitches that vary continuously. The first pitch of the first portion next to the defect plane is different from the second pitch of the second portion next to the defect plane. Therefore, the variation of the pitch on the defect plane is discontinuous.

Description

1289214 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種螺旋光子晶體及包含該螺旋光子晶體 1 之濾波器,詳言之,係關於一種螺距變化不連續之螺旋光 子晶體及包含該螺旋光子晶體之濾波器。 【先前技術】 光學濾波器是光傳輸系統中的重要元件,用以篩選出窄 帶波段,使此波段的頻譜成份通過或被禁止通過。一般光 > 學濾波器的操作原理是利用干涉或繞射等物理方法,且濾 波的波段可以是固定式或可調式,例如法布里-比洛干涉 . 儀、布拉格光纖光柵、介電薄膜干涉濾波器、馬赫-曾德 - 爾(Mach-Zehnder)濾波器、繞射光栅濾波器等等,參見[R.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral photonic crystal and a filter including the same, relating to a spiral photonic crystal with discontinuous pitch variation and including the same A filter for a spiral photonic crystal. [Prior Art] An optical filter is an important component in an optical transmission system for screening a narrowband band such that the spectral components of this band pass or are prohibited from passing. General Light > The operating principle of the filter is to use physical methods such as interference or diffraction, and the filtered band can be fixed or adjustable, such as Fabry-Bilo interference. Instrument, Bragg fiber grating, dielectric film Interference filters, Mach-Zehnder filters, diffraction grating filters, etc., see [R.

Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, Morgan Kaufmann,San Francisco, pp. 90-119 (1998)]。但這些光學濾波器並無法在同軸(inline)傳輸 方向上 產生特 定多波 長的渡 波機制 ,法布 里-比 » 洛干涉儀必須有一入射角度才能產生多光束干涉現象,參 見[D. Y. Hsu? J. W. Lin,and S. Y. Shaw, fWide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications/ Applied Optics 44 (9),1529 (2005)],繞射光栅濾波器則必須在不同繞射角上才能分解 出不同光波長的信號,參見[ML C. Parker,A· D· Cohen, and R. JL Mears,’Dynamic Digital Holographic Wavelength Filtering/ J. Lightwave Technol. 16 (7),1259 (1998)],薄 105056.doc 1289214Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, Morgan Kaufmann, San Francisco, pp. 90-119 (1998)]. However, these optical filters are not capable of generating a multi-wavelength wave-wave mechanism in the inline transmission direction. The Fabry-Below-interference device must have an incident angle to generate multi-beam interference. See [DY Hsu? JW Lin] , and SY Shaw, fWide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications/ Applied Optics 44 (9), 1529 (2005)], the diffraction grating filter must be decomposed at different diffraction angles For signals of different wavelengths of light, see [ML C. Parker, A. D. Cohen, and R. JL Mears, 'Dynamic Digital Holographic Wavelength Filtering/ J. Lightwave Technol. 16 (7), 1259 (1998)], thin 105056 .doc 1289214

膜干涉濾波器只能將特定單一波長訊號反射或穿透,參見 [Y. Inoue? T. Oguchi,Υ· Hibino,S. Suzuki,M. Yanagisawa, K. Moriwaki, Y. Yamada,Tilter-embedded wavelength-division multiplexer for hybrid-integrated transceiver based on silica-based PLC,’ Electron. Lett· 32,847 (1996)],馬 赫-曾德爾濾波器則必須要增加另一條光路來造成相位延 遲產生特定波長的干涉效果,參見[Μ· H· Shih,W. J· Kim, Wan Kuang. J. R. Cao? H. Yukawa, S. J. Choi, J. D. ΟΈτίβη, P. D. Dapkus,and W. K. Marshall,’Two-dimensional photonic crystal Mach-Zehnder interferometers/ Appl. Phys. Lett· 84,460 (2004)]。而一維光子晶體設計濾波 器,參見[I· D. Villar,I· R· Matias,and F· J. Arregui, nFiber-Optic Multiple-Wavelength Filter Based on One-Dimensional Photonic Bandgap Structures With Defects,1* J. Lightwave Technol. 22(6),1615 (2004)]與光纖光柵,參見 [G. P. Agrawal and S. Radic? 1fPhase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing,’’ IEEE Photon· Technol. Lett· 6(8),995 (1994)]的原理類似,其用來產生多波長濾波的方式較為複 雜,必須以複雜的架構沉積介電薄膜,並且要注意各個共 振腔位置的安排,實際製作上又很難克服各介電層的厚度 控制誤差而影響到實際需求的共振穿透波長位置,即使共 振腔的設計可引入液晶作為可調式濾波器,參見[I· D. Villar,I. R. Matias, F. J. Arregui, and R. O. Claus, 105056.doc 1289214 ’’Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiberoptic tunable wavelength filters,11 Opt. Express 11(5), 430 (2003)],但波長上所顯現的線性調制範圍卻受到限制。 膽固醇液晶(CLC)結構具有三種主要基本型態,其中以 平面形態之螺旋結構會顯現選擇性光散射的特殊光子能帶 隙現象。當入射光的旋光方向和膽固醇液晶的螺旋方向一 致時,則會使特定波段的旋光產生反射現象,但若旋光方 向與螺旋方向相反則不會產生反射。 光學濾波器是光傳輸系統中的重要元件。對於光纖光學 傳輸窗口(transmission windows),國際電信聯盟 (International Telecommunications Union,ITU)有規範出 六個傳輸帶,分別為·· O-Band (1260 nm〜13 10 nm),E_ Band (1360 nm〜1460 nm),S-Band (1460 nm〜1530 nm), C-Band (1530 nm〜1565 nm),L_Band (1565 nm〜1625 nm),和U-Band (1 625 nm〜1675 nm) 〇 —般典型液晶的尋 常光或非尋常光折射率大約在1.4〜1.7之間,而雙折射大約 在0.1〜0.2左右,其非線性效應影響常可忽略(例如吸收), 依麥克斯威爾方程式的比例可縮放性,藉由改變膽固醇液 晶螺距梯度的最大最小範圍即可將光子能帶隙(反射帶)移 到能涵蓋1260 nm〜1 6 75 nm的通訊波長區間,如下所述。 參考圖la及lb,分別顯示習用具有螺距梯度之膽固醇液 晶結構之螺旋結構示意圖及液晶分子導軸排列方式示意 圖。該膽固醇液晶結構1内部的液晶分子排列為平面螺旋 105056.doc 1289214 結構,且該膽固醇液晶結構1係由複數層所組成,每一層 具有-導軸,d等導軸係沿—螺旋軸u旋轉,相鄰層間之 導軸之方向係不同且呈連續變化,二個具有相同導軸方向 之層之間的距離,以該距離之2倍定義為螺距(pitch)。該 等螺距係皆不同且為連續變化,而形成一螺距梯度。特別 要注意的是,此螺距梯度結構必須藉由成分材料中能產生 聚合反應的高分子單體來穩定其構造’此聚合反應可透過 溫度變化或光化學反應來引發。該膽固醇液晶結W主要 的參數為:液晶的非尋常光折射率為%,光折射率為 〜’螺旋結構的最大螺距為I’最小螺距為Pmin,厚度為 h光的入射角度為Θ。該螺距梯度變化作)可以指數 描述如下: 户⑷=户minexp(|lnr) a 其中Γ — />_ /4。而膽固醇液晶的介電張量可表示 ^11 ^12 ^3^1 ’、两 €2\ ^22 ^23 1^31 ^32 ^33 J 且’丨電張量各元素在座標下表示為 I. ^ ⑴ (2) ~^i)c〇s|^~y2 2 -^i)sMembrane interference filters can only reflect or penetrate specific single-wavelength signals, see [Y. Inoue? T. Oguchi, Υ·Hibino, S. Suzuki, M. Yanagisawa, K. Moriwaki, Y. Yamada, Tilter-embedded wavelength -division multiplexer for hybrid-integrated transceiver based on silica-based PLC, ' Electron. Lett 32, 847 (1996)], Mach-Zehnder filter must add another optical path to cause phase delay to produce specific wavelength interference For effects, see [Μ·H· Shih, W. J. Kim, Wan Kuang. JR Cao? H. Yukawa, SJ Choi, JD ΟΈτίβη, PD Dapkus, and WK Marshall, 'Two-dimensional photonic crystal Mach-Zehnder interferometers/ Appl. Phys. Lett 84, 460 (2004)]. For the one-dimensional photonic crystal design filter, see [I·D. Villar, I·R· Matias, and F. J. Arregui, nFiber-Optic Multiple-Wavelength Filter Based on One-Dimensional Photonic Bandgap Structures With Defects, 1* J. Lightwave Technol. 22(6), 1615 (2004)] and fiber grating, see [GP Agrawal and S. Radic? 1fPhase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing, '' IEEE Photon· Technol. Lett· The principle of 6(8), 995 (1994)] is similar. The method used to generate multi-wavelength filtering is more complicated. It is necessary to deposit a dielectric film in a complicated structure, and attention should be paid to the arrangement of the positions of the respective resonant cavities. It is difficult to overcome the thickness control error of each dielectric layer and affect the resonant penetration wavelength position of the actual demand. Even if the cavity design can introduce liquid crystal as a tunable filter, see [I·D. Villar, IR Matias, FJ Arregui , and RO Claus, 105056.doc 1289214 ''Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards developme Nt of fiberoptic tunable wavelength filters, 11 Opt. Express 11(5), 430 (2003)], but the linear modulation range exhibited by the wavelength is limited. The cholesteric liquid crystal (CLC) structure has three main basic forms, in which a spiral structure in a planar form exhibits a special photonic band gap phenomenon of selective light scattering. When the direction of the optical rotation of the incident light coincides with the spiral direction of the cholesteric liquid crystal, the optical rotation of the specific wavelength band causes a reflection phenomenon, but if the optical rotation direction is opposite to the spiral direction, no reflection occurs. Optical filters are important components in optical transmission systems. For the optical transmission window of the optical fiber, the International Telecommunications Union (ITU) has standardized six transmission bands, namely O-Band (1260 nm~13 10 nm) and E_Battery (1360 nm~). 1460 nm), S-Band (1460 nm to 1530 nm), C-Band (1530 nm to 1565 nm), L_Band (1565 nm to 1625 nm), and U-Band (1 625 nm to 1675 nm) The ordinary light or extraordinary light refractive index of a typical liquid crystal is about 1.4 to 1.7, and the birefringence is about 0.1 to 0.2. The effect of nonlinear effects is often negligible (for example, absorption), and the ratio according to the Maxwell's equation. Scalability, by changing the maximum and minimum range of the cholesteric liquid crystal pitch gradient, the photonic bandgap (reflection band) can be moved to cover the communication wavelength range of 1260 nm to 167 nm, as described below. Referring to Figures la and lb, there are shown schematic diagrams of a spiral structure of a liquid crystal structure having a pitch gradient and a schematic diagram of a liquid crystal molecular guide axis arrangement. The liquid crystal molecules inside the cholesteric liquid crystal structure 1 are arranged in a planar spiral 105056.doc 1289214 structure, and the cholesteric liquid crystal structure 1 is composed of a plurality of layers, each layer having a -guide axis, and the d-guide axis is rotated along the helix axis u The directions of the guide axes between adjacent layers are different and continuously change, and the distance between two layers having the same guide axis direction is defined as a pitch by 2 times of the distance. The pitch systems are all different and continuously varying to form a pitch gradient. It is particularly important to note that this pitch gradient structure must stabilize its structure by a polymer monomer capable of generating a polymerization reaction in the constituent material. This polymerization reaction can be initiated by a temperature change or a photochemical reaction. The main parameters of the cholesteric liquid crystal junction W are: the extraordinary refractive index of the liquid crystal is %, the refractive index of the light is ~', the maximum pitch of the helical structure is I', the minimum pitch is Pmin, and the incident angle of the thickness h is Θ. The pitch gradient change can be exponentially described as follows: Household (4) = household minexp(|lnr) a where Γ — />_ /4. The dielectric tensor of cholesteric liquid crystal can be expressed as ^11 ^12 ^3^1 ', two €2\^22 ^23 1^31 ^32 ^33 J and the elements of the 丨 tensor are expressed as I under the coordinates ^ (1) (2) ~^i)c〇s|^~y2 2 -^i)s

Ana^y x(Z) / 4π 、 “Z)-五(5 + L)-豆 q )cos z(2)= 6*丄 ^€2χ^ε ^ € = 〇 =般而言,折射率的平方與頻率極高時的介 马接近,可用下式表示: 105056.doc (3) ^111289214 詳細的數學理論模擬由電磁波的麥克斯咸爾方 發 - (Ex) (E、 0 Ey =^oQ(^) E • & Hx y Hx HVi ^〇0(^)ψ = δ(ζ)ψ 其中 (4) 裎式出(5) Q(^) = 〇 〇 S2\ 1 -- - Ίο -£il Vo 0 0 \2 k〇 —1 € 22 k' \ΛAna^yx(Z) / 4π, "Z)-five (5 + L)-bean q)cos z(2)= 6*丄^€2χ^ε ^ € = 〇=Generally, the square of the refractive index Similar to the media at the very high frequency, it can be expressed by the following formula: 105056.doc (3) ^111289214 Detailed mathematical theory simulation by the Maxwell square of electromagnetic waves - (Ex) (E, 0 Ey =^oQ( ^) E • & Hx y Hx HVi ^〇0(^)ψ = δ(ζ)ψ where (4) 裎式出(5) Q(^) = 〇〇S2\ 1 -- - Ίο -£il Vo 0 0 \2 k〇—1 € 22 k' \Λ

A .£ll Vo 0 0 J *33 0 0 0 而〜為自由空間之本質阻抗,又為自 〜為介質在χ方向上的主轴折射 3的广場J量消去則可得到海耳姆赫兹方程式nK^^EJ+^E==0 其中 0 在此疋義在,丨+心)/2和& 睥, 4 ^)/2,當螺旋 f;左旋時,i。 參考圖2,顯示習用具有螺 穿透頻皱。ffl 2#脾阁Ί 梯度之膽固酹 处鴻”曰。圖2係將圖la之厚 又我馬 d==:40Pmii ⑹ 空間波 °將上 下:⑺(8)(9) 是右旋 結構之 以右旋 105056.doc -10- 1289214 構之膽固醇液晶為例所計算的穿透頻譜,其設計參數設 疋為非尋吊光折射率„丨丨=1.65且尋常光折射率~ ,螺旋結 構的最大螺距设定為 =92〇 nm,最小螺距4 =綱nm。 ' 在圖2中所顯示的光子能帶隙範圍為波長1255 nm〜1665 nm • 的斜線區,其中右旋光(RCP)才存在反射帶,左旋光(LCP) 則不存在,這種現象表示利用該膽固醇液晶結構丨的濾波 器會存在圓偏振選擇性滤波效果,且該膽固醇液晶結構i φ 因=有该螺距梯度而會產生比等螺距結構具有更寬的反射 頻▼然而,该膽固醇液晶結構i並不具有多波長遽波之 功能。 因此,有必要提供一種創新且具進步性的螺旋光子晶體 及包含該螺旋光子晶體之遽波器,以解決上述問題。 【發明内容】 ★本發明之目的在於提供,種螺旋光子晶體,其包括:一 2-部份及-第二部份。該第—部份具有複數個不同之第 • 螺距’該等第一螺距係為連續變化。該第二部份係盘該 -帛-部份相連接,且該第一部份與該第二部份間形成二缺 陷平面’該第二部份具有複數個不同之第二螺距,該等第 二螺距係為連續變化,其中該第_部份連接在該缺陷平面 上之第-螺距係不同於該第二部份連接在該缺陷平面上之 第二螺距’而在該缺陷平面上形成螺距變化不連續。藉 此’可實現同軸或非同軸濾波的效果,且構造簡單即可^ 生多波長滤波的效果,可使用於波長多工器等之遽波器。 此外,元件不需要透過外加電磁場或力場等作用即可產生 105056.doc 1289214 整光波透或—波波段的設計容易調 1造過程可能出現的誤差。 月之另一目的在於提供一種濾波器,其包括一第 ,第一螺旋光子晶體及一二分之一波長 遠弟-螺旋光子晶體包括一第一部份 該第一部份具有複數個不同之第-螺距1等第一螺 為連續變仆。吁钕 垓專弟一螺距係 ^弟_部份係與該第一部份 一部份與該第二部份間^哲 心安且孩弟 曰士 間形成—第-缺陷平面,該第κ八 化,其中該第二 等第二螺距係為連續變 人”連接在該第-缺陷平面上之第一螺距 係不同於該第二部份連接在該第一缺陷平 :、 距:而在該第-缺陷平面上形成螺距變化不連續。弟一螺 忒第_螺旋光子晶體包 坌-与w八曰士 弟一邛伤及一第四部份。該 弟二。κ具有複數個不同 連續變化。該第四部份伟盘今第一部/亥4弟二螺距係為 忉你興6亥第二部份相連接, 部份與該第四部份間形成—第 ^ — 七十备L 2 釈丨曰十面,该第四部份且 ^ 同之第四螺距,該等第四螺距係為連續變化了 其中該第三部份連接在該第二缺陷平面上之 同於該第四部份連接在該第二 ,、,、不 如冲吨 釈|曰十面上之第四螺距,而 在忒弟一缺陷平面上形成螺距變化不連續。 該:::一波長片係夹心於於該第—螺旋光子 第二螺旋光子晶體之間。 【實施方式】 參考圖3a及3b,分別顯示本發明第一實施例螺旋光子晶 105056.doc 12· 1289214 構示意圖及液晶分子導軸排列方式示意圖。在 子曰體妙糸以膽固醇液晶結構為例,說明本發明之螺旋光 二曰且::而可以理解的是’該螺旋光子晶體並不以膽固 :二:為限。該膽固醇液晶結構2係可當作-遽波 口口 /、匕括一第一部份21及一第二部份22。 - 部份21係由複數個第一層(圖中未示)所組成,每 曰具有-第-導軸,該等第一導軸係沿一第一螺旋 軸23旋轉,才目鄰第一層間之第一導 ” 錶嶽儿 等釉之方向係不同且呈連 /父化,二個具有相同第一導軸方向之 離,以該距離之2倍定義為第螺 曰之s的距 ± ^義為弟―螺距。該等第-螺距係皆 Π且為連績變化,該等第 螺間之變化係為一第一螺 奴梯度。此外,該第一部 二端面212 ^ 旧1具有端面2U及一第 一 2’该弟一端面211係垂直該第-螺旋軸23且接受 光24。在通常情況下,該第—部份21可以視為是一 個上述之該膽固醇液晶結, 相關理論公式。 相《固醇液晶結構丨 第二部份22係由複數個第二層(圖中未示)所組成’每 弟層具有一第二導軸’該等第二導轴係沿一第二螺旋 =疋轉’相鄰第二層間之第二導轴之方向係不同且呈連 二…一個具有相同第二導軸方向之第二層之間的距 以該距離之2倍定義為第二螺距。該等第二螺距係皆 同且為連續變化,該等第二螺距間之變化係為一第二螺 度。此外’該第二部份22具有-第三端面221及-第 四、面222 ’ 一部份之該入射光24由該第四端面222穿射 105056.doc -13- 1289214 出,另一部份之該入射光24由該第一端面211反射出。該 第二部份22之第三端面221係與該第一部份21之第二端面 212相連接,且該第一部份21與該第二部份22間形成一缺 陷平面26。在通常情況下,該第二部份以可以視為是一個 上述之該膽固醇液晶結構i,且適用該膽固醇液晶結構1相 關理論公式。較佳地,該第二部份22係完全相同於該第一 部伤2 1,亦即其二者材質相同,且該第一螺旋梯度等於該 第二螺旋梯度,該第二螺旋軸25等於該第一螺旋軸23。該 第一部份22之厚度係相同於該第一部份21之厚度,皆為 d 〇 在本實施例中,該第一部份21連接在該缺陷平面26上之 第一螺距係不同於該第二部份22連接在該缺陷平面%上之 第一螺距’而在該缺陷平面26上形成螺距變化不連續。亦 即,該第一部份21及該第二部份22間具有螺距落差(phch jump),在該缺陷平面26兩側緊鄰的螺旋變化是連續的, 但在螺距的變化上卻不連續。 參考圖4,顯示本發明第一實施例螺旋光子晶體之穿透 頻4 ’其中2d = 2〇Jpmin。圖4係將圖3a之該膽固醇液晶結構2 總厚度定義為2c/ = 2〇Pmin,且以右旋結構之膽固醇液晶為例 所計算的穿透頻譜,其設計參數設定為非尋常光折射率 % =1·65且尋常光折射率〜=1·5,第一部分21及第二部分22之 最大螺距皆設定為1=92〇 nm,最小螺距皆設定為4=8〇〇 nm。由圖4可知,左旋光(LCP)會全部穿透,但是在光子能 帶隙範圍内(亦即波長為1255 nm〜1665 nm的區域内),右 105056.doc 14 1289214 旋光(RCP)會有複數個特定的穿透波長,而形成複數個缺 陷模。 在本發明中係以該等缺陷模的效應作為濾波功能。因濾 ' 波對信號會有無可避免的相位扭曲而產生時間上的延遲, ' 即群速延遲(Group Delay),如圖4中之上方所示。將該群 $延遲與該等缺陷模做比較,可發現通常缺陷模的頻寬越 窄則相位扭曲也會跟著越嚴重,即時間上的延遲會更久。 • 自於每個缺陷模在該光子能帶隙中所處的位置不同,能帶 隙的深度也就不同,通常越接近該光子能帶隙中央的缺陷 t的深度越深’也就是其相對應波長的光子受到該光子能 ▼隙的拘束效應越強’在内部不斷來回穿透反射的共振次 數就越多,信號在時間上的延遲就越久。在圖4中的所有 缺1^板裡,具有最小半高寬(Ful1 Width at Half Maximum, FWHM)(約4 nm)的缺陷模的中心波長為1435⑽,會對應 到最,的延遲時間約372 fs。此外,在圖4右上角之插圖顯 _ τ Θ具有最小:FWHM的缺陷模的頻道阻隔距離中心波長 的衰減耘度大約只有丨〇dB,其衰減程度並不大。 參考圖5 ’顯示本發明第—實施例螺旋光子晶體之穿透 頻譜,甘中 u 一 ’、 =4〇Pmin。由圖5可知,當該膽固醇液晶結構2 2 -厚度增加至2“40Pmin時,該等缺陷模在該光子帶隙的 :木度會Ik之加深’而能夠產生更窄頻寬的濾波效果。同時 /等缺模之數目也隨之增加,且該等缺陷模之間距也變 、 圖的所有缺陷模裡,具有最小半高寬(FWHM)(約 為0·6 nm)的缺陷模白勺中心波長為1375麵,其在圖$之右上 105056.doc -15- 1289214 ^插圖所顯示的頻道阻隔距離中心波長3 nm處就有2議的 衰減,比圖4之衰減程度大。因&,儘管濾波的頻寬能夠 隨該膽固醇液晶結構2之總厚度增加而減少,但信號的群 速延遲在此卻t増加到最大約3417fs。所以,#果將該膽 固醇液晶結構2與其他主動元件整合時,就要注意是否會 因信號的群速延遲增加而降低系統的響應速度。 參考圖6’顯示不同總厚度之膽固醇液晶結構與其内各 個缺模中〜波長的關係圖。圖6所顯示的缺陷模是以右 凝光入射的h ’且其橫座標之厚度係為總厚度㈣除以 最小螺距(Pmin)。由圖中可看出,缺陷模的數量隨著膽固醇 液晶結構之總厚度增加,而且除了會逐漸變多夕卜該等缺 陷模之中心波長也會逐漸從長波長往短波長移動,各中心 波長位置缺陷模的出現和位置變化的趨勢可制以下方程 式來敛述 ^+i \ 2nAd cos0 = 1 ' (10) 其中《-=V^n,vn..,^,而且人>人+1,△尤為折射 率匹配層厚度’這種缺陷模的穿透特性是類似法布里-比 洛干涉儀的結果來敘述’然而在頻譜上多缺陷模產生的原 因和:般法布里比洛非單色光干涉所產生的特殊序列, 兩者成因有所不同。一般法布里_比洛干涉的出現需要以 斜向的波向®分量,藉由反射鏡來回將其反射,於特定相 差下才能產生干涉序列;但在本發明中所出現的多缺陷模 則是因為光子能帶隙現象所造成之多重光學共振腔的共振 效應,而且與接近垂直的波向量分量有關。此多重丘振妒 105056.doc 16 1289214 架構如圖3a及3b^ ’把螺距梯度結構看成是以—声層不 同等效等螺距⑻膽固醇液晶薄膜所堆疊而成,在“落 差的缺陷平面26兩侧會有相同的等效螺距膽固醇液晶薄膜 兩兩對映,形成一對對的膽固醇液晶卩射鏡共振腔結構,、 且每一對反射鏡所夾的膽固醇液晶層可視為折射率匹配 層。另外’每―對共振腔形成共振波長的條件,除了要配A.£ll Vo 0 0 J *33 0 0 0 and ~ is the essential impedance of free space, and is the self-densation of the square J of the medium in the χ direction, and the Herm Hertz equation can be obtained. nK^^EJ+^E==0 where 0 is in this sense, 丨+heart)/2 and & 睥, 4^)/2, when the spiral f; left-handed, i. Referring to Figure 2, the display has a thread penetration wrinkle. Ffl 2# spleen Ί 梯度 之 之 梯度 梯度 梯度 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Taking the cholesteric liquid crystal of dextro 105056.doc -10- 1289214 as an example, the design of the penetrating spectrum is set to 非 寻 光 . . . . . . . . . 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常 寻常The maximum pitch is set to = 92 〇 nm, and the minimum pitch is 4 = outline nm. The photonic band gap shown in Figure 2 is in the oblique region of wavelength 1255 nm~1665 nm • where the right-handed light (RCP) has a reflection band and left-handed light (LCP) does not exist. The filter using the cholesteric liquid crystal structure 会 has a circular polarization selective filtering effect, and the cholesteric liquid crystal structure i φ has a wider reflection frequency than the equal pitch structure due to the pitch gradient. However, the cholesteric liquid crystal Structure i does not have the function of multi-wavelength chopping. Therefore, it is necessary to provide an innovative and progressive spiral photonic crystal and a chopper including the spiral photonic crystal to solve the above problems. SUMMARY OF THE INVENTION The object of the present invention is to provide a helical photonic crystal comprising: a 2-part and a second part. The first portion has a plurality of different first pitches. The first pitches are continuously varying. The second portion of the tray is connected to the portion, and the first portion forms a two defect plane with the second portion. The second portion has a plurality of different second pitches. The second pitch is a continuous change, wherein the first pitch is connected to the defect plane, and the first pitch is different from the second pitch of the second portion connected to the defect plane and formed on the defect plane The pitch changes are not continuous. By this, the effect of coaxial or non-coaxial filtering can be realized, and the effect of multi-wavelength filtering can be achieved by simple construction, and can be used for a chopper of a wavelength multiplexer or the like. In addition, the components do not need to be applied by external electromagnetic fields or force fields. 105056.doc 1289214 The design of the light-wave or wave-band is easy to adjust the error that may occur during the manufacturing process. Another object of the month is to provide a filter comprising a first spiral photonic crystal and a one-half wavelength far-helical photonic crystal comprising a first portion having a plurality of different first portions The first snail, such as the first pitch and the first pitch, is continuously servant.钕垓 钕垓 钕垓 一 一 螺 ^ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The second pitch system is continuously variable. The first pitch system connected to the first defect plane is different from the second portion connected to the first defect plane: The pitch variation on the first-defect plane is discontinuous. The first spiral photon crystal package contains a smash and a fourth part. The second κ has a plurality of different continuous changes. The fourth part of the Weipan today's first / Hai 4 brother two pitch system is connected to the second part of your Xing 6 Hai, part of which is formed with the fourth part - the first ^ - seventy 2 釈丨曰 十面, the fourth portion and the fourth pitch, the fourth pitch is continuously changed, wherein the third portion is connected to the fourth defect plane and the fourth Part of the connection is in the second,,, and not as good as the fourth pitch of the ton ton 曰 曰 曰 曰 曰 , , , , , , , , 缺陷 缺陷 一 一 一 一 第四 第四 第四 第四 第四The ::: one wavelength chip is sandwiched between the first spiral photonic crystal and the second spiral photonic crystal. [Embodiment] Referring to Figures 3a and 3b, respectively, the spiral photonic crystal 105056.doc of the first embodiment of the present invention is shown. 12· 1289214 Schematic diagram and schematic diagram of the arrangement of the liquid crystal molecular guide axes. In the case of the steroidal liquid crystal structure, the spiral light dipole of the present invention is illustrated: and it is understood that the spiral photonic crystal does not Cholesterol: 2: Limit. The cholesteric liquid crystal structure 2 can be used as - 遽 口 口 / /, including a first part 21 and a second part 22 - Part 21 is composed of a plurality of first a layer (not shown), each having a - lead-guide axis, the first guide shaft rotating along a first screw axis 23, to be adjacent to the first guide between the first layers The direction of the glaze is different and is connected/parental, and the two have the same direction of the first guiding axis, and the distance of 2 times of the distance is defined as the distance of the s of the snail ± ^ is the brother-pitch. The first-pitch systems are all continually changing, and the change between the first snails is a first snail gradient. Further, the first portion of the second end surface 212 ^1 has an end surface 2U and a first portion 2', and the first end surface 211 is perpendicular to the first spiral shaft 23 and receives the light 24. In the usual case, the first portion 21 can be regarded as a above-mentioned cholesteric liquid crystal junction, and the relevant theoretical formula. The second portion 22 of the sterol liquid crystal structure is composed of a plurality of second layers (not shown). Each of the layers has a second guide axis. The second guide axes are along a second spiral. = 疋 ' 'the direction of the second guide axis between adjacent second layers is different and is connected... The distance between the second layers having the same second guide axis direction is defined as the second pitch by 2 times the distance . The second pitch systems are all identical and continuously varying, and the change between the second pitches is a second pitch. In addition, the second portion 22 has a third end face 221 and a fourth face 222 'the portion of the incident light 24 is emitted by the fourth end face 222 105056.doc -13-1288914, the other portion The incident light 24 is reflected by the first end surface 211. The third end surface 221 of the second portion 22 is connected to the second end surface 212 of the first portion 21, and a defect plane 26 is formed between the first portion 21 and the second portion 22. In the usual case, the second portion can be regarded as one of the above-mentioned cholesteric liquid crystal structures i, and the relevant theoretical formula of the cholesteric liquid crystal structure 1 is applied. Preferably, the second portion 22 is identical to the first portion 2, that is, the two materials are the same, and the first spiral gradient is equal to the second spiral gradient, and the second spiral axis 25 is equal to The first screw shaft 23. The thickness of the first portion 22 is the same as the thickness of the first portion 21, which is d 〇. In this embodiment, the first pitch of the first portion 21 connected to the defect plane 26 is different from the first pitch. The second portion 22 is connected to the first pitch ' on the defect plane % and forms a pitch variation discontinuity on the defect plane 26. That is, the first portion 21 and the second portion 22 have a phch jump, and the spiral changes immediately adjacent to the defect plane 26 are continuous, but are discontinuous in the pitch variation. Referring to Fig. 4, there is shown a transmission frequency 4' of a spiral photonic crystal of the first embodiment of the present invention, wherein 2d = 2〇Jpmin. Figure 4 is a graph showing the total thickness of the cholesteric liquid crystal structure 2 of Figure 3a as 2c / = 2 〇 Pmin, and the chromosomal liquid crystal of the right-handed structure as an example. The design parameter is set to an extraordinary refractive index. % =1·65 and the ordinary light refractive index 〜=1·5, the maximum pitch of the first portion 21 and the second portion 22 are both set to 1=92 〇 nm, and the minimum pitch is set to 4=8 〇〇 nm. As can be seen from Figure 4, the left-handed light (LCP) will penetrate completely, but in the photonic band gap (that is, in the region of wavelength 1255 nm ~ 1665 nm), the right 105056.doc 14 1289214 optical rotation (RCP) will A plurality of specific penetration wavelengths form a plurality of defect modes. In the present invention, the effects of the defect modes are used as filtering functions. The time delay due to the filter's unavoidable phase distortion on the signal, 'ie Group Delay', is shown at the top of Figure 4. Comparing the group $delay with the defect modes, it can be found that the narrower the bandwidth of the normal defect mode, the more severe the phase distortion will be, that is, the time delay will be longer. • Since the position of each defect mode is different in the photonic band gap, the depth of the band gap is different. Generally, the closer the depth of the defect t is to the center of the photonic band gap, the deeper the phase is. The stronger the restraining effect of the photon of the corresponding wavelength by the photon energy, the more the number of resonances that continuously oscillate back and forth inside, and the longer the signal delays in time. In all the missing boards in Figure 4, the center wavelength of the defect mode with Ful1 Width at Half Maximum (FWHM) (about 4 nm) is 1435 (10), which corresponds to the most, the delay time is about 372. Fs. In addition, the illustration in the upper right corner of Fig. 4 shows that _ τ Θ has the smallest: the attenuation of the channel impedance of the FWHM defect mode is only about 丨〇 dB, and the attenuation is not large. Referring to Fig. 5', the transmission spectrum of the spiral photonic crystal of the first embodiment of the present invention is shown, which is 一, =, 〇, Pmin. As can be seen from FIG. 5, when the thickness of the cholesteric liquid crystal structure is increased to 2 "40 Pmin, the defect modes in the photonic band gap: the wood degree will be deepened by Ik", and a filtering effect of a narrower bandwidth can be produced. The number of simultaneous/equal missing modes also increases, and the distance between the defective modes also changes. In all the defect modes of the figure, the defect mode with the minimum full width at half maximum (FWHM) (about 0·6 nm) is added. The center wavelength is 1375, which is 105056.doc -15-1282914 in the upper right of Figure $. The channel block distance shown by the illustration is 3 nm at a center wavelength of 3 nm, which is greater than the attenuation of Figure 4. Although the filtered bandwidth can be reduced as the total thickness of the cholesteric liquid crystal structure 2 increases, the group velocity delay of the signal is added to the maximum of about 3417 fs. Therefore, the cholesteric liquid crystal structure 2 and other active components are When integrating, it is necessary to pay attention to whether the response speed of the system will decrease due to the increase of the group speed delay of the signal. Refer to Fig. 6' to show the relationship between the cholesteric liquid crystal structure with different total thickness and the wavelength in each missing mode. Defect mode is right The incident h' and the thickness of its abscissa are the total thickness (four) divided by the minimum pitch (Pmin). As can be seen from the figure, the number of defective modes increases with the total thickness of the cholesteric liquid crystal structure, and in addition to gradually increasing In addition, the center wavelength of the defect modes will gradually shift from the long wavelength to the short wavelength. The tendency of the appearance and position change of the defect mode at each central wavelength position can be expressed by the following equation: ^+i \ 2nAd cos0 = 1 ' ( 10) where "-=V^n, vn.., ^, and human> person +1, △ especially the refractive index matching layer thickness', the penetration mode of the defect mode is similar to the Fabry-Bilo interferometer The results are described as 'however, the reason for the multi-defect mode in the spectrum and the special sequence produced by the non-monochromatic interference of the Fabribi-Biro is different. The cause of the difference is different. The general Fabri-Bilo interference The wave direction component that needs to be obliquely is reflected by the mirror back and forth, and the interference sequence can be generated under a certain phase difference; however, the multi-defect mode appearing in the present invention is caused by the photonic band gap phenomenon. Resonance effect of multiple optical resonant cavity Moreover, it is related to the near-vertical wave vector component. This multi-modal vibration 105056.doc 16 1289214 architecture is shown in Figures 3a and 3b ^ 'The pitch gradient structure is regarded as being stacked with a different acoustic equivalent (8) cholesteric liquid crystal film In the "difference plane 26 on both sides of the gap, there will be the same equivalent pitch cholesteric liquid crystal film in pairs, forming a pair of cholesteric liquid crystal mirror cavity structure, and each pair of mirrors The cholesteric liquid crystal layer can be regarded as an index matching layer. In addition, the condition of forming a resonance wavelength for each cavity is not limited.

合腔的共振長度外’也要搭配局部膽固醇液晶反射鏡所對 應的光子能帶隙波段,即 «II «J. (11) 其中;I。= W。再者,缺陷模之間的波長差可定義出自由頻 谱範圍(free spectral range FSR)如下: 2nAdv (12) 其中4且△&lt; &lt;△々&lt;···〈△&lt;。(10)式和(12)式可作為設計濾 波器的規範。The resonance length of the cavity should also be matched with the photonic band gap band corresponding to the local cholesteric liquid crystal mirror, ie «II «J. (11) where; I. = W. Furthermore, the wavelength difference between the defect modes can define a free spectral range (FSR) as follows: 2nAdv (12) where 4 and Δ&lt;&lt;Δ々&lt;···<Δ&lt;. Equations (10) and (12) can be used as specifications for designing filters.

參考圖7a,顯示本發明第一實施例膽固醇液晶結構之穿 透頻譜,其中M = 。參考圖7b,顯示本發明第一實施 例膽固醇液晶結構之穿透頻譜,其中M = 45Pmin。由圖7&amp;及 7b可知該膽固醇液晶結構2之總厚度為^ = 154與2^ = 45/^ 時,所有的缺陷模的穿透度可達到1 00%。 參考圖8,顯示本發明第一實施例膽固醇液晶結構中入 射光之不同入射角的情況下之穿透頻譜’其中2d := 25Pmin。 由圖8可看出,當光的入射角度0變大時,除了光子能帶隙 與對應的缺陷模都會往短波長位置偏移外,當該入射角度 105056.doc -17- 1289214 Θ超過20。時,即會產生缺陷模穿透度的衰減,因此使用該 膽固.液晶結構2作為濾波器時要注意光入射角度不能過 大’約在0至20度。 參考圖9a及9b,顯示本發明第二實施例螺旋光子晶體之 2體不意及螺旋結構示意圖。在本發明中係以膽固醇液晶 7構為例,說明本發明之螺旋光子晶體,然而可以理解的 螺旋光子晶體並不以膽固醇液晶結構為限。該膽固 =阳結構3係可當作一遽波器,其包括一第一 一第二部份32。 门該第—部份31係與該膽_液晶結構2之第—部份21相 同,其係由複數個筮^ ^ 丨知21相 且有-第= 未示)所組成,每一第一層 八有第一導軸,該等第一導軸俜沪一楚^ 轉,相鄰箆溫叫 係 弟一螺旋軸33旋 将祁郇弟一層間之第一 化,-初目女4 蛤釉之方向係不同且呈連續變 -個具有相同第一導軸方向之、交 該距離之2&gt;f立宕羞泛哲 θ之間的距離,以 之2七疋義為第—螺距。該 為連續變化,嗲聱笙 螺距係皆不同且 度。該第一部份31接森 “為弟一螺旋梯 1接文一入射光34。 該第二部份32係由複數個第二 -第二層具有一第 曰(圖中未不)所組成’每 乐一導軸,該笤笸- 軸35旋轉,相鄰第— —蛤軸係沿一第二螺旋 州罘一層間之第二導 續變化,二個具有相同第二、曾 向係不同且呈連 離,以該距離之2倍定義:一 *方向之第二層之間的距 不同且為連續變化,該等第- 该等第二螺距係皆 旋梯度。較佳地,兮篦一 ’、門之變化係為一第二螺 4弟一部份32係6入4 ^ 係凡全相同於該第一部份 J05056.doc -J8- 1289214 31亦即其二者材質相同,且該第一螺旋梯度等於該第二 螺旋梯度,該第二螺旋軸35等於該第一螺旋軸33。該第二 部份32之厚度係相同於該第一部份31之厚度,皆為j。Referring to Fig. 7a, there is shown a permeation spectrum of a cholesteric liquid crystal structure according to a first embodiment of the present invention, wherein M = . Referring to Figure 7b, there is shown a transmission spectrum of a cholesteric liquid crystal structure of the first embodiment of the present invention, wherein M = 45 Pmin. 7 &amp; and 7b, the total thickness of the cholesteric liquid crystal structure 2 is ^ = 154 and 2^ = 45 / ^, and the penetration of all the defective modes can reach 100%. Referring to Fig. 8, there is shown a penetration spectrum 'where 2d := 25Pmin in the case of different incident angles of incident light in the cholesteric liquid crystal structure of the first embodiment of the present invention. It can be seen from Fig. 8 that when the incident angle 0 of the light becomes larger, the incident angle 105056.doc -17-1282914 Θ exceeds 20, except that the photonic band gap and the corresponding defect mode are shifted to the short wavelength position. . At this time, the attenuation of the defect mode penetration is generated, so when using the biliary liquid crystal structure 2 as a filter, it is necessary to pay attention to that the light incident angle is not excessively "about 0 to 20 degrees. Referring to Figures 9a and 9b, there is shown a schematic view of a spiral photonic crystal of a second embodiment of the present invention. In the present invention, the spiral photonic crystal of the present invention is illustrated by taking the cholesteric liquid crystal structure as an example, but it is understood that the spiral photonic crystal is not limited to the cholesteric liquid crystal structure. The biliary-positive structure 3 can be used as a chopper, including a first and second portion 32. The first portion of the door is the same as the first portion 21 of the biliary liquid crystal structure 2, and is composed of a plurality of 筮^^ 2121 phases and has a -th=not shown, each first Layer 8 has a first guide axis, and the first guide shaft is turned around, and the adjacent axis is called the first axis of the spiral axis 33. The direction of the glaze is different and is continuously changed - the distance between the two having the same first guide axis direction and the distance of the distance > 2 宕 宕 泛 哲 θ θ, which is the second pitch. This is a continuous change, and the pitch system is different and degrees. The first portion 31 is connected to the "one brother-one spiral ladder 1 to receive an incident light 34. The second portion 32 is composed of a plurality of second-second layers having a third (not shown) 'After each guide axis, the 笤笸-axis 35 rotates, the adjacent first--ankle axis is along the second transition between the second spiral state, and the two have the same second and different orientations. And being separated, defined by 2 times of the distance: the distance between the second layers in a * direction is different and is continuously changed, and the second - the second pitch systems are all rotated gradients. Preferably, 兮篦The change of a 'door' is a second snail 4 part of a 32-series 6 into 4 ^ system is the same as the first part of J05056.doc -J8-1289214 31, that is, the two materials are the same, and The first spiral gradient is equal to the second spiral gradient, and the second helical axis 35 is equal to the first helical axis 33. The thickness of the second portion 32 is the same as the thickness of the first portion 31, and is j.

&quot;亥第部份31與該第二部份32間形成一缺陷平面36〇在 本實施例中,該第一部份31連接在該缺陷平面刊上之第一 螺距係不同於該第二部份U連接在該缺陷平面%上之第二 螺距,而在該缺陷平面36上形成螺距變化不連續。亦即, 該第一部份31及該第二部份32間具有螺距落差(pitch jump) ° 、與第-實施例不同的{,在本實施例中,除了該螺距落 差缺fe外再加入扭旋缺陷(twist defect)(或稱相落差(phse jump)) ’亦即該第一部份31在該缺陷平面%上之第一導軸 η之方向係不同於5亥第二部份在該缺陷平面%上之第二 導軸η’之方向,而在該缺陷平面刊上形成一相位差(或稱扭 旋角度,其可當作是該第一部份31與該第二部份^相 對旋轉了雜旋角度α。因Λ,該缺陷平面%兩側緊鄰的 螺旋變化和螺距變化都不連續。 芩考圖10 ’顯不第二實施例之膽固醇液晶結構中不同扭 旋角度與各個缺陷模中心波長的關係圖,丨中該膽固醇液 晶結構3之總厚度s2“2〇Pmin。由圖中可看出,缺陷模中心 波長位置與扭旋角度α之間會存在線性關係的變化。 參考圖U,顯示本發明第二實施例膽固醇液晶結構之穿 透頻4,其中Μ = 2〇户咖。由圖中可看出 不同扭旋角度α 的穿透頻譜所顯現的缺陷模穿透度都能夠達到100%。 105056.doc -19- 1289214 參考圖12,顯示本發明應用於光通訊接取網路(Access Network)系統示意圖。該光通訊接取網路系統4是光纖系 統中的一項重要運用一光纖到府(Fiber-To-The-Home, FTTH),其係一種結合有線電視(CATV)與高速網路存取的 加值服務。該光通訊接取網路系統4包括一類比/數位電視 傳送器(Analog/Digital TV Broadcast Transmitter)4 1、一 光 學路徑終端機(Optical Line Terminal)42、一光學耦合器 (Optical Coupler)43、一單模光纖(Single Mode Fiber)44、 一濾波器(Filter)45、一網路終端機(〇ptical Netw〇rk Terminal )46、一有線電視(CATV)47、一網路單元(0ptical Network Unit)48及一寬頻網路(ADSL/VDSL)49。該類比/ 數位電視傳送器41、該光學路徑終端機42及該光學耦合器 43係為伺服端’該網路終端機46、該有線電視47、該網路 單元48及該寬頻網路49係為客戶端。 該類比/數位電視傳送器41所傳送之第一波長4為1555 nm,該光學路徑終端機42所傳送之第二波長七為“% nm,該第一波長4及該第二波長&amp;經過該光學耦合器“後 而於該單模光纖44上傳送。該濾波器判可以是該第—實施 例之膽固醇液晶結構2或是該第二實施例之膽固醇液晶結 構3。該濾波器45的濾波特性是具有圓偏振光選擇性,以 右旋結構來說,若要將該單模光纖44上之該第一波長4及 該第二波長V皮長作ϋ分’可選擇其中4壬一個波長當作缺 陷模。但通過該濾波器45前必須是右圓偏振光才能受到光 子能帶隙作用而產生遽波,所以之前應以一第一相位延遲 105056.doc -20- 1289214 片(Phase Retarder)50來改變光的偏振狀態。分離後之第一 波長;^即經由該網路終端機46而到該有線電視47 ;分離後 之弟二波長毛即經由該網路單元4 8而到該寬頻網路4 9。 由該寬頻網路49回到該光學路徑終端機42的路徑上,其 波長為第二波長;13( 13 3 0 nm),所以不必濾波。在通過該濾 波器4 5之釗也應以一第二相位延遲片5丨來改變光的偏振狀&quot;Hai portion 31 and the second portion 32 form a defect plane 36. In this embodiment, the first portion 31 is connected to the defect plane and the first pitch is different from the second The portion U is connected to the second pitch on the defect plane %, and the pitch variation is discontinuous on the defect plane 36. That is, the first portion 31 and the second portion 32 have a pitch jump °, which is different from the first embodiment. In this embodiment, the pitch is added except for the pitch drop. a twist defect (or phse jump), that is, the direction of the first guide axis η of the first portion 31 on the defect plane % is different from the second portion of the a direction of the second guide axis η' on the defect plane %, and a phase difference (or a twist angle) is formed on the defect plane, which can be regarded as the first portion 31 and the second portion ^ Relative rotation of the misalignment angle α. Because of this, the spiral change and the pitch change immediately adjacent to the defect plane % are not continuous. Referring to Figure 10, the second twist angle of the cholesteric liquid crystal structure of the second embodiment is shown. The relationship between the wavelengths of the centers of the various defect modes, the total thickness s2 of the cholesteric liquid crystal structure 3 is "2 〇 Pmin. As can be seen from the figure, there is a linear relationship between the central wavelength position of the defect mode and the twist angle α. Referring to FIG. U, the second embodiment of the present invention shows the wearing of a cholesteric liquid crystal structure. Transmittance 4, where Μ = 2 咖 咖 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12, showing the application of the present invention to an optical communication access network (Access Network) system. The optical communication access network system 4 is an important application in the optical fiber system to a fiber-to-the-home (Fiber-To-The-Home , FTTH), which is a value-added service that combines cable television (CATV) and high-speed network access. The optical communication access network system 4 includes an analog/digital TV broadcast transmitter (Analog/Digital TV Broadcast Transmitter) 4 1. An optical line terminal 42, an optical coupler 43, a single mode fiber 44, a filter 45, and a network terminal (〇 Ptical Netw〇rk Terminal 46, a cable TV (CATV) 47, a network unit (Optical Network Unit) 48, and a broadband network (ADSL/VDSL) 49. The analog/digital television transmitter 41, the optical path The terminal 42 and the optical coupler 43 are servo The network terminal 46, the cable TV 47, the network unit 48 and the broadband network 49 are clients. The first wavelength 4 transmitted by the analog/digital television transmitter 41 is 1555 nm, The second wavelength seven transmitted by the optical path terminal 42 is "% nm, and the first wavelength 4 and the second wavelength &amp; pass through the optical coupler" and then transmitted on the single mode fiber 44. The filter may be the cholesteric liquid crystal structure 2 of the first embodiment or the cholesteric liquid crystal structure 3 of the second embodiment. The filter characteristic of the filter 45 is circularly polarized, and in the case of a right-handed structure, the first wavelength 4 and the second wavelength V on the single-mode fiber 44 are to be divided. Select one of the four wavelengths as the defect mode. However, before the filter 45, the right circularly polarized light must be subjected to the photonic bandgap to generate chopping, so the light should be changed by a first phase delay of 105056.doc -20-1289214 (Phase Retarder) 50. The state of polarization. The separated first wavelength is passed to the cable 47 via the network terminal 46; the separated second wavelength is transmitted to the broadband network 49 via the network unit 48. The broadband network 49 returns to the path of the optical path terminal 42 with a wavelength of the second wavelength; 13 (13 3 0 nm), so no filtering is necessary. The polarization of the light should also be changed by a second phase retarder 5丨 after passing through the filter 45.

恶’當偏振狀悲轉為左圓偏振光就不會受到光子能帶隙作 用而順利通過。 參考圖13,顯示本發明應用於光塞取多工器之濾波器之 示意圖。該光塞取多工器6包括一第一螺旋光子晶體7、一 第一螺旋光子晶體8及一個二分之一波長片9。 在本實施例中,該第一螺旋光子晶體7係以膽固醇液晶 釔構為例,其係與該第一實施例之膽固醇液晶結構2相 同。該第一螺旋光子晶體7包# 一第一部份71及一第二部 份72。該第一螺旋光子晶體7之第一部份71係與該膽固醇 液晶結構2之第一部份21相同.該第一部份71具有複數個 不同之第-螺距,該等第—螺距係為連續變化。該第二部 份72係與㈣-部份71相連接,且該第—部份^該第二 部份72間形成-第-缺陷平面73,該第二部份72具有複數 個不同之第二螺距’該等第二螺距係為連續變化,其中該 第-部份71連接在該第一缺陷平面乃上之第一螺距係不同 於該第二部份72連接在該第-缺陷平面73上之第二螺距, 而在該第—缺陷平面73上形成螺距變化不連續。 在本實施例中,該第:螺旋光子晶體8係以膽固醇液晶 105056.doc -21 . 1289214 結構為例,其係與該第-實施例之膽固醇液晶結構2相 同。該第二螺旋光子晶體8包# 一第三部份81及一第四部 刀82名第一螺紋光子晶體8之第三部份8丨係與該膽固醇 液晶結構2一之第一部份21相同。該第三部份81具有複數個 不同之第二螺⑮’該等第三螺距係為連續變化。該第四部 份82係與該第三部份81相連接,且該第三部份。與該第四 P伤82間形成第一缺陷平面83,該第四部份具有複數 個不同之第四螺距’該等第四螺距係為連續變化,其中該 第一。卩伤81連接在该第二缺陷平面83上之第三螺距係不同When the polarization is changed to the left circularly polarized light, it will not pass the photonic band gap and pass smoothly. Referring to Figure 13, there is shown a schematic diagram of a filter applied to a photo-plug multiplexer of the present invention. The optical plug multiplexer 6 includes a first spiral photonic crystal 7, a first spiral photonic crystal 8, and a half wavelength plate 9. In the present embodiment, the first spiral photonic crystal 7 is exemplified by a cholesteric liquid crystal structure which is the same as the cholesteric liquid crystal structure 2 of the first embodiment. The first spiral photonic crystal 7 includes a first portion 71 and a second portion 72. The first portion 71 of the first spiral photonic crystal 7 is identical to the first portion 21 of the cholesteric liquid crystal structure 2. The first portion 71 has a plurality of different first-pitches, and the first-pitch system is Continuous change. The second portion 72 is connected to the (four)-portion 71, and the first portion of the second portion 72 forms a --defect plane 73. The second portion 72 has a plurality of different portions. The second pitch 'the second pitch system is a continuous change, wherein the first pitch portion of the first portion 71 connected to the first defect plane is different from the second portion 72 connected to the first defect plane 73 The second pitch is formed, and the pitch variation is discontinuous on the first defect plane 73. In the present embodiment, the first spiral photonic crystal 8 is exemplified by a structure of cholesteric liquid crystal 105056.doc - 21. 1289214 which is the same as the cholesteric liquid crystal structure 2 of the first embodiment. The second spiral photonic crystal 8 package # a third portion 81 and a fourth portion 82 of the first thread photonic crystal 8 of the third portion 8 and the first portion of the cholesteric liquid crystal structure 2 the same. The third portion 81 has a plurality of different second snails 15' which are continuously varying. The fourth portion 82 is coupled to the third portion 81 and the third portion. A first defect plane 83 is formed with the fourth P-injury 82, the fourth portion having a plurality of different fourth pitches. The fourth pitch is a continuous change, wherein the first portion. The third pitch of the bruise 81 connected to the second defect plane 83 is different

於省第四部伤82連接在該第二缺陷平面83上之第四螺距 而在該第二缺陷平面83上形成螺距變化不連續。 該二分之一波長片9係夾心於於該第一螺旋光子晶體7及 该第二螺旋光子晶體8之間。 該光塞取多工器6可以不具有圓偏振光選擇性,這是因 為該二分之一波長片9可以將右旋光與左旋光兩種正交光 的偏振狀態做交換,不管入射右旋光或入射左旋光都一定 會X到光子能帶隙作用而產生濾波效果,因此就不會有圓 偏振光選擇性問題造成只能產生一半的濾波效果。並且要 產生不同波長的濾波,只需要改變不同的扭旋角度“即可 做到,不需要像習用的薄膜濾波器還必須以不同的膜厚設 計才能改變。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此,習於此技術之人士可在不違背本發 明之精神對上述貫施例進行修改及變化。本發明之權利範 105056.doc 1289214 * # 圍應如後述之申請專利範圍所列。 【圖式簡單說明】 圖1 a顯示習用具有螺距梯度之膽固醇液晶結構之螺旋妹 ,構示意圖; 圖lb顯示習用具有螺距梯度之膽固醇液晶結構之液晶分 子導軸排列方式示意圖;The fourth pitch 82 of the province is connected to the fourth pitch on the second defect plane 83 to form a pitch variation discontinuity on the second defect plane 83. The one-half wavelength plate 9 is sandwiched between the first spiral photonic crystal 7 and the second spiral photonic crystal 8. The optical plug multiplexer 6 may not have circularly polarized light selectivity because the one-half wavelength slice 9 can exchange the polarization states of the right-handed light and the left-handed two orthogonal light regardless of the incident right. Both the optical rotation and the incident left-handed light must have a X-to-photon bandgap effect to produce a filtering effect, so that there is no circularly polarized light selectivity problem that can only produce half of the filtering effect. And to generate different wavelengths of filtering, only need to change the different twist angles "can be done, do not need to be like a conventional thin film filter must also be changed with different film thickness design. However, the above embodiments are only illustrative of the present invention The invention and its effects are not intended to limit the invention. Therefore, those skilled in the art can modify and change the above-described embodiments without departing from the spirit of the invention. The scope of the invention is 105056.doc 1289214 * #围应为为专利范围范围范围。 [Simple diagram of the diagram] Figure 1 a shows a spiral crystal structure of a climatic liquid crystal structure with a pitch gradient; Figure lb shows a liquid crystal with a pitch gradient of cholesteric liquid crystal structure Schematic diagram of the arrangement of molecular guide axes;

圖2顯示習用具有螺距梯度之膽固醇液晶結構之穿透頻 譜; N | 圖3a顯示本發明第一實施例螺旋光子晶體之螺旋結構示 意圖; 圖3b顯示本發明第一實施例螺旋光子晶體之液晶分子導 軸排列方式示意圖; 圖4顯示本發明第一實施例螺旋光子晶體之穿透頻譜, 其中 2“20Pmin ; 圖5顯示本發明第一實施例螺旋光子晶體之穿透頻譜, &gt; 其中 2“ 40Pmin ; 圖6顯示不同總厚度之膽固醇液晶結構與其内各個缺陷 模中心波長的關係圖; 圖7a顯示本發明第一實施例膽固醇液晶結構之穿透頻 譜,其中 2rf = l5Pmin ; 圖7b顯示本發明第一實施例膽固醇液晶結構之穿透頻 譜,其中 2d = 45Pmin ; 圖8顯示本發明第一實施例膽固醇液晶結構中入射光之 不同入射角的情況下之穿透頻譜,其中π = ; 105056.doc -23- 1289214 圖9a顯示本發明第二實施例螺旋光子晶體之立體示意 圖; 圖%顯示本發明第二實施例螺旋光子晶體之螺旋結構示 意圖; 圖Μ顯示第二實施例之膽固醇液晶結構中不同扭旋角度 與各個缺陷模中心波長的關係圖; 圖11顯示本發明第二實施例膽固醇液晶結構之穿透頻 譜’其中 2i/ = 20Pmin ; 圖12顯示本發明應用於光通訊接取網路系統示意圖;及 圖13顯示本發明應用於光塞取多工器之濾波器之示音 圖0 【主要元件符號說明】 Λ 第一波長 Λ 第二波長 第三波長 1 膽固醇液晶結構 2 本發明第一實施例之膽固醇液晶結構 3 本發明第二實施例之膽固醇液晶結構 4 光通訊接取網路系統 6 光塞取多工器 7 第一螺旋光子晶體 8 弟一螺旋光子晶體 9 二分之一波長片 11 螺旋軸 105056.doc -24· 1289214 21 第一部份 22 第二部份 23 第一螺旋軸 24 入射光 25 第二螺旋軸 26 缺陷平面 31 第一部份 32 第二部份 33 第一螺旋軸 34 入射光 35 第二螺旋軸 36 缺陷平面 41 類比/數位電視傳送器 42 光學路徑終端機 43 光學耦合器 44 單模光纖 45 濾、波器 46 網路終端機 47 有線電視 48 網路單元 49 寬頻網路 50 第一相位延遲片 51 第二相位延遲片 71 第一部份 105056.doc -25 - 1289214 72 73 81 82 83 211 212 2212 shows a transmission spectrum of a cholesteric liquid crystal structure having a pitch gradient; N | FIG. 3a is a schematic view showing the spiral structure of the spiral photonic crystal of the first embodiment of the present invention; and FIG. 3b is a view showing a liquid crystal molecule of the spiral photonic crystal of the first embodiment of the present invention. FIG. 4 shows a transmission spectrum of a helical photonic crystal according to a first embodiment of the present invention, wherein 2"20Pmin; FIG. 5 shows a transmission spectrum of a spiral photonic crystal of the first embodiment of the present invention, &gt; 2" Figure 6 shows the relationship between the cholesteric liquid crystal structure of different total thicknesses and the center wavelength of each defect mode in the same; Figure 7a shows the penetration spectrum of the cholesteric liquid crystal structure of the first embodiment of the present invention, wherein 2rf = l5Pmin; Figure 7b shows the present invention The penetration spectrum of the cholesteric liquid crystal structure of the first embodiment, wherein 2d = 45Pmin; Fig. 8 shows the breakthrough spectrum in the case of different incident angles of incident light in the cholesteric liquid crystal structure of the first embodiment of the present invention, wherein π = ; 105056. Doc -23- 1289214 Figure 9a is a perspective view showing a spiral photonic crystal of a second embodiment of the present invention; 2 is a schematic view showing a spiral structure of a spiral photonic crystal; FIG. 11 is a view showing a relationship between different twist angles and wavelengths of respective defect modes in the cholesteric liquid crystal structure of the second embodiment; FIG. 11 shows a cholesteric liquid crystal structure according to a second embodiment of the present invention. The penetration spectrum 'where 2i/ = 20Pmin; FIG. 12 shows a schematic diagram of the present invention applied to an optical communication access network system; and FIG. 13 shows the sound diagram of the filter applied to the optical plug-in multiplexer of the present invention. DESCRIPTION OF SYMBOLS] Λ First wavelength Λ Second wavelength Third wavelength 1 Cholesterol liquid crystal structure 2 The cholesteric liquid crystal structure of the first embodiment of the present invention The cholesteric liquid crystal structure of the second embodiment of the present invention 4 Optical communication access network system 6 Optical plug multiplexer 7 First spiral photonic crystal 8 Brother-helical photonic crystal 9 Half-wavelength plate 11 Spiral axis 105056.doc -24· 1289214 21 First part 22 Second part 23 First spiral axis 24 incident light 25 second helical axis 26 defect plane 31 first portion 32 second portion 33 first helical axis 34 incident light 35 second helical axis 36 Trap plane 41 analog/digital television transmitter 42 optical path terminal 43 optical coupler 44 single mode fiber 45 filter, wave 46 network terminal 47 cable TV 48 network unit 49 broadband network 50 first phase retarder 51 Second phase retarder 71 first part 105056.doc -25 - 1289214 72 73 81 82 83 211 212 221

I 222 第二部份 第一缺陷平面 第三部份 第四部份 第二缺陷平面 第一端面 第二端面 第三端面 第四端面I 222 Part 2 First defect plane Third part Fourth part Second defect plane First end face Second end face Third end face Fourth end face

105056.doc -26-105056.doc -26-

Claims (1)

1289214 十、申請專利範圍: 1.' 一種螺旋光子晶體,包括: 一第一部份,具有複數個不 螺距係為連續變化;及 螺距,該等第- 一第二部份,係與該第一部份相 &amp; 〃 與該第二部份間形成一缺陷平面 _且δ亥第一部份 個不同之第二螺距,該等第二螺距部份具有複數 該第-部份連接在該缺陷平 第…績變化’其中 雄一 a 之第一螺距係不同於該 第一邛份連接在該缺陷平面上之 、 第一螺距,而在該缺陷 平面上形成螺距變化不連續。 、 2·如咕求項1之螺旋光子晶體,1 構。 ,、係為一膽固醇液晶結 3. 如請求項1之螺旋光子晶體, 袖@ a ^ T -亥第一部份具有複數 個弟一層,母一第一層具 々墙、# Α 矛分种,相鄰第一層間 —轴之方向係不同且呈連續變化,該第二部份且 有複數個第二層’每一第二層具有一第二導轴,相鄰第 -層間之第二導軸之方向係不同且呈連續變化,其中該 第-部份在該缺陷平面上之第—導軸之方向係不同於該 第,部份在該缺陷平面上之第二導軸之方向,而在該缺 陷平面上形成一相位差。 4. 如請求項!之螺旋光子晶體,其中該第—部份具有複數 個第一層’每一第—層具有—第一導軸,相鄰第一層間 之第-導轴之方向係不同且呈連續變化,該第二部份且 有複數個第二層,每一第- 八 ^第一層具有一弟一導軸,相鄰第 105056.doc 1289214 :層間之第二導軸之方向係不同且呈連續變化,其中該 々第—部份在該缺陷平面上之第—導轴之方向係相同於該 第二部份在該缺陷平面上之第二導軸之方向。 如請求们之螺旋光子晶體’其中該第—部份之該等第 -螺距間之變化係為一第一螺旋梯度,該第二部份之該 等第二螺距間之變化係為一第二螺旋梯度,該第一螺旋 6· -種濾波器,包括一螺旋光子晶體,該螺旋光子晶體包 括: 第^ ^,具有一第一螺旋軸、一第一端面及一第 二端面,該第一端面係垂直該第一螺旋軸且接受一入射 光’該第一部份内具有複數個不同之第一螺距,該等第 一螺距係為連續變化;及1289214 X. Patent application scope: 1. A spiral photonic crystal comprising: a first portion having a plurality of non-pitch systems continuously varying; and a pitch, the first-second portion, and the first a portion of the phase &amp; 〃 forms a defect plane _ and a second pitch different from the first portion of the δH, the second pitch portion having a plurality of the first portion connected thereto The first variation of the defect is different from the first pitch of the first component connected to the defect plane, and the pitch variation is discontinuous on the defect plane. 2) For example, the spiral photonic crystal of item 1 is composed of 1 structure. , is a cholesterol liquid crystal junction 3. As in the spiral photonic crystal of claim 1, the sleeve @ a ^ T - Hai first part has a plurality of brothers one layer, the mother one first layer has a wall, # Α spear seed The direction of the axis between adjacent first layers is different and continuously changing. The second part has a plurality of second layers. Each second layer has a second guiding axis, and the adjacent first layer The direction of the two guiding axes is different and continuously changing, wherein the direction of the first guiding portion on the defect plane is different from the first portion, and the direction of the second guiding axis on the defect plane And a phase difference is formed on the defect plane. 4. The spiral photonic crystal of claim 1 wherein the first portion has a plurality of first layers 'each of the first layers has a first guide axis, and a direction of the first guide axis between adjacent first layers Different and continuously changing, the second part has a plurality of second layers, each of the first-eighth first layers has a dipole and a guide axis, adjacent to 105056.doc 1289214: the second guide axis between the layers The direction is different and varies continuously, wherein the direction of the first guide axis on the defect plane is the same as the direction of the second guide axis of the second portion on the defect plane. Such as the spiral photonic crystal of the requester, wherein the change between the first and the pitch of the first portion is a first spiral gradient, and the change between the second pitches of the second portion is a second a spiral gradient, the first spiral filter comprising a spiral photonic crystal, the spiral photonic crystal comprising: a first spiral axis, a first end surface and a second end surface, the first The end face is perpendicular to the first helical axis and receives an incident light. The first portion has a plurality of different first pitches, and the first pitches are continuously changed; 梯度係相同於該第二螺旋梯度 ?二部份’具有一第二螺旋軸、一第三端面及一第 四端面,該第三端面係與該第一部份之第二端面相連 &quot;亥第邛伤與§亥第二部份間形成一缺陷平面,該 第二部份具有複數個不同之第二螺距梯度,該等第二螺 距:為連續變化,其中該第—部份連接在該缺陷平面上 ,弟—螺距係不同於該第二部份連接在該缺陷平面上之 第二螺距,而在該缺陷平面上形成螺距變化不連續,一 部份之該入射光由該第四端面穿射出,另一部份之該入 射光由該第一端面反射出。 7·如請求項6之渡波器,其中該螺旋光子晶體係為一膽固 醇液晶結構。 105056.doc 1289214 士明求項6之濾波器,其中該入射光與該第一部份之第 一螺旋軸間之夾角為〇至2〇度。 女明求項6之濾波器,其中該第一部份具有複數個第一 層,每一第一層具有一第一導軸,相鄰第一層間之第一 之方向係不同且呈連續變化,該第二部份具有複數 $ —層,每一第二層具有一第二導軸,相鄰第二層間 =第二導軸之方向係不同且呈連續變化,其中該第一部 接在該缺陷平面上之第一導軸之方向係不同於該第 一邛知連接在該缺陷平面上之第二導軸之方向,而在該 缺陷平面上形成一相位差。 1 〇.如請求項6之滹油哭、^ , —卜慮波态,其中該第一部份具有複數個第一 、:母一第一層具有-第-導軸,相鄰第-層間之第一 之:向係不同且呈連續變化,該第二部份具有複數 之二’每一第二層具有-第二導軸,相鄰第二層間 柃、*「導軸之方向係不同且呈連續變化’其中該第-部 -邻=在°亥缺陷平面上之第—導軸之方向係相同於該第 —。^連接在該缺陷平面上之第二導軸之方向。 H·如睛求項6之濾波器,盆中 間之變化m访 ㈣第一螺距 螺距門之Γ 螺旋梯度,該第二部份之該等第二 碼距間之變化孫盔_ 一 相同於’笛’、 旋梯度’該第-螺旋梯度係 相冋於该弟二螺旋梯度。 12, 種渡波器,包括: 一第一螺旋光子晶體,包括: 該等負 第口P份,具有複數個不同之第一螺距 105056.doc 1289214 -第二部份,係與該第一部份相連接,且該第一部 份與該第二部份間形成_第_缺陷平面,㈣二部份 具有複數個不同之第二螺距,該等第二螺距係為連續 變化’其中該第—部份連接在該第—缺陷平面上之第 距係不同於該第二部份連接在該第—缺陷平面上The gradient is the same as the second spiral gradient? The two portions have a second helical axis, a third end surface and a fourth end surface, and the third end surface is connected to the second end surface of the first portion. The first flaw forms a defect plane between the second portion and the second portion, the second portion has a plurality of different second pitch gradients, and the second pitch is a continuous change, wherein the first portion is connected to the In the defect plane, the pitch-pitch is different from the second pitch of the second portion connected to the defect plane, and the pitch variation is discontinuous on the defect plane, and a portion of the incident light is from the fourth end face. The penetration is emitted, and another portion of the incident light is reflected by the first end surface. 7. The wave device of claim 6, wherein the spiral photonic crystal system is a cholesteric liquid crystal structure. 105056.doc 1289214 The filter of claim 6, wherein the angle between the incident light and the first helical axis of the first portion is 〇 to 2 degrees. The filter of claim 6, wherein the first portion has a plurality of first layers, each first layer has a first guiding axis, and the first direction between adjacent first layers is different and continuous Variation, the second portion has a plurality of layers, each second layer has a second guiding axis, and the direction of the adjacent second layer=the second guiding axis is different and continuously changes, wherein the first portion is connected The direction of the first guide axis on the defect plane is different from the direction of the first guide axis connected to the defect plane, and a phase difference is formed on the defect plane. 1 〇. As claimed in claim 6, the oil is crying, ^, and the wave state, wherein the first portion has a plurality of first ones: the first layer of the mother has a -th guide axis, and the adjacent first layer The first one: the system is different and continuously changes, the second part has a complex number two 'each second layer has a second guide axis, and the adjacent second layer 柃, * "the direction of the guide axis is different And in a continuous change 'where the first-part-neighbor = the direction of the first guide axis on the plane of the defect plane is the same as the direction of the second guide axis connected to the defect plane. For example, the filter of the sixth item, the change in the middle of the basin, the m visit (four) the first pitch of the pitch gate, the spiral gradient, the second part of the second code distance, the change of the grandmother _ one is the same as the 'flute' a spin gradient 'the first spiral gradient phase is opposite to the second spiral gradient. 12, the ferrite, comprising: a first spiral photonic crystal, comprising: the negative first P shares, having a plurality of different a pitch 105056.doc 1289214 - the second part is connected to the first part, and the first part is Forming a _th defect plane between the two parts, and (4) two parts having a plurality of different second pitches, wherein the second pitch is a continuous change 'where the first part is connected to the first defect plane The distance system is different from the second portion connected to the first defect plane 第累距,而在该第一缺陷平面上形成螺距 連續; + 一第二螺旋光子晶體,包括: 一-第三部份,具有複數個不同之第三螺距,該等第 二螺距係為連續變化;及a first distance, and a pitch continuous on the first defect plane; + a second spiral photonic crystal, comprising: a - third portion having a plurality of different third pitches, the second pitch systems being continuous Change; and —第四部份,係與該第三部份相連接,且該第三部 份與該第四部份間形成—第二缺陷平面,㈣四料 具有複數個不同之第四螺距,該等第四螺距係為連續 變化,其中該第三部份連接在該第二缺陷平面上之第 三螺距係不同於該第四部份連接在該第二缺陷平面上 之第四螺距,而在該第二缺陷平面上形成螺距變化不 連續;及 一個二分之一波長片,夾心於於該第一螺旋光子晶 體及該第二螺旋光子晶體之間。 13·如請求項12之濾波器,其中該第一螺旋光子晶體及該第 累方疋光子晶體係為膽固醇液晶結構。 14·如請求項12之濾波器,其中該第一部份具有複數個第一 層,每一第一層具有一第一導轴,相鄰第一層間之第一 105056.doc -4- 1289214 v釉之方向係不同且呈 余 上 個第二層,每-第二声呈:=’该第二部份具有複數 之第二導軸之方向係B —第二導軸,相鄰第二層間 ^ ^ ,、不冋且呈連續變化,a巾$结 ”接在該缺陷平面上之第-導軸之方向第一部 二:份連接在該缺陷平面上之第二導軸之=同於該第 缺陷平面上形成一相位差。 σ而在该 15·如請求们2之較器,其中該第―螺旋光 於第二螺旋光子晶體。日體係相同 —種光通訊接取網路系統,包括·· 一伺服端,係傳送出二種以上之波長; -客戶端,係利用一光纖連接至該伺服端;及 一遽波器,位於該光纖上,且位於該伺服端及該客戶 端之間H皮器具有如請求項i之螺旋光子晶體,用 以區分來自該伺服端之該等波長,而送至該客戶端。 17.如請求項16之光通訊接取網路系統,纟中該㈤服端包括 一類比/數位電視傳送器、一光學路徑終端機及一光學耦 合器。 18·如請求項16之光通訊接取網路系統,其中該客戶端包括 一網路終端機、一有線電視、一網路單元及一寬頻網 路0 19·如請求項16之光通訊接取網路系統,更包括一第一相位 延遲片’位於该祠服端與該渡波器之間,用以改變光的 偏振狀態。 2 0 ·如請求項16之光通訊接取網路系統,更包括一第二相位 105056.doc 1289214 用以改變光的 延遲片,位於該客戶端與該濾波器之間, 偏振狀態。a fourth part connected to the third part, and a third defect plane formed between the third part and the fourth part, and (four) four materials having a plurality of different fourth pitches, The fourth pitch is a continuous change, wherein the third pitch of the third portion connected to the second defect plane is different from the fourth pitch of the fourth portion connected to the second defect plane, and A pitch variation discontinuity is formed on the second defect plane; and a half-wavelength plate is sandwiched between the first spiral photonic crystal and the second spiral photonic crystal. 13. The filter of claim 12, wherein the first spiral photonic crystal and the first erbium photonic crystal system are cholesteric liquid crystal structures. 14. The filter of claim 12, wherein the first portion has a plurality of first layers, each first layer having a first lead axis, and a first 105056.doc -4- between adjacent first layers 1289214 v glaze direction is different and is the second layer, each second sound: = 'the second part has a plurality of second guide axis direction B - the second guide axis, adjacent ^ ^ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , A phase difference is formed on the plane of the first defect. σ is in the device of the requester 2, wherein the first spiral is in the second spiral photonic crystal. The same day-day optical communication network The system includes: · a servo end transmitting two or more wavelengths; - a client connected to the servo end by using an optical fiber; and a chopper located on the optical fiber at the servo end and the The H-skin between the clients has a spiral photonic crystal as claimed in item i to distinguish the ones from the servo end The wavelength is sent to the client. 17. The optical communication system of claim 16, wherein the (5) server comprises a analog/digital television transmitter, an optical path terminal, and an optical coupler. 18. The optical communication access system of claim 16, wherein the client comprises a network terminal, a cable television, a network unit, and a broadband network. The network system further includes a first phase retarder 'between the buffer end and the ferrite to change the polarization state of the light. 2 0 · The optical communication system of claim 16 is connected to the network system, There is further included a second phase 105056.doc 1289214 to change the retarder of the light between the client and the filter, the polarization state. 105056.doc105056.doc
TW94147082A 2005-12-28 2005-12-28 Chiral photonic and multi-wavelength chiral photonic filter TWI289214B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94147082A TWI289214B (en) 2005-12-28 2005-12-28 Chiral photonic and multi-wavelength chiral photonic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94147082A TWI289214B (en) 2005-12-28 2005-12-28 Chiral photonic and multi-wavelength chiral photonic filter

Publications (2)

Publication Number Publication Date
TW200724982A TW200724982A (en) 2007-07-01
TWI289214B true TWI289214B (en) 2007-11-01

Family

ID=39294929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94147082A TWI289214B (en) 2005-12-28 2005-12-28 Chiral photonic and multi-wavelength chiral photonic filter

Country Status (1)

Country Link
TW (1) TWI289214B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864449B2 (en) 2008-12-30 2011-01-04 Industrial Technology Research Institute Negative refraction photonic crystal lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201217860A (en) 2010-10-25 2012-05-01 Ind Tech Res Inst Cholesteric liquid crystal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864449B2 (en) 2008-12-30 2011-01-04 Industrial Technology Research Institute Negative refraction photonic crystal lens

Also Published As

Publication number Publication date
TW200724982A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
Yuan et al. Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region
Tan et al. Orthogonally polarized RF optical single sideband generation with integrated ring resonators
Deng et al. Diatomic metasurface for vectorial holography
Nouman et al. Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface
Isaacs et al. Investigation of liquid crystal Fabry–Perot tunable filters: design, fabrication, and polarization independence
WO2008068753A2 (en) Polarization independent birefringent tunable filters
KR102224585B1 (en) Circular polarization device, complex filter including the same
Lin et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits
Mendis et al. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region
Kim et al. Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal
Li et al. Improved saturation and wide-viewing angle color filters based on multi-twist retarders
Jeong et al. Continuously tunable and bandwidth variable optical notch/band-pass filters over 500 nm spectral range using cholesteric liquid crystals
Chen et al. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride
TWI289214B (en) Chiral photonic and multi-wavelength chiral photonic filter
Mohamed et al. Characterization of one dimensional liquid crystal photonic crystal structure
Liu et al. Metainterface and application for high-performance spectro-polarimetric filter
Li et al. Dual-band terahertz all-silicon metasurface with giant chirality for frequency-undifferentiated near-field imaging
Kilic et al. Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs
EP1520193B1 (en) Method and apparatus for an optical filter
KR102352854B1 (en) Circular polarization device, notch filter and bandpass filter including the same
WO2005017595A1 (en) Interferential optical filter
Tam et al. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter
Lee et al. Sagnac interferometer based flat-top birefringent interleaver
Issa et al. Double pass in acousto-optic tunable filter for telecommunication network
Zhou et al. A broadband reflective-type half-wave plate employing optical feedbacks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees