TWI288245B - Radio-based tracking system with synthetic aperture - Google Patents

Radio-based tracking system with synthetic aperture Download PDF

Info

Publication number
TWI288245B
TWI288245B TW94138411A TW94138411A TWI288245B TW I288245 B TWI288245 B TW I288245B TW 94138411 A TW94138411 A TW 94138411A TW 94138411 A TW94138411 A TW 94138411A TW I288245 B TWI288245 B TW I288245B
Authority
TW
Taiwan
Prior art keywords
mobile station
synthetic aperture
measurement
secondary radar
fixed
Prior art date
Application number
TW94138411A
Other languages
Chinese (zh)
Inventor
Peter Gulden
Stephan Max
Martin Vossiek
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Application granted granted Critical
Publication of TWI288245B publication Critical patent/TWI288245B/en

Links

Abstract

This invention relates to a method to increase the measure-accuracy of a radio-based tracking system having a mobile station and at least one position-fixed station, the method is characterized in that to detect the movement, which begins from an original position, of a mobile station by means of an absolute sensor technology and a relative sensor technology, to generate by means of the measure-data a virtual antenna in the form of a synthetic aperture, to be based on an application of the synthetic aperture so as to focus the mobile station on the position-fixed station and/or vice verse.

Description

1288245 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種以無線電爲主之追蹤系統,其具有一行 動台和至少一位置固定之台,此追蹤系統特別是用來決定 此行動台之空間位置。本發明另涉及一以無線電爲主之追 蹤系統之測量準確性提高的方法。 【先前技術】 以無線電爲主之追蹤系統已知能以各種方式來達成。例 如,文件[1]”Wireless Local Positioning” der Autoren M. Vos siek, L. Wiebking, P. Gulden, J. Wieghardt, C. Hoffmann und P. Heide 提供一種槪要,其已揭示在 Microwave Magazine des IEEE (Volume 4, Issue: 4. Dez. 2003, Page 77-86)中。 以無線電爲主之追蹤系統之功能是使無線電信號在行動 台和多個大部份是位置固定之台之間切換。依據所接收的 無線電信號來決定:該行動台和一個或多個位置固定之台 之間的相對距離,或行動台和一個或多個位置固定之台之 間的相對角度,或行動台和各別二個位置固定之台之間的 距離差。依據這些測量値,則可藉由三邊法或三角法來決 定該行動台之空間位置。 以無線電爲主之追蹤系統之主要問題是:無線電信號必 須在空間中廣泛地以無方向方式傳播。這是需要的,此乃 因行動單元和位置固定之單元之間的相對位置(例如,相對 於有方向性的無線電路徑)事先並不知道。但無線電波之無 方向性的發送會使行動單元和位置固定之單元之間之信號 1288245 不只經由最短之直接路徑來傳送,而且例如亦會在壁面上 " 或物件上反射且因此亦會經由間接路徑而傳送。由於此種 間接路徑而可能使追蹤結果發生大的失真。此種所謂多路 徑之問題特別是在內部區域應用中是具危險性的且對以無 線電爲主之追蹤系統之可達成的準確性上的限制而言是一 種決定性的因素。例如,就像上述文件[1 ]中已揭示者一樣, 內部區域中恰巧存在著各種各樣的應用且特別是存在於虛 擬的實體區域和自動化技術領域中,其需要高的測量準確 • 性。 此外,已爲人所知者是:爲了改良無線電追蹤系統之準 確性,使用各種輔助用的感測器(例如,加速感測器,回轉 器,計程器,羅盤感測器,傾斜感測器,線性-或角度編碼 器等等)是很有利的。這些輔助用的感測器大部份是相對感 測器,即,其不是決定絕對位置而是在一參考空間中決定 一種對起始位置之變化量。此種多感測器或混合系統大部 份操作成以移動模型爲主,使不同感測器(例如,位於 φ Kalman濾波器中者)之測量資訊可與無線電定位感測器之 測量資料相組合。 在上述系統中由資訊技術觀點所顯示的缺點是:各別的 最終結果互相結合以取代各感測器之原來資料,因此會由 於在各感測器中的處理而可能使資訊丟失。例如,若無線 電感測器由於重要的多路徑情況而確定一種不正確的距離 値時,則此種高錯誤性的値會進入至評估^組合中。藉由混 合式估計,則某些情況下可辨認該錯誤及/或使錯誤減低, 但評估之原始基準會由於有錯誤的測量値而持續地劣化。 -6- 1288245 【發明內容】 " 本發明的目的是進一步形成一種依據申請專利範圍第1 項前言所述之追蹤系統,以達成一種高的測量準確性且特 別是會由於進一步的反射而使測量値失真下降。反射現象 除了發生於直接的信號傳送路徑之外亦會發生在行動台和 位置固定之台之間。 上述目的藉由申請專利範圍獨立項所述的方法和另一獨 立項所述的裝置來達成。其它有利的形式描述在各附屬項 Φ 中。 藉由所主張的方法,則藉由行動台之由原始位置開始之 移動(其用來形成一種合成孔徑)之測定(其藉由絕對感測技 術和相對感測技術之測量資料來進行),可使孔徑或空間範 圍(特別是天線)在數學上藉由相對感測技術來擴大且因此 可產生一種合成孔徑。本發明現在描述一種新型之混合-追 蹤系統和方法,其中無線電追蹤系統之測量資料在輸送至 進一步處理之前以特別有利的方式藉助於輔助用之相對感 Φ 測技術之測量資料而相組合。藉由本方法,則可藉由多路 徑-效應很有效地使干擾下降且因此是一種相對感測技術和 以無線電爲主之絕對感測技術之幾乎是最佳的組合。 本發明特別是涉及一種所謂到達時間 TOA (time of arrival)或飛行循環旅行時間 rt〇F (round trip time of flight)無線電追蹤系統。在此種到達時間TOA系統(例如, GPS)中’藉由二個台之間的單一路徑-運行時間之測量-且在 飛行循環旅行時間RTOF中藉由各台之間二個路徑-運行時 間之測量來決定各台之間的距離。這些系統之特別有利的 -7- 12882451288245 IX. Description of the Invention: [Technical Field] The present invention relates to a radio-based tracking system having a mobile station and at least one fixed station, the tracking system being used in particular to determine the mobile station Spatial location. The invention further relates to a method for improving the measurement accuracy of a radio-based tracking system. [Prior Art] A radio-based tracking system is known to be achieved in various ways. For example, File [1] "Wireless Local Positioning" der Autoren M. Vos siek, L. Wiebking, P. Gulden, J. Wieghardt, C. Hoffmann und P. Heide provides a summary that has been revealed in Microwave Magazine des IEEE (Volume 4, Issue: 4. Dez. 2003, Page 77-86). The function of the radio-based tracking system is to switch the radio signal between the mobile station and a number of stations that are mostly fixed. Determining, based on the received radio signal, the relative distance between the mobile station and one or more fixed stations, or the relative angle between the mobile station and one or more fixed stations, or the mobile station and each The difference in distance between the two fixed stations. Based on these measurements, the spatial position of the mobile station can be determined by trilateration or trigonometry. The main problem with radio-based tracking systems is that radio signals must be widely propagated in a non-directional manner in space. This is required because the relative position between the mobile unit and the fixed unit (e.g., relative to the directional radio path) is not known in advance. However, the non-directional transmission of radio waves causes the signal 1288245 between the mobile unit and the fixed unit to be transmitted not only via the shortest direct path, but also, for example, on the wall" or on the object and therefore also via Transferred by an indirect path. Due to such an indirect path, the tracking result may be greatly distorted. This so-called multipath problem is particularly dangerous in internal area applications and is a decisive factor in the achievable accuracy limits of radio-based tracking systems. For example, as disclosed in the above document [1], there are a variety of applications in the internal area and in particular in the virtual physical area and automation technology, which requires high measurement accuracy. In addition, it is known that in order to improve the accuracy of the radio tracking system, various auxiliary sensors are used (for example, acceleration sensors, gyrators, taxis, compass sensors, tilt sensing). A linear, or angular encoder, etc.) is advantageous. Most of these auxiliary sensors are relative sensors, i.e., they do not determine the absolute position but determine a change in the starting position in a reference space. Most of these multi-sensors or hybrid systems operate on a moving model, so that the measurement information of different sensors (for example, in the φ Kalman filter) can be compared with the measurement data of the radio positioning sensor. combination. A disadvantage shown by the information technology point of view in the above system is that the individual end results are combined with each other to replace the original data of the respective sensors, so that information may be lost due to processing in each sensor. For example, if a wireless inductive detector determines an incorrect distance due to an important multipath condition, then such a highly erroneous flaw will enter the evaluation combination. By means of a mixed estimate, the error can be identified and/or reduced in some cases, but the original reference of the evaluation will continue to deteriorate due to erroneous measurements. -6- 1288245 SUMMARY OF THE INVENTION The object of the present invention is to further form a tracking system according to the preamble of claim 1 to achieve a high measurement accuracy and in particular due to further reflection. The measured distortion is reduced. The phenomenon of reflection occurs in addition to the direct signal transmission path between the mobile station and the fixed station. The above object is achieved by the method described in the independent patent application and the device described in another independent item. Other advantageous forms are described in each of the dependent items Φ. By the claimed method, by the movement of the mobile station from the original position (which is used to form a synthetic aperture), which is performed by absolute sensing techniques and measurement data of relative sensing techniques, The aperture or spatial extent (especially the antenna) can be mathematically expanded by relative sensing techniques and thus a synthetic aperture can be created. The present invention now describes a novel hybrid-tracking system and method in which the measurement data of the radio tracking system are combined in a particularly advantageous manner by means of the measurement data of the complementary relative sensing technique prior to delivery to further processing. With this method, interference can be effectively reduced by multipath-effects and is therefore an almost optimal combination of a relative sensing technique and a radio-based absolute sensing technique. More particularly, the present invention relates to a so-called time of arrival TOA (time of arrival) or round trip time of flight radio tracking system. In such an arrival time TOA system (eg GPS) 'by a single path between two stations - measurement of the running time - and in the flight cycle travel time RTOF by two paths between the stations - run time The measurement determines the distance between the stations. Particularly advantageous for these systems -7- 1288245

實施形式已描述在所建議的 GPS-系統之文獻中或US 52 1 6429, US5748 89 1, US 6054950, GB 1 605409, DE 3 324693,WO 200 1 67625中,且特別是已揭示在西門斯 (Siemens)申請案件 PCT/DE00/03 356,DE 1 9946 1 68.6,DE 1 0 1 5525 1.3,DE 1 0208479.3,DE 10 2004 017 267.6 或 10 0584 180.1中,此處可參考這些文獻[2]之內容。 特別是須進行一種絕對感測技術或無線電測量技術,以 造成一種測量信號,其依據信號運行時間或傳送路徑之長 度來顯示該已傳送之信號之振輻和相位,就像一般在所有 的快速雷達系統中的情況一樣。此種顯示在時間上是否連 續,不連續或只依據一有限數目之値對(pair)(複數之振輻 値,時間)來顯示是不重要的。爲了簡化,特別是全部可想 到之TOA-或RTOF-無線電追蹤-測量模組(其提供上述之信 號)此處是在二次雷達之槪念下相組合而成。TOA系統在古 典之槪念下當然不是二次雷達,但TOA-系統·接收台之中各 信號就外觀和資訊內容而言通常具有與二次雷達中的信號 相同的形式。因此,由資訊-和系統技術之觀點而言一種共 同的思考方式是有意義的。 上述之二次雷達(即,T0A-或RTOF-系統)之測量信號以 下稱爲測量信號或回音外形(profile)而與詳細-信號形式無 關。回音外形中各種不同的最大値對應於具有不同之信號 運行時間之各種不同之傳送路徑。藉由相對感測技術,則 可使相對於一行動台之原來位置之位置變化之方向和大小 定量化。 本發明的方法以合成孔徑之方法爲主。SAR Synthetic 1288245 aperture radar)之一般原理例如已詳細描述在專業書籍” Η.Embodiments have been described in the proposed GPS-system document or in US 52 1 6429, US 5,748,891, US 6, 549, 950, GB 1 605 409, DE 3 324 693, WO 200 1 67625, and in particular in Siemens) Application PCT/DE00/03 356, DE 1 9946 1 68.6, DE 1 0 1 5525 1.3, DE 1 0208479.3, DE 10 2004 017 267.6 or 10 0584 180.1, the contents of which can be referred to here [2] . In particular, an absolute sensing technique or radio measurement technique is required to create a measurement signal that displays the amplitude and phase of the transmitted signal based on the signal runtime or the length of the transmission path, as is generally the case at all speeds. The same is true in radar systems. Whether such display is continuous in time, discontinuous or only based on a limited number of pairs (multiple amplitudes, time) is not important. For the sake of simplicity, in particular all of the conceivable TOA- or RTOF-radio tracking-measurement modules (which provide the above-mentioned signals) are hereby combined under the circumstance of a secondary radar. The TOA system is certainly not a secondary radar under the guise of the ancient code, but the signals in the TOA-system·receiver station usually have the same form as the signals in the secondary radar in terms of appearance and information content. Therefore, a common way of thinking from the perspective of information and system technology is meaningful. The measurement signal of the above-described secondary radar (i.e., T0A- or RTOF-system) is hereinafter referred to as a measurement signal or an echo profile regardless of the detailed-signal form. The various maximum 値 in the echo shape correspond to a variety of different transmission paths with different signal runtimes. By the relative sensing technique, the direction and magnitude of the change in position relative to the original position of a mobile station can be quantified. The method of the present invention is based on a method of synthesizing pore diameters. The general principles of SAR Synthetic 1288245 aperture radar) have been described in detail in professional books, for example.

* Radar mit realer und synthetischer Apertur” von Klausing und W. Holpp (Oldenbourg, 2000) in Kapitel 8, S. 213 f f [ 3 ] 中。幾乎相同的方法在全像術或斷層攝影術之槪念下在醫 學或超音波測量技術之領域中已爲人所知。爲了描述斷層 攝影術之方法,例如可參考” M. Vossiek,V. Magori und H. Ermert, “An Ultrasonic Multielement Sensor System for Position Invariant Object Identification” ,其干U 在 IEEE • International Ultrasonic Symposium, Cannes, France, 1 994 [4] 中。本發明中各習知之方法以合成孔徑來擴大以便以下述 方式來進行以無線電爲主之追蹤作用:不是被動地使任意 物件上具有干擾性的已反射之信號被處理成一種圖像,而 是只主動地使不同的測量位置所接收的已反射之信號相疊 加且然後作爲無線電追蹤之用。 依據一種有利的實施形式,藉由適當地選取孔徑之大小 及/或絕對感測技術之測量資料之振幅-及/或相位加權値來 φ 使用該合成孔徑以產生此合成孔徑之一種方向特性,使其 方向圖幾近均勻地位於絕對感測技術之誤差橢圓之範圍 中。此方向圖幾近均勻地位於先前以任意媒體來進行之位 置測量之誤差橢圓之範圍中。 依據另一有利的實施形式,藉由行動台之未知位置上由 位置固定的台之已知位置所進行的往回計算中以另一方式 使用該合成孔徑或藉由合成孔徑之運行來成像(特別是藉由 寬頻全像術之成像方法)。藉由上述之方法,則對距離測量 値而言會另外產生一種角度測量値。 -9- 1288245 依據另一有利的實施形式,合成孔徑之另一種應用是使 行動台之已知位置成像在位置固定之台之未知位置上。 依據一種有利的方法或有利的裝置,須計算一種行動台 (特別是二次雷達)和位置固定之台(特別是一種轉發器 (transponder))之間的距離和角度資訊。本方法之各步驟藉由 適當之已製備的裝置來進行。 依據一種有利的方法或有利的裝置,一個或多個行動台 (特別是二次雷達中的轉發器)之距離-和角度資料藉由一個 ί 或多個位置用的Kalman濾波器來合倂。本方法之各步驟藉 由適當之已製備的裝置來進行。 依據一種有利的方法或有利的裝置,位置固定之台(特別 是轉發器)以被動式向後散射器來構成且絕對之位置確定是 依據相對於二次雷達之距離和角度來得知。本方法之各步 驟藉由適當之已製備的裝置來進行。 依據一種有利的實施形式,重複一系列的步驟以對行動 台之位置上的決定進行改良。 I 依據一種有利的實施形式,一種起始之粗聚焦作用藉由 絕對-及/或相對-感測技術之測量値來達成。 依據一種有利的實施形式,一種起始之粗聚焦作用藉由 先前之測量資料之資訊來達成。 依據一種有利的實施形式,爲了往回計算或使第一台(特 別是位置固定之台)之一點bU,y,z)成像,則所測得的接收 信號Εη(ω)須與理論上的函數Fn(an,r,o)相關聯,第一台(特 別是位置固定之台,其在理想情況下是點形之反射器)由第 二台(特別是行動台)之測量點an = (Xn,yn,ζη)τ觀看時在位置 10- 1288245 r = (x,y,ζ)τ 上產生此函數 Fn(an,r,co)。 一以無線電爲主之追蹤系統(其具有一行動台和至少一 位置固定之台)之測量準確性提高用的有利之裝置藉助於相 對感測技術所屬之多種不同之位置資料使來自多個不同傳 送路徑之回音外形相疊加以產生一種虛擬天線形式之合成 孔徑。 依據一種有利的實施形式,須製備至少二個位置固定之 台,以便可產生橫向資料。 | 依據一種有利的實施形式,行動台藉由二次雷達來形成 且至少一位置固定之台藉由一轉發器來形成,以產生一種” 自我定位”系統。 依據一種有利的實施形式,行動台藉由轉發器來形成且 至少一位置固定之台藉由二次雷達來形成,以產生一種”遠 端-定位”系統。 依據一種有利的實施形式,須製備一種資料傳送裝置, 以使資料由至少一個二次雷達傳送至信號處理裝置。 | 本發明以下將依據圖式中的實施例來說明。 【實施方式】 以下將依據感測技術來對機器人手臂進行定位所用之本 發明的方法加以說明。第1圖顯示此種典型的機器人。第1 圖顯示一種藉由”自我定位”系統來進行定位所用的第一實 施例,藉此可以簡單的方式來描述一種無線電追蹤系統之 測量準確性提高用的方法。在”自我定位”系統中,原來之 測量單元二次雷達S R位於行動裝置中或位於行動台之中, 使行動裝置可決定其特定的位置。位置固定之台藉由轉發 -11- 1288245 器TP來形成。依據無線電通信,其它不可測量之側面之位 置資訊亦可使用。AE表示一種評估單元。距離以d來表示。 A表示天線。 第1圖中顯示上述之設計方式,其中二次雷達SR位於行 動物件上(此處例如位於機器人手臂之夾具上)。需製備三個 轉發器TP以作爲位置固定之台。機器人例如另外藉由一種 相對感測技術RS而在每一關節上設有多個角度編碼器RS 1, R S 2,R S 3,使相對於原來位置之位置變化之方向和大小可被 量化。 本發明可依據一種所謂”自我定位”系統來說明。就絕對 之定位而言,目前在合理成本範圍內可供使用之旋轉設定 器是不夠準確的,此乃因其誤差會在廣泛之運行路徑中累 積。此外,通常會由於機械上的變形而造成不準確性。具 有相對感測器之典型裝置/系統因此提供 1) 一種良好的重複準確性, 2) —種相對於小的位置變化量之很好的準確性, 3) 但在經由一大的範圍而自由移動時之不良之絕對位 置値。特別是以上之問題3),本發明中藉由使用上述之性 質2)且與前述之無線電追蹤系統相結合時可獲得解決。 以下述方式來使用本發明中上述之性質2):藉由行動系 統之移動來造成一種合成孔徑。此處重要的是:辨認二次 雷達SR之天線A之絕對位置不是必要的,由孔徑支持點對 任一參考點(例如,測量的起始點)之相對座標來計算該合成 孔徑即已足夠,各種不同之相對感測器以有利的方式提供 此種資訊。 -12- 1288245 當吾人以二次雷達來與移動相結合以構成一種合成孔徑 時,則亦可事後在計算方式上在方向上很敏銳地(在一般之 無線電追蹤-各別測量中相較於幾乎無方向性之波傳播而言) 使無線電信號在空間中幾乎聚焦在任一點上,即,在計算 上會產生一種情況:吾人是否已以一種在方向上對轉發器 很敏銳之實際天線來進行測量。已爲人所知的事實是:使 用方向敏銳之天線會使多路徑問題大大地減小。 由於轉發器之位置在開始時是未知的,則在計算時通常 不可能直接將焦點對準至該轉發器。本發明中一種合成孔 徑依據二種不同的方式來使用。 方式1 藉由所使用的感測技術,依據先前技術在以基本方式所 進行的相對感測技術及/或無線電定位感測技術或絕對感測 技術,則在全部之準則下至少可粗略地決定該轉發器之位 置。依據第1種方式,可估計一種典型的誤差橢圓,其標 示出位置測量時所期望之誤差範圍。因此,吾人可以某種 可靠性而由”轉發器在某一地方是在空間扇形區內部中停 留”來開始進行,其中此扇形區是由測量値和誤差橢圓來描 述。現在,合成孔徑之發送-/接收方向在計算時須對準該轉 發器之先前已粗略地測得之停留位置。藉由適當地選取孔 徑之大小且情況需要時藉由適當地對測量信號之振幅進行 加權,則另外可使合成孔徑之方向圖在誤差橢圓之範圍內 幾乎都是均勻的且因此可較佳地在誤差橢圓旁之角度範圍 中大大地減弱,此方向圖在此角度範圍內只有小的次最大 値。合成孔徑中,,如何藉由孔徑之大小以及藉由已接收的信 -13- 1288245 號之振幅-和相位加權來產生一確定的方向特性”已爲此行 的專家所熟知,例如,可參閱上述之文獻。g卩,須產生一 種虛擬的天線,其在方向上需儘可能敏銳但須像由於不敏 銳之有誤差的預(pre·)資訊所需要的未對準性一樣地指向該 轉發器。使無線傳送時之方向敏銳性提高時可使多路徑誤 差大大地減低。已改良之藉助於合成孔徑而產生的測量信 號然後可依據先前技術而完全正常地傳送至通常處於上級 地位的定位演算法。上述方法在空間定位時須用在至少二 個轉發器上,以便獲得所需的橫向化資料。爲了使上述之 預資訊獲得改良,即,爲了可方向更敏銳地進行聚焦,則 可由稍後所進行的測量中呼叫資訊。所估計之新的停留位 置之預測例如可藉助於Kalman濾波器來達成,此時同樣可 對誤差橢圓之大小進行估計。 方式2 決定該轉發器之位置所用之第2種方式是進行一種圖像 設定。即,藉助於已移動的二次雷達,使空間中存在之轉 發器成像在圖像區b(x,y,z)中。由於圖像區具有一種對二 次雷達之位置是已知的參考値,則藉由轉發器的成像可直 接決定該二次雷達對各轉發器(其位於固定的位置上)的相 對位置且因此可在空間中確定其絕對位置。有利的是:在 二次雷達之一種適當的二維移動中理論上只需對一轉發器 進行成像即已足夠用來決定該二次雷達之三維空間位置。 這對一些應用(其中由於成本-或覆蓋區之原因而不可能形 成一種良好的三邊式測定基準)是很有利的。當依據圖像設 定來決定多個轉發器之距離和方向時,這些値可依據任意 -14- 1288245 的先前技術而完全正常地傳送至通常處於上級地位的定位 演算法。爲了對轉發器進行成像,可使用已知之全部之圖 像設定用之合成孔徑-方法和-演算法。 第2圖中爲了清楚之故顯示另一種情況類似的定位應 用。此外,本發明的配置和方法亦可轉移至其它全部之應 用中,例如,可轉移至機動車,叉式裝卸機,起重機,行 動式終端機(例如,手機,膝上型電腦等等)之人員等所形成 之配置中。 爲了對轉發器TP進行成像,則可使用已知之全部之圖像 設定用之合成孔徑-方法和-演算法且轉移至目前的應用 中。以下將顯示一種以所謂寬頻全像術成像方法來進行的 一種形式以作爲實施例。第3圖用來說明一種空間情況。 如上所示,進行資料接收,使二次雷達分別由位置an = (Xn, yn,ζη)τ發出一種信號。爲了可顯示整個槪要,則首先可由” 二次雷達在相同的位置an上接收由轉發器所送回之信號” 作爲開始。轉移至一種具有分開之發射-和接收天線之配置 時例如可藉由上述之文件而輕易地達成。此種測量過程現 在應由M(an,n=l ...M)個不同的測量位置來進行。因此,此測 量可得到一組Μ個不同的測量信號(回音外形),其在以下 稱爲en(t)或稱爲其所屬的光譜Εη(ω)。 轉發器之在理想情況下藉由測量所決定之實際位置是 Ptp1 = (Xtpi,yTP1,ΖΤΡ1)丁。 就具體的顯示而言,由進一步之簡化過程來開始: -測量範圍(其中可停留著該轉發器)限制在一空間區域 中’其中可確保此轉發器可由全部之位置an而由二次雷達 -15- 1288245 來測得。 •接著由全部天線之相同形式之與方向無關之固定的方 向特性開始。 -使傳送通道被模型化所用的基準是一種理想的AWGN-通道。即,由雷達所接收的回音外形en(t)可以一種模型來 描述,其中該接收信號是由p個振幅已加權-且時間已延遲 之發送信號以線性方式疊加而成,指標P表示各種不同之 由二次雷達至轉發器且又返回之傳送路徑(直接路徑和多路 i 徑之間接路徑)。* Radar mit realer und synthetischer Apertur" von Klausing und W. Holpp (Oldenbourg, 2000) in Kapitel 8, S. 213 ff [3]. Almost the same method in meditation or tomography in medicine It is known in the field of ultrasonic measurement technology. For the description of the method of tomography, for example, "M. Vossiek, V. Magori und H. Ermert, "An Ultrasonic Multielement Sensor System for Position Invariant Object Identification" , its dry U in IEEE • International Ultrasonic Symposium, Cannes, France, 1 994 [4]. The conventional methods of the present invention are expanded with synthetic apertures to perform radio-based tracking in such a manner that instead of passively making a reflected signal that is interfering on any object processed into an image, Only the reflected signals received by different measurement locations are actively superimposed and then used as radio tracking. According to an advantageous embodiment, the synthetic aperture is used to generate a directional characteristic of the synthetic aperture by appropriately selecting the amplitude of the aperture and/or the amplitude-and/or phase-weighted 値 of the measurement data of the absolute sensing technique. The pattern is placed nearly uniformly across the error ellipse of the absolute sensing technique. This pattern is nearly evenly located in the range of error ellipses of position measurements previously made with any medium. According to a further advantageous embodiment, the synthetic aperture is used in another way by the known position of the fixed position of the station at an unknown position of the mobile station or by the operation of the synthetic aperture ( Especially by the imaging method of broadband holographic surgery). By the above method, an additional angle measurement 値 is generated for the distance measurement 値. -9- 1288245 According to another advantageous embodiment, another application of the synthetic aperture is to image the known position of the mobile station at an unknown position in the fixed position. According to an advantageous method or an advantageous device, the distance and angle information between a mobile station (especially a secondary radar) and a fixed-position station (especially a transponder) must be calculated. The steps of the method are carried out by means of a suitably prepared apparatus. According to an advantageous method or advantageous arrangement, the distance-and angle data of one or more mobile stations (especially transponders in secondary radars) are combined by a Kalman filter for one or more positions. The steps of the method are carried out by means of a suitable prepared apparatus. According to an advantageous or advantageous device, the stationary station (especially the transponder) is constructed as a passive rear diffuser and the absolute position determination is based on the distance and angle relative to the secondary radar. The various steps of the method are carried out by means of a suitably prepared apparatus. According to an advantageous embodiment, a series of steps are repeated to improve the decision on the position of the mobile station. According to an advantageous embodiment, an initial coarse focusing action is achieved by measuring the absolute- and/or relative-sensing technique. According to an advantageous embodiment, an initial coarse focusing effect is achieved by information of previous measurement data. According to an advantageous embodiment, the measured received signal Εη(ω) has to be theoretically calculated in order to calculate back or to image one of the first (especially fixed-position) points bU, y, z). The function Fn(an,r,o) is associated with the first station (especially the fixed-position station, which in the ideal case is a point-shaped reflector) from the second (especially the mobile station) measurement point an = (Xn, yn, ζη) τ produces this function Fn(an, r, co) at position 10 - 1288245 r = (x, y, ζ) τ. An advantageous device for improving the measurement accuracy of a radio-based tracking system (having a mobile station and at least one fixed station) is adapted from a plurality of different locations by means of a plurality of different location data to which the sensing technology belongs The echo shapes of the transmission paths are superimposed to produce a synthetic aperture in the form of a virtual antenna. According to an advantageous embodiment, at least two stations fixed in position are required to produce lateral data. According to an advantageous embodiment, the mobile station is formed by a secondary radar and at least one fixed station is formed by a transponder to create a "self-positioning" system. According to an advantageous embodiment, the mobile station is formed by a transponder and at least one fixed station is formed by a secondary radar to produce a "remote-positioning" system. According to an advantageous embodiment, a data transfer device has to be prepared for transmitting the data from the at least one secondary radar to the signal processing device. The invention will now be explained in accordance with an embodiment in the drawings. [Embodiment] The method of the present invention for positioning a robot arm in accordance with a sensing technique will be described below. Figure 1 shows this typical robot. Fig. 1 shows a first embodiment for positioning by means of a "self-positioning" system, whereby a method for improving the measurement accuracy of a radio tracking system can be described in a simple manner. In the "self-positioning" system, the original measurement unit secondary radar S R is located in the mobile device or in the mobile station, allowing the mobile device to determine its particular location. The fixed station is formed by forwarding the -11- 1288245 TP. Depending on the radio communication, other non-measurable side position information can also be used. AE represents an evaluation unit. The distance is represented by d. A denotes an antenna. The above design is shown in Fig. 1, in which the secondary radar SR is located on the animal body (here, for example, on the jig of the robot arm). Three transponders TP need to be prepared as a fixed station. The robot, for example, is additionally provided with a plurality of angle encoders RS 1, R S 2, R S 3 on each joint by means of a relative sensing technique RS, so that the direction and magnitude of the change with respect to the position of the original position can be quantified. The invention can be illustrated in terms of a so-called "self-positioning" system. In terms of absolute positioning, the rotary setters currently available within a reasonable cost range are not accurate enough because their errors accumulate in a wide range of operating paths. In addition, inaccuracies are often caused by mechanical deformation. A typical device/system with a relative sensor thus provides 1) a good repeatability accuracy, 2) a good accuracy with respect to small changes in position, 3) but freedom through a large range The absolute position of the defect when moving. In particular, the above problem 3) can be solved by using the above-described nature 2) in the present invention and in combination with the aforementioned radio tracking system. The above properties 2) of the present invention are used in the following manner: a synthetic aperture is created by the movement of the mobile system. What is important here is that it is not necessary to identify the absolute position of the antenna A of the secondary radar SR. It is sufficient to calculate the synthetic aperture from the relative coordinates of the aperture support point to any reference point (for example, the measured starting point). A variety of different sensors provide such information in an advantageous manner. -12- 1288245 When we use a secondary radar to combine with mobile to form a synthetic aperture, it can also be very sharply calculated in the future (in general radio tracking-individual measurement compared to In the case of almost non-directional wave propagation, the radio signal is focused almost at any point in space, ie, computationally, a situation arises: whether we have performed an actual antenna that is sharp enough to the transponder in the direction. measuring. It is known that the use of a sharp-eyed antenna greatly reduces the multipath problem. Since the position of the repeater is unknown at the beginning, it is usually not possible to directly focus on the repeater during the calculation. A synthetic pore size in the present invention is used in two different ways. Mode 1 By means of the sensing technology used, the relative sensing technology and/or the radio positioning sensing technology or the absolute sensing technology performed in a basic manner according to the prior art can be at least roughly determined under all the criteria. The location of the repeater. According to the first mode, a typical error ellipse can be estimated which indicates the desired error range for position measurement. Therefore, we can start with a certain reliability by "the repeater is stopped in the interior of the space sector at a certain place", wherein the sector is described by the measurement 値 and the error ellipse. The transmit-/receive direction of the synthetic aperture is now calculated to be aligned with the previously roughly measured dwell position of the transponder. By appropriately selecting the size of the aperture and, if necessary, by appropriately weighting the amplitude of the measurement signal, it is additionally possible to make the pattern of the synthetic aperture almost uniform over the range of the error ellipse and thus preferably It is greatly attenuated in the angular range beside the error ellipse, which has only a small submaximum 値 in this angular range. In the synthetic aperture, how to generate a certain directional characteristic by the size of the aperture and by the amplitude-and phase weighting of the received signal-13-13288245 has been well known to experts of this class, for example, see The above-mentioned document, g卩, must produce a virtual antenna that is as sharp as possible in the direction but must be pointed to the same as the misalignment required for the unpredictable pre-predictive information. The multipath error can be greatly reduced when the direction sharpness is improved during wireless transmission. The improved measurement signal generated by means of the synthetic aperture can then be transmitted completely and normally to the position normally in the superior position according to the prior art. Algorithm. The above method must be used on at least two transponders for spatial localization in order to obtain the required lateralized data. In order to improve the above-mentioned pre-information, that is, in order to make the direction more sharply focused, The call information is measured in the measurement performed later. The predicted new stop position can be predicted, for example, by means of a Kalman filter. The size of the error ellipse is estimated. Mode 2 The second way to determine the position of the transponder is to perform an image setting, that is, to image the transponder present in the space by means of the moved secondary radar. In the image area b(x, y, z), since the image area has a reference 已知 which is known to the position of the secondary radar, the secondary radar can directly determine the transponder by the imaging of the transponder ( Its relative position in the fixed position and thus its absolute position can be determined in space. Advantageously, it is theoretically sufficient to image only one transponder in a suitable two-dimensional movement of the secondary radar. It is used to determine the three-dimensional spatial position of the secondary radar. This is advantageous for some applications where it is not possible to form a good trilateral measurement basis due to cost or coverage. When determining the distance and direction of multiple transponders, these ports can be fully and normally transmitted to the positioning algorithm that is usually in the superior position according to the prior art of any of the-14-1288245. For imaging, the synthetic aperture-method and algorithm can be used for all known image settings. Another similar positioning application is shown for clarity in Figure 2. In addition, the configuration and method of the present invention It can also be transferred to all other applications, for example, to a configuration formed by a motor vehicle, forklift, crane, mobile terminal (eg, mobile phone, laptop, etc.). In order to image the transponder TP, synthetic aperture-methods and algorithms for all known image settings can be used and transferred to current applications. A method for so-called wide-band holographic imaging will be shown below. One form is used as an embodiment. Figure 3 is used to illustrate a spatial situation. As shown above, data reception is performed such that the secondary radar emits a signal from the position an = (Xn, yn, ζη) τ, respectively. In order to be able to display the entire summary, it is first possible to start with the "secondary radar receiving the signal sent back by the repeater at the same position an". The transfer to a configuration with separate transmit-and-receive antennas can be easily achieved, for example, by the above-described documents. This measurement process should now be performed by M (an, n = l ... M) different measurement locations. Therefore, this measurement yields a set of different measurement signals (echo profiles), which are referred to below as en(t) or as the spectrum Εη(ω) to which they belong. The actual position of the repeater, which is ideally determined by measurement, is Ptp1 = (Xtpi, yTP1, ΖΤΡ1). In the case of a specific display, starting with a further simplification process: - the measuring range (where the transponder can be left) is limited in a spatial area 'where it can be ensured that this transponder can be used by all positions an -15- 1288245 to measure. • Start with a fixed orientation characteristic of the same form of all antennas that is independent of direction. - The reference used to model the transmission channel is an ideal AWGN-channel. That is, the echo shape en(t) received by the radar can be described by a model in which the transmitted signals are weighted by p amplitudes and the time delayed signals are superimposed in a linear manner, and the index P represents various differences. The transmission path from the secondary radar to the repeater and back again (direct path and multipath path).

P e n (t = α n · $ a p · s (t - τ η - τ p) + η ⑴) Ρ=\ 其中αη是每次測量時第η個具有特徵的衰減常數。 αΡ是ρ個傳送路徑之每一路徑之經由正常之基本衰減而 來之衰減。 τη是測量時η個具有特徵的信號運行時間(β卩,由二次雷 達至轉發器且返回時最短之直接路徑之信號運行時間)。 τΡ是對ρ個傳送路徑之每一路徑由於多次反射所造成的 可能之運行時間的延遲。 n(t)描述相疊加的各種干擾(相加性的白色高斯雜訊 AWGN)。 上述方程式轉換成頻域中的傳送模型後可得到:P e n (t = α n · $ a p · s (t - τ η - τ p) + η (1)) Ρ = \ where α η is the nth characteristic decay constant for each measurement. Ρ is the attenuation of each path of the p transmission paths via normal fundamental attenuation. Τη is the characteristic signal running time (β卩, the signal running time of the shortest direct path from the secondary radar to the repeater and returning) when measuring. Ρ is a possible run time delay for each path of the p transmission paths due to multiple reflections. n(t) describes the various superimposed interferences (additive white Gaussian noise AWGN). After the above equation is converted into a transmission model in the frequency domain, you can get:

En(co) = ou.左 aP.S(co).e j0) Tn.e j0i.Tp + N((〇) 尸=1 對任意空間點r = U,y,z)T且又返回之基本運行時間τ„依 _下式來計算: 以及 k | = = ^J(x^Xn) +(y^yj +(z^Zn) -16- 1288245 其中C是波的傳送速率。 寬頻全像術重建演算法依據最佳濾波之形式來進行。爲 了計算圖像點b (X,y,z),則所測得的接收信號Ε η (ω)須以ί里 論上的函數Fn(an,r,co)來相關聯,此函數Fn(an,r,co)由測量議占 an = (xn,yn,ζη)τ觀看時是由一種轉發器(其在理想情況下是 一種點形之反射器)在位置r = (x,y,ζ)τ上產生。上述之相關 /比較函數在該接收信號近似於理論上的信號時只提供一種 大的値,當該轉發器實際上位於位置r上時即屬此種情況, 此時所接收的圖像點r實際上對應於轉發器之位置 Ρτρΐ = (χτρι, y Τ Ρ 1 , Ζτρι)丁。 藉由全部之Μ個測量値之相關結果所形成的和而得到一 種機率値,其指出:在位置r上是否存在著轉發器。重建用 之式子如下: Μ Εη(ω) •Fn'1(an,r = (x, y, ζ)τ,ω)άω b(x, y, η-\ωEn(co) = ou. Left aP.S(co).e j0) Tn.e j0i.Tp + N((〇) corpse=1 for any spatial point r = U, y, z)T and return The basic running time τ „ is calculated according to the following formula: and k | = = ^J(x^Xn) +(y^yj +(z^Zn) -16- 1288245 where C is the transmission rate of the wave. The reconstruction algorithm is performed according to the form of optimal filtering. In order to calculate the image point b (X, y, z), the measured received signal Ε η (ω) must be a function of ί里论Fn(an , r, co) to be associated, this function Fn(an, r, co) is viewed by the measurement argument an = (xn, yn, ζη) τ by a transponder (which is ideally a dot shape) The reflector is generated at position r = (x, y, ζ) τ. The correlation/comparison function described above provides only a large 値 when the received signal approximates the theoretical signal, when the transponder is actually located This is the case when the position r is above. At this time, the received image point r actually corresponds to the position of the transponder Ρτρΐ = (χτρι, y Τ Ρ 1 , Ζτρι) D. By all the measurements The sum of the results produced has a chance, Indicates whether there is a transponder at position r. The reconstruction equation is as follows: Μ Εη(ω) • Fn'1(an,r = (x, y, ζ)τ,ω)άω b(x, y , η-\ω

此處爲了進行信號比較(依據相關聯之方式)所選取之反 濾波器就指數之擴展項而言對應於一般所使用的匹配濾波 器組合(即,與共軛複數(即,F/(an,r,co))相乘)。依據先前所 述的傳送模型且在忽略相加性之干擾下,虛擬之轉發器之 信號Fn(an,r,co)在r處成爲:Here, the inverse filter selected for signal comparison (according to the associated method) corresponds to the commonly used matched filter combination for the exponential expansion (ie, with the conjugate complex (ie, F/(an) ,r,co)) Multiply). According to the previously described transmission model and under the interference of ignoring the addition, the virtual transponder signal Fn(an, r, co) becomes at r:

Fn(an,r,o) =金 ou.aP.S(co).e-jto.T'e-jto.” 尸=1 此外,仍假設此發射信號是S(co = l),這在一般的有效性 未受限制下是可能的,此乃因該發射信號之可能是不理想 的特性(至少在吾人所關心的傳送區域中)可藉由反(inverse) 濾波器之上述之組合來補償。 在上述之重建用之式子中若使用上述之信號假設’則可 -17- 1288245 得到:Fn(an,r,o) =金 ou.aP.S(co).e-jto.T'e-jto." corpse=1 In addition, it is still assumed that this transmitted signal is S(co = l), which is The general validity is not limited, as the possible undesired characteristics of the transmitted signal (at least in the transmission area of interest to us) can be achieved by the combination of the above inverse filters. Compensation. In the above-mentioned reconstruction formula, if the above signal hypothesis is used, then -17- 1288245 is obtained:

b (x,y,z) = [ J E n (ω) · Ζ α n. ex P · e 卜 ω ’ (τ η + τ p) · d ω I η=\ω 尸=1 若以t來取代τρ + τη且對p之和(sum)記號拉到積分之前’ 則可得知··對該角頻率ω之積分對應於反傅立葉變換且因此 可提供一種位於時間點1 = τΡ + τη時之接收信號。由於信號路 徑τΡ除了直接路徑(其中τΡ = 0)之外都是未知的,則信號模型 可在此路徑上縮減。最後之重建用的式子如下: Μ b(x, y, z)= I ^ en(t = Tn) | /7=1 須指出:實際的接收信號在相加成一種複數信號之前須 擴大,以便可決定圖像函數(即,其是一種亮度函數之形式) 之包絡(envelope)曲線。複數信號之計算可藉助於Hilbert 轉換來達成。 所獲得的表示式可很明確地加以解釋。事實上若轉發器 位於位置r上,則其回答信號在時間點ΐ = τη時會發生於回 音外形en(t)中。藉由Μ個測量路徑上運行時間正確的相 加,則其信號貢獻度可藉由該重建用之式子而以相參方式 相疊加,使b(x,y,ζ)得到較大的値。其它不是定位在r中 的轉發器之信號成份,多路徑反射之信號成份或雜訊互相 疊加,由於不一致之運行時間以及非相參性而會造成一種 小很多的圖像信號。爲了使多個回音信號之非相參之疊加 能可靠地造成小的振幅,則測量點之數目Μ不能選擇成太 小。 方式2)之一種令人感興趣之副效應是:不必使轉發器在 時間-,頻率-或編碼多工之方式中操作。在一般的無線電追 蹤系統中,須使轉發器之信號不會互相干擾或多個轉發器 -18- 1288245 信號在測量台之中之疊加不會造成錯誤的結果。本發明的 方法以固有的方式提供一種所謂空間劃分多工存取。因 此,當各轉發器在位置上互相遠離時,使其藉由合成孔徑 而在成像時在位置上互相分開,則其亦可在無其它編碼時 互相區別。 目前爲止是由一種”自我定位”之配置開始。由於在本發 明的方法中通常涉及雷達座標相對於轉發器之對應關係, 則明顯地立即可知此種配置亦可轉換成一種遠端之定位系 統。 位置固定之二次雷達之位置決定用的方法是由至少一種 二次雷達之絕對位置之前述粗略之決定來達成,即,這是 在全部之二次雷達已成像在圖像區中之後藉由相對於”一 已停留之唯一之轉發器之絕對位置”之位置之決定來達成。 第4圖是無線電追蹤系統之另一可能的實施例,其測量 準確性藉由本發明的方法而提高。第4圖與第1圖不同之 處是其顯示一種遠端定位系統。在遠端定位系統中,位置 固定之台可支配各測量單元(SR)且因此由外部決定一行動 裝置或行動台(TP)之位置。本系統中依據無線電通信可使用 其它非測量用的側面之位置資訊。 在上述情況中,相對感測技術之資訊傳送至位置固定之 二次雷達或須將其回音外形傳送至中央評估單元,其中此 評估單元藉助於上述方法之一之相對感測技術之資訊來進 行。 以下將顯示本系統之維度確定用之一些基本公式,其中 各參數顯示在第5圖中。 -19- 1288245 由於合成孔徑方法以各測量信號之相參性的疊加爲基 準’則使用本方法所需的條件是:相互之間具有偏差値Spos 之全部之測量位置an = (Xn,yn,Ζη)Τ在較波長1之値小很多時 必須是已知。若此種條件不符合,則各信號之一適當的相 參性疊加已不可能。例如,一般的要求是:b (x,y,z) = [ JE n (ω) · Ζ α n. ex P · e ω ' (τ η + τ p) · d ω I η=\ω corpse=1 if replaced by t Τρ + τη and the sum of p (sum) marks before the integration is integrated, then it can be known that the integral of the angular frequency ω corresponds to the inverse Fourier transform and thus can provide a time point 1 = τ Ρ + τη receive signal. Since the signal path τ 都是 is unknown except for the direct path (where τ Ρ = 0), the signal model can be reduced on this path. The final reconstruction equation is as follows: Μ b(x, y, z)= I ^ en(t = Tn) | /7=1 It must be noted that the actual received signal must be expanded before being added to a complex signal. In order to determine the envelope curve of the image function (ie, it is in the form of a luminance function). The calculation of the complex signal can be achieved by means of a Hilbert transform. The expressions obtained can be explained very clearly. In fact, if the transponder is located at position r, its answer signal will occur in the echo shape en(t) at the time point ΐ = τη. By correct addition of the running time on one measurement path, the signal contribution degree can be superimposed in a coherent manner by the equation for reconstruction, so that b(x, y, ζ) is larger. . Other signal components of the transponder that are not located in r, the signal components or noise of the multipath reflection are superimposed on each other, and a much smaller image signal is caused due to inconsistent running time and non-coherence. In order to make the super-coherent superposition of multiple echo signals reliably produce small amplitudes, the number of measurement points cannot be chosen to be too small. An interesting side effect of mode 2) is that the transponder does not have to be operated in a time-, frequency- or code-multiplexed manner. In a typical radio tracking system, the signals of the transponders must not interfere with each other or the superposition of multiple transponders -18- 1288245 signals in the measuring station will not cause erroneous results. The method of the present invention provides a so-called spatial division multiplex access in an intrinsic manner. Therefore, when the transponders are separated from each other in position, they are separated from each other in position by imaging by synthesizing the apertures, and they can also be distinguished from each other without other encoding. So far it has been started with a configuration of "self-positioning". Since the correspondence of radar coordinates with respect to the transponder is generally involved in the method of the present invention, it is apparent immediately that such a configuration can also be converted into a remote positioning system. The method of determining the position of the fixed secondary radar is achieved by the aforementioned coarse decision of the absolute position of at least one secondary radar, that is, after all the secondary radars have been imaged in the image area. This is achieved by a decision relative to the position of the "absolute position of the only repeater that has been stopped." Figure 4 is another possible embodiment of a radio tracking system whose measurement accuracy is improved by the method of the present invention. The difference between Fig. 4 and Fig. 1 is that it shows a remote positioning system. In a remote positioning system, a stationary station can dictate each measurement unit (SR) and thus externally determine the location of a mobile device or mobile station (TP). In this system, other non-measurement side position information can be used depending on the radio communication. In the above case, the information of the relative sensing technology is transmitted to the fixed position secondary radar or the echo profile must be transmitted to the central evaluation unit, wherein the evaluation unit performs the information of the relative sensing technology by one of the above methods. . Some basic formulas for determining the dimensions of the system are shown below, with each parameter shown in Figure 5. -19- 1288245 Since the synthetic aperture method is based on the superposition of the coherence of the measured signals, the conditions required to use this method are: the deviations from each other 値Spos of all measurement positions an = (Xn, yn, Ζη) 必须 must be known when it is much smaller than wavelength 1. If such conditions are not met, then an appropriate parametric superposition of one of the signals is not possible. For example, the general requirements are:

s λ C 0 P 0 s < —< --- 8人·8 其中f m稱威測量信號之中頻。 爲了估計寬頻全像術所期望之解析度,則可在各文獻中 發現以下各式。 橫向的解析度(作爲說明用,參閱第5圖)是: D、fm 軸向的¥析度(作爲說明用,參閱第5圖)是: δ a X 〜- △/ 其中所使用的變數定義如下: Z0:由孔徑面至接收區之平均距離, D :孔之長度, c :波之傳送速率, fm :測量信號之中頻, △ f :測量信號之頻寬。 以下將考慮中頻是5.8GHz且頻寬是100MHz之系統之特 徵値,此系統用於第1圖中的機器人中:此機器人之工作 區域限於一種z〇最多是4米之空間區域中。藉由機器人手 臂之移動,則可構成一種20厘米之合成孔徑。 在上述情況下,可達成的1米橫向解析度較軸向解析度 好很多。在一般之無線電追蹤系統中軸向解析度依據一種 -20- 1288245 運行時間原理是一種具有決定性的特徵値。若考慮到 藉由內插法所達成之定位之準確性小於解析度數値之: 個數量級,則可估計出”依據本發明的方法此測量對一 之轉發器只會造成數厘米之測量上的不可靠性”。藉由 雷達至多個轉發器之測量的組合及/或多個二次雷達到 一轉發器的測量之組合,則可達成毫米範圍或次毫米 之測量可靠性。 對相對感測技術之測量準確性之需求依據上述之公 絕對値是5pqs < 6.5 mm,即,相對於孔徑大小的相對 3 %,這對一般的旋轉設定器而言是一種適當的需求。 其次將考慮一種對機動車之定位用的43 3 MHz系統 動車的工作範圍限制在一空間區域中,其中z。最多是 米。藉由機動車的移動,則可形成一種1米的合成孔 對相對感測技術之測量準確性的需求在此種情況下大 小於1 0厘米,即,相對於孔徑値之相對値是小於1 〇% 能以一般的計程器和轉向感測器來達成。 最後一個例子例如亦可轉用至由人來攜帶之行動式 機(例如,膝上型電腦,寬頻局部網路,藍芽,行動式 電裝置等等)。在此種情況下,一種加速感測器或回轉 用作相對感測器。 【圖式簡單說明】 第1圖位置決定(自我定位)用之第一實施例。 第2圖位置決定(自我定位)用之第二實施例。 第3圖藉由寬頻全像術成像方法使位置成像用的匮 第4圖位置決定(遠端定位)用之第四實施例。 此種 ί至2 各別 二次 至少 範圍 式其 値是 。機 100 徑。 約是 ,這 終端 無線 儀可 解0 -21- 1288245 第5圖估計寬頻全像術成像方法之解析度用的圖解。 【主要元件符號說明】 TP, TP1〜TP3 轉發器 SR,SR1〜SR3 二次雷達 RS,RS1〜RS3 角度編碼器s λ C 0 P 0 s <—< --- 8 persons·8 where f m is the intermediate frequency of the measurement signal. In order to estimate the resolution desired for wide-band holography, the following equations can be found in various documents. The horizontal resolution (for illustration, see Figure 5) is: D, fm The axial resolution (for illustration, see Figure 5) is: δ a X ~- △/ where the variable definition used As follows: Z0: the average distance from the aperture surface to the receiving area, D: the length of the hole, c: the transmission rate of the wave, fm: the intermediate frequency of the measurement signal, Δf: the bandwidth of the measurement signal. The following will consider the characteristics of a system with an intermediate frequency of 5.8 GHz and a bandwidth of 100 MHz. This system is used in the robot in Fig. 1: the working area of this robot is limited to a space area where z〇 is at most 4 meters. By moving the robot arm, a 20 cm synthetic aperture can be constructed. In the above case, the achievable 1 m lateral resolution is much better than the axial resolution. The axial resolution in a typical radio tracking system is a decisive feature based on a -20- 1288245 runtime principle. If it is considered that the accuracy of the positioning achieved by the interpolation method is less than the resolution number: an order of magnitude, it can be estimated that the method according to the invention will only cause a few centimeters of measurement on the transponder. Unreliable". Measurement reliability in the millimeter range or sub-millimeter can be achieved by a combination of radar to multiple transponder measurements and/or a combination of multiple secondary radars to a transponder. The need for measurement accuracy of relative sensing techniques is based on the above-mentioned absolute absolute 5 5 pqs < 6.5 mm, i.e., relative to 3% of the aperture size, which is a suitable requirement for a typical rotary setter. Secondly, the working range of a 43 3 MHz system motor vehicle for positioning a motor vehicle will be considered to be limited to a space region, where z. The maximum is meters. By the movement of the motor vehicle, a 1 meter synthetic hole can be formed to meet the measurement accuracy of the relative sensing technique. In this case, the size is 10 cm, that is, the relative enthalpy relative to the aperture 値 is less than 1. 〇% can be achieved with a general meter and steering sensor. The last example can also be transferred to a mobile phone carried by a person (for example, a laptop, a broadband local network, a Bluetooth, a mobile device, etc.). In this case, an acceleration sensor or swivel is used as the relative sensor. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a first embodiment of position determination (self-positioning). Figure 2 is a second embodiment of position determination (self-positioning). Fig. 3 is a fourth embodiment for determining the position (distal positioning) of the position of the fourth image by the wide-band holographic imaging method. This kind of ί to 2 each of the two at least the scope of the 値 is. Machine 100 diameter. Approximately, this terminal wireless device can be used to solve the resolution of the resolution of the wide-band holographic imaging method from Fig. 5 to Fig. 5. [Main component symbol description] TP, TP1~TP3 repeater SR, SR1~SR3 secondary radar RS, RS1~RS3 angle encoder

AE 評估單元AE evaluation unit

22-twenty two-

Claims (1)

以無線電爲主之具有合成孔徑之追蹤系統 1288245 r a 第 94138411 號 專案 (2006年3月修正) 十、申請專利範圍: • 1 · 一種以無線電爲主之追蹤系統之測量準確性提高用之方 ( .法’此追蹤系統具有一行動台和至少一位置固定之台,此 _ 方法之特徵爲: -藉由絕對感測技術和相對感測技術來測定一種行動台之 0 由起始位置開始之移動, -藉由測量資料來產生一種合成孔徑形式之虛擬天線,以 及 -以使用該合成孔徑爲基準使行動台聚焦在位置固定之台 及/或亦可反向行之。 2.如申請專利範圍第1項之方法,其中藉由適當地選取孔徑 之大小及/或絕對感測技術之測量資料之振幅-及/或相位 加權値,以產生該合成孔徑之方向特性,使其方向圖幾乎 均勻地位於先前任意之位置測量之誤差橢圓之範圍中。 ® 3 .如申請專利範圍第1項之方法,其中另一種方式是藉由位 置固定之台之已知位置在行動台之未知位置上所達成的 往回計算來使用該合成孔徑,這是藉由以合成孔徑來形成 的成像方法來達成,特別是藉由寬頻全像術成像方法來達 成。 4. 如申請專利範圍第3項之方法,其中另一種方式是藉由往 回計算該行動台在位置固定之台之未知位置上之已知位 置來使用該合成孔徑。 5. 如申請專利範圍第1至4項中任一項之方法,其中須計算 S)Radio-based tracking system with synthetic aperture 1288245 ra No. 94384411 (amended in March 2006) X. Patent application scope: • 1 · A method for improving the measurement accuracy of a radio-based tracking system ( The method has a mobile station and at least one fixed station. The method is characterized by: - determining the 0 of a mobile station by the absolute sensing technique and the relative sensing technique, starting from the starting position Moving, - generating a virtual antenna in the form of a synthetic aperture by measuring the data, and - focusing the mobile station on a fixed position using the synthetic aperture and/or vice versa. The method of claim 1, wherein the directional characteristic of the synthetic aperture is generated by appropriately selecting the magnitude of the aperture and/or the amplitude-and/or phase-weighted 値 of the measurement data of the absolute sensing technique, such that the pattern is almost Uniformly located in the range of error ellipses measured at any previous position. ® 3. As in the method of claim 1, another way The synthetic aperture is used by the calculation of the known position of the fixed position of the station at an unknown position of the mobile station, which is achieved by an imaging method formed by a synthetic aperture, in particular by wide frequency 4. The image processing method is used to achieve 4. As in the method of claim 3, the other way is to use the synthetic aperture by calculating the known position of the mobile station at an unknown position of the fixed station. 5. If the method of any one of claims 1 to 4 is applied, the calculation of S) 該行動台,特別是二次雷達和位置固定之台,特別是轉發 器之間之距離和角度資訊。 1288245 6 ·如申請專利範圍第5項之方法,其中須藉由一個或多個位 置用之Kalman濾波器來組合一個或多個行動台,特別是 二次雷達中之轉發器之距離-和角度資料。 7 ·如申請專利範圍第5項之方法,其中位置固定之台,特別 是轉發器以被動式向後散射器來構成,且一種絕對位置之 決定是依據相對於行動台,特別是二次雷達之距離和角度 來達成。 8 ·如申請專利範圍第6項之方法,其中位置固定之台,特別 是轉發器以被動式向後散射器來構成,且一種絕對位置之 決定是依據相對於行動台,特別是二次雷達之距離和角度 來達成。 9 ·如申請專利範圍第1至4項中任一項之方法,其中重複上 述各步驟以使行動台之位置決定獲得改良。 10.如申請專利範圍第2項之方法,其中藉由絕對-及/或相對 感測技術之測量値來進行一種起始時之粗略聚焦作用。 # 11·如申請專利範圍第2或10項之方法,其中藉由先前所進 行之測量來進行一種起始時之粗略聚焦作用。 1 2 ·如申請專利範圍第3或4項之方法,其中往回計算第一台 之一點b(x,y,z),使已測得之接收信號Εη(ω)可與理論上 之函數Fn(an,r,o)相關聯,第一台(其在理想情況下是點形 之反射益)由弟—^台’特別是行動台之測量點a n = ( X η,y η, Zn)T觀看時在位置r = (x,y,z)T上產生此函數Fn(an,r,〇)。 1 3 ·如申請專利範圍第12項之方法,其中重建用的式子是: b (X,y,z) = L J Ε η (ω) · [ a n. α p · eJ - ω . (τ n +τ P) · d ω |。 -2 - 1288245 “·如申請專利範…項ϋ法了其中最後之重建用的式 子是: Μ b(x,y,Ζ)= I Σ en(t = Tn)卜 1 5 · —種以無線電爲主之追蹤系統之測量準確性提局用之裝 置,此追蹤系統具有一行動台和至少一位置固定之台’此 裝置之特徵爲: a) —由至少一種二次雷達和至少一種轉發器所產生的絕 對感測技術, φ b)至少一種相對感測技術,其用來使行動台相對於原來 位置之位置上的變化之數値和方向被定量化’ c) 一種信號處理裝置,其用來對由絕對感測技術和相對 感測技術所測得的測量資料進行共同的處理,以產生一種 合成孔徑形式之虛擬天線,以及 d) —種聚焦裝置,其以合成孔徑爲基準使行動台聚焦在 位置固定之台上及/或反方向行之。 16.如申請專利範圍第丨5項之裝置,其中設定至少二個位置 固定之台。 • 1 7 ·如申請專利範圍第1 5或1 6項之裝置,其中行動台藉由二 次雷達來形成且至少一種位置固定之台藉由轉發器來形 成。 1 8 ·如申請專利範圍第1 5或1 6項之裝置,其中行動台藉由轉 發器來形成且至少一種位置固定之台藉由二次雷達來形 成。 1 9 ·如申請專利範圍第1 7項之裝置,其中資料傳送裝置使資 料由至少一種二次雷達傳送至信號處理裝置。 20.如申請專利範圍第18項之裝置,其中資料傳送裝置使資The mobile station, especially the secondary radar and fixed-position stations, especially the distance and angle information between the transponders. 1288245 6 • The method of claim 5, wherein one or more mobile stations are combined by one or more positions, in particular the distance-and angle of the transponder in the secondary radar data. 7. The method of claim 5, wherein the fixed position, in particular the transponder, is constructed by a passive backscatterer, and the absolute position is determined based on the distance relative to the mobile station, in particular the secondary radar. And angle to achieve. 8) The method of claim 6, wherein the fixed position, in particular the transponder, is constructed by a passive backscatterer, and an absolute position is determined based on the distance relative to the mobile station, in particular the secondary radar. And angle to achieve. 9. The method of any one of claims 1 to 4, wherein the steps are repeated to improve the position of the mobile station. 10. The method of claim 2, wherein the initial focusing effect is performed by a measurement of absolute-and/or relative sensing techniques. #11. The method of claim 2, wherein the initial focusing is performed by the measurement previously performed. 1 2 · If the method of claim 3 or 4 is applied, wherein the first point b(x, y, z) is calculated back, so that the measured received signal Εη(ω) can be theoretically a function Fn(an,r,o) is associated with the first (which is ideally a point-shaped reflection benefit). The measurement point of the brother-^ station, especially the mobile station, an = ( X η, y η, Zn This function Fn(an, r, 〇) is generated at position r = (x, y, z)T when viewed in T. 1 3 · The method of claim 12, wherein the equation for reconstruction is: b (X, y, z) = LJ Ε η (ω) · [ a n. α p · eJ - ω . (τ n +τ P) · d ω |. -2 - 1288245 "·If you apply for a patent... item, the last formula used for reconstruction is: Μ b(x,y,Ζ)= I Σ en(t = Tn) Bu 1 5 · A device for measuring the accuracy of a radio-based tracking system having a mobile station and at least one fixed station 'This device is characterized by: a) - at least one secondary radar and at least one type of forwarding Absolute sensing technique produced by the device, φ b) at least one relative sensing technique used to quantify the number and direction of changes in the position of the mobile station relative to the original position. c) A signal processing device, It is used to jointly process measurement data measured by absolute sensing technology and relative sensing technology to produce a virtual antenna in the form of a synthetic aperture, and d) a focusing device based on a synthetic aperture The mobile station is focused on the fixed position and/or in the opposite direction. 16. If the device of claim 5 is set, at least two fixed positions are set. • 1 7 · If the patent application is the first 5 or 16 items Apparatus, wherein the mobile station is formed by a secondary radar and at least one fixed station is formed by a transponder. 1 8 · A device of claim 15 or 16 wherein the mobile station is transponder The apparatus for forming and at least one fixed position is formed by a secondary radar. [9] The apparatus of claim 17, wherein the data transfer apparatus transmits the data to the signal processing apparatus by at least one secondary radar. Such as the device of claim 18, wherein the data transfer device enables 1288245 料由至少一種二次雷達傳送至信號處理裝g 2 1 .如申請專利範圍第1 5或1 6項之裝置,其[ 器用來對一種位置固定之台之位置値進行 作爲預資訊。 22.如申請專利範圍第15或16項之裝置,其中 一種 RTOF (round trip time of flight)或 a r r i v a 1)無線電定位系統。 =1 Kalman 濾、波 粗略的預報以 此追蹤系統是 TO A (time of1288245 is transferred by at least one secondary radar to the signal processing device g 2 1 . As in the device of claim 15 or 16, the device is used to perform pre-information on the position of a fixed position. 22. Apparatus according to claim 15 or 16, wherein one of the RTOF (round trip time of flight) or a r r i v a 1) radio positioning system. =1 Kalman filter, wave rough forecast, this tracking system is TO A (time of
TW94138411A 2005-01-04 2005-11-02 Radio-based tracking system with synthetic aperture TWI288245B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10500073 2005-01-04

Publications (1)

Publication Number Publication Date
TWI288245B true TWI288245B (en) 2007-10-11

Family

ID=39202961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94138411A TWI288245B (en) 2005-01-04 2005-11-02 Radio-based tracking system with synthetic aperture

Country Status (1)

Country Link
TW (1) TWI288245B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630147B2 (en) 2008-09-30 2014-01-14 Mitsubishi Heavy Industries, Ltd. Method of determining position where work is done in space surrounded by surfaces and work result management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630147B2 (en) 2008-09-30 2014-01-14 Mitsubishi Heavy Industries, Ltd. Method of determining position where work is done in space surrounded by surfaces and work result management device

Similar Documents

Publication Publication Date Title
US7948431B2 (en) Radiobased locating system provided with a synthetic aperture
JP6910557B2 (en) Millimeter-wave communication systems and methods for determining the location of the first device based on the known location of the second device
US10652695B2 (en) Determining the geographic location of a portable electronic device
CN109155984B (en) Method for determining channel time delay, positioning method and related equipment
Gottinger et al. Coherent automotive radar networks: The next generation of radar-based imaging and mapping
CN114706063A (en) Method in a radar system, radar system or arrangement of radar systems
JP6573710B2 (en) Method and device for aligning device positions
Vossiek et al. Inverse synthetic aperture secondary radar concept for precise wireless positioning
WO2015100237A2 (en) Localization with non-synchronous emission and multipath transmission
EP2572545A1 (en) Determining the geographic locaton of a portable electronic device
US10527714B2 (en) Calibration device and calibration method for calibrating antenna arrays
US11555881B2 (en) Locating method for localizing at least one object using wave-based signals and locating system
Tan et al. ThruMapper: Through-wall building tomography with a single mapping robot
TWI288245B (en) Radio-based tracking system with synthetic aperture
JP2007192573A (en) Target positioning apparatus
AU2022288587A1 (en) Method and arrangement for evaluating a distance between at least two antenna units
US20220321164A1 (en) Angle information estimation of ultra-wideband wireless signals
JP2006329829A (en) Radar device
JP5441611B2 (en) Radar equipment
JP4193939B2 (en) Array antenna, incoming wave estimation device, and planar array synthesis method
Carman et al. A Digital Beamforming Fast-Start Passive Radar for Indoor Motion Detection and Angle Estimation