TWI286927B - Method and apparatus for producing images of infrared radiation of a patient - Google Patents

Method and apparatus for producing images of infrared radiation of a patient Download PDF

Info

Publication number
TWI286927B
TWI286927B TW093112800A TW93112800A TWI286927B TW I286927 B TWI286927 B TW I286927B TW 093112800 A TW093112800 A TW 093112800A TW 93112800 A TW93112800 A TW 93112800A TW I286927 B TWI286927 B TW I286927B
Authority
TW
Taiwan
Prior art keywords
patient
infrared radiation
infrared
view
frame
Prior art date
Application number
TW093112800A
Other languages
Chinese (zh)
Other versions
TW200505389A (en
Inventor
Victor John Yannacone Jr
Howard M Garon
Original Assignee
Victor John Yannacone Jr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor John Yannacone Jr filed Critical Victor John Yannacone Jr
Publication of TW200505389A publication Critical patent/TW200505389A/en
Application granted granted Critical
Publication of TWI286927B publication Critical patent/TWI286927B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • G01J5/532Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An infrared imaging camera (4) acquires a plurality of frames (94) of infrared radiation from a patient (P) positioned in a field-of-view (92) of the camera (4). Each frame (94) is acquired during a corresponding frame sample interval and each frame (94) corresponds to the infrared radiation acquired from an array of optical elements (90) in the field-of-view (92) during its frame sample interval. Plural integrals are determined from infrared radiation received from the array of optical elements (90), with each integral corresponding to the infrared radiation received from the same optical element (90) in at least two frames (94). Each integral is mapped to a color or a shade of gray and the color or shade of gray of each integral is mapped to a position in an image corresponding to the position of the corresponding optical element (90) in the field-of-view (92). The camera (4) can be used for early detection of neoplastic disease process, detection of angiogenesis and/or identification of treatment sites for pain management therapeutic modalities.

Description

1286927 氣:、發m說明、: 【發明所屬之技術領域】 本發明係有關紅外線影像(infrared imaging)以及,更 明確而言,係指紅外線影像的診斷。 【先前技術】 紅外線影像,偶而又稱為熱影像(thermal imaging), 已被用於例如印刷電路板及渦輪葉片之材料的非破壞性測 試中。紅外線影像於醫學診斷上的應用受限於設備不足, 以及缺乏與活體動物在放射線下照射下生理過程變化有關 的一般性理論。 早期紅外線影像所依賴的偵測器並無法提供足夠和可 罪數值以做為醫學診斷之用。雖然紅外線偵測器的技術已 獲得改善,但是使用紅·外線影像攝影機偵測身體皮膚表面 溫度的細微變化並無法產生足夠做為有效醫學診斷的資 料。 因此’亟需一種可偵測身體在熱壓迫(thermal stress) 了所發射出之紅外輻射的特性變化,以及取得身體在熱壓 迫下所產生之生理功能反應的診斷資料的紅外線影像系統 及方法。亦亟需一種可立體觀察和分析從身體發出之紅外 轉射的紅外線影像系統。 【發明内容】 本發明為一種產生一病人之紅外線影像的方法。此方 3 1286927 法包括提供 像攝影機之 紅外輻射。 (frame) 〇 從 樣本期間至 視框。決: (integrals), 元件所接收 並且各積分 學元件位置 可在一 視框的取得 溫度。在視 紅外輻射。 得紅外輻射 在開始 開始取得視 下。在成像 内至少放置 在病人的固 在靠近 多面鏡子可 方向,但藉 影機所看到 種、红外線影像攝影機,其係 才見視界(field-of-view)内光 從仅於視界内的病人取得多數 才目應視框樣本期間取得各視: > #部分光學元件陣列取得各 <自陣列接收之紅外輻射 各積分相當於從至少兩個視 的紅外為射。各積分可映射至 的顏色或灰影可被映射至相當 之影像内的位置。 成像期間取得多數個視框並且 。可調節取得自各光學元件之 框樣本期間可從視界内的各光 或者’幾乎同時可從視界内的 〇 取得視框之前,將病人暴露於 框並且將病人暴露於和室溫不 期間之後結束視框的取得。在 一個具有和病人不同發射率的 定解剖位置上放置至少一個標 病人的視界内放置一面或多面 置於視界範圍内反射病人某部 由病人另外部分將其隱藏使不 可從該紅外線影 學元件陣列接收 個紅外輻射視框 樞以及在其視框 相應紅外輻射的 的複數個積分 框内之相同光學 一種顏色或灰影 於視界内對應光 可固定或改變各 紅外輻射的絕對 學元件連續取得 全部光學元件取 室溫下。之後, 同的流動空調之 病人身上和視界 標記物。最好是 記物。 鏡子。此一面或 分之紅外輻射的 為紅外線影像攝 4 1286927 於紅外 過柵格將熱 子取得紅外 子取得之紅 本發明 影像設備視 的裝置。連 相同多數個 視框對應於 紅外輻射。 收的紅外輻 視框内之相 映射至一種 相當於視界 各光學 元件。 此成像 變成對應資 學元件取得 光學元件的 每一視 成像期間末 視框的 不同心跳循 線影像攝影機和病人之間置一 能傳送至病人並且直接從病人 輻射的視框。直接從病人及從 外輻射構建病人的三度空間影 亦係關於一種紅外線影像設備 界之光學元件陣列的各光學元 結可控制偵測裝置的控制器以 陣列選擇性取得之紅外輻射的 一樣本期間從全部或部分光學 提供一種裝置,其可藉由從陣 射決定複數個積分。各積分相 同光學元件取得的紅外輻射。 顏色或灰影並且將各積分的顏 内對應光學元件位置之影像内 元件對應於可藉偵測裝置處理 設備包括可將從各光學元件取 料的裝置。此轉變裝置從相當 的紅外輻射資料決定在至少兩 積分。 框的取得係在一成像期間的對 期增加該視框的取得。 取得和視界内接收之病人的心 環的相同部位至少可取得雨個 -栅格(grid) 〇透 及一面或多面鏡 至少一或多面鏡 像。 ’其包括一種從 件偵測紅外輻射 偵測從樣本期間 多數個視框。各 元件陣列取得的 列之偵測裝置接 當於從至少兩個 該裝置將各積分 色或灰影映射至 的位置。 之視界内的最小 得之紅外輻射轉 於各視框間各光 個視框内之相同 數期間並且在該 跳循環同步。在 視框。 1286927 【實施方式】 參考第1圖,一種紅外線(IR)影像系統2其包括一台 連結至工作站6的紅外線影像攝影機4。紅外線影像攝影 機4從工作站6接收指令信號並供應紅外線影像攝影機4 所接收之紅外輻射的定量數據及資料。工作站6亦連結印 表機8、儲藏器10、顯示器12、指向裝置14、鍵盤16及 紅外線影像系統2使用者以本領域習知方法所使用的電源 調節器1 8 〇 參考第2圖及繼續參考第1圖,紅外線影像攝影機4 包括聯繫工作站6的資料接收器22及資料傳輸器24。從 資料接收器22接收的資料連結至軟體程式控制下進行操 作的控制器26。紅外線影像攝影機4包括以本領域習知 方法連結至冷卻系統3 0以冷卻偵測器2 8至可操作溫度的 偵測器2 8。偵測器2 8從可聚焦投射於偵測器2 8上之紅 外輻射的紅外線透鏡3 2而接收紅外輻射。在到達紅外線 透鏡32之前,紅外輻射先通過前面板視埠44,有時另外 通過一個光學濾過器46。 紅外線透鏡32聚焦之對焦系統62連結至來自控制器 26的接收控制信號。在控制器26的控制下,可經由對焦 系統62藉現代數位照相系統習知的方法調整紅外線透鏡 3 2的焦聚和/或縮放。 紅外線透鏡32及偵測器28連結電動化X-Y定位台64 以控制紅外線透鏡32及偵測器28偵測從光學濾過器46 6 1286927 傳輸來之紅外輻射的方向。定位控制器6 6連結來自押制 器26之接收控制信號。在控制器26的控制下,定位控制 器66控制χ-γ定位台64的位置而使紅外線透鏡32及谓 測器28選擇性地位於可偵測來自選擇部分之光學漁過器 46所傳輸之紅外輻射光束的位置。 前置放大器76連結接收自偵測器28相當於紅外轄射 強度的信號。前置放大器76放大及過濾各別的偵測器28 輸出信號並將各別放大及過濾信號供應至影像類比數位轉 換器(ADC)7 8,其可將來自前置放大器76之各別放大及 過滤信號轉變成供應至如閘陣列(g a t e a r r a y)之影像處理 系統80的對應數位信號。在控制器26控制的操作下,影 像處理系統80將紅外輻射數據及資料供應至資料傳輸器 24而傳輸至工作站6。 前置放大器76較佳為在溫度校正系統82的絕對溫度 下連結至接收數據及資料。在控制器26的控制下,溫度 校正系統82將絕對溫度校正數據供應至前置放大器76。 每次偵測器2 8輸出信號時,前置放大器76結合來自溫度 校正系統8 2的絕對溫度校正數據而以偵測器2 8接收之紅 外輻射絕對溫度調整前置放大器76之輸出信號的放大及 過濾。 控制類比數位轉換器(ADC)84連結輸出自對焦系統 62、X-Y定位台64、溫度校正系統82、前置放大器76及 溫度感測器86的接收類比信號。在控制器26的控制下’ 控制類比數位轉換器84選擇性地將相當於控制類比數位 7 轉換器84所接收之類比信號的數位信號供應至控制器 26。控制器26接收自控制類比數位轉換器84的數位信號 被控制器26所利用而控制紅外線影像攝影機4的操作。 參考第3圖及繼續參考第1和2圖,控制器26必需 控制偵測器2 8對紅外輻射的採樣、紅外線透鏡3 2的焦聚 及X-Y定位台64的位置而得以從總視界(tFOV)92内紅外 線影像攝影機4可視之陣列光學元件(optels)90中的各光 學元件(optel)90接收及記錄紅外輻射。此處所述”光學元 件”或,,optel” 一詞意指總視界92内的最小元件,其可在 偵測器28的瞬間視界(iF〇V)内被單獨處理。 操作時,紅外線影像攝影機4從總視界92内各optel 9〇取得紅外輻射。例如,開始時optel 90位於總視界92 内示於第3圖的位置XI、Y1,控制器26控制X-Y定位 台64、偵測器28及紅外線透鏡32而可在固定垂直Y-軸 沿水平X -軸移動中從各〇 p t e 1 9 0取得紅外輻射。明確而 言,紅外線影像攝影機4僅能從總視界92内位置X1、Y1 和位置X 6 4 0、Y 1之間的各〇 p t e 1 9 0取得紅外輻射。紅外 線影像攝影機4繼續掃描總視界9 2内之光學元件9 0直至 取得形成總視界92的全部〇ptel 90為止。 由於示於第2圖之紅外線影像攝影機4僅具單偵測器 2 8,故紅外線影像攝影機4需花費相當時間才能從總視界 92内各位置之0Ptel 90取得資料。總視界92内位置Μ、 γ1的optel 90採樣和位置χ64〇、γ48〇的〇ptel 9〇採樣 之間的區間’即視框樣本期間,決定於接收自成像物體之 1286927 紅外輻射的量。基於此,以接收自成像物體之紅外輻射的 量為函數可調整視框樣本的區間。紅外線影像攝影機4較 佳為每視框樣本期間以多數次在總視界92内各位置進行 optel 90的採樣,並且平均總視界92内每一位置之各〇ptel 90的樣本而得到接收自各〇ptel 9〇之紅外輻射的平均, 其應用方法將述於後。在光導(ph〇t〇C〇nductive)偵測器的 例子中,加總該採樣(輸出電壓)的資料,而在光伏 (phGtovoltaic)偵測器的例子中則積分該資料(輸出電流)。 影像類比數位轉換器7 8決定瞬間絕對溫度的數位值 或平均债測器28偵測總視界92内各位置之optel 90的紅 外輻射。接著,影像處理系統80在掃描視框94内之視框 區間時將取得之數位值配置於總視界92内各位置之optel 9〇 ^結合視框94之各〇Ptel 90的數位值可代表在相應視 框樣本期間偵測器2 8從成像物體上特定位置接收之紅外 輻射的絕對溫度。 參考第4圖及繼續參考全部前述之圖,紅外線影像攝 〜機4在如5分鐘之成像期間内取得如F1〜F200之成像 物體的多數個視框。當接收各視框94並於影像處理系統 ⑽内組合時,控制器26可使各視框94從影像處理系統80 I由貝料傳輸器24傳輸至工作站6。在醫療用途中,各 多數個現框94的取得較佳為在成像期間的對數期間,並 、象期間末期增加鄰接視框94的取得。然而,可依 任何方法固定或改變鄰接視框9 4的取得。 考第5圖及繼續參考全部前述之圖,為說明之便, 9 1286927 各視框94相同光學元件9〇所取得之溫度可示於溫度-時 間曲線,例如曲線1〇〇〜106。例如,溫度-時間曲線1〇〇 顯示在位置X3、Y3示於第4圖視框F1〜F 200之opt el 90 的溫度對時間曲線。同樣,溫度·時間曲線1 〇2、丨〇4和1 06 分別顯示在位置Χ3、Υ7 ; ΧΙΟ、Υ3和XI 〇、Υ7示於第4 圖視框F1〜F200之光學元件90的溫度對時間曲線。 當在成像期間已取得多數個視框94,工作站6決定 各視框94内相同光學元件9〇之各溫度-時間曲線的積分 (或一積分值)。各積分可就特定時間區間的時間而決定, 例如,視框F1和視框F200之間的採樣時間。或者,各 積分可就特定多數個子視框(subset frames) 94而決定,例 如’視框F85〜F150、視框F85〜F150之間每隔一視框等等。 例如,工作站6可從各視框94内相同位置之光學元件9〇 或從某些選取之多數個視框94如視框F8 5〜F 150就如 100、102、104和106之各溫度_時間曲線的時間決定積 分。例如,工作站6可從採樣視框F1的時間t()至採樣視 框F2 00的時間tl決定各溫度-時間曲線的積分。另一實 例中,工作站6可從採樣視框F85的時間%至採樣視框 F 150的時間tl決定各溫度-時間曲線的積分。 工作站6將如100〜106之各溫度-時間曲線的積分值 映射至顯示用途的唯一顏色。做為早期診斷胸部腫瘤活動 的醫療用途中,映射至曲線之藍色具有最小的積分值以及 映射至曲線之紅色則具有最大的積分值。具有介於最大和 最小積分值範圍内的曲線可被映射成介於紅和藍之間的顏 10 1286927 色。例如,第5圖中介於F85和fl 50之間的視框,工作 站6將藍色映射至具有最小積分值的溫度-時間曲線1 〇 〇 ; 將綠色映射至溫度-時間曲線102;將黃色映射至溫度-時 間曲線1 04 ;以及將紅色映射至具有最大積分值的溫度· 時間曲線106 ^ 接著,工作站6將總視界92内各光學元件9〇或一 群光學元件90的位置映射至顯示器12上相應的像素或一 群像素。當如100〜106之各溫度-時間曲線的一部分或全 部積分值映射一種顏色時,工作站6可使溫度-時間曲線 積分值之映射顏色顯示於顯示器丨2上對應總視界92内相 應光學7G件90之位置的像素或一群像素上。因此顏色可 映射至顯不器12而於其上形成積分值的色彩梯度映射影1286927 GA: The description of the invention relates to: Infrared imaging and, more specifically, to the diagnosis of infrared images. [Prior Art] Infrared images, occasionally referred to as thermal imaging, have been used in non-destructive testing of materials such as printed circuit boards and turbine blades. The application of infrared imaging to medical diagnostics is limited by inadequate equipment and the lack of general theory relating to changes in physiological processes in live animals exposed to radiation. The detectors on which early infrared imaging relies do not provide sufficient and guilty values for medical diagnosis. Although the technology of infrared detectors has been improved, the use of red and external video cameras to detect subtle changes in the surface temperature of the body's skin does not produce enough information for effective medical diagnosis. Therefore, there is a need for an infrared imaging system and method that can detect changes in the characteristics of the body's thermal radiation emitted by the infrared radiation and obtain physiological diagnostic responses of the body under thermal compression. There is also a need for an infrared imaging system that stereoscopically observes and analyzes infrared reflections from the body. SUMMARY OF THE INVENTION The present invention is a method of generating an infrared image of a patient. This method 3 1286927 includes the provision of infrared radiation like a camera. (frame) 〇 From the sample period to the view frame. Decision: (integrals), the component is received and the position of each integral component can be obtained in a frame. In the infrared radiation. Infrared radiation is available at the beginning. In the imaging, at least the patient's fixation is close to the multi-faceted mirror, but the species seen by the camera, the infrared image camera, only sees the field-of-view internal light from the patient within the horizon only. Achieving a majority of the results should be obtained during the sample period: >#Part of the optical element array to obtain each <Infrared radiation received from the array each integral corresponds to the infrared from at least two views. The color or gray shadow to which each integral can be mapped can be mapped to a position within the equivalent image. Get a majority of the frames during imaging and . The frame can be adjusted from each optical element during the period from before the light in the field of view or 'almost simultaneously from the frame in the field of view, the patient is exposed to the frame and the patient is exposed to the room and the room temperature is not finished. Made. Placing one or more sides in the field of view of at least one target patient at a fixed anatomical position with a different emissivity from the patient, placing one or more faces within the field of view to reflect a portion of the patient hidden by another portion of the patient from the array of infrared imaging elements Receiving an infrared radiation frame hinge and the same optical in a plurality of integral frames of the corresponding infrared radiation in the frame thereof. A color or gray shadow in the field of view corresponding to the light can fix or change the absolute elements of each infrared radiation to obtain all the optical continuously The components are taken at room temperature. After that, the same flow air conditioner on the patient and the visual marker. It is best to remember. mirror. This side or sub-infrared radiation is an infrared image taken 4 1286927 in the infrared over the grid to get the heat from the infrared to obtain the red device of the present invention. Even the same majority of the frames correspond to infrared radiation. The phase within the received infrared radiation frame is mapped to an optical component equivalent to the field of view. This imaging becomes a corresponding frame between the different heartbeat video cameras and the patient at the end of each visual imaging period of the optical component. The image is transmitted to the patient and directly radiated from the patient. The three-dimensional space shadow of the patient directly from the patient and from the external radiation is also related to an optical element of the infrared imaging device. The optical element can control the detection device of the controller to selectively obtain the infrared radiation of the array. A device is provided from all or part of the optics that can determine a plurality of integrals from the shot. Infrared radiation obtained by the same optical component. Color or gray shading and corresponding intra-image elements of the respective corresponding optical component positions correspond to the detectable device processing device including means for extracting from each optical component. The conversion device determines at least two integrals from comparable infrared radiation data. The acquisition of the frame increases the acquisition of the frame during a phase during imaging. At least one of the same parts of the heart ring of the patient received in the field of view can be obtained from a rain-grid and at least one or more mirrors. 'It includes a slave to detect infrared radiation to detect most of the frames from the sample period. The detection devices of the arrays obtained by each of the component arrays are connected to the positions at which the integral colors or shades are mapped from at least two of the devices. The minimum infrared radiation in the field of view is converted to the same number of periods within each frame of view between frames and synchronized during the hop cycle. In the view box. 1286927 [Embodiment] Referring to Fig. 1, an infrared (IR) imaging system 2 includes an infrared image camera 4 coupled to a workstation 6. The infrared image camera 4 receives command signals from the workstation 6 and supplies quantitative data and data of the infrared radiation received by the infrared image camera 4. The workstation 6 also connects the printer 8, the storage device 10, the display 12, the pointing device 14, the keyboard 16 and the infrared imaging system 2 to a power conditioner used by a method known in the art. Referring to Figure 2 and continuing Referring to FIG. 1, the infrared image camera 4 includes a data receiver 22 and a data transmitter 24 that are in contact with the workstation 6. The data received from the data receiver 22 is coupled to a controller 26 that operates under the control of the software program. The infrared image camera 4 includes a detector 28 coupled to the cooling system 30 in a manner known in the art to cool the detector 28 to an operable temperature. The detector 28 receives infrared radiation from an infrared lens 32 that can focus on the infrared radiation incident on the detector 28. Prior to reaching the infrared lens 32, the infrared radiation passes through the front panel viewing port 44, sometimes through an optical filter 46. The focus system 62, which is focused by the infrared lens 32, is coupled to a receive control signal from the controller 26. Under the control of the controller 26, the focusing and/or scaling of the infrared lens 32 can be adjusted via the focusing system 62 by methods conventional in modern digital camera systems. The infrared lens 32 and the detector 28 are coupled to the motorized X-Y positioning stage 64 to control the infrared lens 32 and the detector 28 to detect the direction of the infrared radiation transmitted from the optical filter 46 6 1286927. The positioning controller 66 connects the reception control signals from the controller 26. Under the control of the controller 26, the position controller 66 controls the position of the χ-γ positioning stage 64 such that the infrared lens 32 and the predator 28 are selectively positioned to detect the transmission of the optical fisher 46 from the selected portion. The position of the infrared radiation beam. The preamplifier 76 is coupled to receive a signal from the detector 28 that corresponds to the intensity of the infrared radiation. The preamplifier 76 amplifies and filters the respective detector 28 output signals and supplies the respective amplified and filtered signals to an image analog to digital converter (ADC) 7.8 which can amplify the respective amplifications from the preamplifier 76. The filtered signal is converted to a corresponding digital signal that is supplied to an image processing system 80, such as a gate array. Under the control of controller 26, image processing system 80 supplies infrared radiation data and data to data transmitter 24 for transmission to workstation 6. Preamplifier 76 is preferably coupled to receive data and data at the absolute temperature of temperature correction system 82. The temperature correction system 82 supplies absolute temperature correction data to the preamplifier 76 under the control of the controller 26. Each time the detector 28 outputs a signal, the preamplifier 76 combines the absolute temperature correction data from the temperature correction system 8 2 with the infrared radiation absolute temperature of the detector 28 to adjust the amplification of the output signal of the preamplifier 76. And filtering. A control analog digital converter (ADC) 84 is coupled to receive analog analog signals from the focus system 62, the X-Y positioning stage 64, the temperature correction system 82, the preamplifier 76, and the temperature sensor 86. The analog-like digital converter 84 is selectively controlled by the controller 26 to supply a digital signal equivalent to the analog signal received by the analog-like digital converter 84 to the controller 26. The controller 26 receives the digital signal from the analog analog-to-digital converter 84 and is utilized by the controller 26 to control the operation of the infrared image camera 4. Referring to Figure 3 and continuing to refer to Figures 1 and 2, the controller 26 must control the sampling of the infrared radiation by the detector 28, the focus of the infrared lens 32, and the position of the XY positioning stage 64 from the total field of view (tFOV). Each optical element (optel) 90 in the array of optical elements (optels) 90 of the infrared image camera 4 in the 92 receives and records infrared radiation. The term "optical element" or "optel" as used herein refers to the smallest element within the total field of view 92 that can be processed separately within the instantaneous field of view (iF 〇 V) of the detector 28. In operation, the infrared image The camera 4 obtains infrared radiation from each of the optel 9's in the total field of view 92. For example, initially the optel 90 is located in the total view 92 at positions XI, Y1 of FIG. 3, and the controller 26 controls the XY positioning stage 64, the detector 28, and The infrared lens 32 can take infrared radiation from each 〇pte 190 in the horizontal X-axis movement of the fixed vertical Y-axis. Specifically, the infrared image camera 4 can only be positioned from the position X1, Y1 and position in the total field of view 92. Infrared radiation is obtained for each 〇pte 190 between X 6 4 0 and Y 1. The infrared image camera 4 continues to scan the optical elements 90 in the total field of view 9 2 until all 〇ptel 90 forming the total field of view 92 is obtained. The infrared image camera 4 shown in Fig. 2 has only a single detector 2, so it takes a considerable time for the infrared image camera 4 to obtain data from the 0Ptel 90 at each position in the total view 92. The position in the total view 92 is Μ, γ1 Optel 90 sampling and location The interval between the 〇64〇, γ48〇 〇ptel 9〇 samples is determined by the amount of infrared radiation received from the imaged object 1286927. Based on this, the amount of infrared radiation received from the imaged object is a function of the amount of infrared radiation received from the imaged object. The interval of the frame samples can be adjusted. The infrared image camera 4 preferably performs the sampling of the optel 90 at each position in the total field of view 92 during the per-frame sample period, and the average ptel 90 of each position in the average total field of view 92. The sample is obtained by averaging the infrared radiation received from each 〇ptel 9〇, and its application method will be described later. In the example of the light guide (ph〇t〇C〇nductive) detector, the sampling (output voltage) is added up. The data is integrated in the PV (phGtovoltaic) detector example (output current). The image analog converter 7 8 determines the instantaneous absolute temperature digital value or the average debt detector 28 detects the total horizon 92. Infrared radiation of the optel 90 at each location. Next, the image processing system 80 arranges the digit values obtained in the view frame interval within the view frame 94 at each position in the total field of view 92. The digit value of each of the Ptel 90 of block 94 may represent the absolute temperature of the infrared radiation received by the detector 28 from a particular location on the imaged object during the corresponding frame sample. Referring to Figure 4 and continuing to refer to all of the foregoing figures, infrared The image capturing machine 4 obtains a plurality of frames of the imaged objects such as F1 to F200 during an imaging period of 5 minutes. When the frames 94 are received and combined in the image processing system (10), the controller 26 can make each view Block 94 is transmitted from the image processing system 80I to the workstation 6 by the bedding conveyor 24. In medical applications, the majority of the frame 94 is preferably acquired during the logarithmic period of the imaging period, and the acquisition of the adjacent frame 94 is increased at the end of the image period. However, the acquisition of the adjacent frame 94 can be fixed or changed in any manner. Referring to Figure 5 and continuing to refer to all of the foregoing figures, for the sake of explanation, the temperature obtained by the same optical component 9 of each of the frames 94 can be shown in a temperature-time curve, such as curves 1〇〇~106. For example, the temperature-time curve 1 〇〇 shows the temperature versus time curve of the opt el 90 shown at positions X3, Y3 in the fourth frame F1 to F 200. Similarly, the temperature/time curves 1 〇 2, 丨〇 4, and 10 6 are displayed at positions Χ3, Υ7; ΧΙΟ, Υ3, and XI 〇, Υ7 are shown in the temperature of the optical element 90 of the fourth frame F1 to F200. curve. When a plurality of frames 94 have been taken during imaging, the workstation 6 determines the integral (or an integral value) of the temperature-time curves for the same optical component 9 within each frame 94. Each integral can be determined for the time of a particular time interval, for example, the sampling time between frame F1 and view frame F200. Alternatively, each integral may be determined for a particular plurality of sub-frames 94, such as 'frames F85-F150, every other frame between frames F85-F150, and the like. For example, the workstation 6 can be from the same position of the optical elements 9 within the frames 94 or from some of the selected plurality of frames 94 such as the frames F8 5 to F 150 such as the temperatures of 100, 102, 104 and 106. The time of the time curve determines the integral. For example, workstation 6 can determine the integral of each temperature-time curve from time t() of sampling frame F1 to time t1 of sampling frame F2 00. In another example, workstation 6 can determine the integral of each temperature-time curve from time % of sampling frame F85 to time t1 of sampling frame F 150. The workstation 6 maps the integral values of the temperature-time curves of 100 to 106 to the unique colors for display purposes. As a medical use for early diagnosis of thoracic tumor activity, the blue mapped to the curve has the smallest integral value and the red mapped to the curve has the largest integral value. Curves with a range between the maximum and minimum integration values can be mapped to a color between 12 and 1286927 colors between red and blue. For example, in Figure 5, the view frame between F85 and fl 50, workstation 6 maps blue to the temperature-time curve with minimum integration value 1 〇〇; maps green to temperature-time curve 102; maps yellow To the temperature-time curve 104; and map the red to the temperature/time curve 106 with the largest integrated value. ^ ^ The workstation 6 then maps the position of each optical element 9 or a group of optical elements 90 in the total field of view 92 onto the display 12. Corresponding pixel or group of pixels. When a part or all of the integral values of the temperature-time curves of 100 to 106 map a color, the workstation 6 can display the mapped color of the temperature-time curve integral value on the display 丨2 corresponding to the corresponding optical 7G piece in the total view boundary 92. A pixel or a group of pixels at position 90. Therefore, the color can be mapped to the display 12 and the color gradient map on which the integral value is formed

偵測敢近與乳房内腫瘤成熟過程有 言,已熟知形成乳癌時會發生一 有關的血管增生。明確而 種稱為血管增生的過程並 11 1286927 且 期 產 反 同 隨 的 細 增 生 各 出 價 已 出 管 生 如 治 指 用 腫瘤病變或原始腫瘤發展出獨立供應的血流。已發現近 血管增生所形成的血管對身體的交感或自主神經系統不 生反應。因而,在身體血液供應區域對外源性熱壓迫的 應中,近期血管增生對外源性熱壓迫的反應和其鄰近相 組織不同,從其血流的供應可證明非近期的血管增生。 時間從皮膚區域發射之紅外輻射在生理、生化和神經學 作用下可被映射至各種的構造及系統組織層次,例如, 胞、組織、器官和/或系統。當和來自未產生近期血管 生之皮膚區域的紅外輻射比較時,來自發生近期血管辦 之皮膚區域的紅外輻射有明顯地不同。 利用紅外線影像系統2,上述取得溫度-時間曲線及 溫度-時間曲線積分之有關資料的方法,本發明可鑑定 近期血管增生的存在並提供乳房内該血管增生位置的有 值資料’因而可早期診斷出病人的腫瘤活動或病人可能 感染癌症。 本發明另外利用數學及統計學的方法檢查從皮膚發射 的、卜輕射X達到鑑別統計上過多或缺乏紅外輻射之血 刀佈或/皿度刀佈以及異常區域的目的,該輻射在生理、 化和神經學的作用下可被映射至各種的組織層次,例 ’細胞、組織、器官和/或系統。此資料對以另類療法 療特別指肌筋膜炎之慢性疼痛最具價值,例如,針灸、 I或如/σ療用、红外線或高頻率能量之外源性電磁波的應 〇 太發明於雜— 、m疋血管分佈及溫度分佈的應用使,,西醫,,可 12 1286927 有效利用如針灸和指壓的,,中罄 J甲醫或,,東方,,醫療技術,並且 可做為’’中醫”或”東方,,醫细法σ,,芯+ θ 晉師和西方,,醫療服務人員在心得 及技術上的溝通平台。 參考第6圖及繼續春老各如& 貝+考全。p前述之圖,本發明將參考 礼房11 4檢查時從病人p接收紅外輻射所獲得的資料進 行說明》…較佳為相對垂直袖113以角θ倚靠在_張 具有背靠112的長椅或椅子 〜q 丁 ιιυ上,或病人ρ以站立姿勢 背靠在一張相同角度的 町罪扳上(未顯示)。所選取之角θ可 使各邊乳房1 1 4下側在红外綠少 、、卜線衫像攝影機4的總視界92 内。為便於乳房114侧®^ 彳面及腋窩區域照射紅外輻射,病人It has been said that it is known that the process of tumor maturation and breast tumor maturation is known to occur when a breast cancer is formed. Clearly known as the process of vascular proliferation and 11 1286927 and the production of the opposite with the subsequent increase in the price of each out of the tube, such as the use of tumor lesions or the original tumor to develop an independent supply of blood flow. It has been found that blood vessels formed by proximal vascular proliferation do not respond to the sympathetic or autonomic nervous system of the body. Therefore, in the external heat compression of the blood supply area of the body, the recent response of vascular hyperplasia to exogenous thermocompression is different from that of its adjacent phase, and the supply of blood flow can prove non-recent vascular proliferation. Infrared radiation emitted from the skin area over time can be mapped to various structural and systemic tissue levels, such as cells, tissues, organs, and/or systems, under physiological, biochemical, and neurological effects. When compared to infrared radiation from areas of the skin that did not produce recent angiogenesis, the infrared radiation from the area of the skin where the recent vascularization occurred was significantly different. By using the infrared image system 2, the above method for obtaining temperature-time curve and temperature-time curve integral data, the present invention can identify the existence of recent vascular hyperplasia and provide valuable data of the location of the vascular proliferation in the breast', thereby enabling early diagnosis The patient's tumor activity or the patient may be infected with cancer. The invention additionally utilizes mathematical and statistical methods to examine the purpose of discriminating statistically excessive or lacking infrared radiation from a blood knife cloth or a dish knife cloth and an abnormal area, which is emitted from the skin, and the radiation is physiologically and chemically Under the influence of neurology, it can be mapped to various tissue levels, such as 'cells, tissues, organs and/or systems. This information is most valuable for the treatment of chronic pain associated with fasciitis, such as acupuncture, I or the use of infrared radiation or high frequency energy. , m疋 vascular distribution and temperature distribution application, Western medicine, can 12 1286927 effective use such as acupuncture and acupressure, Zhongyi J A doctor or, Oriental,, medical technology, and can be used as ''Chinese medicine "Or" the East, the medical fine σ, the core + θ Jin Shi and the West, the medical service personnel in the experience and technical communication platform. Refer to Figure 6 and continue to spring and old as & p The foregoing diagram, the present invention will be described with reference to the information obtained by receiving infrared radiation from the patient p at the inspection of the courtroom 11... preferably the opposite vertical sleeve 113 leans at the angle θ against the bench having the back 112 Or chair ~ q ding υ ,, or the patient ρ in a standing position back against a similar angle of the town sin (not shown). The selected angle θ is such that the lower side of the breast 1 1 4 is less in the infrared green, and the bottom of the breast is like the total view 92 of the camera 4. In order to facilitate the irradiation of infrared radiation on the breast 114 side® surface and the axillary region, the patient

P朝頭部側舉使手臂讀雜I ^ 霄還離身體部位並將其手肘和前臂置於 靠墊"5上。紅外線影像攝影機4置於可整個看到病人p 胸部前侧的位置 爭明过 ^直更明確而吕,病人P的乳房114在紅 外線影像攝影機4 & _ @ + 的總視界92内。紅外線影像攝影機4 較佳為置於病人p之乳房114及附近身體ιΐ6可填滿大部 視界92的位置。然而,病Λ p在特定區域内可縮放P is lifted toward the head so that the arm is read and the I ^ 霄 is still away from the body and its elbow and forearm are placed on the cushion "5. The infrared image camera 4 is placed in a position where the front side of the chest of the patient p can be seen entirely. It is straightforward and clearer, and the breast 114 of the patient P is within the total field of view 92 of the infrared image camera 4 & _ @ + . The infrared image camera 4 is preferably placed in the position of the breast 114 of the patient p and the nearby body ι 6 to fill the majority of the field of view 92. However, the disease p can be scaled within a specific area

調即、·工外線透冑3 2,因而可從此選定區域取得其红 射。 、…拘 _在本發明中,利用紅外線透鏡32的縮放從病人p的 選定區域取得紅外輻射,但並未增加病人P可被各光學 元件 90編狻从士 規祭的表面積。藉由縮放於較小陣列之光學元件 j* 口 于、’工外輻射被認為可改善病人p成像部 内的影像解析度。 在紅外線透鏡32之焦距長度和可獲得有價值生理資 13 1286927 料需在總視界92内之病人P照相區域間的協調中選定病 人P和紅外線影像攝影機4之間的距離。最後,紅外線 透鏡32的焦距必需在可使病人P的全部照相區域成像於 總視界9 2内《紅外線影像攝影機4的紅外線透鏡3 2具有 模糊圓圈及繞射限制小於偵測器2 8可視之各光學元件9 〇 面積的長焦距長度。在此組合下’紅外線影像攝影機4具 有能使總視界92内病人P各部分在焦距内的景深(deep_ of-field) ’其無關病人p之各次部分和紅外線影像攝影機 4相隔的距離。 谷納病人P和長椅11 0之房間1 1 8内的溫度可使病人 P在脫去衣服後仍感到非常舒適。病人p躺在長椅11 〇上 一段時間之後’紅外線影像攝影機4開始擷取相當於在無 熱壓迫下接收自病人P之代表紅外輻射絕對溫度之數位 值的視框94。視框數目及施予外源性熱壓迫前需獲取足 夠”基本”資料的時間需視操作者或取得資料之電腦自動分 析而定。在無熱壓迫下取得所需視框94數目之後,藉由 位於病人p面前的一個或多個冷/熱泵122使病人p暴露 於空調120氣流。該一個或多個冷/熱泵122為置於可實 質上均句空調120氣流而在檢查過程中以恒定速率冷卻或 暖和總視界92内之病人P部分的位置。從冷/熱泵122吹 向病人p之空調12〇冷氣流的溫度較佳為不同”於房間n8 内的周圍溫度,但其仍可使病人感到舒適。已知空調12〇 氣流的溫度僅需維持在低於周圍溫度1(Γρ即可使病人p 產生所需的交感神經反應。 14 1286927 然而在特定的臨床狀況下,為了使更多血流流至皮廣 表面以及確保病人p不因周圍溫度而先產生血管收縮, 其在冷卻前應先暖和兩邊的乳房114。從病人p對熱壓迫 改變如加溫至冷卻及冷卻至加溫之反應所接收的紅外輻射 可獲得其他有價值的資料。這些對熱壓迫的改變可在特定 皮膚發射紅外輻射之區域弓I起生理遲滯(hysteresis),並 且在底層組織和器官内進行某種生理過程。 例如,冷/熱泵 以及紅外線影像攝影機4從病人ρ之乳房114取得多數 個視框94。在冷/熱循環過程中來自皮膚區域的紅外輻射 可使特定底層產生生理反應上的改變’而導致接收自該特 疋品域之光予το # 9 0 &、红外輕射積分值對接收自低敏感 組織之光學元件9 0的紅外輕斛接 ^射積分值產生統計上明顯的 差異。此積·分值上的差異可在顯 甘顯不态12上顯示出不同的 灰階和/或色彩梯度映射影像。 a ^ 亦可從獲得之數據產生底 層構造及系統的立體影像。The tone is adjusted, and the outside line is traversed by 3 2, so that the red light can be obtained from the selected area. In the present invention, the infrared radiation is obtained from the selected area of the patient p by the zoom of the infrared lens 32, but the surface area of the patient P can be edited from the optical component 90 by the optical component 90. By scaling to the optical elements of the smaller array, the external radiation is considered to improve the image resolution within the patient's imaging section. The distance between the patient P and the infrared image camera 4 is selected in the focal length of the infrared lens 32 and the coordination between the patient P camera regions in which the valuable physiological resources are available in the total field of view 92. Finally, the focal length of the infrared lens 32 must be such that the entire photographic area of the patient P can be imaged in the total field of view 9 2. The infrared lens 32 of the infrared image camera 4 has a blurred circle and the diffraction limit is smaller than the visible range of the detector 28. The length of the long focal length of the optical element 9 〇 area. In this combination, the infrared image camera 4 has a depth (of-field) which enables the portions of the patient P in the total field of view 92 to be within the focal length, and the distance between the portions of the unrelated patient p and the infrared image camera 4 is separated. The temperature in the room of the Guna patient P and the bench 11 0 1 8 makes the patient P feel very comfortable after taking off the clothes. The patient p lie on the bench 11 After a while, the infrared image camera 4 begins to take a view frame 94 corresponding to the digital value of the absolute temperature of the infrared radiation received from the patient P without thermal compression. The number of frames and the time required to obtain sufficient “basic” information before applying exogenous thermocompression depends on the operator or the computer's automatic analysis of the data obtained. After obtaining the desired number of frames 94 without thermal compression, patient p is exposed to airflow 120 by one or more cold/heat pumps 122 located in front of patient p. The one or more cold/heat pumps 122 are positioned to substantially cool or warm the portion of the patient P within the total field of view 92 during a test at a constant rate during the inspection. The temperature of the 12 〇 cold air stream from the cold/heat pump 122 to the patient p is preferably different from the ambient temperature in the room n8, but it still makes the patient feel comfortable. It is known that the temperature of the air conditioner 12 仅 airflow only needs to be maintained. Below 1 ambient temperature (Γρ can cause the patient p to produce the desired sympathetic response. 14 1286927 However, in certain clinical situations, in order to allow more blood flow to the skin surface and to ensure that the patient p is not due to ambient temperature The vasoconstriction is first produced, and the breasts 114 on both sides should be warmed before cooling. Other valuable information can be obtained from the infrared radiation received by the patient p to change the heat compression, such as heating to cooling and cooling to warming. These changes in thermal compression can cause hysteresis in areas where specific skin emits infrared radiation, and perform some physiological processes in the underlying tissues and organs. For example, cold/heat pumps and infrared image cameras 4 from patients ρ The breast 114 takes a majority of the frame 94. Infrared radiation from the skin area during the cold/thermal cycle can cause a change in the physiological response of the particular underlayer. The light received from the special product field το # 9 0 &, the infrared light radiance integral value produces a statistically significant difference to the infrared light 斛 积分 integral value of the optical component 90 received from the low sensitivity tissue. Differences in product and score values can show different grayscale and/or color gradient map images on the display. a ^ It is also possible to generate a stereoscopic image of the underlying structure and system from the obtained data.

由於組織具有和電磁波姑M /反材枓、包括熱後冷、”熱和冷” # %和/或冷後熱、,,冷和埶 m ^ ^ …、循%之熱壓迫後遲滯現象相 類似的特性和性質,故可 內血昝座a "強紅外線影像系統2偵測近期 内血管生成活動的組織區域 七如 例如病人P的乳房114 〇 在對冷/熱果122之空謫! ^ P Bl ^ ^ ^ ^ 120冷氣流的反應中,病人 P因受冷而促使交感神經系 ^ , F, 4〇 ^ ^ 阻止血液流至皮膚表面。然 而已知交感神經系統對近期發决+ ^ ^ ^ ^ ^ 發生之血管增生或已發生之 &曰生不會阻止組織的血 供應。因此,近期發生或已 15 1286927 發生血管生成活動時來自供應血流之組織或器官的紅外輻 射不會對空調120冷氣流產生和其他正常組織相同的反 應。例如,如第5和7圖所示,總視界92内光學元件90 之位置X3、Y3所觀察的病人p皮膚表面區域於視框F4 和視框F200之間可產生病人p對空調12〇冷氣流之反應 的溫度-時間曲線1 00。同樣,以空調丨2〇冷氣流冷卻的 病人P可使光學元件90之位置Χ3、Υ7、Χ10、Υ3和X10、 γ7所觀察的病人Ρ皮膚表面區域於視框F4和視框F200 之間可分別產生溫度-時間曲線1 〇 2、1 〇 4和1 0 6。 如第5圖所示,視框F85和F150之間,曲線104和 106的變化速率較曲線10〇和i 〇2為小。此變化速率的差 異顯示光學元件90之位置Χ1〇、Υ3和X10、Y7所觀察 之病人Ρ皮膚表面區域對空調120冷氣流的反應和光學 元件90之位置Χ3、Υ3和Χ3、Υ7所觀察的病人Ρ皮膚 表面區域相比有較小的反應。取視框F 8 5和F 1 5 0之間各 曲線102〜106的積分所產生的積分值顯示曲線1〇6的積 刀值大於曲線104的積分值’其大於積分值大於曲線100 之曲線102的積分值。此顯示病人ρ在總視界92内的組 織可能已發生血管增生或近期發生血管增生。 除了提供血管增生及血管生成活動的資料之外,本發 明亦提供受交感神經系統血流調節之任何組織、器官或生 理系統活動的有價值資料。 在早期偵測乳房内腫瘤疾病的特殊例子中,較佳為可 依需要改變用於偵測總視界92内各位置光學元件90之 16 1286927 溫度-時間曲線積分的起始視框94如視框F85以及視框94 的數目而顯示影像於顯示器12上。例如,示於第5圖之 各溫度-時間曲線1〇〇、1〇2、〗04和1〇6的積分為決定於 視框F 8 5和F 1 5 0之間。然而,各溫度-時間曲線1 〇 〇、1 〇 2、 104和106的積分視需要亦可決定於視框F1 〇〇和pi 25之 間、於視框F20和F85之間、於視框F75和F175之間等 等。 此外,亦可改變用於映射灰階和/或色彩至示於第5 圖各溫度-時間曲線之積分的數位位元(digital bits)數目。 例如,若影像類比數位轉換器78為一種12-位元類比數 位轉換器’則灰階和/或色彩梯度映射影像可被映射至小 於全1 2-位元範圍之影像類比數位轉換器78。例如,工作 站6可將各溫度-時間曲線之積分映射至以十為基數之 800〜1600的數位值範圍,因此可從即時顯示器12除去較 低或無即時診斷價值的資料,但不會失去資料庫内記錄該 病人的資料。 第8a〜8b圖分別顯示黑白演色之病人p乳房114的色 彩梯度映射影像以及結合灰階和黑白演色之病人p乳房 114的色彩梯度映射影像。由於視框94的取得需在一段 成像期間内,故溫度-時間曲線代表不同時間來自病人p 乳房11 4之全部組織塊的紅外輻射,而非僅指皮膚表面的 溫度。如第8a圖所示之色彩梯度映射影像可提供有關病 人P之乳房114對來自冷/熱泵122空調120氣流之交感 神經反應的詳細資料。在此色彩梯度映射影像中,偏向藍 17 1286927 色光譜的色彩為具有較小積分值的光學元件90,例如第5 圖之曲線 100,以及紅色區域為具有較大積分值的光學元 件90,例如第5圖之曲線106。第8a圖之色彩梯度映射 影像中的綠、黃和橘色為第5圖中積分值介於溫度-時間 曲線1 00和1 06的積分值之間的溫度-時間曲線。 第8b圖中,總視界92區域内溫度-時間曲線之積分 值小於紅色之積分值的光學元件90被映射至一灰階,並 且具有相當於紅色之積分值的溫度-時間曲線顯示紅色的 記號。更明確而言,第 8b圖之結合灰階和黑白演色的色 彩梯度映射影像為結合最後3 2個視框94的灰階映射影像 及相同最後32個視框94的色彩梯度映射影像而形成。灰 階影像為藉由映射最後32個視框94内相同光學元件90 之積分值至形成第8b圖之灰階映射影像的灰階而形成。 以紅色取代灰階映射影像内相同光學元件90之色彩梯度 映射影像並因而產生灰階/色彩梯度映射影像的光學元件 90被顯示於顯示器12上而產生第8b圖之灰階/色彩梯度 映射影像。第 8b圖中顯示紅色記號的區域為最近發生血 管生成活動的組織,或已發生或可能發生血管增生而因此 需進一步檢查的組織。 第8b圖之結合灰階和黑白演色的色彩梯度映射影像 亦清楚顯示病人P乳房114的血管構造,因而可進一步 提供醫生有價值的診斷資料。在經驗上已知若呈現如第9 圖所示之複合或高度不規則的血管構造時,其和較規則的 血管構造比較均被視為可能罹患乳癌的高危險病人。由於 18 1286927 可偵測並顯系出詳細的乳房1 1 4血管構造’因此本發明可 早期偵測出伴隨如乳癌之腫瘤疾病的血管增生過程’並且 根據解剖構造或生理特性可推論其為如乳癌之赚瘤疾病的 危險因子,因而可讓病人P在腫瘤達到可觸覺之前及早 採取如改變,,生活方式,,以消除危險因子的行動,旅且當病 人P在改變其生活方式之後或可避免乳癌的惡化。 本發明亦可藉由比較多數次,,心跳,,循環中於相同時間 取得的視框9 4而被應用於病人P血流的測定。明確而言’ 可同步針對病人P心跳循環的特定部位藉由紅外線影像 攝影機4取得個視框94。例如,可在各多數次心跳循環 之P波取得視框F1、F6、F1 1等;在各多數次相同心跳 循環之Q波取得視框F2、F7、F12等;在各多數次相同 心跳循環之R波取得視框F 3、F 8、F1 3等;在各多數次 相同心跳循環之S波取得視框F 4、F 9、F 1 4等;在各多 數次相同心跳循環之T波取得視框F 5、F 1 0、F 1 5等。於 全部系列之影像取得期間利用病人本身心跳循環做為,,時 間碼”可更有效率地應用影像處理的數學方法並且增加分 析的準確度。此外,利用如心跳之定義清楚的電生理過程 及如心電圖之精確的顯示圖可加強不同檢查中所得到的影 像系列並且在相同或不同病人的多次檢查中改善取得之數 據的統計分析效率。 當在多數次心跳循環中取得所需之多數個視框94之 後,工作站6在各心跳循環_的特定時間決定視框94内 相同光學元件9 0的積分值。例如,工作站6可決定F j、 19 1286927 F6、Fll等視框内相同光學元件90的積分值,即, 數次心跳循環的P波中取得之視框;決定F2、F7 等視櫂内相同光學元件90的積分值,即,在多數次 循環的Q波中取得之視框;以及在多數次心跳循環 波、S波和τ波中取得相同光學元件9 0之視框等等。 工作站6將多數次心跳循環中同一時間所取得之 94内相同光學元件90的積分值映射至上述方法中的 和/或顏色/因此工作站6可使映射之灰影和/或顏色 於顯示器1 2的像素或一群像素上,其位置相當於總 92内相應光學元件或光學元件90以形成多數次心 環中同一時間積分值之灰影和/或色彩梯度映射影像 置。例如,工作站6將灰影和/或顏色映射至ρ 1、F6 等視框内相同光學元件90的積分值,並且在多數次 循環的P波中將相當於病人P之血流的灰影和/或色 度映射影像顯示於顯示器12上。工作站6可同時或 將灰影和/或顏色映射至與多數次病人ρ心跳循環 波、R波、S波或T波有關之視框94内相同光學元, 的積分值,並且選擇性地將其灰階和/或色彩梯度映 像顯示於顯示器1 2上。 區隔多數次心跳循環中不同時間的視框94有利 辨全部攝影部位中不同層次及位置之病人ρ皮膚表 紅外轄射及血流而可定量測定紅外線影像攝影機4總 92内之病人P的血流,因此可提供醫生更多有價值 斷資料。利用如病人ρ本身的心跳之具有一致性的 在多 、F12 心跳 的 R 視框 灰影 顯示 視界 跳循 的位 、F11 心跳 彩梯 另外 之Q 件90 射影 於分 面的 視界 的診 時間 20 1286927 I為“。己物,因而可應用數學處理加強影像並增加全部影 像系、先的解析度w改善系、统在人類體内及其他動物體内鑑 j定〖生和評估複雜之交感神經性生理過程的敏感度及選 擇性。 本發明亦可藉由兩個視框94内數位資料的負結合而 取得其診斷資料。例如,取自視框F4各位置之光學元件90 的數位資料可減去取自視框F2各相同位置之光學元件 的相應數位資,料。工作站6可將此取自相同位置之光學元 件90的差異映射至灰階和/或色階而於顯示器η上產生 該差異的灰階和/或色彩梯度映射影像。 參考第10圖及回顧前述第2〜7圖,乳房丨丨4之紅外 線攝影的困難為即使病人p以0角度斜躺仍不易取得乳 房11 4下側1 2 4之紅外線影像。同理,當紅外線影像攝影 機4如第6圖所示位於病人p前面時,若不移動紅外線 影像攝影機4則不易取得病人p手臂丨2 6附近之乳房1 1 4 側面125的紅外線影像。為使紅外線影像攝影機4能觀察 乳房11 4下側1 24及乳房11 4側面1 25和腋下的相關區域, 可在病人P的乳房114下方置一面胸骨鏡130以及在病 人P乳房114的相反兩邊125各置一面側鏡132。胸骨鏡 1 3 0和側鏡1 3 2必需位於能使乳房11 4下側1 2 4及乳房11 4 侧面125和腋下區域均納入總視界92内的位置,並且朝 可使乳房11 4下側1 24及乳房11 4側面1 2 5反射紅外輻射 至紅外線影像攝影機4的方向。 工作站6可利用影像處理技術從直接接收自乳房11 4 21 1286927 及反射自鏡子130和/或132的紅外輻射構建乳房ιι4的 灰階和/或色彩梯度映射影像。為增加紅外線影像攝影機 4债測鏡子130、132、病人p和其之間距離的能力,鏡 子130、132可在紅外線影像攝影機4視野内的一邊或多 邊放置一條不同於人類或其他動物或組織之發射率的材 料。此方法最常應用於外源性材料如化粧品之皮膚敏感性 的測定,以及做為測定皮膚上物質如局部藥物之吸收速率 的方法。此特殊的應用方法可準確定量及重覆性地測定人 _和其他動物對化學物質及如化粧品之混合物的皮膚敏感 座,,’因而可避免應用一些易造成爭議的動物試驗,例 如’^Draiz”法。本發明亦可準確定量及重覆性地測定局部 性藥物及藥物的吸收速率或吸收力而可避免應用具爭議性 的動物試驗。 P終生 子130 置之紅 置於解 突胸骨 標記物 製成。 有用的 用乳房 有Since the tissue has electromagnetic wave and M / anti-material 枓, including heat after cooling, "hot and cold" #% and / or cold after heat,, cold and 埶m ^ ^ ..., followed by hysteresis after heat compression Similar characteristics and properties, so the internal blood scorpion a " strong infrared imaging system 2 detects the tissue area of the angiogenesis activity in the near future. For example, the breast 114 of the patient P is licking the cold/hot fruit 122! ^ P Bl ^ ^ ^ ^ 120 In the reaction of cold airflow, patient P is caused by cold to cause the sympathetic nervous system ^, F, 4〇 ^ ^ to prevent blood from flowing to the surface of the skin. However, it is known that the sympathetic nervous system has recently caused a angiogenesis of + ^ ^ ^ ^ ^ or that has occurred and does not prevent the blood supply of the tissue. Therefore, infrared radiation from tissue or organs supplying blood flow that occurs recently or has had angiogenic activity at 15 1286927 does not produce the same response to air conditioning 120 cold airflow as other normal tissues. For example, as shown in Figures 5 and 7, the patient p skin surface area observed at the positions X3, Y3 of the optical element 90 in the total field of view 92 can produce a patient p air conditioner 12 between the view frame F4 and the view frame F200. The temperature-time curve of the reaction of the stream is 1 00. Similarly, the patient P cooled by the air conditioner 〇2〇 cold airflow can make the position of the optical element 90 Χ3, Υ7, Χ10, Υ3, and X10, γ7 between the patient's skin surface area and the view frame F4 and the view frame F200. Temperature-time curves 1 〇 2, 1 〇 4, and 1 0 6 are generated, respectively. As shown in Fig. 5, between the frames F85 and F150, the rates of change of the curves 104 and 106 are smaller than the curves 10〇 and i 〇2. The difference in rate of change shows the position of the optical element 90 Χ1〇, Υ3 and X10, Y7 observed by the patient's skin surface area in response to the cold air flow of the air conditioner 120 and the position of the optical element 90 Χ3, Υ3 and Χ3, Υ7 The patient has a smaller response than the surface area of the skin. The integral value generated by the integration of the curves 102 to 106 between the frame F 8 5 and the F 1 5 0 shows that the product value of the curve 1〇6 is larger than the integral value of the curve 104, which is larger than the curve whose integral value is larger than the curve 100. The integral value of 102. This shows that the tissue of the patient ρ in the total field of view 92 may have undergone vascular proliferation or recent angiogenesis. In addition to providing information on angiogenesis and angiogenic activity, the present invention also provides valuable information on the activity of any tissue, organ or physiological system regulated by blood flow in the sympathetic nervous system. In a particular example of early detection of intratumoral tumor disease, it is preferred to change the starting frame 94 of the 12 1286927 temperature-time curve integral for detecting positional optical elements 90 in the total field of view 92 as desired. The image is displayed on the display 12 by the number of F85 and the view frame 94. For example, the integrals of the temperature-time curves 1〇〇, 1〇2, -0404, and 1〇6 shown in Fig. 5 are determined between the frames F 8 5 and F 1 50 . However, the integral of each temperature-time curve 1 〇〇, 1 〇2, 104, and 106 may also be determined between the frames F1 〇〇 and pi 25, between the frames F20 and F85, and in the view frame F75. Between the F175 and so on. In addition, the number of digital bits used to map the gray scale and/or color to the integral of the temperature-time curves shown in Figure 5 can also be changed. For example, if image analog to digital converter 78 is a 12-bit analog to digital converter' then grayscale and/or color gradient map images can be mapped to image analog to digital converters 78 that are less than the full 1 2-bit range. For example, workstation 6 can map the integral of each temperature-time curve to a range of digits ranging from 800 to 1600 based on ten, so that data with low or no diagnostic value can be removed from instant display 12 without losing data. The patient's data is recorded in the library. Figures 8a-8b show the color gradient map image of the patient's p breast 114 in black and white color and the color gradient map image of the patient p breast 114 combined with grayscale and black and white color rendering. Since the acquisition of the frame 94 is required for an imaging period, the temperature-time curve represents infrared radiation from all of the tissue blocks of the patient p breast 11 4 at different times, rather than just the temperature of the skin surface. The color gradient map image as shown in Fig. 8a provides detailed information about the sympathetic response of the breast 114 of the patient P to the airflow from the cold/heat pump 122 air conditioner 120. In this color gradient map image, the color of the blue 17 1286927 color spectrum is an optical element 90 having a small integral value, such as the curve 100 of FIG. 5, and the red area is an optical element 90 having a large integral value, for example Curve 106 of Figure 5. Color Gradient Mapping in Figure 8a The green, yellow, and orange colors in the image are the temperature-time curves between the integral values of the temperature-time curves 1 00 and 106 in Figure 5. In Fig. 8b, the optical element 90 whose integral value of the temperature-time curve in the region of the total horizon 92 is smaller than the integral value of red is mapped to a gray scale, and the temperature-time curve having the integral value corresponding to red shows the red mark. . More specifically, the color gradient map image combining the gray scale and the black and white color rendering of Fig. 8b is formed by combining the gray scale map image of the last 32 frames 94 and the color gradient map image of the same last 32 frames 94. The gray scale image is formed by mapping the integral values of the same optical element 90 in the last 32 frames 94 to the gray scale of the gray scale map image forming the 8b map. An optical element 90 that replaces the color gradient map image of the same optical element 90 in the gray scale map image with red and thus produces a gray scale/color gradient map image is displayed on the display 12 to produce a gray scale/color gradient map image of FIG. 8b . The area showing the red mark in Fig. 8b is the tissue of the most recent angiogenesis activity, or the tissue that has undergone or may have angiogenesis and therefore needs further examination. The color gradient map image of the grayscale and black and white color rendering of Fig. 8b also clearly shows the vascular structure of the patient P breast 114, thereby further providing valuable diagnostic data for the doctor. It is empirically known that when a composite or highly irregular vascular construct as shown in Fig. 9 is presented, it is considered to be a high risk patient who may have breast cancer compared with a more regular vascular construct. Since 18 1286927 can detect and display detailed breast 148 vascular structures', the present invention can detect angiogenic processes accompanying tumor diseases such as breast cancer early' and can be inferred from anatomical or physiological characteristics. Breast cancer's risk factors for cancer-causing diseases, thus allowing patients to take actions such as changes, lifestyles, and elimination of risk factors before the tumor reaches tactile sensation, and when patient P is changing his or her lifestyle, Avoid the deterioration of breast cancer. The present invention can also be applied to the measurement of blood flow of a patient P by comparing a plurality of times, a heartbeat, and a frame 9 obtained at the same time in the cycle. Specifically, the view frame 94 can be acquired by the infrared image camera 4 for a specific portion of the heartbeat cycle of the patient P. For example, the frame F1, F6, F1 1 and the like can be obtained in the P wave of each of the majority of heartbeat cycles; the Q-waves of the same majority of the heartbeat cycles are obtained by the frames F2, F7, F12, etc.; The R wave obtains the frame F 3, F 8 , F1 3 , etc.; the S wave of the same heartbeat cycle of each of the plurality of times obtains the frame F 4 , F 9 , F 1 4 , etc.; the T wave of the same heartbeat cycle in each of the plurality of times The frame F 5 , F 1 0, F 1 5 and the like are obtained. Using the patient's physical and mental jumping cycle during the acquisition of all series of images, the time code can more effectively apply the mathematical methods of image processing and increase the accuracy of the analysis. In addition, the use of electrophysiological processes such as the definition of heartbeat and Accurate display of the ECG can enhance the image series obtained in different examinations and improve the statistical analysis efficiency of the acquired data in multiple examinations of the same or different patients. When most of the required heartbeat cycles are obtained After frame 94, workstation 6 determines the integral value of the same optical component 90 in frame 94 at a particular time of each heartbeat cycle. For example, workstation 6 may determine the same optical component within the frame of Fj, 19 1286927 F6, F11, etc. The integral value of 90, that is, the frame obtained from the P wave of several heartbeat cycles; determining the integral value of the same optical element 90 in the view such as F2, F7, that is, the frame obtained in the Q wave of most of the cycles And the majority of the heartbeat cycle wave, S wave and τ wave to obtain the same optical component 90 frame, etc. Workstation 6 will be in most of the heartbeat cycle at the same time The integrated value of the same optical element 90 in the obtained 94 is mapped to the above method and/or color/so the workstation 6 can cause the mapped gray and/or color to be on the pixel or group of pixels of the display 12 in a position comparable Corresponding optical elements or optical elements 90 within the total 92 are formed by gray shading and/or color gradient mapping images that form integral values of the same time in the majority of the secondary rings. For example, the workstation 6 maps gray shading and/or color to ρ 1, F6 is equal to the integral value of the same optical element 90 in the frame, and a gray shadow and/or chromaticity map image corresponding to the blood flow of the patient P is displayed on the display 12 in the P wave of most of the cycles. Or mapping the gray shadow and/or color to the integral value of the same optical element in the frame 94 associated with the majority of patient ρ heartbeat, the R wave, the S wave, or the T wave, and selectively combining the gray level and / or color gradient map is displayed on the display 12. The frame 94 at different times in the majority of the heartbeat cycle is advantageous for distinguishing patients of different levels and positions in all the photographic parts from the infrared ray and blood flow. infrared Like the blood flow of the patient P in the total number 92 of the camera 4, it can provide doctors with more valuable information. Using the R-frame gray-shadow of the F12 heartbeat, such as the patient's own heartbeat, shows the horizon jump. The position of the follow-up, F11 heartbeat ladder, another Q piece 90 projecting in the facet of the field of vision 20 1286927 I is ". It can be applied to mathematical methods to enhance the image and increase the total image system, the first resolution, improve the sensitivity of the system, the human body and other animals, and the sensitivity of the complex sympathetic physiological processes. Degree and selectivity. The present invention can also obtain diagnostic data by negative combination of digital data in two frames 94. For example, the digital data of the optical elements 90 taken from each position of the frame F4 can be subtracted from the corresponding digits of the optical elements taken from the same position in the frame F2. Workstation 6 may map the difference from optical component 90 at the same location to grayscale and/or tone scale to produce the grayscale and/or color gradient map image of the difference on display n. Referring to Fig. 10 and reviewing Figs. 2 to 7, the difficulty in infrared photography of the breast 丨丨4 is that it is difficult to obtain an infrared image of the lower side of the breast chamber 11 4 even if the patient p is reclined at a 0 angle. Similarly, when the infrared image camera 4 is located in front of the patient p as shown in Fig. 6, if the infrared image camera 4 is not moved, it is difficult to obtain an infrared image of the breast 1 1 side 125 of the vicinity of the patient's arm. In order for the infrared image camera 4 to be able to view the lower side of the breast 11 4 and the side of the breast 11 4 and the relevant area of the underarm, a sternum mirror 130 can be placed under the breast 114 of the patient P and the opposite of the patient P breast 114 Side mirrors 132 are placed on each side of each side 125. The sternum 1 1 0 and the side mirror 1 3 2 must be located in such a position that the lower side of the breast 11 4 1 4 and the side surface 125 of the breast 11 4 and the underarm area are included in the total field of view 92, and the breast can be lowered. Side 1 24 and breast 11 4 side 1 2 5 reflect infrared radiation to the direction of infrared image camera 4. The workstation 6 can utilize image processing techniques to construct a grayscale and/or color gradient map image of the breast ι from a direct radiation received from the breast 11 4 21 1286927 and reflected from the mirrors 130 and/or 132. In order to increase the ability of the infrared image camera 4 to measure the mirrors 130, 132, the patient p and the distance between them, the mirrors 130, 132 may place a different side or polygon from the human or other animal or tissue within the field of view of the infrared image camera 4. Emissivity material. This method is most commonly applied to the determination of skin sensitivity of exogenous materials such as cosmetics, and to methods for determining the rate of absorption of substances on the skin, such as topical drugs. This special application method can accurately and quantitatively determine the sensitive skin of human and other animals to chemicals and mixtures such as cosmetics, 'so avoiding the application of some controversial animal tests, such as '^Draiz The invention can also accurately and quantitatively determine the absorption rate or absorption of local drugs and drugs, and can avoid the application of controversial animal experiments. P lifetime red 130 placed in the sternoplasty marker Made of materials. Useful with breasts

明步,圓汉繼續參考第10圖,為記錄可長達病> 時間之不同時間的連貫性視框94以及提供來自I 132之準確重疊和統一的視框料並且適應偏軸方 外線影像攝影機4 t/ 1 C。 微4的各種變化,可將標記物1 5 8为 剖學上的固定位詈极& , 一 “η , 罝做為地標,例如肋凹痕1 6 0、名 接合162、鎖骨下高164、前侧腹線166和肩峰168c 158為由實質上不同於病人p之發射率的材料戶 此外,可從利用影像處理技術取得的資料鑑別心 解剖學地標特徵β姓 特別以人類乳方做為參考’可3 血管的分又做為不回 ^ 冋時間影像的記錄方法。 許多方法可從亩_ 接接收自病人Ρ及反射自鏡二 '22 1286927 3 0 1 3 2的紅外輕射構建前側、側面和/或下侧上方的影 像’或立體影像《例如,可將柵格133置於燈U4或其他 …、源和紅外線影像攝影機4之總視界9 2内的病人p之間。 取得視框134後在適當時間,使燈134透過柵格I”傳送 熱能至在總視野92内的病人p。柵格丨3 3可吸收來自燈 134的一部分熱能’因而在接收燈134之熱能的病人p身 上形成栅格狀的圖案。當直接觀察時,直接從燈134接收 之熱能在病人P身上形成栅格狀的紅外輻射圖案135,以 及當經由鏡子130、132觀察時,其可呈現出病人的輪廓。 同樣,當透過鏡子1 3 0、1 3 2以紅外線影像攝影機4觀觀 時,經由鏡子130、132從燈134接收的熱能在病人P身 上形成柵格狀的反射紅外輻射圖案1 3 5,,但直接觀察病 人P時則其呈現出病人的輪廓。利用影像重建技術,工 作站6可從直接可觀秦的紅外輻射圖案135、135,及經由 鏡子1 3 0、1 3 2構建前侧、側面和/或下側上方之乳房114 的灰階和/或色彩梯度映射影像,或立體灰階和/或色彩梯 度映射影像。 在另一具體例中,病人P穿著在特定位置有可直接 被紅外線影像攝影機4或經由鏡子1 3 〇、丨3 2觀察之標記 物158的尼龍胸罩(未顯示)。由於紅外輻射可穿透尼龍, 因此工作站6可利用胸罩上的標記物丨5 8位置從直接可觀 察的紅外輻射圖案及經由鏡子1 3 0、1 3 2構建前側、側面 和/或下側上方之乳房1 1 4的灰階和/或色彩梯度映射影 像,或立體灰階和/或色彩梯度映射影像。 1286927 參考第11圖及回顧第2圖,可利用置於Χ-Υ定位台 6 4上的一對偵測器2 8及一對紅外線透鏡3 2構成紅外線 影像攝影機4的立體影像。置於Χ-Υ定位台64上的一對 偵測器2 8及一對紅外線透鏡3 2可從相同時間之總視界92 内的共同光學元件90觀察和取得紅外輻射。可利用Χ-Υ 定位台64調節該對偵測器2 8及該對紅外線透鏡3 2以便 從總視界92内的各光學元件90觀察和取得紅外輻射。 在此具體例中,前置放大器76、影像類比數位轉換器78 及影像處理系統80配置於可在同一時間從相同光學元件 90接收紅外輻射時處理各偵測器28之輸出信號的位置。 工作站 6可結合取自總視界92内各位置之光學元件9〇 的兩種影像以產生病人Ρ組織對熱壓迫的立體灰階和/或 色彩梯度映射影像。 參考第12圖及繼續參考 通過前面板視埠44、光學濾過器46和紅外線透鏡32之 紅外輻射的偵測器28陣列148代替偵測器28。在此具體 例中,紅外線透鏡32被,’加大,,以接收聚焦於偵測器28陣 列148上的紅外輻射,其為一般習知及此處指的,,凝視陣 列” 148。操作中,控制器26在實質上相同的時間採取輸 二自凝視陣列148之各谓測器28的樣本,即視框樣本期 ,以形成示於第3圏中的…4。控制器26在預設區 間内從凝視㈣148取得多數個視框9 連同第4和5圖,工你 彳用上述方法 光學元件90 , 視框94内相同位置取得Mingbu, Yuan Han continued to refer to Figure 10, to record the coherence frame 94 at different times of time &time; and to provide accurate overlap and uniform frame material from I 132 and to accommodate off-axis external line images Camera 4 t / 1 C. For various changes of micro 4, the marker 1 58 can be a fixed-position bungee of the cross-section, and a "n, 罝 as a landmark, such as a rib dent 160, a joint 162, a lower clavicle 164 The front ventral line 166 and the shoulder 168c 158 are material materials that are substantially different from the emissivity of the patient p. In addition, the data obtained by using image processing technology can be used to identify cardiac anatomical landmark features. The β surname is specially made with human milk. For reference, the reference to '3 blood vessels is used as a method for recording time-lapse images. Many methods can be constructed from the infrared light of the patient's Ρ and the reflection from the mirror two '22 1286927 3 0 1 3 2 Image 'or stereo image on the front side, side and/or lower side. For example, the grid 133 can be placed between the lamp U4 or other ..., the source and the patient p in the total field of view 9 of the infrared image camera 4. Depending on the frame 134, at a suitable time, the lamp 134 transmits thermal energy through the grid I" to the patient p within the total field of view 92. The grid 丨 3 3 absorbs a portion of the thermal energy from the lamp 134' and thus forms a grid-like pattern on the patient's body p that receives the thermal energy of the lamp 134. When viewed directly, the thermal energy received directly from the lamp 134 forms a grid-like infrared radiation pattern 135 on the patient P, and when viewed through the mirrors 130, 132, it can present the contour of the patient. Similarly, when viewed by the infrared image camera 4 through the mirrors 130, 133, the thermal energy received from the lamps 134 via the mirrors 130, 132 forms a grid-like reflected infrared radiation pattern 135 on the patient P, However, when the patient P is directly observed, it presents the contour of the patient. Using image reconstruction techniques, workstation 6 can construct grayscales and/or breasts 114 on the front side, sides, and/or lower sides from mirrors 136, 135, and through mirrors 130, 133. Color gradient map images, or stereo grayscale and/or color gradient map images. In another embodiment, the patient P wears a nylon bra (not shown) at a particular location that can be directly viewed by the infrared camera 4 or via the mirrors 133, 323. Since the infrared radiation can penetrate the nylon, the workstation 6 can utilize the marker 丨58 position on the bra from the directly observable infrared radiation pattern and through the mirrors 130, 133 to construct the front side, the side and/or the lower side. A grayscale and/or color gradient map image of the breast 1 1 4, or a stereo grayscale and/or color gradient map image. 1286927 Referring to Fig. 11 and reviewing Fig. 2, a stereoscopic image of the infrared image camera 4 can be constructed by using a pair of detectors 28 and a pair of infrared lenses 3 2 placed on the Χ-Υ positioning table 64. A pair of detectors 28 and a pair of infrared lenses 32 placed on the Χ-Υ locating table 64 can observe and take infrared radiation from the common optical element 90 in the total field of view 92 at the same time. The pair of detectors 28 and the pair of infrared lenses 3 2 can be adjusted by the Χ-Υ locating stage 64 to view and take infrared radiation from the optical elements 90 in the general field of view 92. In this particular example, preamplifier 76, image analog converter 78, and image processing system 80 are configured to process the position of the output signals of detectors 28 when infrared radiation is received from the same optical component 90 at the same time. The workstation 6 can combine two images taken from the optical elements 9〇 at various locations within the general field of view 92 to produce a stereoscopic grayscale and/or color gradient map image of the patient's tissue against thermal compression. Referring to Fig. 12 and continued reference, the detector 28 is replaced by an array 148 of detectors 28 of infrared radiation from the front panel 44, the optical filter 46 and the infrared lens 32. In this particular example, the infrared lens 32 is 'increase' to receive infrared radiation focused on the array 148 of detectors 28, which is conventionally known and referred to herein, a gaze array" 148. The controller 26 takes samples of the respective detectors 28 of the second self-gaze array 148 at substantially the same time, i.e., the frame sample period, to form ... 4 shown in the third frame. The controller 26 is preset From the gaze (4) 148 in the interval, the majority of the frame 9 is obtained together with the 4th and 5th drawings, and the optical element 90 is obtained by the above method, and the same position is obtained in the frame 94.

9〇’該光學元件9。可在成像期間代表病人P 24 1286927 的熱反應® 參考第13圖及回顧第11和12圖,以示於第^圖的 一對偵測器28及一對紅外線透鏡32之相同方法利用一對 凝視陣列148及一對紅外線透鏡32產生病人p的立體影 像。在此具體例中,該對凝視陣列148從總視界92内之 各光學元件90接收紅外線資料’並且前置放大器76、影 像類比數位轉換器7 8及影像處理系統8 0配置於可處理接 收自各凝視陣列1 4 8之影像數據的位置。工作站6可结合 取自該對凝視陣列148之總視界92内各位置光學元件9〇 的兩種影像以產生病人P組織對熱壓迫的立體灰階和/或 色彩梯度映射影像。 在示於第1 1圖的具體例中,各偵測器2 8被設計成可 在不同波長偵測紅外轄射的構造。例如,一具 貞測器 28 設計成可偵測波長介於1和2微米之間的紅外輻射而另一 具偵測器28則設計成可偵測波長介於8和1 2微米之間的 紅外輻射。此外,被設計成可偵測特定波長之紅外輻射的 偵測器28可與另一以第1 1圖之方法設計成的偵測器28 配成對以產生在不同波長之紅外輻射的立體影像。各彳貞測 器2 8較佳為以大於光學元件9 0尺寸之可被偵測器2 8觀 察的距離和另一偵測器28相隔開。 取自成像期間之多數個視框94的病人P熱影像較佳 為儲存於工作站6之非揮發性記憶體如磁性或光學儲存器 的資料檔内以供日後的擷取及分析。病人的資料檔亦可被 傳送至可供日後擷取及分析之多件病人資料檔的資料分配 25 1286927 系統。資料分配系統較佳為具有多數台分佈於不同位 夏的 電腦’其可利用習知的技藝相互連接,如網際網路。 各相 互連接的電腦具有接收及儲存來自各個不同位置之多 仵病 人資料檔的非揮發性記憶體,其具有可讓使用者和電月遂 動的適合操作系統軟體及使用者圖形介面。病人資料精 含取自成像期間之視框94的紅外輻射資料以及其他病 資料,例如生活習慣、醫療記錄和其他危險因子, 通合 分析該病人是否有產生乳癌的危險。病人資料檔較佳 存於可被資料分配系統於電腦間傳送之相關資料庫 立位置。 資料分配系統的操作系統軟體較佳為支援可分析多數 件病人資料檔或多數件病人資料檔之次槽案的專家系統 (expert system)。明確而言,專家系統使用如數值統計分 析、鑑別分析或因素分析的習·知技術分析多數件病人^ 的資料檔或以多數件病人P資料檔比較個別病人次 貝料 檔在統計上的不一致性,例如伴隨乳房内腫瘤成熟過程的 血管增生。專家系統較佳為利用多數件病人資料權内的全 部其他病人p資料定期比較接收之病人p資料以鐘別其 統計上的相關意義,並找出其和發展成血箐决士、^ 4丄 &王成活動有關 之危險因素或臨床上已出現腫瘤疾病之間的關聯性。 此處所述之紅外線成像的方法及裝置可做為監控及客 觀定量如物理治療和脊椎矯正術之一般性疼痛管理治療模 式及如針灸和指壓之”非傳統,,疼痛管理治瘵握々μ 士丄 ^误式的方法。 此外,此方法及裝置可用於決定如指壓、針灸、#麻Α α 1尺按摩療法、 26 1286927 激痛點 應用如 在軟組 方法及 影像的 輻射的 可 決定對 自可比 否具有 在各對 差異。 例 較具有 然而, 分析各 部對稱 響。此 重要, 對側肌 位置可 量評估 醫師顯 本 注射、增生療法(pr〇l〇therapy)和焦點電磁波能量 紅外輻射之特定疼痛管理治療模式的適當施予點。 織傷害的評估中,可使用此處所述之紅外線影像的 裝置在不同時間藉各種裝置包括利用軟體產生組合 第一表面鏡子從全身皮膚或較小特定區域取得紅外 影像系列。 利用從偵測器2 8和/或凝視陣列1 4 8取得的的數據 側肌肉群、體表皮膚分佈和溫度分佈的對稱軸。來 較之對侧區域的紅外輻射可利用統計方法決定其是 統計學上的顯著性差異。若為肯定,則繼續判定其 侧群内的對稱區域之間是否具有統計學上的顯著性 如,發射自右臂皮膚表面的紅外線能量若和左臂比 統计學上顯著性差異時僅表示該病人?為右撇子。 根據二頭肌群和三頭肌群的内部對稱性進一步獨立 另J的手例如,接著在各可比較肌肉群内進行内 關係的統計分析和比較後可除去,,左右撇,,因素的影 斤方法在處理和寬平肌肉區域有關的疼痛時相當 例如斜方肌、闊背肌群及其他背部區域。 肉群體表皮膚分佈及溫度分佈之多轴對稱的準確 準綠記錄其後的影像時間系列以及治療有效性的定 。體表解剖學上地標之紅外輻射的映射和及時給予 示的資料有助於改善效率及治療的有效性。 發月已參照較佳之具體例進行說明。他人在閱讀並 27 1286927 瞭解上述說明之後可做出明顯的改良和變更。本發明可推 論為其全部該類的改良及變更均包含於專利申請範圍附件 或其相等物之内。 【圖式簡單說明】 第1圖為包括一台紅外線影像攝影機之紅外線影像系 統的方塊圖; 第2圖為包括-台簡單、可選擇位置紅外線摘測器之 第1圖紅外線影像攝影機的方塊圖; 第3圖為可被具有形成視框之光學元件陣列的第2圖 紅外線影像攝影機所觀察之代表全部視界視框的略圖,· 第圖為利用第2圖之紅外線影像攝影機所取得多數 個溫度對時間之視框的略圖; 第5圖為分別藉由個 ― 固相冋先學7〇件從示於第4圖多 數個視框所接收之红外▲ 、外輻射的溫度對時間圖; 第6圖為藉由暴露於冷/埶 紅外線影像位置之第之病人W迫從可取得 圖、,工外線影像攝影機的略圖; 第7圖為第6圖中之 ά 之病人取沿線VII-VII包括病人身 上取付紅外輻射以產生 河 内四個光a _ ,、於第5圖溫度對時間曲線之視界 門四個先學tl件位置的視圖; 第8a圖為包括代砉 之顏色記號的黑和白病人胸部色彩梯度映射影像顏色 之多數個視框上與光學元枝其中於總視界(tF0V)内各位置 射至溫度對時間曲線 結合的各溫度對時間曲線為映 ㊉間曲線積分相關的顏色; 第8b圖為示於第 間病人的胸部灰階映射影像,其 28 1286927 中具有小於結合紅色之溫度對時間曲線積分的積分之溫度 對時間曲線為根據其積分映射至灰影並且以紅色記號說 明; 第9圖為另一位具有鋸齒狀血管系統之病人胸部的灰 階映射影像; 第10圖為示於第7圖包括下方胸骨鏡及病人反側胸 部側鏡之病人的略圖; 第11圖為一對偵測器及一對紅外線透鏡以取得立體 影像的獨立略圖; 第12圖為第1圖中包括一個紅外線偵測器凝視陣列 之紅外線影像攝影機的方塊圖;以及 第 1 3圖為一對紅外線透鏡及一對凝視陣列以取得立 體影像的獨立略圖。 【元件代表符號簡單說明】 2 紅外線影像系統 4 紅外線影像攝影機 6 工作站 8 印表機 10 儲藏器 12 顯示器 14 指向裝置 16 鍵盤 18 電源調節器 29 1286927 22 24 26 28 30 32 44 46 62 6 4 66 76 78 80 82 84 86 90 92 94 100 102 104 106 資料接收器 資料傳輸器 控制器 偵測器 冷卻系統 紅外線透鏡 前面板視埠 光學濾過器 對焦系統 電動化X-Y定位台 定位控制器 前置放大器 影像類比數位轉換器 影像處理系統 溫度校正系統 控制類比數位轉換器 溫度感測器 光學元件(optels) 總視界 視框 溫度-時間曲線 溫度-時間曲線 溫度-時間曲線 溫度-時間曲線 30 1286927 110 長椅或椅子 112 背靠 113 垂直軸 114 乳房 115 靠墊 116 身體附近 118 房間 120 空調 122 冷/熱泵 124 乳房下側 125 乳房側面 12 6 病人手臂 130 胸骨鏡 132 侧鏡 133 柵格 134 燈 135 紅外輻射圖案 135’ 反射紅外輻射圖案 148 偵測器陣列(凝視陣列) 15 8 標記物 160 肋凹痕 162 劍突胸骨接合 164 鎖骨下窩 166 前側腋線 31 1286927 1689〇' the optical element 9. The thermal reaction of the patient P 24 1286927 can be represented during imaging. Referring to Figure 13 and reviewing Figures 11 and 12, a pair of detectors 28 and a pair of infrared lenses 32 are shown in the same manner. The gaze array 148 and a pair of infrared lenses 32 produce a stereoscopic image of the patient p. In this particular example, the pair of gaze arrays 148 receive infrared data from each of the optical elements 90 in the total field of view 92 and the preamplifier 76, the image analog to digital converter 78, and the image processing system 80 are configured to be processed and received from each Gaze at the location of the image data of array 148. The workstation 6 can incorporate two images taken from the positional optical elements 9〇 in the total field of view 92 of the pair of gaze arrays 148 to produce a stereoscopic grayscale and/or color gradient map image of the patient P tissue against thermal compression. In the specific example shown in Fig. 1, each detector 28 is designed to detect infrared radiation at different wavelengths. For example, one detector 28 is designed to detect infrared radiation having a wavelength between 1 and 2 microns and the other detector 28 is designed to detect wavelengths between 8 and 12 microns. Infrared radiation. In addition, the detector 28, which is designed to detect infrared radiation of a particular wavelength, can be paired with another detector 28 designed in the manner of FIG. 1 to produce a stereoscopic image of infrared radiation at different wavelengths. . Preferably, each of the detectors 28 is spaced apart from the other detector 28 by a distance greater than the size of the optical element 90 that is viewable by the detector 28. The patient P thermal image taken from a plurality of frames 94 during imaging is preferably stored in a data file of a non-volatile memory such as a magnetic or optical reservoir of the workstation 6 for later retrieval and analysis. The patient's data file can also be transferred to a data distribution 25 1286927 system for multiple patient data files that can be retrieved and analyzed in the future. The data distribution system is preferably a computer having a plurality of stations distributed in different locations, which can be interconnected using conventional techniques, such as the Internet. Each of the interconnected computers has a non-volatile memory that receives and stores a plurality of patient data files from various locations, and has a suitable operating system software and user graphical interface that allows the user and the computer to move. The patient data contains infrared radiation data taken from frame 94 during imaging and other disease data, such as lifestyle habits, medical records, and other risk factors, to analyze whether the patient is at risk of developing breast cancer. The patient data file is preferably stored in a relevant database location that can be transferred between computers by the data distribution system. The operating system software of the data distribution system preferably supports an expert system that can analyze a plurality of patient data files or a plurality of patient data files. Specifically, the expert system uses a statistical analysis such as numerical statistical analysis, differential analysis, or factor analysis to analyze the data files of most patients or compare the statistical inconsistencies of individual patient sub-files with the majority of patient P data files. Sex, such as vascular proliferation associated with tumor maturation in the breast. The expert system preferably uses all other patient data in the majority of patient data to periodically compare the received patient data to distinguish its statistical significance, and find out that it develops into a bloody squad, ^ 4丄& the association between risk factors associated with Wang Cheng activities or clinically existing tumor diseases. The infrared imaging method and apparatus described herein can be used as a general pain management treatment mode for monitoring and objective quantification such as physical therapy and chiropractic, and non-traditional such as acupuncture and acupressure, pain management treatment In addition, this method and device can be used to determine such as acupressure, acupuncture, #麻Α α 1 foot massage therapy, 26 1286927 pain point application as determined in soft group method and image radiation For self-comparable, there are differences in each pair. However, the symmetry of each part is analyzed. This important, the position of the contralateral muscle can be evaluated quantitatively by the physician, the pr〇l〇therapy and the focus electromagnetic energy infrared radiation. Appropriate application points for specific pain management treatment modes. In the evaluation of woven injuries, devices that can use the infrared image described herein can be used at different times by various devices including the use of software to create a combination of the first surface mirror from the whole body skin or smaller A series of infrared images is acquired in a specific area. Using the data side muscle group obtained from the detector 28 and/or the gaze array 148, The symmetry axis of the surface skin distribution and temperature distribution. The infrared radiation of the contralateral area can be determined statistically by statistical methods. If it is positive, the symmetry area in the side group is determined. Whether it is statistically significant, for example, if the infrared energy emitted from the surface of the right arm skin is statistically significantly different from the left arm, it only indicates that the patient is a right scorpion. According to the biceps muscle group and three The internal symmetry of the cephalic muscle group is further independent of the other J's hand, for example, and then the statistical analysis and comparison of the internal relationship within each comparable muscle group can be removed, and the left and right 撇, the factor of the method is processed and wide The pain associated with the muscle area is equivalent to, for example, the trapezius muscle, the broad back muscle group, and other back regions. The skin distribution and temperature distribution of the meat group are more accurate and quasi-green, and the subsequent image time series and treatment effectiveness are determined. The mapping of infrared radiation on the surface of the anatomical landmarks and the timely presentation of the data help to improve the efficiency and effectiveness of the treatment. It is to be understood that the modifications and variations can be made by those of ordinary skill in the art. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an infrared image system including an infrared image camera; FIG. 2 is a block diagram of a first image infrared image camera including a simple, selectable position infrared detector; Figure 3 is a schematic representation of a representative view of all the view frames that can be viewed by the infrared image camera of Fig. 2, which has an array of optical elements forming a frame, and the figure shows a plurality of temperature pairs obtained by the infrared image camera of Fig. 2. A sketch of the frame of time; Figure 5 is a temperature versus time diagram of the infrared ray and external radiation received from the majority of the frames shown in Figure 4 by a solid phase first; The picture shows the patient who is exposed to the cold/埶 infrared image position, and the image of the external image camera is obtained. Figure 7 is the picture in Figure 6. Along the line VII-VII, the patient receives infrared radiation to generate four lights a _ in Hanoi, and the view of the temperature-time curve of Fig. 5 is a view of four positions of tl pieces; Figure 8a includes the generation of tl The color and color of the black and white patient's chest color gradient map image color on the majority of the frame and the optical element branch in the total horizon (tF0V) at each position of the temperature versus time curve combined with the temperature curve The color associated with the curve integral is integrated; the image of Fig. 8b is the chest grayscale map image shown in the first patient, and the temperature versus time curve of the integral of 28 1286927 having a temperature less than the temperature of the combined red color versus the time curve is mapped according to its integral to Gray shades are indicated by red marks; Figure 9 is a gray-scale map image of another patient's chest with a serrated vascular system; Figure 10 is a view of Figure 7 including the lower sternum mirror and the patient's contralateral chest side mirror Patient's thumbnail; Figure 11 is a pair of detectors and a pair of infrared lenses to obtain a stereo image of the stereo image; Figure 12 shows an infrared detector in Figure 1 A block diagram of the infrared image camera of the gaze array; and Fig. 13 is a pair of infrared lenses and a pair of gaze arrays to obtain a separate thumbnail of the stereo image. [Simplified description of component symbol] 2 Infrared image system 4 Infrared image camera 6 Workstation 8 Printer 10 Storage 12 Display 14 Pointing device 16 Keyboard 18 Power conditioner 29 1286927 22 24 26 28 30 32 44 46 62 6 4 66 76 78 80 82 84 86 90 92 94 100 102 104 106 Data Receiver Data Transmitter Controller Detector Cooling System Infrared Lens Front Panel 埠 Optical Filter Focus System Motorized XY Positioning Positioning Controller Preamplifier Image Analog Digital Converter image processing system temperature correction system control analog digital converter temperature sensor optics (optels) total view frame temperature - time curve temperature - time curve temperature - time curve temperature - time curve 30 1286927 110 bench or chair 112 Back 113 113 Vertical axis 114 Breast 115 Cushion 116 Near body 118 Room 120 Air conditioning 122 Cold/heat pump 124 Lower breast side 125 Breast side 12 6 Patient arm 130 Thoracic mirror 132 Side mirror 133 Grid 134 Light 135 Infrared radiation pattern 135' Reflective infrared Radiation pattern 148 detector array (gaze array 158 markers 160 dimples ribs 162 engage socket 166 sternal xiphoid axillary line at the front side 164 311286927168 subclavian

Claims (1)

12869271286927 第和// 號專利案於-年丨0月{^正 拾、申請專利範圍: 1 . 一種產生一病人之紅外線影像的方法,此方法包括下列 步驟: (a) 提供一種紅外線影像攝影機,其係可從該紅外線 影像攝影機之可視視界内的光學元件(〇 p t e 1 s)陣列 接收紅外輻射; (b) 從位於該視界内的病人處取得多數個紅外輻射視 框,每一視框係從相應視框樣本期間取得且每一 視框係相應於一紅外輻射,該紅外輻射係在其視 框樣本期間從光學元件陣列中取得; (c) 決定自陣列接收之紅外輻射的多個積分,每一積 分相當於從至少兩個視框内之相同光學元件所接 收到的紅外輻射; (d) 每一積分可映射至一種顏色或灰影;以及 (e) 每一積分的顏色或灰影可被映射至相當於視界内 對應光學元件之影像内的位置。 2 -如申請專利範圍第1項之方法,其中: 多數個視框係在一成像期間取得;且 各視框的取得係為固定的或可變的。 3 ·如申請專利範圍第1項之方法,其更包括調節自每一光 學元件取得之紅外輻射的絕對溫度的步驟。 33 1286927 4.如申請專利範圍第1項之方法,其中步驟(b)包括在視 框樣本期間從視界内每一光學元件連續取得紅外輻射 的步驟。 5·如申請專利範圍第1項之方法,其中步驟(b)包括幾乎 同時從視界内全部的光學元件取得紅外輻射。 6. 如申請專利範圍第2項之方法,其中步驟(b)包括下列 步驟: 將病人暴露於室溫下; 啟動視框之取付, 將病人暴露於和室溫不同的流動空調之下;以及 在成像期間之後結束該視框的取得。 7. 如申請專利範圍第1項之方法,其更包括在病人身上 和視界内放置至少一個具有和病人不同發射率標記物 的步驟。 8. 如申請專利範圍第7項之方法,其中該至少一個標記 物係被放置在該病人的一固定解剖位置上。 9. 如申請專利範圍第1項之方法,其更包括下列的步驟: 在靠近病人的視界内放置至少一面鏡子;以及 調整該至少一面鏡子的方向使其能從視界範圍内之 34 1286927 病人的一部分處反射紅外輻射,該部分係為病人之另 一部份所隱藏而不為紅外線影像攝影機所看到。 10.如申請專利範圍第9項之方法,其更包括下列的步驟: 放置一柵格於紅外線影像攝影機和病人之間; 透過該柵格傳送熱能至病人;以及 直接從病人及該至少一面鏡子處取得一視框之紅外 輻射。 11. 如申請專利範圍第9項之方法,其更包括由該直接從 病人及從至少一面鏡子處取得之紅外輻射建構病人之 一三度空間影像的步驟。 12. 如申請專利範圍第1項之方法,其具有下列一或多種 的應用· (i) 偵測一病人體内的腫瘤疾病過程; (ii) 偵測一病人的血管增生現象;以及 (iii) 鑑別出一患者身上可施以疼痛管理治療模式的治療 部位。 13. —種紅外線影像設備,其包括: 可偵測紅外輻射的裝置,其係可偵測來自該影像設 備中可形成視界之光學元件陣列的每一光學元件 (optel)的紅外輻射; 35 1286927 一種控制器,其係可控制偵測裝置,該偵測 偵測在多個相同樣本期間自陣列中選擇性取得 紅外輻射的視框,其中每一視框對應於一樣本 全部或部分光學元件陣列所取得的紅外輻射;i 一種決定裝置,其係可決定由該陣列之偵測 所接收的多個紅外輻射之積分,其中所決定的 分係從至少兩個視框内之相同光學元件處取得 輻射的變化,其中該決定裝置係可: 將每一積分映射至一種顏色或灰影;以 將每一積分的顏色或灰影映射至相當於 對應的光學元件之影像内的位置。 14. 如申請專利範圍第1 3項之設備,其中每一光學 應於可藉偵測裝置處理之視界内的最小元件。 15. 如申請專利範圍第13項之設備,其更包括轉變 其係可將從每一光學元件取得之紅外輻射轉變 應資料,其中該決定裝置可從對應於自每一視 一光學元件所取得的紅外輻射資料來決定在至 框中相同光學元件的積分。 16. 如申請專利範圍第1 3項之設備,其中: 多個視框係在一成像期間中取得;以及 各視框的取得係為固定的或可變的。 裝置可 之多個 期間從 《及 裝置處 每一積 之紅外 視界内 元件對 裝置, 成相對 框之每 少兩視 36Patent No. / / / Patent No. in October, the patent application scope: 1. A method for generating an infrared image of a patient, the method comprising the following steps: (a) providing an infrared image camera, Receiving infrared radiation from an array of optical elements (〇pte 1 s) in the visual field of the infrared image camera; (b) obtaining a plurality of infrared radiation frames from a patient located within the field of view, each frame being Obtained during the corresponding frame sample and each frame corresponds to an infrared radiation that is taken from the array of optical elements during its view frame sample; (c) determining a plurality of integrals of the infrared radiation received from the array, Each integral corresponds to infrared radiation received from the same optical element in at least two frames; (d) each integral can be mapped to a color or gray shadow; and (e) each integrated color or gray shadow It can be mapped to a position within the image corresponding to the corresponding optical element in the field of view. 2 - The method of claim 1, wherein: the plurality of frames are taken during an imaging period; and the acquisition of each frame is fixed or variable. 3. The method of claim 1, further comprising the step of adjusting the absolute temperature of the infrared radiation obtained from each of the optical components. The method of claim 1, wherein the step (b) comprises the step of continuously obtaining infrared radiation from each of the optical elements in the field of view during the frame sample. 5. The method of claim 1, wherein step (b) comprises obtaining infrared radiation from all of the optical elements in the field of view at substantially the same time. 6. The method of claim 2, wherein the step (b) comprises the steps of: exposing the patient to room temperature; initiating a view frame, exposing the patient to a flow air conditioner different from room temperature; The acquisition of the frame is ended after the imaging period. 7. The method of claim 1, further comprising the step of placing at least one emissivity marker different from the patient on the patient and in the field of view. 8. The method of claim 7, wherein the at least one marker is placed at a fixed anatomical location of the patient. 9. The method of claim 1, further comprising the steps of: placing at least one mirror in a field of view close to the patient; and adjusting the orientation of the at least one mirror so that it can be from the field of view of 34 1286927 A portion of the infrared radiation is reflected, which is hidden by another part of the patient and is not visible to the infrared camera. 10. The method of claim 9, further comprising the steps of: placing a grid between the infrared camera and the patient; transmitting thermal energy through the grid to the patient; and directly from the patient and the at least one mirror Obtain infrared radiation from a frame. 11. The method of claim 9, further comprising the step of constructing a third spatial image of the patient from the infrared radiation obtained directly from the patient and from at least one of the mirrors. 12. The method of claim 1, which has one or more of the following applications: (i) detecting a tumor disease process in a patient; (ii) detecting a patient's vascular proliferation; and (iii) Identify a treatment site in a patient that can be administered a pain management treatment mode. 13. An infrared imaging device comprising: means for detecting infrared radiation, wherein infrared radiation from each optical element (optel) of an array of optical elements forming a field of view in the imaging device is detected; 35 1286927 A controller that controls a detection device that detects a frame of view that selectively acquires infrared radiation from an array during a plurality of identical samples, wherein each view frame corresponds to an array of all or part of the optical elements Infrared radiation obtained; i a determining device that determines an integral of a plurality of infrared radiation received by the detection of the array, wherein the determined component is obtained from the same optical component in at least two frames A change in radiation, wherein the determining means can: map each integral to a color or shade; to map each integrated color or shade to a position within the image corresponding to the corresponding optical component. 14. A device as claimed in claim 13 wherein each optics is the smallest component within the field of view that can be processed by the detection device. 15. The apparatus of claim 13, further comprising converting the infrared radiation conversion data obtained from each optical component, wherein the determining device is obtainable from the optical component corresponding to each optical component The infrared radiation data is used to determine the integral of the same optical component in the frame. 16. The device of claim 13 wherein: the plurality of frames are taken during an imaging period; and the acquisition of each frame is fixed or variable. The device can be used for a plurality of periods from the "infrared view of the device to the device, and each of the two frames of the relative frame." 號專f[J案%年?月修正 1286927 1 7 ·如申請專利範圍第1 3項之設備,其中: 每一該多數個視框的取得係在一成像期間的對數期 間内發生;以及 該取得多發生在該成像期間末期。 1 8.如申請專利範圍第1 3項之設備,其中至少兩個視框被 至少一個視框隔開。No. f [J case%? Monthly Amendment 1286927 1 7 • Apparatus as claimed in claim 13 wherein: each of the plurality of frames is acquired during a logarithmic period of imaging; and the acquisition occurs more frequently at the end of the imaging period. 1 8. The device of claim 13 wherein at least two frames are separated by at least one frame. 1 9.如申請專利範圍第1 3項之設備,其中: 該視框的取得係和視界内接收之病人的心跳循環同 步;以及 在兩不同心跳循環的相同部位中取得至少兩個視 框01 9. The device of claim 13 wherein: the acquisition of the frame is synchronized with a heartbeat cycle of a patient received within the field of view; and at least two frames are obtained in the same portion of the two different heartbeat cycles. 2 0.如申請專利範圍第13項之設備,其更包括至少一面鏡 子,該鏡子係設置而鄰近於該視界内所接收之一病人, 其中z 在視界内接收至少一面鏡子;以及 調整該至少一面鏡子的方向使其能從視界範圍内之 病人的一部分處反射紅外輻射,該部分係為病人之另一 部份所隱藏而不為紅外線影像攝影機所看到。 2 1 .如申請專利範圍第1 4項之設備,其中該設備對病人有 下列一種或多種的應用: 37 1286927 (i) 偵測一腫瘤疾病的過程; (ii) 偵測一血管增生現象;以及 (iii) 鑑別出一患者身上可施以疼痛管理治療模式的治 療部位。 38 1286927 _二指定代表圖: (一) 、本案指定代表圖為:第2圖。 (二) 、本代表圖之元件代表符號簡單說明: 4 紅外線影像攝影機 6 工作站 22 資料接收器 24 資料傳輸器 26 控制器 28 偵測器 30 冷卻系統 32 紅外線透鏡 44 前面板視埠 46 光學濾過器 62 對焦系統 64 電動化X-Y定位台 66 定位控制器 76 前置放大器 78 影像類比數位轉換器 80 影像處理系統 82 温度校正系統 84 控制類比數位轉換器 86 溫度感測器 捌、本案若有化學式時,請揭示最能顯示發明 1徵的化學式::The device of claim 13, further comprising at least one mirror disposed adjacent to one of the patients received within the field of view, wherein z receives at least one mirror within the field of view; and adjusting the at least The orientation of a mirror allows it to reflect infrared radiation from a portion of the patient within the field of view, which is hidden by another part of the patient and is not visible to the infrared camera. 2 1. The device of claim 14 of the patent application, wherein the device has one or more of the following applications for the patient: 37 1286927 (i) the process of detecting a tumor disease; (ii) detecting a phenomenon of vascular proliferation; And (iii) identifying a treatment site in a patient that can be administered a pain management treatment mode. 38 1286927 _Two designated representative map: (1) The designated representative figure in this case is: Figure 2. (B), the representative symbol of the representative figure is a simple description: 4 infrared image camera 6 workstation 22 data receiver 24 data transmitter 26 controller 28 detector 30 cooling system 32 infrared lens 44 front panel view 46 optical filter 62 Focusing System 64 Motorized XY Positioning Table 66 Positioning Controller 76 Preamplifier 78 Image Analog Digital Converter 80 Image Processing System 82 Temperature Correction System 84 Controls Analog Digital Converter 86 Temperature Sensor 捌 In this case, if there is a chemical formula, Please reveal the chemical formula that best shows the invention:
TW093112800A 2003-05-06 2004-05-06 Method and apparatus for producing images of infrared radiation of a patient TWI286927B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US46832103P 2003-05-06 2003-05-06

Publications (2)

Publication Number Publication Date
TW200505389A TW200505389A (en) 2005-02-16
TWI286927B true TWI286927B (en) 2007-09-21

Family

ID=35529844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093112800A TWI286927B (en) 2003-05-06 2004-05-06 Method and apparatus for producing images of infrared radiation of a patient

Country Status (8)

Country Link
EP (1) EP1620003B1 (en)
JP (1) JP4495154B2 (en)
CN (1) CN100553554C (en)
CA (1) CA2524807C (en)
HK (1) HK1095075A1 (en)
MX (1) MXPA05011994A (en)
TW (1) TWI286927B (en)
WO (1) WO2004098392A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689895B (en) * 2018-10-19 2020-04-01 國立臺灣大學 System and method for monitoring color change of skin under unstable light source
TWI723877B (en) * 2020-05-13 2021-04-01 國家中山科學研究院 Plug-in coaxial thermal radiation image measurement system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670037B2 (en) 2007-12-31 2014-03-11 Real Imaging Ltd. System and method for registration of imaging data
CA2710941C (en) * 2007-12-31 2017-01-03 Real Imaging Ltd. Method apparatus and system for analyzing images
US10299686B2 (en) 2008-03-28 2019-05-28 Real Imaging Ltd. Method apparatus and system for analyzing images
US9007466B2 (en) * 2011-04-27 2015-04-14 General Electric Company System and method for thermographic inspection
US10092358B2 (en) 2013-03-15 2018-10-09 Hologic, Inc. Tomosynthesis-guided biopsy apparatus and method
WO2014190928A1 (en) * 2013-05-29 2014-12-04 Wang Hao Thermal image analysis device and thermal image analysis method
KR101550408B1 (en) 2014-05-09 2015-09-08 (주)메디텍 Breast Diagnostic Apparatus
US10068330B2 (en) * 2016-02-26 2018-09-04 Niramai Health Analytix Pvt Ltd Automatic segmentation of breast tissue in a thermographic image
US9865052B2 (en) * 2016-03-18 2018-01-09 Niramai Health Analytix Pvt Ltd Contour-based determination of malignant tissue in a thermal image
CN106108854B (en) * 2016-07-18 2019-09-17 深圳市衣信互联网科技有限公司 The infrared optical heat radiation detection system of underwear and the method for detecting radiation field status information
JP7441828B2 (en) * 2018-09-24 2024-03-01 ホロジック, インコーポレイテッド Breast mapping and abnormal localization
CN115005782A (en) * 2022-06-06 2022-09-06 杭州新瀚光电科技有限公司 Human health assessment method, system, terminal device and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252782A (en) * 1985-05-01 1986-11-10 Fujitsu Ltd Infrared ray image pickup system
US5699798A (en) * 1990-08-10 1997-12-23 University Of Washington Method for optically imaging solid tumor tissue
US6671540B1 (en) * 1990-08-10 2003-12-30 Daryl W. Hochman Methods and systems for detecting abnormal tissue using spectroscopic techniques
IL104423A (en) * 1993-01-18 1998-09-24 Opgal Optronic Ind Ltd Infra-red vascular angiography system
US5803082A (en) * 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
JPH09281065A (en) * 1996-04-18 1997-10-31 Nitto Chem Ind Co Ltd Detection of defect of structure
JPH09189610A (en) * 1996-01-11 1997-07-22 Nippon Avionics Co Ltd Two-dimensional time delay integrating type thermal image device
JPH09247847A (en) * 1996-03-11 1997-09-19 Toshiba Fa Syst Eng Kk Temperature monitoring equipment
US6023637A (en) * 1997-03-31 2000-02-08 Liu; Zhong Qi Method and apparatus for thermal radiation imaging
US6276798B1 (en) * 1998-09-29 2001-08-21 Applied Spectral Imaging, Ltd. Spectral bio-imaging of the eye
WO2000078211A1 (en) * 1999-06-21 2000-12-28 Yannacone Victor John Jr Method and apparatus for high resolution dynamic digital infrared imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689895B (en) * 2018-10-19 2020-04-01 國立臺灣大學 System and method for monitoring color change of skin under unstable light source
TWI723877B (en) * 2020-05-13 2021-04-01 國家中山科學研究院 Plug-in coaxial thermal radiation image measurement system

Also Published As

Publication number Publication date
CN1802121A (en) 2006-07-12
WO2004098392A2 (en) 2004-11-18
WO2004098392A3 (en) 2005-03-24
JP4495154B2 (en) 2010-06-30
CA2524807A1 (en) 2004-11-18
JP2007525244A (en) 2007-09-06
CA2524807C (en) 2010-01-26
HK1095075A1 (en) 2007-04-27
MXPA05011994A (en) 2006-02-02
CN100553554C (en) 2009-10-28
EP1620003A2 (en) 2006-02-01
EP1620003B1 (en) 2015-04-15
TW200505389A (en) 2005-02-16
EP1620003A4 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
TWI286927B (en) Method and apparatus for producing images of infrared radiation of a patient
US11000254B2 (en) Methods and systems for patient scan setup
EP1123138B1 (en) Method and system for physiological gating of radiation therapy
US20120078088A1 (en) Medical image projection and tracking system
US20090048523A1 (en) Topographic Optical Infrared Tomography System for Biophysical Imaging With Infrared Diagnostic Exploratory Algorithm Sequencing (IDEAS) Scripting Language
US20120078113A1 (en) Convergent parameter instrument
US20150182121A1 (en) Low-cost screening system for breast cancer detection
CN104739510B (en) New method for establishing corresponding relation between sequence images and respiratory signals
CN106170249A (en) Set X-ray radiation unit
Huang et al. Noncontact 3-D speckle contrast diffuse correlation tomography of tissue blood flow distribution
JP4649965B2 (en) Health degree determination device and program
CN109464153A (en) Radiation image-forming system and its control method
CN105662354B (en) A kind of wide viewing angle optical molecular tomographic navigation system and method
JP4652643B2 (en) Method and apparatus for high resolution dynamic digital infrared imaging
US7408156B2 (en) System and method for identifying and classifying dynamic thermodynamic processes in mammals and discriminating between and among such processes
US20230172577A1 (en) Methods and systems for controlling medical devices
Anbar Computerized Thermography: The Emergence of a New Diagnostic Imaging Modality
KR20080071022A (en) Apparatus for inflammation diagnosis and method for inflammation diagnosis by the same
KR102348430B1 (en) Apparatus for training eye movement and method for operating the same
US20180192937A1 (en) Apparatus and method for detection, quantification and classification of epidermal lesions
CN212489861U (en) Multiband light imaging mammary gland detector
KR102208577B1 (en) Medical Image Processing Apparatus and Medical Image Processing Method for Surgical Navigator
FI126891B (en) Near-infrared centralized photodynamic spectral analysis method for tumor research, verification and localization
Siewert et al. A new method of image processing for high-contrast medical infrared imaging of the horse
KR20170055843A (en) Diagnosis method and device of breast disease

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees