TWI287746B - Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm - Google Patents
Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm Download PDFInfo
- Publication number
- TWI287746B TWI287746B TW94120265A TW94120265A TWI287746B TW I287746 B TWI287746 B TW I287746B TW 94120265 A TW94120265 A TW 94120265A TW 94120265 A TW94120265 A TW 94120265A TW I287746 B TWI287746 B TW I287746B
- Authority
- TW
- Taiwan
- Prior art keywords
- error
- algorithm
- circuit
- model
- simplified
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
1287746 * 九、發明說明: 【發明所屬之技術領域】 -本發明係屬一種電路模型簡化設計方法之技術領域,尤 • 指一種快速、準確的互連線路模型簡化設計,可運用於奈米 積體電路互連線路訊號分析之模型簡化。 【先前技術】 按,隨著CMOS半導體製程技術前進到奈米技術,互連 線路的寄生效應將不能被忽略。且因為電路的複雜性提高, 籲模型階數也跟著提高,因此有效率的模型簡化方法已成為互 連線路模型化與模擬的必備技術,上述如美國專利 US6023573、US6041170、US6687658 所示; 藉此,近年來已提出幾種模型簡化法,習知技術包括: 漸進線波形估計法(Asymptotic Waveform Evaluation, AWE); 係由 L· Τ· Pillage :^R,A.Rohrer,“Asymptotic waveform evaluation for timing analysis,’,IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems,Vol. 9,No· 4,pp· 352-366,1 990 年所提出。 PVL 法(Pade via Lanczos ); 係由 P. Feldmann 與 R· W. freund, “Efficient linear circuit analysis by Pad"e approximation via the Lanczos process,’’ IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, Vol. 14 pp· 639-649, 1 9 9 5所提出。 6 1287746 對稱 PVL 法(Symmetric Pade via Lanczos); 係由 P. Feldmann and R.W· Freund, “The SyMPVL algorithm and its applications to interconnect simulation,” Proc· 1997 Int· Conf· on Simulation of Semiconductor Processes and Devices, pp. 113-116, 1997 所提出。1287746 * IX. Description of the invention: [Technical field to which the invention pertains] - The invention belongs to the technical field of a simplified design method of a circuit model, in particular, a fast and accurate simplified design of an interconnected line model, which can be applied to a nano product. Model simplification of body circuit interconnection line signal analysis. [Prior Art] Press, as CMOS semiconductor process technology advances to nanotechnology, the parasitic effects of interconnect lines cannot be ignored. And because the complexity of the circuit is increased, the order of the model is also increased. Therefore, an efficient model simplification method has become an indispensable technology for the modeling and simulation of interconnect lines, as shown in US Pat. No. 6,023,573, US Pat. No. 6,041,170, US 6,687,658; Several model simplification methods have been proposed in recent years. The conventional techniques include: Asymptotic Waveform Evaluation (AWE); by L·Τ·Pillage :^R, A.Rohrer, “Asymptotic waveform evaluation for timing Analysis, ', IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, No. 4, pp. 352-366, proposed in 990. PVL method (Pade via Lanczos); by P. Feldmann And R. W. freund, "Efficient linear circuit analysis by Pad" e approximation via the Lanczos process,'' IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, Vol. 14 pp· 639-649, 1 9 9 5 proposed. 6 1287746 Symmetric Pade via Lanczos; by P. Feldmann and RW· Freund, “The SyMPVL algorithm and its applications to interconnect simulation,” Proc· 1997 Int· Conf· on Simulation of Semiconductor Processes and Devices, pp 113-116, 1997.
Arnoldi法,如美國專利US681 0506所示, PRIMA 法(Passive reduced-order interconnect macromodeling); 係由 A· Odabasioglu, M. Celik 與 L· T. Pileggi, PRIMA· passive reduced-order interconnect macromodeling a 1 gor i thin, ?? IEEE Trans· onThe Arnoldi method, as shown in U.S. Patent No. 681 0506, PRIMA method (Passive reduced-order interconnect macromodeling); by A· Odabasioglu, M. Celik and L. T. Pileggi, PRIMA· passive reduced-order interconnect macromodeling a 1 gor i Thin, ?? IEEE Trans· on
Computer-Aided Design of Integrated Circuits andComputer-Aided Design of Integrated Circuits and
Systems,Vol· π pp· 645-653,1 998 年所提出。 上述所有已提出的方法,其基本原理為魁洛夫子空間 (rylov Subspace)投影法;魁洛夫子空間投影法利用投影 ,算子係將原始電路系統的狀態變數(state Variabie)投影 =簡化後m統的狀態變數;投影運算子可利用魁洛夫 :寅异法疊代建構出來中簡化電路的階數即為疊代的次 的卜’投影法模型簡化另·"個重要卫作為決定簡化電路 須找出合適階數,使的簡化電路能夠精確的反映 出原始電路的重要動態行為。 藉由轉移函數的餘數誤差可作 習知it t 1 勹且代過程停止的依據; 技術如Bai使用PVL演算法捲道山 推¥出原始電路與簡化 1287746 電路的轉移函數誤差五⑷;係由Ζ· Bai,R· D. Slone,W. Τ.Systems, Vol. π pp. 645-653, proposed in 1998. The basic principle of all the above proposed methods is the rylov subspace projection method; the Quebec subspace projection method uses projection, and the operator system projects the state variables of the original circuit system (simplified state) = simplified m The state variable of the system; the projection operator can use the quebec: the order of the simplified circuit in the construction of the singular method is the subdivision of the iteration. The projection model simplifies the other and simplifies the important wei The circuit must find the appropriate order so that the simplified circuit accurately reflects the important dynamic behavior of the original circuit. The remainder error of the transfer function can be used as a basis for the conventional it t 1 勹 and the generation process is stopped; techniques such as Bai use the PVL algorithm to roll out the original circuit and simplify the transfer function error of the 1287746 circuit by five (4); Ζ· Bai, R· D. Slone, W. Τ.
Smith 與 Q· Ye “Error bound for reduced system model bySmith and Q· Ye “Error bound for reduced system model by
Pad 6 approximation via the Lanczos process, ?? IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems,Vol· 18 pp· 133-141,1 999 年所提出; 然而,其誤差表示式牵扯到原始電路分解矩陣亿-岣^的 複雜運算,因此實際應用將變得很困難。 緣此,習用之模型簡化法確有上墀所說缺失之處,是以 本創作人乃藉由多年從事相關技術領域之研發經驗,針對上 述現有模型簡化法所面臨的問題加以探討研究,並積極的尋 找解決之方法,經多改良後,終於創造出一種可確實改進上 述缺失之模型簡化法。 【發明内容】 本發明之主要目的係提供一種以Arnoldi演算法誤差估 測進行奈米積體電路互連線路模型化簡之方法,其係能避免 #轉移函數誤差附的複雜運算,而達到快速、準確的互連線 路模型簡化設計。 —為了達到上述之目的’本發明係提供一種以一❹ 异法誤差估測進行奈米積體電路互連線路模型化簡之方 法其步驟包含.(a)輸入網狀電路 fe ^ ,(b)知入一組頻率展 開點,(c)建立電路之狀態空間 ^ Ί矩陣,(d)估測餘數誤差進 仃楔型化簡; ^ 的 稭由詳細推導介於原始電路系統和簡々 餘數誤差,利用Arnoldi演算法得到簡介 路系統之間 路,並呈現餘 8 1287746 數w吳差與原始電路系統的相關性。 • 此外,驗證原始電路的轉移函數添加一些擾動,即可表 ,不簡化電路的轉移函數,擾動矩陣只與Arnoldi演算法合向 羞(resultant vectors)有關。 藉此,推導出的誤差公式可有效率的提供魁洛夫子空間 模型簡化演算法選擇簡化電路階數的依據。 接下來會列舉一較佳實施例,並配合圖示及圖號,對本 •發明其他的目的及效能做進一步的說明,期能使貴審查委 貝對本發明有更詳細的瞭解,並使熟悉該項技術者能據以實 靶,以下所述者僅在於解釋較佳實施例,而非在於限制本發 明之範圍,故凡有以本發明之發明精神為基礎,而為本發明 之t明任何形式的變更或修飾,皆屬於本發明意圖保護之範 疇。 【實施方式】 在分析超大型積體電路中RLC互連線路線性電路時,大 _ 采用 正節點分析(M〇difie(j Nodal Analysis,,MNA)技 巧,依據克契荷夫電壓及電流定律(]^1^}^〇;^、“幻,可以 ;電路表示成下列狀態空間($ t a t e $ p a c e)矩陣形式: λ/Γ dx(t) IT 〜Nx妁+b剛,y(t)=cTχ[ή, (1) 其中,及〆。 其中’矩陣M包括電容值和電感值,矩陣iV包含電導值 矛電阻值,狀恶矩陣冰)包含電感的節點電壓及分支電流,“⑷ 為輪入訊號,γ⑴代表輸出訊號。 (2) 1287746 且,令』= ΛΠΜ及’則式(1)可表示成: ^ ^ =x(0-rw(0 5 y^)-cTx{t) 5 模型階數化簡的目的即找出階數較少並能有效反映原 始電路系統的簡化電路系統,而式(3)表示簡化電路的狀態 空間矩陣: (3) 其中,f(i)EW,rVeW 且 g<</2。 且令Z⑷= L[x(〇]和Z〇) = L[邱)]為原始系統和簡化系統在拉 式域(Laplace Domain)的脈衝響應,於是忑⑷和文⑷可表示如 下: Z(s) = (In - sAyW ^ X(s) = (In - sAYlr · · · · ( 4 ) 其中,/”為"X/2的單位矩陣,々為9X(?的單位矩陣。Pad 6 approximation via the Lanczos process, IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18 pp. 133-141, 1 999; however, its error representation involves the decomposition of the original circuit The complex operation of the matrix billion-岣^, so the practical application will become very difficult. Therefore, the model simplification method used in the past does have the above-mentioned deficiencies, and the creator has studied and researched the problems faced by the above-mentioned existing model simplification method by conducting research and development experience in related technical fields for many years. Actively looking for a solution, after much improvement, finally created a model simplification method that can actually improve the above-mentioned defects. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for simplifying the interconnection model of a nano integrated circuit by using the Arnoldi algorithm error estimation, which can avoid the complicated operation of the #transition function error and achieve fast The accurate interconnection model simplifies the design. - In order to achieve the above object, the present invention provides a method for simplifying the interconnection of a nano-integrated circuit by a heterogeneous error estimation, the steps of which include: (a) input mesh circuit fe ^ , (b ) knowing a set of frequency expansion points, (c) establishing the state space of the circuit ^ Ί matrix, (d) estimating the residual error into the wedge type simplification; ^ the straw is derived in detail from the original circuit system and the simple remainder The error, using the Arnoldi algorithm to get the road between the introduction road system, and the correlation between the remaining 8 1287746 and the original circuit system. • In addition, verifying the transfer function of the original circuit adds some perturbations, ie, the table does not simplify the transfer function of the circuit. The perturbation matrix is only related to the resultant vector of the Arnoldi algorithm. In this way, the derived error formula can efficiently provide the basis for simplifying the circuit order of the Quirrov subspace model. In the following, a preferred embodiment will be described, and other purposes and effects of the present invention will be further explained with reference to the drawings and the drawings. This will enable the reviewer to have a more detailed understanding of the present invention and to familiarize himself with the The skilled artisan can use the actual target, and the following description is only for explaining the preferred embodiment, and is not intended to limit the scope of the present invention, and therefore, based on the inventive spirit of the present invention, Modifications or modifications of the form are intended to be within the scope of the invention. [Embodiment] When analyzing the linear circuit of the RLC interconnect line in the ultra-large integrated circuit, the large _ uses the positive node analysis (M〇difie (j Nodal Analysis, MNA) technique according to the Ketchhoff voltage and current law. (]^1^}^〇;^, "magic, can; circuit represented as the following state space ($tate $ pace) matrix form: λ / Γ dx (t) IT ~ Nx 妁 + b just, y (t) =cTχ[ή, (1) where, and 〆. where 'matrix M includes the capacitance value and the inductance value, matrix iV contains the conductance value of the spear resistance value, the shape of the matrix ice) contains the node voltage of the inductor and the branch current, "(4) is The round signal, γ(1) represents the output signal. (2) 1287746 and, let 』= ΛΠΜ and 'the equation (1) can be expressed as: ^ ^ =x(0-rw(0 5 y^)-cTx{t) 5 The purpose of model order simplification is to find a simplified circuit system with less order and effective reflection of the original circuit system, and equation (3) represents a state space matrix of the simplified circuit: (3) where f(i)EW, rVeW and g<</2. and let Z(4)=L[x(〇] and Z〇) = L[qiu]] be the impulse response of the original system and the simplified system in the Laplace Domain.忑(4) and (4) can be expressed as follows: Z(s) = (In - sAyW ^ X(s) = (In - sAYlr · · · · ( 4 ) where /" is the unit matrix of "X/2, 々 9X (? unit matrix.
原始系統的轉移函數丑⑷和簡化後系統的轉移函數片⑷ 可分別表示為/f⑷⑷和泠⑷=(5rf〇)。 , 投影法係利用投影運算子將原始電路系統的狀態變數 (State Variable )投影得到簡化後電路系統的狀態變數。此 正父投影可經由魁洛夫子空間演算法疊代產生。 其中,魁洛夫子空間K#,r)由矩陣J和r組合產味, σ 王 5 表 示式如下:The transfer function ugly of the original system (4) and the transfer function slice of the simplified system (4) can be expressed as /f(4)(4) and 泠(4)=(5rf〇), respectively. The projection method uses a projection operator to project the state variable of the original circuit system to obtain a state variable of the simplified circuit system. This positive parent projection can be generated by iterations via the Quebec subspace algorithm. Among them, the Quebec subspace K#, r) is produced by the combination of the matrix J and r, and the expression of σ Wang 5 is as follows:
Kq(A,r)^span(r,Ar,--^Aq']r) 魁洛夫子空間K#,r)經Arnoldi演算法做修正型瑞姆史 密特(Gram-Schmidt)正交化疊代之後,產生一組單位正六 乂基 10 1287746 i 底(Orthonormal Basis): 其中,々。以數學觀點來看,使用Arnoldi演算法 經g次疊代之後可得到下列式子: ΑΚ =^Α+ν,Λ+ι< .... . (6) 其中’ 為上赫申伯格(upper Hessenberg)矩陣: •V 厶22 … … V 厶21 厶22 * * # * * * ^2q 0 厶32 ^33… : 0 … 0 ^ JL且與刚一次單位正交向量滿足以下關係式: ° 曰 罝 + V〕+· · ·+V,Vi,州 κ :得到簡化系統的狀態變數與原始系 ’斤產生的向里v正交於前一個步驟的單位正交矩陣 P 。向$〜為單位矩陣々第《個行向量。從此觀點 統的狀態變數有相關 x(〇-Vqx(t) 其中,冰)為原始李絲 ··· 維的狀態變數。系^維的狀態變數,聯簡化系“ 將式(7)帶入式(2)中 有下列的轉換關係:’、屋過推導運算之後可得到式⑴ 此類投影式模 :Kr, bva7 ···· (8) 垔間化法有著多項的優點,包含保持原 11 1287746 糸、先的動差以及穩定性和被動性。 為了估測原始系統(式(2))與簡化後系統(式(3))的誤 差。首先,定義餘數誤差尽⑻:Kq(A,r)^span(r,Ar,--^Aq']r) Kuilovian subspace K#,r) modified by Arnoldi algorithm Gram-Schmidt orthogonalization After the iteration, a set of units of Orthonormal Basis is produced: 々. From a mathematical point of view, the following formula can be obtained after the g-time iteration using the Arnoldi algorithm: ΑΚ =^Α+ν,Λ+ι< .... (6) where ' is the upper Hersenberg ( Upper Hessenberg) matrix: •V 厶22 ... V 厶21 厶22 * * # * * * ^2q 0 厶32 ^33... : 0 ... 0 ^ JL and the following orthogonal vector satisfies the following relationship: °曰罝+ V〕+· · ·+V, Vi, state κ: The state variable obtained by the simplified system is orthogonal to the unit orthogonal matrix P of the previous step by the inward v generated by the original system. To the $~ is the unit matrix 々 the first line vector. From this point of view, the state variable has a correlation x(〇-Vqx(t) where, ice) is the state variable of the original Lisi··· dimension. The state variable of the dimension is added, and the simplified system "brings equation (7) into equation (2) has the following transformation relationship: ', after the house is derived, the equation (1) can be obtained: Kr, bva7 ··· (8) The dichotomy method has several advantages, including maintaining the original 11 1287746 糸, first motion difference and stability and passiveness. In order to estimate the original system (formula (2)) and the simplified system (form (3)) The error. First, define the remainder error (8):
Er(s)^(In^sA)X(s)-r 其中,z〇)為z〇)的近似解。假如戈⑷=z(5),則尽⑷=〇。 虽Arno 1 d 1演算法開始實施,式(4 )的近似解无⑷必須屬 於魁洛夫子空間,在此種情況下,則尤⑻=、义⑺。以下將對 籲理想近似解的一些性質做扼要說明。 饭设Arnoldi演算法經過^次疊代運算之後,得到式(6) 中的正交矩陣&和相對應的上赫申伯格(Upper Hessenberg) 矩陣乂。 接著令ζ⑷為ζ⑷的近似解、夕⑷為9次Arnoldi演算法疊 代運算之後的近似解,即、尽㈡為餘數誤差。則以 下的敘述將是正確的。 籲U)假如办卜#⑷,則葛勒金(Galerkin)條件將 成立:Er(s)^(In^sA)X(s)-r where z〇) is an approximate solution of z〇). If Ge (4) = z (5), then (4) = 〇. Although the Arno 1 d 1 algorithm is implemented, the approximate solution of equation (4) is not (4) must belong to the Quebec subspace, in this case, especially (8) =, meaning (7). The following is a brief description of some of the properties of the ideal approximation solution. After the Arnoldi algorithm is subjected to ^ iteration operations, the orthogonal matrix & and the corresponding Upper Hessenberg matrix 式 in equation (6) are obtained. Then let ζ(4) be the approximate solution of ζ(4) and 夕(4) be the approximate solution after the iteration of the 9th Arnoldi algorithm, that is, the remainder (2) is the remainder error. The following narrative will be correct. U) If you do # (4), then the Galerkin condition will be established:
VlEr (s) = VqT{(In - SA)X(s) - r} = 〇 · .....( g ) (b )葛勒金(Ga 1 erk i n)條件如成立,則餘數誤差尽⑷可表示 為式(1 0 ): (10)VlEr (s) = VqT{(In - SA)X(s) - r} = 〇· .....( g ) (b) If the Ga 1 erk in condition is true, the remainder error is (4) can be expressed as (1 0 ): (10)
Er(s) = -shq+lqvq^eTq{Iq -sHqy]r 12 1287746 · 其原理如下: '經過g次Arno 1 d i演算法疊代運算之後,可得到式(8 )的降階 - (簡化)系統。 (a)因為尤⑴(為〇,所以z㈡可由匕的行向量作線性組合得 到,即戈⑻=匕及⑻,其中&⑷為線性組合的係數。在這我們希 • 望\卜)=紅sj。 餘數誤差A 〇)表示式如下: EXs)^(In-sA)VqXq(s)-r 在前面乘一個矩陣 V;[(In^sA)VqXq{s)-r] =KiWs) - + - Λ • =(Iq-sHq)Xq(s) 一 f 在這使用Arno 1 di演算法的單位正交性質,當&⑷⑻,則葛 勒金(Galerkin)條件成立。 (b )當餘數誤差可表示如下列式子後:Er(s) = -shq+lqvq^eTq{Iq -sHqy]r 12 1287746 · The principle is as follows: 'After g-order Arno 1 di algorithm iterative operation, the order of equation (8) can be obtained - (simplified )system. (a) Because especially (1) (for 〇, z(二) can be obtained by linear combination of 行 row vectors, ie, ge (8) = 匕 and (8), where & (4) is a linear combination of coefficients. Here we hope? Red sj. The remainder error A 〇) is expressed as follows: EXs)^(In-sA)VqXq(s)-r is multiplied by a matrix V; [(In^sA)VqXq{s)-r] =KiWs) - + - Λ • =(Iq-sHq)Xq(s)—f Here, the unit orthogonal property of the Arno 1 di algorithm is used. When &(4)(8), the Galerkin condition is established. (b) When the remainder error can be expressed as follows:
Er(sXIn-SA)Vq(Iq-sHXf-r =[Vq(Iq -sHq)- shq+lqvq+leTq ]{Iq - sHqylVqTr - r 13 1287746 其中,K〜。經過代數運算之後得到下列式子 以上為原理說明。 誤差的範圍可由U I & 由以下推導出來。假設乂所有的特徵值 (Eigenvalue)為單 一 、 早 U1 mP 1 e)且%的特徵值分解為 則式(10)可簡化為:Er(sXIn-SA)Vq(Iq-sHXf-r =[Vq(Iq -sHq)- shq+lqvq+leTq ]{Iq - sHqylVqTr - r 13 1287746 where K~. After algebraic operation, the following formula is obtained For the principle description, the range of error can be derived from UI & assume that all eigenvalues (Eigenvalue) are single, early U1 mP 1 e) and the eigenvalue of % is decomposed into equation (10) can be simplified as:
Er(s) = -shq^VqyqSg(Iq ^sAqrs-lr 一 hEr(s) = -shq^VqyqSg(Iq ^sAqrs-lr a h
々+V ^elSqZ(s)Sq -.(12) •βλ. 因為ζ⑷為高通(High-Pass)矩陣,所 以 llz(ML 對式(12)左右兩邊做4範數(N〇rm)得到 (13) 其中,D為矩陣的條件數(C〇nditi〇n Number)。 上述的誤差估測只與、卢及有相關。比較習知技 術提出的誤差表示式,極少對於提出的公式考慮運算的花費 (C〇St)。因為可以反映出ΜΝΑ公式的擾動行為,但是運 异非常耗時。因此本發明只考慮作為選擇階層數過程的 14 1287746 · 依據。本發明並不直接使用;,而是使用μ,||^|作為停止 疊代過程的指標。假如、足夠小,則簡化後的系統將會非常 ’相似於原始系統。 如附件一所示,係為本發明提出以Arnoldi演算法誤差 估測進行路模型化簡的虛擬程式,首先給定初始值、,接著進 行Arno 1 d 1演异法的疊代,逐漸增加簡化模型的階數,每一 次疊代會產生新的單位正交向量、,並且計算本發明提出的 ’相對Hfcll。 當卜足夠小時,Arnoldi演算法疊代將會停止,此時的 疊代次數?值,為簡化模型最佳的階數。 在簡易貝鈿例中將會舉例驗證本發明的優點並呈現模 擬結果。 、 添加擾動的系愉 以下將推導出原始系統在添加擾動之後即相等於式 的簡化系統: Μ - Δ) dt ^ y,it)-cTx,(t).^ …·· (14) 缠原始電路的轉移函數添加一些擾動即可表示趨近後的 =函數_,如式(⑷所示。在式(15)的條件下,擾動系 、“、轉移函數孖△⑷相等於簡化後系統的轉移函數私)。,、 lq+l,qVq+ • · (15) 15 1287746 其原理如下: 假設= ⑻,可推得下列式子: (In - s(A - Δ))-V = Vq (Iq - sAylf... • · 將式(16)左右兩邊同乘(κ^Δ)): r=h(A 一 A))Vq(Iq-sA)4 s(VqHq ^hg+hqvqyq) + sAVq](iq 接著同乘F/並重新排列·· (7, ' = /, - s(Hq + hq+liqVq\+leTq ) + sVrAy 並得到: ’ q 假如Α設定為‘,Λ+1ν【,則ζ△⑷⑷。 【本發明之簡易實施例】 證演算法的 一蜂線路的 本發明係利用一個簡易實施例作為測試,驗 正確性,如第一圖所示,其、中,提出一個具有十 電路模型。 線參數如下:電阻:UQ/cm;電容:5〇 pF/^電感 1.5nH/cm;驅動電阻:3Ω,及負載電容:l〇pF。每一條衾 路長度為30_,並分為50小段。所以,眶矩陣的維度大 小是n=1198。此實施例使用以下頻率區域{〇,12GHz}。實勒 例用於決疋RLC網路電路理的頻率響應的電壓4。 當Arno 1 d 1演异法開始執行,、*及h的值依序的被紀產 下來。如第二圖所示,總結整個模擬結果。可以觀察到,1 16 1287746々+V ^elSqZ(s)Sq -.(12) •βλ. Since ζ(4) is a high-pass matrix, llz(ML is done on the left and right sides of equation (12) by 4 norm (N〇rm). 13) where D is the condition number of the matrix (C〇nditi〇n Number). The above error estimation is only related to Lu and Lu. Compared with the error expression proposed by the prior art, it is rarely considered for the proposed formula. Cost (C〇St). Because it can reflect the perturbation behavior of the formula, but the transit is very time consuming. Therefore, the present invention only considers the process as the process of selecting the number of layers 14 1287746. The invention is not directly used; Use μ, ||^| as an indicator to stop the iterative process. If it is small enough, the simplified system will be very similar to the original system. As shown in Annex 1, the Arnoldi algorithm error is proposed for the present invention. Estimate the virtual program for road model simplification, first give the initial value, then carry out the iteration of Arno 1 d 1 derivation, gradually increase the order of the simplified model, and each iteration will generate a new unit orthogonal Vector, and calculate the 'proposed by the present invention' For Hfcll. When the Bu is small enough, the Arnoldi algorithm will stop the iteration, and the number of iterations at this time is the best order for simplifying the model. The advantages of the invention will be verified by way of example in the simple case. Presenting the simulation results. Adding the disturbance to the system below will deduce the simplified system that the original system is equivalent to after adding the disturbance: Μ - Δ) dt ^ y,it)-cTx,(t).^ ...·· 14) The transfer function of the original circuit adds some perturbations to represent the = function _ after the approach, as shown in the equation ((4). Under the condition of equation (15), the disturbance system, ", the transfer function 孖 △ (4) is equal to The simplified transfer function of the system is private.), lq+l, qVq+ • · (15) 15 1287746 The principle is as follows: Assume = (8), the following formula can be derived: (In - s(A - Δ))-V = Vq (Iq - sAylf... • · Multiply the left and right sides of equation (16) by (κ^Δ)): r=h(A - A)) Vq(Iq-sA)4 s(VqHq ^hg+hqvqyq ) + sAVq](iq then multiply F/ and rearrange (·7, ' = /, - s(Hq + hq+liqVq\+leTq ) + sVrAy and get: ' q if Α is set to ', Λ+ 1ν [, then ζ △ (4) (4). [The present invention [Embodiment] The invention of a bee line of the verification algorithm uses a simple embodiment as a test to verify the correctness. As shown in the first figure, a ten-circuit model is proposed. The line parameters are as follows: :UQ/cm; Capacitance: 5〇pF/^Inductance 1.5nH/cm; Drive resistance: 3Ω, and load capacitance: l〇pF. Each road length is 30_ and is divided into 50 small sections. Therefore, the dimension of the unitary matrix is n=1198. This embodiment uses the following frequency region {〇, 12 GHz}. The example is used to determine the voltage 4 of the frequency response of the RLC network circuit. When the Arno 1 d 1 algorithm starts to execute, the values of * and h are sequentially produced. As shown in the second figure, summarize the entire simulation results. Can be observed, 1 16 1287746
Arnoldi演算法疊代次翁 ^ Q 1,〜相對較小。所以推薦將簡 化系統的階數設定在3彳。 . ^ ^ ^ 1丑⑷、丑⑻和足⑻分別代表原始The Arnoldi algorithm is superimposed on the second dimension ^ Q 1, ~ relatively small. Therefore, it is recommended to set the order of the simplified system to 3彳. ^ ^ ^ 1 ugly (4), ugly (8), and foot (8) represent the original
電路的轉移函數、經A 丄Arn〇ldl方法降階後系統的轉移函數, 及原始電路的擾動系統的轉移函數。%n I _ 一加/ ^明參閱弟三圖所示,這 二個糸統在不同7下的比較。可 崔σ心的疋义〇)相等於片⑷。 本發明推導出廣、# ρ τ Γ π、由Α n ^ ,、13 連線路與簡化後系統之間的餘 數系差,同時也推導出原始 路的轉私函數添加一些擾動即 可表示趨近後的轉移函數。1 一 _管牛二Λ χ 八中擾動矩陣只與Arnoldi演 ’异法刖一次疊代的結果向吾 誤姜描徂讲旦ό 因此運算量报小。此餘數 、差知;{、技衫式核型簡化、、宫瞀 間化,貝异法選擇階數的重要依攄。 歸納上述所說,僅用以,昍士政 聲依據The transfer function of the circuit, the transfer function of the system after the order reduction by the A 丄Arn〇ldl method, and the transfer function of the disturbance system of the original circuit. %n I _ 一加 / ^ 明 See the third picture of the brother, the comparison of these two systems under different 7. It can be equal to the film (4). The invention deduces the residual difference between the wide, # ρ τ Γ π, Α n ^ , and 13 connected lines and the simplified system, and also derives the original private loop function to add some disturbances to express the trend. The transfer function in the near future. 1 一 _ 管牛二Λ 八 Eight middle disturbance matrix only played with Arnoldi ‘the result of a different method of 异 叠 向 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 姜 ό ό ό ό ό ό ό ό ό ό This remainder, the difference knows; {, the simplification of the tactical karyotype, the uterus, and the important basis of the selection of the order. To sum up the above mentioned, only used, the gentleman’s political basis
值用U 5兄明本發明的工 A 以之限制本發明的範圍, ’、里虽不月b 之均等變化靡 本發明申請專利範圍所做 太2 將不失本發明之要義所在,亦不脫離 本發明之精神和範圍,故都應 不脫離 況,且在相同技術領域中未見相同戈本:/的進-步實施狀 座ρ Μ人 冋或近似之技術公開使用, 應已付合發明專利之要件,乃依法提出申請 明專利。 並明踢予本發 【圖式簡單說明】 附件一係本發明之Arnoldi 的虛擬程式。 h差估測進行路模型化簡 第-圖係本發明之一簡單網狀電路實施例。 =係本發明'我在不同叠代次婁“下的比較。 -圖係本發明三個系統邱), 下的比較。 个1 j ®代次數β 17 1287746 【主要元件符號說明 無The value is U 5 brothers, the work A of the present invention limits the scope of the present invention, and the average variation of the present invention is not the same as the scope of the present invention. Without departing from the spirit and scope of the present invention, it should not be disregarded, and the same technology is not seen in the same technical field: / the implementation of the step-by-step implementation or the approximation of the technology, should be paid The requirements of the invention patent are to apply for a patent in accordance with the law. And kicking the hair to the hair [Simplified illustration] Attachment 1 is the virtual program of Arnoldi of the present invention. h Difference Estimation Road Model Simplification The first diagram is an example of a simple mesh circuit of the present invention. = is a comparison of the present invention 'I am in different iterations.' - The system is compared with the three systems of the present invention. The comparison of the following 1 j ® generation times β 17 1287746 [Main component symbol description
128774-6 ·128774-6 ·
演算法:Arno丨di (input: A, r ;outi3Ut: Vq,q) (1) :/*初始化*/ 4=厂; μι == ι; (2) : /*開始 Amoldi 疊代*/ while(^ > tolerance ) (2.1) : /*產生新的單位正交向量*/- U|,' - , (2.2) :/*更新餘數誤差'給下一次疊代*/ V: 4 V for t = \X…,q doAlgorithm: Arno丨di (input: A, r ; outi3Ut: Vq,q) (1) :/*Initialize*/ 4=factory; μι == ι; (2) : /* Start Amoldi iteration*/ while (^ > tolerance ) (2.1) : /*Generates a new unit orthogonal vector */- U|,' - , (2.2) :/* Updates the remainder error ' to the next iteration*/ V: 4 V for t = \X...,q do
end for q 二 q + Y; end while ^:卜丨 v2 ··· vj; 附件一End for q two q + Y; end while ^: divination v2 ··· vj;
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94120265A TWI287746B (en) | 2005-06-17 | 2005-06-17 | Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94120265A TWI287746B (en) | 2005-06-17 | 2005-06-17 | Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200534173A TW200534173A (en) | 2005-10-16 |
TWI287746B true TWI287746B (en) | 2007-10-01 |
Family
ID=39201755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94120265A TWI287746B (en) | 2005-06-17 | 2005-06-17 | Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI287746B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7509611B2 (en) * | 2006-02-07 | 2009-03-24 | International Business Machines Corporation | Heuristic clustering of circuit elements in a circuit design |
-
2005
- 2005-06-17 TW TW94120265A patent/TWI287746B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200534173A (en) | 2005-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reis et al. | PABTEC: Passivity-preserving balanced truncation for electrical circuits | |
US8543360B2 (en) | Parallel simulation of general electrical and mixed-domain circuits | |
CN104217074B (en) | Electromagnetic transient implicit reduced-order simulation method based on matrix index | |
Samuel et al. | Model order reduction of time-delay systems using a Laguerre expansion technique | |
Heydari et al. | Model-order reduction using variational balanced truncation with spectral shaping | |
De Jonghe et al. | Characterization of analog circuits using transfer function trajectories | |
Baňas et al. | A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equations | |
Qin et al. | A proper generalized decomposition-based solver for nonlinear magnetothermal problems | |
Yan et al. | Second-order balanced truncation for passive-order reduction of RLCK circuits | |
Zeng et al. | Real‐Time FE Simulation for Large‐Scale Problems Using Precondition‐Based Contact Resolution and Isolated DOFs Constraints | |
Axelou et al. | Accelerating electromigration stress analysis using low-rank balanced truncation | |
Wirtz et al. | Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems | |
TWI287746B (en) | Projection-based model reductions for efficient interconnect modeling and simulations using the Arnoldi algorithm | |
Floros et al. | Efficient IC hotspot thermal analysis via low-rank Model Order Reduction | |
TWI312122B (en) | ||
Lantsov | A new algorithm for solving of harmonic balance equations by using the model order reduction method | |
Sun et al. | Efficient incremental analysis of on-chip power grid via sparse approximation | |
CN103500284A (en) | On-chip power supply network vector-free verification method and system | |
Zhang et al. | A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts | |
Wong et al. | Toward virtual prototyping of power electronics: Model order reduction for tight-coupled electro-thermal simulation | |
Kavicharan et al. | An efficient delay estimation model for high speed VLSI interconnects | |
Daloukas et al. | A 3-D Fast Transform-based preconditioner for large-scale power grid analysis on massively parallel architectures | |
TWI305620B (en) | ||
US20070033549A1 (en) | Interconnect model-order reduction method | |
Sun | Efficient DC Analysis Using Model Order Reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |