TWI286449B - A display on the basis of organic light-emitting diodes and a method for its manufacture - Google Patents

A display on the basis of organic light-emitting diodes and a method for its manufacture Download PDF

Info

Publication number
TWI286449B
TWI286449B TW94128831A TW94128831A TWI286449B TW I286449 B TWI286449 B TW I286449B TW 94128831 A TW94128831 A TW 94128831A TW 94128831 A TW94128831 A TW 94128831A TW I286449 B TWI286449 B TW I286449B
Authority
TW
Taiwan
Prior art keywords
thickness
layer
structural element
nanometers
insulating layer
Prior art date
Application number
TW94128831A
Other languages
Chinese (zh)
Other versions
TW200608828A (en
Inventor
Michael Hofmann
Jan Birnstock
Martin Vehse
Original Assignee
Novaled Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Gmbh filed Critical Novaled Gmbh
Publication of TW200608828A publication Critical patent/TW200608828A/zh
Application granted granted Critical
Publication of TWI286449B publication Critical patent/TWI286449B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

In order to improve the fill factor as well as the efficiency for a structural element on the basis of an organic light-emitting diode facility, a display is proposed comprising a substrate, a first electrode (130) nearest to the substrate, a second electrode (160) away from the substrate and at least one light-emitting organic layer (150) arranged between both electrodes. The light emitted in the active zone transmits through one of the two electrodes whereby the first electrode is pixel-structured and an isolation layer (150) is arranged between neighbouring pixels. The display according to the invention is characterized in that the isolation layer (150) is optically coupled with the light-emitting layer (150), and has optically effective light-scattering and fill factor increasing heterogeneities (180, 190), whereby the isolation layer is micro-structured to match the pixel structure of the first electrode and is processed onto this. In addition, the invention concerns also a method for the manufacture of such a display.

Description

1286449 九、發明說明:1286449 IX. Description of invention:

礎的顯 示器有The basic display has

電壓、高能量效率,以及為了製造能夠隨機顏色發光的場 射結構元件’有機發光二極體也適用於照明元件的應用。 有機發光一極體是基於電子冷光的原則,其電洞對, 也就是激子(exzitone)在光傳輪之下再結合。為了此目的, 該有機發光二極體是建構為一種三明治結構的型式,其至 【先前技術】 組,小型、節省空間、光亮峨^ 鋏卜、顯不及對身料與資訊適當視覺化的要求,已 ^頌使㈣顯不兀件,則採用陰極鋼管 ^晶顯示器⑽)的原則。除此之外,也存在像: 電裝顯示、直允恶出々+曰Α 子在像疋 術則曰非〜I 讀顯示的平板顯示器技術,其技 “疋非以㈣亚且昂貴。以有機發光二極體(oled 為基礎的騎器,在近年來在技術建立方面的競爭已經浮 ,,而^競爭必須被認真面對V以有機發光二極體為基礎 2不器,其顯示設備的基本優點,是提供明亮的色彩、 非常高的對比、在低溫時的快速切換時間、大視角範圍以 及大填充雜。錢發光二極體本身由發献件所組成。 為了此理由,並且與液晶顯示器相比之下,其不需要背光。 舉例而言,其可以製造為薄片、彈性型式,並以低成本製 造’也可以利用一相對低的能量輸入操作。由於其低操作 6 1286449 •,少在兩電極之間,配置-做為主動材料的有機薄膜,而正 向與負向電荷載流則注入至該有機材料之中,至再結合區 域電洞及/41子的電荷傳輸,便發生在該電魏流於. 下產生單-激子再結合财機層中。該激子的後續輕ς再 結合,職生觀發光二極體放電的有料見光發射。因 此,光可關該結構70件,輕少該之—必須是可穿 透的。通常,此穿透電極是由一種傳導氧化物所組成,其 癱 被設計為-種穿透傳導氧化物(TC〇)。製造一有機發光二 極體的開始點則是-基板,在該基板上沈積該有機發光二 極體的各層。如果最罪近該基板的電極是可穿透的,該結 構元件便被稱為,,底部發光有機發光二極體"。如果是另二 ,極為可穿透的,該結構元件便被稱為”頂部發光有機發光 f體”。在該基板之間的電極與該至少一有機層,與做為 遠離該基·穿透型式電極嘴,這輯況下都進行相同 的應用。 • ^ ^ 了以有械發光一極體為基礎的顯示器所使用。該電路板導 上莊此外’在該基板之上沈積一鈍態層與一絕緣層。做為 払準應用’在此又施加該有機層、該上方電極,最後並 壓縮該顯示器。 、像是顯示基板品質的因子則稱為填充係數。該填充係 數代表4顯示③全體表面照明部分的比例。較大的像素之 間過渡空…觸應著較小的填充絲。由於影縣印隨 7 1286449 • •轉充錄所改良,其目標便是最高可能_充係數。在 頂部發光轉顯示器的情況中,在考量後壁背板時,純粹 . 由理論可達到至少80%的填充係數。在實際情況中,現有 … 有機發光二極體矩陣顯示㈣具有最大為5G%的填充係 數、。此限社要是由該減層的鮮所造成。因為以不帶 有濾、波或_層的全細示^,其必須處理彼此鄰近的 紅、綠與藍色的次像素。在此為此目的所使用的陰影遮罩, • 以及與其相關的錯縣忍度,在可能基於製造背板的精確 性上,不允許目前所能獲得的填充係數。 如同從該填充係數定義所衍生,此改良不但使光從該 顯示器電子光學主動區域離開該結構元件,也從該非主動 區域離開。在此特別的情況中,其必須考慮該有機發光二 極體的不同層,通常具有本身大於1的不同折射因子。對 此程度來說,不是所有產生的光子都可以從該顧示器離 開,並由一觀察者所感知,因為在該結構元件之中及/或該 拳 結構元件與空氣之間,總體反射可以在不同的受限表面處 產生。在兩個這樣的受限表面之間所後向與前向反射的光 最後通常被吸收。該描述的總體反射,其與該有機發光二 ,極體的設計結構有關,可以在至少一有機層中造成一種光 - 學基板模式、有機模式、平均模式的狀況,並造成外部模 式在此領域中’為了该内部光學权式的輸出輕合目的, 所使用的方法是已知的。此形成一種有效的改良程度,並 同時增加該顯示器的填充係數。 做為一範例,在由I· Schnitzer發表於Appl· Phys· Lett 8 1286449Voltage, high energy efficiency, and in order to fabricate field-emitting structural elements capable of emitting light in random colors, organic light-emitting diodes are also suitable for use in lighting elements. The organic light-emitting body is based on the principle of electron luminescence, and its hole pair, that is, the exzitone, is recombined under the light transmission wheel. For this purpose, the organic light-emitting diode is constructed as a sandwich structure, which is a group of [prior art], small, space-saving, bright, and ambiguous, and less suitable for visualizing the body and information. The principle of using a cathode steel tube (10) is adopted. In addition, there are also: flat panel display technology, such as: Denso display, direct and stunned 曰Α 曰Α 在 在 疋 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 平板 平板 平板Light-emitting diodes (oled-based riders, in recent years, competition in technology establishment has floated, and ^ competition must be seriously faced with V based on organic light-emitting diodes, its display device The basic advantage is to provide bright colors, very high contrast, fast switching time at low temperatures, large viewing angle range and large filling. The light-emitting diode itself consists of a hair piece. For this reason, and with liquid crystal In contrast, displays do not require a backlight. For example, it can be fabricated in sheets, elastic, and manufactured at low cost. It can also operate with a relatively low energy input. Due to its low operation 6 1286449 • Between the two electrodes, the organic film is configured as an active material, and the forward and negative charge currents are injected into the organic material to recombine the charge of the region hole and /41, Born in the electric Wei flow, the single-exciton is combined with the financial layer. The subsequent excitability of the excitons is combined, and the emission of the LEDs of the occupant is seen in the light emission. Therefore, the light can be off. The structure is 70 pieces, which is lighter--must be transparent. Usually, the penetrating electrode is composed of a conductive oxide, and the crucible is designed as a penetrating conductive oxide (TC〇). The starting point of an organic light-emitting diode is a substrate on which the layers of the organic light-emitting diode are deposited. If the electrode closest to the substrate is transparent, the structural element is called , the bottom-emitting organic light-emitting diode " if it is the other two, extremely permeable, the structural element is called "top-emitting organic light-emitting body". The electrode between the substrate and the at least one organic The same application is applied to the layer, as well as away from the base-transmissive type electrode tip. • ^ ^ is used for displays based on an electroluminescent one-pole. 'A passive layer and an insulating layer are deposited over the substrate. In order to apply the application, the organic layer and the upper electrode are applied again, and the display is finally compressed. The factor indicating the quality of the substrate is called the filling factor. The filling factor represents the ratio of the total surface illumination portion of the 4 display 3 The transition between the larger pixels is empty...corresponding to the smaller filling wire. Since the shadow printing is improved with 7 1286449 • • The reversal is improved, the goal is the highest possible _charge factor. In the case, when considering the back wall backplane, it is purely theoretical to achieve a fill factor of at least 80%. In practice, the existing... organic light-emitting diode matrix display (4) has a fill factor of up to 5G%, this The restriction should be caused by the freshness of the layer. Because it does not have a filter, wave or _ layer, it must process the red, green and blue sub-pixels adjacent to each other. The shadow mask used for this purpose, and the associated tolerances associated with it, do not allow for the currently available fill factor based on the accuracy of the manufactured backplane. As derived from the fill factor definition, this improvement not only causes light to exit the structural element from the electro-optical active area of the display, but also exits from the inactive area. In this particular case, it must take into account the different layers of the organic light-emitting diode, usually with different refractive factors which are themselves greater than one. To this extent, not all generated photons can exit the viewfinder and be perceived by an observer because the overall reflection can be between the structural element and/or between the punch structure element and the air. Produced at different restricted surfaces. The back and forward reflected light between two such restricted surfaces is ultimately absorbed. The overall reflection of the description is related to the design structure of the organic light-emitting diode and the polar body, and can cause an optical-scientific substrate mode, an organic mode, an average mode state in at least one organic layer, and cause an external mode in the field. The method used is known for the purpose of lightly outputting the internal optical weight. This creates an effective degree of improvement while increasing the fill factor of the display. As an example, published by I. Schnitzer on Appl·Phys· Lett 8 1286449

Volume 63, page 2174 (1993)的文件,’30% external quantum efficiency from surface textured, thin-film light-emmiting diodes’1中’其提出將該基板表面粗糙化,而因此在值得考 量的觀點中,便可避免在基板與空氣之間受限表面處產生 總體反射。此粗糙化可例如利用將面離該有機物的基板表 面,以蝕刻或喷砂的方式所實作。在CF· Madigan發表於Volume 63, page 2174 (1993), '30% external quantum efficiency from surface textured, thin-film light-emmiting diodes'1', which proposes to roughen the surface of the substrate, and thus in the point of view, It is possible to avoid an overall reflection at the restricted surface between the substrate and the air. This roughening can be carried out, for example, by etching or sandblasting the surface of the substrate which faces the organic material. Published in CF Madigan

Appl· Phys· Lett” Volume 76, page 1650 (2000)的文件 ’’Improvement of output coupling efficiency of organic light-emmiting diodes by backside substrate modification,, 中,描述在該基板表面後侧上沈積的球面圖形。此圖形例 如可以包括以一種黏著應用或層壓方式,沈積在談基板上 的鏡頭陣列。在T· Yamasaki等人發表於Appl. Phys. Lett., Wume 76, page 1243 (2000)的文件”0rganic light emitting device with an ordered manolayer of silica m as a scattering medium”中,其提出在該基板表面上沈積由石英 玻璃組成的微球面,用以改良一有機發光二極體的光輸出 事禺合。這些為球面也可以配置靠近於該有機發光二極體, 以從該内在模式散射光進入該外部模式。此外,其已知在 该基板與第一電極之間的波長範圍中產生週期性的結構, 而此週期性的結構連續進入該發光二極體的光學主動層 中。此陳述的幾何最後造成布拉格(Bragg)散射,其增加 該結構元件的效率,參考由丄Μ· Lupton等人發表於八卯!·Appl. Phys. Lett" Volume 76, page 1650 (2000), "Improvement of output coupling efficiency of organic light-emmiting diodes by backside substrate modification," describes a spherical pattern deposited on the back side of the substrate surface. Such a pattern may, for example, include an array of lenses deposited on a substrate in an adhesive application or lamination. The document "Tr. Yamazaki et al., Appl. Phys. Lett., Wume 76, page 1243 (2000)" In the light emitting device with an ordered manolayer of silica m as a scattering medium, it is proposed to deposit a microsphere surface composed of quartz glass on the surface of the substrate for improving the light output of an organic light emitting diode. The spherical surface may also be disposed adjacent to the organic light emitting diode to scatter light from the intrinsic mode into the external mode. Further, it is known to generate a periodic structure in a wavelength range between the substrate and the first electrode, And this periodic structure continuously enters the optical active layer of the light-emitting diode. The geometry of this statement ultimately causes Bragg scattering, which increases the efficiency of the structural components, as described by 丄Μ·Lupton et al. in Gossip!

Phys. Lett” Volume 77, page 3340 (2000)的文章。此外,在Phys. Lett” Volume 77, page 3340 (2000). In addition, in

German public patent application DE 101 64 016 A1 中提到 1286449 .•一種有機發光二極體,其至少一有機層具有帶有不同折射 因子的不同部分區域。因為在該有機質中的相位分散受 、 較少的光子。除了在該主動有機層中的内在異質利用之 外’也已知引入像是奈米顆粒的外在物體進入該電子冷光 材料之中,因此可避免在該有機質中的波導影響。同樣參 考由 S.A. Catter 等人發表於 AppL phys· Lett·, ^ page (1997) ^ χ # ^Enhanced luminance in polymer composite light emitting devices,,中。用以避免波導影變的 這些顆粒,可以由二氧化鈦(丁i〇2)、二氧化矽(8κς) 赛是氧化紹(Α1203)所組成,其具有大概是3〇至8〇奈 米的尺寸’並可埋置在像是共輛有機高分子(Meh-ppv) 的聚合放射材料之中。 ,上述參考該内在模式輪出耦合的方式,主要是與底部 發光二極體有關。然而’由械述方法所形成於該顯示器 ♦各自層中波導特性的減少,並不改良一像素結構元件的^ ,魏。無可否獅’在±述方法之巾,光也從該非主動 , 區域中輻射。然而’該顯示器的成像,便因為在該各自像 , 素之間發生的過度輻射與饋越(feedoveO,而造成部分損 失。 【發明内容】 因此本發明的目標是進一步改善用於以有機發光二 極體設傷為基礎的顯示器,其結構元件的效率。 10 1286449 決丄7置=地!:用本發明所提供的簡單方法解 項特徵的=而在其;:::面, 請專造魏賴序本發明申 在根據本發明的顯示器情況中,基於像是一右脉水 ::=ίί:Γ第―電極、遠離該基板的-第二i 動£域所π屮二極之間的至少一發光有機層。在該主 ==:::::透過::電極之-傳輸,且該第 邮罢一h 中,亚在鄰近像素之間斷面方向上 配置1緣層。根據本發明_示器,其特徵在於魏 層是^發施_耦合,並具有絲侧光散佈、,及 :這性的填充係數,其中該絕緣層是被微建構。 口…有#一電極的像素結構並在其上處理。 發明是根據-種產生大量光部分的發明知識,其不 ^矩賴構顯示器,並與财機#組細層配置,以 穿透電極整合至_近絕緣層之中,其反射數次而 敢後被吸收。根據本發明,藉由迴避該絕緣層的波導性質, 整合至該絕緣層的光,可以高百分比地離開該結構元件, 因為現在林但從該顯示器的電縣學主祕域輪射,也 從該非主㈣_射,造成_要雜構元件填充係數的 增加結果。在此方法巾,該有效像素區域增加,意思是, 該孔徑率與該顯示器的填充係數。藉由技術設定該絕緣層 的先散射性質的方式’可避免光在鄰近像素環境中,在第 1286449 •目#間從—特定像素發射。在此方法巾,可避免在各自像 素之間的過度輻射與饋越。 &外’該結構(柄魏效能可制改善,因此,與 •傳統顯示器相比之下,最後根據本發明的顯示器,可以利 用較低的電流而在相同的亮度下操作。以此結果,根據本 毛明的顯不益’其服務週期壽命便得到改善。根據本發明 以4為此特定目的’該像素分離絕緣層是_適當的處理 # 、方法調整’其中該層是配有光學作甩異質性。該絕緣層的 I可以湘-種簡單的加工達成,並不會對已經位在下 ㈣該結構造成任何傷害。根據本發㈣顯示器,該絕緣 層有兩種作用.1先’定義彼此像素之間的精確幾何,以 及利用-種增加輸出為合效率的方式,改善每個各自像素 ,效能參數。根據本發明,即使在製造根據本發明的顯示 1§期,不需提供額外的加工步驟也可達成。本發明也適 用於頂。卩發光矩陣顯示II以及底部發光矩陣顯示器兩者。 Φ 該術語"矩陣顯示器”意指最靠近該基板的電極,該第一電 極是特別為了顯示像素的定影所建構。 在此情況中,其適當地配置該顯示器的佈局為一種不 • 在相鄰影像點之間產生光學饋越的方式,此情況將會造成 , 對比及/或色彩明亮的的不利影響。為了避免鄰近像素之間 的這種饋越,可以形成一種造成從該絕緣層光輸出輕合ς 異雜密度效_置,其是継從賴示器表面的橫向空 間為Χ/2中,散射來自一像素的光的方式所選擇,其中X 表示兩鄰近像素的最小間距。該光學作用異質性的濃度, 12 1286449 · ·必須滿足此纽,也與該性的財謂。 為了私加填充係數的目的,所有光學作用異質性必須 , ^在任何隨顧式中造絲的分散,像是利職射、折 , 射與反射效果的方法。 /、,根據本發明的顯示器,為了避免色彩扭曲,可以設定 4光學作㈣質性’以—種與波長無_方式影響光。為 了此目的’該異質性必有A於該齡波長十分之一的 秦 擴展。對此程度來說,該異質性賴有魏具;r大概多於 %奈米的尺寸,以避免因為雷立散射(細响h·加麵) 的方式’所形成藍光的散射強度大於紅光。 為了避免從該有機質整合進入該絕緣層的光,在談絕 緣層+被過度吸I,其可⑽定规緣層的吸收係數小於 l〇5m-l ’特別有利的是小於1〇伽]。在此方法中, 其可以確定在該主動層中發射進入該絕緣層的光貫穿深度 至少是10微米,然而,越大是更有利的。根據本發明,其 _ 適當的是結合該顯示器的各層於彼此之上,以一種可能讓 更多的光,從該内部光學模式中整合進入該絕緣層,並在 該有機質與穿透電極中捕捉。這可以利用使該絕緣層的浙 射指數等於或大於由該有機質與該穿透電極構成層結構的 折射指數而達成。在此情況之中,在該受限表面層結構/ 絕緣層處並沒有來自該層結構總體光反射,其是在該絕緣 層的方向中前進。然而,該後績來自該絕緣層的輸出粞合, 因為接著產生的總體反射,便可以利用這樣的大折射指數 所減少。對此程度來說,該絕緣層的折射指數較佳地應該 13 ^286449 y該有機質與穿透電極的折射指為同的圍 =^1.3與2.2之間,特篇 材料有關。且主要分別指與該有機質與該電極的特別層 果該絕緣層的厚度是介於(U微米與20微米之 間,特別有利的是介於〇.2微米與5微米之間,1 】況中,如果該絕緣層 薄,:二: 能無蝴亀合提細’上逸 ‘本發像_距所 日± m 毛現如果兩相鄰像素的最小間距為x 日守,不大於x/2的厚度是較適當的。 根據本發明,如果在該絕緣層中配晉亦與你田进所^ 》,便形成-種特別有效的顯示器實施例,而該異二= 有大概0.05微緑5微米的尺寸。此尺寸的顆粒且有^ ^ ( Mie-sca^ 性、該顆粒的體積濃度較佳的是介於 Λ X之間’其中d為該散射顆粒的典型平均 直棱,X則為相鄰像素之間的最小間距。在此方法中,可 避免鄰近像素的饋越。^ ^ ^ ^ ^ ^ ^ ^ ^ 」 甩於該絕緣層材料濕式化學沈積的方法,可以像Η不 同的印刷方式(像是喷墨印刷、屏幕印刷、凸版印刷疋轉 移印刷(tamP〇n-printing)以及其他的高壓、低壓、平厣 及突壓(th腦gh-pre贿e)方法)。此外,也可以使用像: 刮板塗佈、旋轉塗佈、濕式塗佈、滾軸塗佈、噴雜盆二 14 1286449 的方法。用於該絕緣層的材料,可以有利地使用純粹光阻 抗(較佳的是正阻抗)或例如對光敏感的感光乳劑。這樣 的液態或是有機感光乳劑由層形成器、感光劑或光啟動劑 以及分散的附加物質所組成。舉例而言,三聚氰胺樹脂、 聚乙烯醇或聚醋酸乙稀酯可以用於層形成器。因為所使用 像疋一氮化合物或SBQ化合物(stilbazole_quartered compound)的感光乳劑對光並不敏感,當產生光入射時, 此方法便提供一種穩定形成的層。 如果該絕緣層並不帶有其他的添加物,並具有本身内 在異質性所單獨造成像是空間分離變化相位或是在該表現 強度中相位限制的散射性質,可能是較適當的。此外,在 絕緣層中結合外在異質性也是有利的,例如以散射顆粒的 型式,其直接在一矩陣材料中散佈。關於其光學性質,這 些散射顆粒則與該其他層材料不同。 這樣的外在異質性可以從多種顆粒中所選擇,特別 是: 像疋石夕酸鹽、監寶石微結晶、氧化鎂、二氧化石夕等 等的鹽結晶或氧化金屬的無機物微結晶; 、•像是澱粉、識雄素或是聚醯胺、pED〇T : pss結晶 等合成聚合物的碳水化合物賴晶聚合雜財機物微結 晶; •氣溶膠; •像是石英玻璃(二氧化矽)的無機物非結晶材料; •奈米顆粒; 1286449 •聚合物粉末(碳酸鹽聚合物、丙烯酸聚合物、硫亞 氨聚合物、聚醚、聚乙烯、聚丙烯、聚乙醚、氟素聚合物、 氨基化合物聚合物、聚錯酸乙烯酯); •非聚合物有機材料粉末( aromates、aliphates、雜環 化合物);German public patent application DE 101 64 016 A1 mentions 1286449. An organic light-emitting diode having at least one organic layer having different partial regions with different refractive factors. Because the phase dispersion in the organic matter is limited by fewer photons. In addition to the intrinsic heterogeneous utilization in the active organic layer, it is also known to introduce an external object such as a nanoparticle into the electron luminescent material, so that the influence of the waveguide in the organic matter can be avoided. The same reference is given by S. A. Catter et al. in AppL phys· Lett., ^ page (1997) ^ χ # ^Enhanced luminance in polymer composite light emitting devices,. These particles, which are used to avoid the shadowing of the waveguide, may be composed of titanium dioxide (butadiene), cerium oxide (8 ς ς), which is oxidized (Α1203), which has a size of about 3 〇 to 8 〇 nanometers. It can be embedded in a polymeric radioactive material such as a common organic polymer (Meh-ppv). The above-mentioned manner of referring to the intrinsic mode is mainly related to the bottom light emitting diode. However, the reduction in waveguide characteristics in the respective layers formed by the mechanical method of the display does not improve the structure of a pixel structure element. No lions are in the towel of the method, and light is also radiated from the inactive area. However, the imaging of the display is caused by excessive radiation and feedover (feedoveO) between the respective images. Therefore, the object of the present invention is to further improve the use of organic light-emitting diodes. Extreme body injury-based display, the efficiency of its structural components. 10 1286449 丄7 set = ground!: Use the simple method provided by the invention to solve the feature of the = and in its ;::: face, please create In the case of the display according to the present invention, at least between the two poles of the π 屮 电极 基于 : : : : : : : : : : : : : : 电极 电极 电极 电极 电极 电极 电极 电极 电极 至少 至少 至少a luminescent organic layer. In the main ==::::: transmission:: electrode-transmission, and in the first post, a sub-layer is disposed in the cross-sectional direction between adjacent pixels. According to the invention _ The display device is characterized in that the Wei layer is _ coupling, and has a silk side light dispersion, and: a filling factor of the nature, wherein the insulating layer is micro-constructed. The mouth has a pixel structure of an electrode and Processing on it. The invention is based on the invention of a large number of light parts It is not a simple display, and is configured with a fine layer of the financial machine to integrate the through electrodes into the near-insulation layer, and the reflection is absorbed several times and then absorbed. According to the present invention, by avoiding the The waveguide properties of the insulating layer, the light integrated into the insulating layer, can leave the structural element at a high percentage, because now Lin is from the display of the electric county of the display, and from the non-master (four) _ shot, resulting in _ The result of the increase of the fill factor of the hybrid component. In this method, the effective pixel area is increased, meaning that the aperture ratio and the fill factor of the display. The manner of setting the first scattering property of the insulating layer by technology can be avoided. The light is emitted from the specific pixel between the 1286449 and the target pixel in the adjacent pixel environment. In this method, the excessive radiation and the feed between the respective pixels can be avoided. Improvements, therefore, in contrast to conventional displays, the display according to the present invention can operate at the same brightness with a lower current. As a result, according to the present invention, The life cycle of the service is improved. According to the invention, 4 for this specific purpose 'the pixel separation insulating layer is _ appropriate process #, method adjustment 'where the layer is equipped with optical 甩 heterogeneity. Can be achieved in a simple process, does not cause any damage to the structure already in the bottom (four). According to the display (4) of the present invention, the insulating layer has two functions. 1 first 'defining the precise geometry between the pixels of each other, and The performance parameters are improved for each respective pixel in a manner that increases the output to the combined efficiency. According to the present invention, even in the manufacture of the display 1 according to the present invention, no additional processing steps are required. Applicable to both top and bottom light emitting matrix displays II and bottom light emitting matrix displays. Φ The term "matrix display" means the electrode closest to the substrate, which is specifically constructed for the fixation of the display pixels. In this case, it is appropriate to configure the layout of the display to be a way of not producing an optical feed between adjacent image points, which would result in adverse effects of contrast and/or bright colors. In order to avoid such feeding between adjacent pixels, it is possible to form a light-emitting 从 hetero-density effect from the insulating layer, which is 横向 from the lateral space of the display surface to Χ/2, scattering The mode of light from a pixel is selected, where X represents the minimum spacing of two adjacent pixels. The concentration of this optical heterogeneity, 12 1286449 · · must meet this New Zealand, also with the financial term. For the purpose of privately adding the fill factor, all optical heterogeneity must be, ^distribution in any accompanying pattern, such as the method of profit, break, shot and reflection. In the display according to the present invention, in order to avoid color distortion, it is possible to set the optical (four) quality to affect the light in a manner that does not have a wavelength. For this purpose, the heterogeneity must have a Qin expansion of one tenth of the wavelength of the age. To this extent, the heterogeneity depends on the Wei; r is probably more than the size of the nanometer to avoid the scattering intensity of the blue light formed by the method of Rayleigh scattering (fine h·adding the surface) is greater than the red light. . In order to avoid light that is integrated into the insulating layer from the organic matter, it is said that the insulating layer + is excessively adsorbed, and the absorption coefficient of the (10) fixed edge layer is less than l 〇 5 m - l ' particularly advantageously less than 1 〇 ]. In this method, it can be determined that the light penetration depth into the insulating layer in the active layer is at least 10 microns, however, the larger is more advantageous. According to the invention, it is appropriate to combine the layers of the display on top of each other to allow for more light to be integrated into the insulating layer from the internal optical mode and to capture in the organic and penetrating electrodes. . This can be achieved by making the index of the insulating layer equal to or greater than the refractive index of the layer structure composed of the organic material and the penetrating electrode. In this case, there is no overall light reflection from the layer structure at the constrained surface layer structure/insulation layer, which is advanced in the direction of the insulating layer. However, this latter result comes from the output coupling of the insulating layer, because the resulting overall reflection can be reduced by such a large refractive index. To this extent, the refractive index of the insulating layer should preferably be 13 ^ 286 449 y. The organic matter is the same as the refractive index of the penetrating electrode = ^ 1.3 and 2.2, which is related to the special material. And mainly refers to the organic layer and the special layer of the electrode respectively. The thickness of the insulating layer is between (U micrometer and 20 micrometers, particularly advantageously between 微米.2 micrometers and 5 micrometers, 1). If the insulating layer is thin, : 2: Can be without a butterfly to make a thin 'Shang Yi' of the original image _ from the day ± m hair now if the minimum spacing of two adjacent pixels is x day, not greater than x / The thickness of 2 is more suitable. According to the present invention, if the matching layer is also in the insulating layer and you enter the field, a particularly effective display embodiment is formed, and the difference 2 is about 0.05 micro green. 5 micron size. Particles of this size have ^ ^ (Mie-sca^, the volume concentration of the particle is preferably between Λ X' where d is the typical average straight edge of the scattering particle, X It is the minimum spacing between adjacent pixels. In this method, the feeding of adjacent pixels can be avoided. ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 甩 The method of wet chemical deposition of the insulating layer material can be different Printing methods (such as inkjet printing, screen printing, letterpress printing, tamP〇n-printing) Other high pressure, low pressure, flat and sudden pressure (th brain gh-pre bribe) method. In addition, you can also use: scraper coating, spin coating, wet coating, roller coating, spray The method of the basin 2 14 1286449. The material used for the insulating layer may advantageously use a pure optical impedance (preferably positive impedance) or, for example, a light sensitive emulsion. Such a liquid or organic emulsion is formed of a layer. a sensitizer or a photoinitiator and a dispersed additional material. For example, melamine resin, polyvinyl alcohol or polyvinyl acetate can be used in the layer former because of the use of a niobium-nitrogen compound or an SBQ compound. The emulsion of (stilbazole_quartered compound) is not sensitive to light, and when a light is incident, the method provides a layer that is stably formed. If the insulating layer does not carry other additives, it has its own inherent heterogeneity alone. It may be more appropriate to cause scattering properties such as spatially separated phase or phase limitation in the intensity of the expression. In addition, the extrinsic heterogeneity is combined in the insulating layer. It is advantageous, for example, in the form of scattering particles, which are directly interspersed in a matrix material. Regarding their optical properties, these scattering particles are different from the other layer materials. Such extrinsic heterogeneity can be selected from a plurality of particles, In particular: salt crystals such as scutellite, gemstone microcrystals, magnesia, sulphur dioxide, etc., or inorganic microcrystals of oxidized metals; • such as starch, masculine or polyamine, pED〇T: crystallization of a synthetic polymer such as pss crystals, crystallization of crystals, microcrystals; • Aerosols; • Inorganic non-crystalline materials such as quartz glass (ceria); • Nanoparticles; 1286449 • Polymer powder (carbonate polymer, acrylic polymer, sulfilimine polymer, polyether, polyethylene, polypropylene, polyether, fluoropolymer, amino compound polymer, polymorphic vinyl ester); Polymer organic material powder (aromates, aliphates, heterocyclic compounds);

•以力學方式整合進入該矩陣溶液的氣泡,像是利用 鈍態碳氫化合物(戊烷)、鈍態氣體(氬氣)、氮氣、二氧 化碳或氣氟碳化合物的泡沫; •以化學方法整合進入該矩陣溶液的氣泡,像是由二 氧化碳、氮氣產生的氣相反應製造,所產生的化學反應序 列(舉例而言,以光照射與存在氮氣反應& SBQ)。 為了該光學作用異質性的形成,而在該絕緣層中使用 傳導散射顆粒,在該層中的濃度,可以適當地以考慮該顆 粒的尺寸所設定,因此不造成電短路。 特別是以根據本發明的顯示器所實作的一頂部發光 結構元件,如果在該電極之間配置一電洞穿透層是較適當 的,其中該層是以一種受體有機材料所進行的口摻雜,並 具有大概是2G奈米至2微米解度,_是介於如奈米 與3〇〇奈米之間。這樣的掺雜造成傳導性增加,因此這樣 的傳輸層與一般的未摻雜層(一般為2〇至4〇奈米y相比 之下’可以具有較高的層厚度,而不造成操作電屢的劇烈 增加。介於該發光有機層與該穿透第二電極層的厚電荷傳 輸層存在’特別是在製造第二電極與另外的後續加工步驟 時,分別提供用於該發光層的保護。所陳述與該實施例有 16 1286449 • ' i的傳輸廣,也可建立為—種電子傳輸層,其利用一種施 ^ 體有機材料的n摻雜,並具有介於20奈米至2微米的厚 , 度,特別是介於30奈米與300奈米之間。 除了以濕式化學沈積該絕緣層以外,此也可以用噴 濺、成長或是剝離方法形成。用於此目的的適當加工為: 喷濺、物理氣相沈積法(pVD)、化學氣相沈積法(^^^)、 電漿輔助化學氣相沈積法(PECVD)、分子束磊晶法 籲(MBE)、分子辅助蟲晶法(_)、有機金屬氣相磊晶法 (MOVPE)及有機氣概積法(QvpD)。該絕緣層的結 構S在製狀後,再:纽濕纽學或乾錢學建構方法 協助所實作。 適當的層材料為: •穿透氧化金屬(像是二氧化矽、氧化鋅、二氧化鍅、 氧化銘(A1203)、二氧化鈦、氧化鎵(Ga2〇3)) •像是氮化矽的穿透氮化金脣(Si3N4) » « _ates、aliphates、雜環化合物與帖_的 有機材料 放^政射中心至該層中的不同方法。一種非結晶薄膜可 以與像是二氧切或氮化金屬的喷濺-起形成。為此理由 3為此絕緣層的建立,賴緣層崎料以及形成該散射 =的材料。可以利用―種交替的方式噴誠氣相沈積。 Li該絕緣層材料的交替喷軸利用冷卻喷灑方法協助 的心屬顆粒沈積,是一種較適當的加工。利用這樣的冷 Π 1286449 .=士遲方法,舉例而言,可以使用一種像是銅粉末的金屬 ,以在該絕緣層中放置以上說_重要散射中心。除 • 4之外,其較適當的可以交替地喷舰絕緣層材料與金 . 屬,以在制騎料之巾放置㈣要的散射心。械 々特金屬只被短暫的喷減,以避免取代 自的群木㈣成―種連續金屬賴,而無法確保透 過該層斗絕緣。如此金屬群集的有利厚度是小於2〇奈米。 春在該絕緣層是由氣相所氣相沈積的情況中,其可能較 料暇⑽絲佳多韻結難錯㈣域,選擇該氣 相沈積參數。在此方法中,其可能在該絕緣層巾内在地產 ^需㈣光學作觸·,因此在該狀f便不需要外 在散射顆粒。 卩用m緣層財機層材料,也可以有利地形成一 種自身、。曰曰或疋自身部分結晶有機層,其也不需要在該氣 ::積有機層中結合外在異質性。為了在談氣相沈積有機 用喊或冷卻顧方式,將做為散朴叫微金屬顆粒或 綠金麟餘置進魏緣層之巾。除此之外,其有利的 ‘是可能在-般形成該絕緣層的有機狀間,氣相沈積半導 • 體連接的群集。據此,根據本發明顯示器中的絕緣層,可 以甴許多層所組成。 、在另-有利實施例中,其可以設想在該絕緣層表面上 i生光學作用異質性,以獲得來自此層的輪出耦合。為此 目的’賴緣層的表面是被祕化,而這些粗糙具有介於 1286449 0.05微米至20微来的尺寸。在此情況中,原則上此實施 例可以使用所有在上述絕緣層形成中所使用的材料,其光 學作用異質性是在此層帽產生。在該表面處的絕緣層粗 糙度,可以有利地利甩像是後述的方式所實作: •藉由光微影技術方法的層微建構; •反應乾式韻刻; •非反應乾式蝕刻;• Mechanically integrate bubbles into the matrix solution, such as foams using passive hydrocarbons (pentane), passive gases (argon), nitrogen, carbon dioxide or fluorocarbons; • chemically integrated into The bubbles of the matrix solution, such as those produced by gas phase reaction of carbon dioxide and nitrogen, produce a chemical reaction sequence (for example, light irradiation with the presence of nitrogen & SBQ). For the formation of the optical heterogeneity, conductive scattering particles are used in the insulating layer, and the concentration in the layer can be appropriately set in consideration of the size of the particles, so that no electrical short is caused. In particular, a top light-emitting structural element implemented in accordance with the display of the present invention is more suitable if a hole penetrating layer is disposed between the electrodes, wherein the layer is a mouth made of an acceptor organic material. Doped, and has a resolution of approximately 2G nm to 2 microns, _ is between between nanometers and 3 nanometers. Such doping causes an increase in conductivity, so such a transport layer can have a higher layer thickness than a generally undoped layer (generally 2 〇 to 4 〇 nano y) without causing operational power Repeatedly increasing dramatically. The presence of the thick organic charge transport layer between the light-emitting organic layer and the second electrode layer is provided to provide protection for the light-emitting layer, respectively, particularly in the fabrication of the second electrode and further subsequent processing steps. As stated, this embodiment has a transmission of 16 1286449 • 'i, which can also be established as an electron transport layer that utilizes an n-doping of an organic material and has a range of 20 nm to 2 μm. Thickness, degree, especially between 30 nm and 300 nm. In addition to wet chemical deposition of the insulating layer, this can also be formed by sputtering, growth or stripping methods. Suitable for this purpose. Processing is: sputtering, physical vapor deposition (pVD), chemical vapor deposition (^^^), plasma-assisted chemical vapor deposition (PECVD), molecular beam epitaxy (MBE), molecular assistance Insect crystal method (_), organometallic vapor phase epitaxy (MOVPE) Organic gas accumulation method (QvpD). The structure S of the insulation layer is after the preparation, and then: the New Wetnau or dry money construction method assists the implementation. The appropriate layer materials are: • Penetrating oxidized metal (like Cerium Oxide, Zinc Oxide, Antimony Oxide, Oxide (A1203), Titanium Dioxide, Gallium Oxide (Ga2〇3)) • Penetration of Nitride Nitride Lips (Si3N4) » « _ates, aliphates, miscellaneous The ring compound and the organic material of the plaque are placed in different ways in the layer. An amorphous film can be formed with a splash like a dioxo prior or a metal nitride. For this reason 3 The formation of the layer, the material of the layer and the material forming the scattering = can be sprayed by vapor deposition in an alternate manner. Li alternately sprays the material of the insulating layer with the help of the cooling spray method to assist the deposition of the core particles It is a more appropriate process. Using such a cold Π 1286449 . = slate method, for example, a metal such as copper powder can be used to place the above-mentioned important scattering center in the insulating layer. In addition to 4, it is more appropriate to pay For the ground spray insulation material and gold. genus, to place the scattering core of the (4) in the towel of the riding material. The special metal is only sprayed briefly to avoid replacing the group of wood (4) into a continuous metal. Lai, but can not ensure insulation through the layer of bucket. Such a metal cluster has a favorable thickness of less than 2 nanometers. In the case where the insulation layer is vapor deposited by the gas phase, it may be more than the material (10) The rhythm is difficult to determine the (four) domain, and the vapor deposition parameter is selected. In this method, it is possible to have (4) optical contact in the inner layer of the insulating layer, so that external scattering particles are not required in the shape f. It is also advantageous to form a partially crystalline organic layer of itself, 曰曰 or 疋 itself, which does not need to incorporate extrinsic heterogeneity in the gas: organic layer. In order to talk about the vapor deposition organic use of shouting or cooling method, it will be used as a towel called micro metal particles or green Jinlin. In addition to this, it is advantageous to be a cluster of vapor-deposited semiconductor junctions between the organic forms that form the insulating layer. Accordingly, the insulating layer in the display according to the present invention can be composed of a plurality of layers. In a further advantageous embodiment, it is conceivable to have optical optical heterogeneity on the surface of the insulating layer to obtain a round-trip coupling from this layer. For this purpose, the surface of the rim layer is secreted, and these roughnesses have a size ranging from 1286449 to 0.05 micron to 20 micron. In this case, in principle, this embodiment can use all of the materials used in the formation of the above-mentioned insulating layer, the optical heterogeneity of which is generated in this layer cap. The thickness of the insulating layer at the surface can be advantageously implemented in the manner described below: • Layer microfabrication by photolithography; • Reactive dry rhyme; • Non-reactive dry etching;

• /燕式飿刻(例如利用酸性物質); •以一微結構印記壓印。 以这些所有方法’該處理參數是利用後壁背板及/或 ,元件不被傷害的方式所適當選擇。對此程度輕,如果 該絕緣層與該下方電極具有―較大的機械及/或化學穩定 性是較適當的,根據該實施例,其可_為各自層提供雙 層或多層的方式達成。 如同陳述的,其可以適當的透過該絕緣層材料,被永 =的變形或斷面方向分㈣方式,以—印記型式壓印的方 =而建構魏_表_實作。該辣職構表面在兩 t清況中都可獲得,且改良來自該絕緣層的光輸_合。 魏壁及7或其祕元件,其可以適當的假設 ^凸雕作用基本上是沿著該層的方式,對該絕緣層施加力 Π形f該印記。原則上,該濕式化學力, 或1建二」1層的^化期間或之後進行。對該後壁背板及/ &amp; ’特別有職是在其固化之前,以壓印 心彖層的方式施加_财。也特财·是,本觀點是 19 1286449 •利用基於屏幕印刷方式的技術,而進衧苴主 的,舉例而吕,來自該屏幕印刷方法的板 用匕 的'例如使用氨基鉀_聚合峨。如二^ 情況中於該絕緣層的固化之後,必須完维’L、在此 成的變形。 ^°正維持以壓印所造 本發明的特別有利實施例,可以利用 ❹ =f光學作用異― ,,,、員不态,疋為了改善該填充程度及/或為了改盖今处 效率’而具有從該絕緣層的特別良好光輸出無合^此 、在加工方面,根據本發明的工作是利用一種用於製造 T有機發光二極體設備為基礎的顯示器方法所解決,特別 疋種有機發光二極體主動矩陣顯示器,其具有以下步 驟:準備-基板’並在該基板上施加顯示電子;在該顧二 I:上二沈積具有引線至該顯示電子的一鈍態層;為^ t b上施加一像素建構第一電極;在該建構第—電極上, 施加建構—絕緣層;施加至少—發光有機層並施加—第二 電極。如以上所說明,該絕緣層配備有光學作用、光散射 異質性。 此外,本領域專精者認可在本發明的範疇中,當該絕 緣層是根據於此說明的上述方法,用於内在模式輪^合 20 1286449 '、的技術狀態之一所建立時是有利的。 • 【實施方式】 • 本發明錢續是對於主動矩陣顯示㈣配置所說 明。製造_始點是-個m胃的背板基板iig,其中參考 第1圖’該板導體、轉體與電容器是施加至-玻璃 基板。在該圖示中,該鈍態層是以參考符號120所表示。 • 接著:該像素結構第-電極13〇是施加至該純態層。如同 所顯不的’該電極130的各自部分是彼此分離,並且在此 方法中,形成該顯示器的各自像素。為了精確定義該各自 像素,在後續步驟中,施加來自於一非傳導材料的一絕緣 層140。這必須對該電極的像素結構而言為微米精確建 構此外’必須注意的是,以該絕緣層的加工與建構,位 在下方的層,也就是帶有電子11〇的基板與純態層12〇及 在其上加工的第一電極13〇,必須不被傷害。如同第丨圖 • ^貞示’她據本發職主動轉辭㈣腳結構配置 是進一步被說明時,該絕緣層14〇的加工與結構配置將在 之後進行處理。 該主動矩陣顯示器的完整原則結構配置則在弟2圖中 , 說明。在該第一電極該絕緣層14〇之上,施加一些有機層。 在該圖不中,該層結構以參考數字150指明。在此之上, 處理敲方第二電極16。。通常,如在圖中所說明的,為 了不又外界影響的保護目的,以一封裝隔離該顯示 αα根據4特定的貫施例,該顯示器可以透過該基板η。, 21 1286449 或以該上方電極與封裝的方式放電。在該第一情況中,〈箭 頭A)该結構元件是指明為一種底部發光顯示器。在該第 一情況中’(箭頭B)則為頂部發光顯示器。藉由待定美板 配置與該兩電極的方式,其規定光是否透過該基板朝下或 朝上放電。該最簡單的方法可以讓兩電極之一做為光反射 及非穿透。通常,該顯示器是以在該有機層結構中產生電 子冷光的方式構建,其不是透過該基板朝下輻射,便是於 反方向中朝上輻射,也就是說,灕開該結構元件。在特定 實施例中,其可能沒有問題,在另一方面,該光同時朝下 並朝上輻射。為此目的,所有沈積層都具有所需要的穿透 性,因此該光子可以透過每個層傳輸。 苐3a圓以原則概要的方式顯示一第一實施例,其中 該主動矩陣顯示器是以頂部發光方法所構建。該背板包括 具有顯示電子110的玻璃基板,在其上以傳統方式沈積談 鈍態層120。這是在用於固定該顯示器的像素結構,以光 U衫方法建構該反射電極13〇之後進行。在該描述的範例 中’一光阻抗,其具有加入顆粒尺寸大概為〇·5微米,體 積比例為5%的藍寶石結晶,其利用旋轉塗佈的方式沈積 為2微米的厚度。該光阻抗具有在波長範圍35〇至78〇奈 米之間,大約是每公尺103的吸收係數。談絕緣層也根據 Λ弟電極的像素結構,以光微影方式建構。該有機層結 構120現在可以利用傳統方式沈積。在所呈現的範例中, 该有機層是分別利用對應於該材料的熱氣相沈積方式,施 加至該電極130與該絕緣層140。最後,來自一傳導氡化 22 1286449 物的穿透覆蓋電極160也以熱氣相沈 芦 &gt; 顯示器的物並未顯示。如 Ρ、勺先乍用散射顆粒180是-種藍寶石結晶的 里式’並在該絕緣層中140均勾分佈。 ' 、&quot;曰曰、 160 财所麟的,電子冷较在該電極130、 之間的錢層結構15G之中產生。該產生的光一 該上部電極160並離開該配置㈣ 1像^面之中產生,並也在此表面+的結構元件離開的 光,在弟3a圖中是以m所標註。相比之下,該電子冷光 的-部份順著縱向於該層結構的傳播分量,離開該有機層 „0。如在該圖中所表示’該光可以利用直接朝向朝 著該第二電極16G的方向向±,歧在包括具有該顯示電 子110與該純態層120的玻璃基板背板處反射,透過改變 其傳播方向的方式,在該散射顆粒(藍寶石結晶)18〇處 散射。當然’可瞭解的是,可以在多數這樣的光學作甩異 i性處產生多重散射。最後,形成要求的絕緣層14〇配置, 該光子的體積增加,其離開該結構元件穿過該覆蓋電極 160。藉由該絕緣層特別配置所出現的输出耦合光,在第 3a圖中是以箭頭B2標註。因此在該顯示器結構的兩相鄰 像素之間並不產生饋越,在該層中的藍寶石結晶密度,是 以從該有機層結構150於縱向方向中發射的光,從該結構 元件,於縱向方向中的斷面朝上散射的方式設定,其是小 於該像素間距之半,在此總計為20微米。 第3b圖結構性地顯示在兩像素的部分斷面中,位於 23 1286449 之間的結構第一電極,盆兮々 利用該參戶召數字·觀:括錢述的散射顆粒·。其 〜、、、数予2U0顯不_俊去傲 一單一德去千α &amp; 彳冢素的幾何表面,也就是描述 iiti1就觀察者而言是放大出現的。 糾在餘衫成魅練_示器之後,• /Swallow engraving (eg using acid); • Embossing with a microstructured imprint. In all of these ways, the processing parameters are suitably selected by means of the back wall backsheet and/or the element is not damaged. To this extent, it is appropriate if the insulating layer and the lower electrode have "larger mechanical and/or chemical stability", which according to this embodiment can be achieved by providing two or more layers for the respective layers. As stated, it can be properly transmitted through the insulating layer material, by the deformation of the permanent = or the direction of the cross section (4), and by the imprinting type embossed = and construct the Wei_table_implementation. The surface of the spicy structure is available in both t-conditions and the light transmission from the insulating layer is improved. Wei Wall and 7 or its secret elements, which can be appropriately assumed, the embossing action is basically along the layer, and the force is applied to the insulating layer. In principle, the wet chemical force, or the build-up of one layer, is performed during or after the first layer. The rear wall backing plate and / &amp; ' are particularly useful for applying the enamel layer before the curing thereof. Also, the special wealth is that this view is 19 1286449. • Using the technology based on the screen printing method, and for example, the board from the screen printing method uses 氨基 'for example, using potassium _ 峨 峨. In the case of the curing of the insulating layer, it is necessary to complete the deformation of the dimension "L". ^° is maintaining a particularly advantageous embodiment of the invention made by imprinting, which can be used to improve the degree of filling and/or to improve the efficiency of today. With a particularly good light output from the insulating layer, in terms of processing, the work according to the invention is solved by a display method based on the manufacture of a T-organic light-emitting diode device, in particular organic a light-emitting diode active matrix display having the steps of: preparing a substrate and applying display electrons on the substrate; depositing a passivation layer having leads to the display electrons on the second surface; Applying a pixel to construct a first electrode; applying a build-insulation layer on the structured first electrode; applying at least a light-emitting organic layer and applying a second electrode. As explained above, the insulating layer is provided with optical action and light scattering heterogeneity. Moreover, it is recognized by those skilled in the art that, in the context of the present invention, when the insulating layer is in accordance with the above-described method described herein, it is advantageous to establish one of the technical states of the internal mode wheel 20 1286449 '. . • [Embodiment] • The present invention is continued for the active matrix display (4) configuration. The manufacturing start point is a back substrate iig of the m stomach, wherein the plate conductor, the swivel and the capacitor are applied to the - glass substrate with reference to Fig. 1 '. In the illustration, the passive layer is indicated by reference numeral 120. • Next: the pixel structure first electrode 13 〇 is applied to the pure layer. As shown, the respective portions of the electrodes 130 are separated from each other, and in this method, the respective pixels of the display are formed. In order to accurately define the respective pixels, an insulating layer 140 from a non-conductive material is applied in a subsequent step. This must be micron precise construction of the pixel structure of the electrode. In addition, it must be noted that with the processing and construction of the insulating layer, the underlying layer, that is, the substrate with the electron 11 与 and the pure layer 12 The first electrode 13〇 processed on the crucible must not be damaged. As shown in Figure • 贞 ’ 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 四 四 四 四 四 四 四 四The complete principle structure configuration of the active matrix display is illustrated in Figure 2. On the first electrode of the insulating layer 14?, some organic layer is applied. In the figure, the layer structure is indicated by reference numeral 150. On top of this, the knocking second electrode 16 is processed. . Generally, as illustrated in the figure, the display α α is isolated by a package for protection purposes without external influence, and the display can pass through the substrate η according to a specific embodiment. , 21 1286449 or discharge with the upper electrode and package. In this first case, <Arrow A) the structural element is designated as a bottom-emitting display. In this first case '(arrow B) is the top illuminating display. By arranging the configuration of the two plates with the two electrodes, it is prescribed whether the light is discharged downward or upward through the substrate. This simplest method allows one of the two electrodes to be light reflected and non-penetrated. Typically, the display is constructed in such a manner as to produce electron luminescence in the organic layer structure, which is not radiated downward through the substrate, i.e., radiating upward in the reverse direction, that is, opening the structural element. In a particular embodiment, it may be okay, and on the other hand, the light is directed downwards and upwards. For this purpose, all deposited layers have the required permeability so that the photons can be transmitted through each layer. The 苐3a circle shows a first embodiment in a schematic outline, wherein the active matrix display is constructed by a top illuminating method. The backsheet includes a glass substrate having display electronics 110 on which the passive layer 120 is deposited in a conventional manner. This is done after the pixel structure for fixing the display is constructed by the photo-shirt method. In the example of the description, an optical impedance having a sapphire crystal having a particle size of about 〇·5 μm and a volume ratio of 5% is deposited by spin coating to a thickness of 2 μm. The optical impedance has a wavelength in the range of 35 〇 to 78 〇 nanometers, which is about an absorption coefficient of 103 per meter. The insulating layer is also constructed by photolithography according to the pixel structure of the Λ electrode. The organic layer structure 120 can now be deposited using conventional means. In the example presented, the organic layer is applied to the electrode 130 and the insulating layer 140 by thermal vapor deposition corresponding to the material, respectively. Finally, the penetrating cover electrode 160 from a conductive deuterated 22 1286449 is also shown as a hot vapor phase &gt; display. For example, the scooping scattering particles 180 are a type of sapphire crystal and are uniformly distributed in the insulating layer 140. ', &quot;曰曰, 160 Finance, the electronic cold is generated in the money layer structure 15G between the electrodes 130. The generated light, the upper electrode 160, is separated from the arrangement (4) 1 and the light exiting from the structural element of the surface + is indicated by m in the figure 3a. In contrast, the portion of the electron luminescent light exits the organic layer „0 along the longitudinal propagation component of the layer structure. As shown in the figure, the light can be directed toward the second electrode. The direction of the 16G is ±, which is reflected at the back surface of the glass substrate including the display electrons 110 and the pure layer 120, and is scattered at the scattering particle (sapphire crystal) 18 透过 by changing the direction of propagation. It can be appreciated that multiple scattering can be produced at most such opticals. Finally, a desired insulating layer 14〇 is formed, the volume of the photons increasing, which exits the structural element through the cover electrode 160. The output coupling light that appears by the special arrangement of the insulating layer is indicated by arrow B2 in Fig. 3a. Therefore, no feed is generated between two adjacent pixels of the display structure, and sapphire in the layer The crystal density is set in such a manner that light emitted from the organic layer structure 150 in the longitudinal direction is scattered from the structural element in a longitudinal direction, which is smaller than the pixel pitch. Half, here totals 20 microns. Figure 3b is structurally shown in a partial section of two pixels, the first electrode of the structure located between 23 1286449, the basin uses the number of households to view the number: The scattering particles are described. The ~, , and the number of 2U0 are not _Jun to go to a single German to go to the thousand alpha &amp; the geometric surface of the alizarin, that is, the description of iiti1 is magnified by the observer. After the shirt is enchanted,

S而傳統方式製造的顯示器相比之下則有所 改善,而無須修改該絕緣層140。 在苐4a圖中所顯示的e _插楚一乂 兮翩-二a # 種第—主動矩陣顯示器。 ==讀射顯示的顯示器不同只在於,該第-電 接穿透式,而該覆蓋電極⑽則設計為反射式。 輸出耦合光(箭頭A1)與由該散射顆粒所額 4^^110 〇 , HO 3a 圖中所顯示的頂部發光顯示器相同。 第4b圖再次顯示與真實像素表面細相比之下,該 有效像素表面測的放大部分。此另領域專精者認可在斑 第3a及3b圖中顯示範例相比之下,這些狀況是不變的。 第5圖顯示配置主動轉顯示器的另—實施例,其設 計為-種頂部發光結構树。再次,該顯示器的相㈣構 元件是以在之前實施例中相同的參照數字表示。在第5圖 中顯示的實施例配置,與第3a圖中所顯示的唯—差異,在 於該絕緣層140由一純粹光阻抗層組成,而不含有其他顆 24 1286449 二傳統方法與方式,分別在該電極130與該純 心層120上沈積。該絕緣層14〇的表面,其位在該第二電 巧械處理。為此目的,該濕故學沈積感光劑是利用放 置亚壓製為祕表面上的_舰構。從L卩刷方法所 已知的刮板系統,是被應用以壓製該組識。之後是以一浐 絕緣層適合該像素的第—電極請建構的建構方式製造^ 表面的_。做為最後的操作,該絕緣層的固化與該^ 160 ? 工、進仃。同樣地與在第5圖中所顯示的實施例相同,以及 基於在該絕緣層140㈣化19〇處沿著層縱向散伟光的散 射’所直接輸出搞合的光則,散射是受到影響,且光是從 該顯示器透過該穿透電極16〇出現(箭頭B2)。 第6 _示主動矩_示器的另—實施例,其在該絕 緣層140是與第5圖顯示的顯示器相同建構。然而,該顯The conventionally manufactured display is improved in comparison with the conventional method without modifying the insulating layer 140. The e__ 楚 乂 兮翩-two a # species-active matrix display shown in Figure 4a. The display of the == readout display differs only in that the first-electrode is transmissive and the cover electrode (10) is designed to be reflective. The output coupling light (arrow A1) is the same as the top illuminating display shown by the scattering particles in the figure 4^^110 HO , HO 3a . Figure 4b again shows the enlarged portion of the effective pixel surface measurement compared to the actual pixel surface. This additional field of expertise recognizes that the conditions shown in Figures 3a and 3b are inconsistent. Figure 5 shows an alternative embodiment of an active-rotation display designed as a top-emitting tree. Again, the phase (four) components of the display are denoted by the same reference numerals in the previous embodiments. The embodiment configuration shown in FIG. 5 differs from the one shown in FIG. 3a in that the insulating layer 140 is composed of a pure optical impedance layer and does not contain other conventional methods and methods. Deposited on the electrode 130 and the layer of the core layer 120. The surface of the insulating layer 14 is positioned in the second electrical device. For this purpose, the wet sensitization deposition sensitizer utilizes the placement of sub-compacting on the surface of the secret. The squeegee system known from the L 卩 brushing method is applied to suppress the group. Then, the surface of the ^ surface is fabricated in a construction manner in which the insulating layer is suitable for the first electrode of the pixel. As a final operation, the insulation layer is cured and the enthalpy is formed. Similarly, the same as the embodiment shown in FIG. 5, and based on the direct output of the scattered light scattered along the longitudinal direction of the layer at the insulating layer 140, the scattering is affected, and Light emerges from the display through the penetrating electrode 16 (arrow B2). A sixth embodiment of the active moment indicator is constructed in the same manner as the display shown in Fig. 5 in the insulating layer 140. However, the display

不裔101’並不作用為一種頂部發光顯示器,而種底部 發光結構元件。 P 第7圖顯示該絕緣層14〇結構的—種原則圖示,並是 =種純粹細域光_奴,並簡式娜沈積在該純 悲層120與本身連接製該基板no的下方電極130上。為 ^該絕緣層陳面結構,㈣—種具有大量鮮 的印把210,其是以兩個錐形邊緣表面212、213卿 成。為了該建構,該印記21〇是位於該絕緣層14〇表面之 上’並以-預定愿印力量3賴製。利用該描述的邊緣2n 25 1286449 配置,在該絕緣層140中所建立的力量圖形是以箭頭F1、 F2所表示。如同可從該圖所見,該施壓壓印利的大部分是 在该絕緣層140中侧向分佈’造成一種壓印的描述配置, 因此位在下方像是該鈍態層120與包含該電極1〇〇基板的 層,在該加工中並不被拉緊。在該敘述的範例中,該印圮 是以固化高品質鋼鐵所製成,而該印記的各邊緣211具有 0.5微米的側向延伸。其間距大概是2微米。在移除印記 之後,因為在其表面上的層分裂是無法反轉的,該絕緣層 140的表面便由大量相等間距溝槽所建構。據此,該溝ς 及/或其受限表面,形成該光學主動異質性,而光便在該^ 緣層中傳導導引至該外部。因為在所有可使用的光學主動 異負性的情況中,並且根據涉及的特別配置,該光導可以 包括光散射、光折射及/或光衍射。對此程度而言,該術語 ”散射Π並不限制為只是純粹的光散射。 思_示在一較大斷面中,—主動矩陣顯示器絕緣 層Μ0表面處所產生的光學作用異質性。纽 =也:參考第7圖所描述的方式與方法壓製入該絕 一般認為該印記並$會傷害該下方電極130與 制齡意岐,錢㈣銳射,在此並不 說月以_發光二_為顯_發行絲陣顯 示器的小部分。厣目丨ί μ “丄 十知π J灯王勒矩丨早纊 與材料,對於护姑U在该教述介紹中說明的所也方法 可使用的。'' 規格的主動矩陣顯示器而言都是 26 1286449 , 【圖式簡單說明】 具有 -其1以原則描述的方法說明根據本發明, 鈍態層的基板以及用於—斗如月 ^ 頊不為的絕緣層; 機層 , 第2圖顯示在第】圖中所顯示的基板,於 加工之後,該上部電極與其封裝;^^ 第3a圖顯示根據本發明以了义1 乃以頂部發光所配置齟 的一第一實施例^ ^ ^ ^ ^ ^ ^ ^ 顯系器 • 第3b圖顯示用於第3a圖所說明的顯示器,择 像素建構於该絕緣層中的光學作用異質性配置; 器 f 4a圖顯示根據本發明,以底部發光所配 的一第二實施例;^ ^ ^ ^ ^ 第4b圖顯示甩於第4a圖所說明的顧示器1 像素建構於該絕緣層中的光學作用異質性配置;〖柃铸 第5圖以原則描述的方法說明根據本發明顯吊、 —第三實施例,其具有表面建構絕緣層並以頂部發的 春 第6圖以原則描述的方法說明根據本發明顯示器的 一第四實施例’其具有表面建構絕緣層並以底部發光; 第7圖以原則描述的方式說明具有一印記絕緣層表 面建構;以及 第8圖说明具有一印記的主動矩陣顯示器的絕緣層 建構。 27 1286449 【主要元件符號說明】 110 基板與顯示電子 120 鈍態層 130 第一、下方電極 140 絕緣層 150 有機層/層結構 160 第二、上方電極 170 封裝 180 散射顆粒 190 粗米造化 200 實際像素表面 201 有效像素表面 210 印記 211 邊緣 212 、 213 邊緣表面 100、 100丨、ΗΠ、101 丨 主動矩陣顯示器 S 壓印力量 A、 A1、A2 以底部發光顯示器所傳播的光 B、 B卜B2 以頂部發光顯示器所傳播的光 FI、F2 在該絕緣層中的印記效用力 28Ami 101' does not function as a top-emitting display, but a bottom-emitting structural element. P Fig. 7 shows a schematic diagram of the structure of the insulating layer 14 , structure, and is a kind of pure fine-domain light _ slave, and the simple form is deposited on the lower electrode 130 of the purely sad layer 120 and itself connected to the substrate no. . For the insulating layered structure, (4) - there are a large number of fresh stamps 210 which are formed by two tapered edge surfaces 212, 213. For this construction, the stamp 21 is located above the surface of the insulating layer 14 and is predetermined by the predetermined printing force. With the described edge 2n 25 1286449 configuration, the force pattern established in the insulating layer 140 is represented by arrows F1, F2. As can be seen from the figure, the majority of the applied embossing is laterally distributed in the insulating layer 140, resulting in an embossed descriptive configuration, thus being positioned below the passive layer 120 and containing the electrode. The layer of 1 〇〇 substrate is not stretched during this process. In the illustrated example, the print is made by curing high quality steel with each edge 211 of the print having a lateral extension of 0.5 microns. The spacing is approximately 2 microns. After the imprint is removed, the surface of the insulating layer 140 is constructed from a plurality of equally spaced trenches because the layer splitting on its surface is not reversed. Accordingly, the gully and/or its confined surface forms the optically active heterogeneity, and light is conducted to the outside in the edge layer. Because in all cases of optically active anisotropy that can be used, and depending on the particular configuration involved, the light guide can include light scattering, light refraction, and/or light diffraction. To this extent, the term "scattering enthalpy" is not limited to pure light scattering. 思_ shows in a large cross section, the optical heterogeneity produced at the surface of the active matrix display insulating layer 。0. Also: refer to the method and method described in Figure 7 to suppress the general sense that the mark and $ will hurt the lower electrode 130 and the age of the mind, money (four) sharp, not to say that the month is _ light two For the release of a small part of the silk array display. 厣目丨ί μ "丄十知π J lamp Wang Le moment 丨 丨 纩 材料 材料 材料 材料 材料 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护 护. ''The active matrix display of the specification is 26 1286449, [Simplified description of the drawing] has a method described by principle 1 according to the invention, the substrate of the passive layer and the use of the bucket for the month Insulation layer; machine layer, Fig. 2 shows the substrate shown in the figure, after processing, the upper electrode and its package; ^^ Figure 3a shows that according to the invention, the meaning of 1 is the top emission. A first embodiment of the invention ^ ^ ^ ^ ^ ^ ^ ^ display system; Figure 3b shows an optically functional heterogeneous configuration for the display illustrated in Figure 3a, in which the pixels are constructed in the insulating layer; The figure shows a second embodiment of the bottom emission according to the present invention; ^^^^^ Figure 4b shows the optically heterogeneous structure of the pixel 1 constructed in the insulating layer illustrated in Figure 4a. Sexual configuration; 柃 第 第 第 第 第 第 第 第 第 第 第 第 第 第 根据 第 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据A fourth implementation of the invention display 'Construction of an insulating layer having a surface thereof and to a bottom emission; FIG. 7 in the manner described principles described having a stamp surface of the insulating layer Construction; and FIG. 8 described construction of the insulating layer having an imprint active matrix display. 27 1286449 [Description of main components] 110 Substrate and display electronics 120 Passive layer 130 First and lower electrodes 140 Insulation layer 150 Organic layer/layer structure 160 Second, upper electrode 170 Package 180 Scattering particles 190 Crude rice 200 Actual pixels Surface 201 Effective Pixel Surface 210 Imprint 211 Edge 212, 213 Edge Surface 100, 100丨, ΗΠ, 101 丨 Active Matrix Display S Imprinting Force A, A1, A2 Light B, B Bu B2 Propagating with Bottom Illuminated Display The imprinting effect of the light FI, F2 propagating through the illuminating display in the insulating layer 28

Claims (1)

1286449 十、申請專利範圍: Θ 1·-種以有機發光二極體為基礎的結構元件,特別 疋種有栈發光一極體(OLED)主動矩陣顯示器 ,.包括 -基板、轉近該基板的-第-電極、遠離該基板的一第 -電極’以及配置在兩電極之間的至少―發光有機層,藉 以發出的光透過該兩電極至少其中之—傳輸,且該第一電 極是以像素來建構,藉以在耗像相騎面方向上配置 =絕緣層其特徵在於該絕緣層(14〇)是與該發光層(15〇) 光耦合’並具有光學作用光散佈,及增加異質性(1肋、1卯) 的填充係數,其中該絕緣層是被微建構,以符合該第一電 極(130)的像素結構並在其上處理。 上2·如申明專利範圍第1項的結構元件,其特徵在於 =絕緣層(140)具有一介於丨.3與2 2之間的折射因子,、 特別是介於1.6與2·〇之間。 ,情專利紐第2 _結構元件,其特徵在於 層(140)的厚度d是介於ο.1微米與ίο微米之間, 特別疋介於02微米盥5料半之Pa1,鞋丨、,/曰 近像素最小間距χϋ 間如歧小於該兩鄰 該显Μ專概圍第3 _結構元件,其特徵在於 &quot;心、貝'! (180)是配置在該絕緣層(1 里質 是具有接近⑽微米至5微米的尺寸。H、貝1'生 其中b為兮显積濃度是介於G.3*b/x與iG*b/x之間, ’、’、〜貝性的平均直徑,^是該兩鄰近像素的最 29 1286449 - 小間距。 6. 如申請專利範圍第2項的結構元件,其特徵在於 , 該異質性(180)是配置在該絕緣層(140)中,該異質性 是具有接近0.05微米至5微米的尺寸。 7. 如申請專利範圍第6項的結構元件,其特徵在於 該異質性(180)的體積濃度是介於0.3*b/x與10*b/x之間, 其中b為該異質性的平均直徑,而X是該兩鄰近像素的最 • 小間距。 8. 如申讀專利範圍第1項的結構元件,其特徵在於 該絕緣層(140)的厚度d是介於0.1微米與10微米之間, 特別是介於0.2微米與5微米之間,藉以d是小於該兩鄰 近像素最小間距X的一半。 9. 如申請專利範圍第8項的結構元件,其特徵在於 該異質性(180)是配置在該絕緣層(140)中,該異質性 是具有接近〇.〇5微米至5微米的尺寸。 鲁 10.如申請專利範圍第9項的結構元件,其特徵在於 該異質性(180)的體積濃度是介於0.3*b/x與10*b/x之間, 其中b為該異質性的平均直徑,而X是該兩鄰近像素的最 小間距。 ; 11.如申請專利範圍第1項的結構元件,其特徵在於 該異質性(180)是配置在該絕緣層(140)中,該異質性 是具有接近0.05微米至5微米的尺寸。 12.如申請專利範圍第11項的結構元件,其特徵在於 該異質性(180)的體積濃度是介於0.3*b/x與10*b/x之間, 30 1286449 其中b為該異質性的平均直徑,而χ是該兩鄰近像 小間距。 ^ 一 13·如申請專利範圍第」至第12項中任—項的結構 元件其特欲在於该絕緣層(⑽)具有一矩陣材料。 Μ.如申請專利範圍第項的結構元件,其特 於5亥矩陣材料具有外在的光學主動異質性。 15. 如申請專利範圍第14項的結構元件,其 ,、’在該等電極(130、鳩)間配置有—電_輪層二 ,以—種受體有機材料所ρ摻雜,並具有一介於2〇太ς ⑽轉,_是—介於3G奈赵細奈^ 16. 如申請專利範圍第15項的結構元件,μ 等f極(m、16〇)之間配置有一電子2 二=種施體有機材料所n播雜,並具有—介於^ 間^的厚度’特別是-介於3。奈一 17. 如中請專利範圍第15項的結構元件H ^在該電極⑽、⑽)之間配置有―電洞運=徵在 …種驗性材料所η摻雜,並具有—介於23層’其 微米之間的厚度,特別是一介於 至〇不米至2 厚度。 ^至300奈米之間的 復如申請專利範圍第14項的結構元件 =在該等電極⑽、⑽)之間配置有徵在 其疋以-種施體有機材料所η摻雜,# 士电于運輪層, / 財—介於2〇奈米 1286449 ^微米之間的厚度,特別是一介於3〇奈米姻夺米 間的厚度。 不木之 19.如申請專利範圍第14項的結構元件,其特徵在 Ί㈣極(m、划)之間配置有—電洞運輪層,其 疋以-種祕材料所n摻雜,並具有—介於】夺米至2 =謂的厚度,特別是—介於3G奈米至遍奈^間的 Φ 20·如申請專利範圍第U項的結構元件,並特符 :該絕緣層⑽)包括内在光學的主動異 曰材料的空間不同相位或相位限制。 ^^20 j ^ :電極(130、160)間配置有—電洞運輸層,其 疋以一種受體有機材料所P摻雜,並具有-介於20夺米^ 2微米之間的厚度,特別是一介於30奈來至300奈^間 的厚度。 22.如申請專利範圍第21項的結構元件,其特徵在 於:在該等電極(13G、之間配置有—電子運輪層, 其疋以-種施體有機材料所n摻雜,並具有一介於加奈米 至2微米之間的厚度’特別是-介於30奈米至300奈^ 間的厚度。 23·如申請專利範圍第21項的結構元件,其特徵在 ^ ’在该電極(130、160)之間配置有一電洞運輸層,其 20 2 U米之間的厚度’特別是一介於3〇奈米至3〇〇奈米之間的 32 1286449 厚度。 於,以項的繼件,其特徵在 甘曰 C 30 160)之間配置有一電子運輸層, -種施體有機材料所n摻雜,並具有—介於2〇奈米 =?間的厚度’特別是-介於-奈米至奈米之 於,二項的結構元件,其特徵在 a 认 160)之間配置有一電洞運輸層,其 =一種祕材料所η摻雜,並具有-介於20奈米至2 間的厚度’特別是-介於如奈米至,奈米之間的 於該St置第/項的結構元件,其特徵在 ϋ人 )疋配置在該絕緣層(14〇)表面上,並 具有一介於0.05微米至10微米之間的尺寸。 並 如申請專利範圍第26項 件, 卢 是以-種受體有機材料所電洞運輪層,其 2微米之間的厚度,獻,並具有-介於20奈米至 的厚度。 特心—介於30奈米至奈米· 28. 27 . 於,在談等電極(130、16〇)班士十、特敛在 其是以-種施體有機材倫^間有一電子運輪層’ 至m 材#所Π摻雜,並具有—介於20太半 U未之間的厚度,特別是於 '丁、未 間的厚度。 丨於30不未至300奈米之 33 1286449 ^申明專利範圍第27項的結構元件,其特徵在 曰卜在.亥電極(13〇、16〇)之間配置有一電麟^ ^ 20 ^^^ 2 1只之間的厚度,特別是—介於30奈米至3gg奈米之間的 厚度。 於30.如申請專利範圍第26項的結構元件,其特徵在 =在該等電極(m、16G)之間配置有―電子運輸層, ,、疋以一種施體有機材料所n摻雜,並具有一介於】奈米 米之_厚度,特別I介於3σ奈絲獅奈米 間的厚度。 H·如申5月專利範圍第26項的結構元件,其特徵在 曰;錢極(13〇、16〇)之間配置有一電洞運輸層,其 ^一種驗性材料所η掺雜,並具有-條20奈米至2 間的厚度,制是—介於如奈米至3。。奈米之_ 於,二2請專利範圍第13項的結構元件,其特徵在 Τ (13°&quot;160) 疋以一種受體有機材料 摻廿士入人士 2微米之間的厚度,特別θ —j並具有一介於2〇奈米至 的厚度。 、疋人丨於30奈米至300奈米之間 ^ (130 . 160) 其是以—猶财機材料所祕」_電子運輸層, 至2微半夕摻雜,並具有—介於20奈米 U未之間的厚度,特別是〜介於30奈米至細奈米之 34 (1286449 間的厚度。 34.如申請專利範圍第32項的結構元件,其特徵在 j在„亥電極(13〇、16〇)之間配置有一電洞運輸層,立 疋以一種驗性材料所n摻雜,並具有-介於20奈米至2 =之間的厚度’特別是一介於奈米至300奈米之間的 y子度。 35·如申請專利範圍第13項的結構元件,其特徵在 二口在轉電極⑴〇、16G)之間配置有—電子運輸層, /、疋乂種加體有機材料所η摻雜,並 一 ^微叙_厚度,朗是—介於3Q奈衫奈^ 間的厚度。 认36:如申請專利範圍帛13項的結構元件,其特徵在 j ’在該電極(13G、160)之間配置有—電洞運輸層,兑 種驗性材料所n摻雜,並具有-介於20奈米至2 Κ ,間的厚度,特別是一介於3 〇奈米至3⑽奈米之間的 一 37.如申請專利範圍第1至帛12項中任一項的 其特,在於該絕緣層(14°)包括内在光學的主‘異 貝…特別是該層材料的空間不同相位或相位限制。 於,二^請專利範圍第37項的結構元件,其特徵在 J 極(130、160)間配置有-電洞運輸層,其 疋以一種冗體有機材料所执 、 ,亚具有—條2〇奈米至 的厚度。予度特別疋一介於30奈米至300奈米之間 35 1286449 39·如申請專利範圍第38項的結構元件,其特徵在 於’在該等電極(13〇、160)之間配置有一電子運輪層, 其疋以一種施體有機材料所η摻雜,並具有一介於如奈米 至2微米之間的厚度,特別是-介於30奈米至300夺米^ 間的厚度。^ ^ ^ ^ ^ ^ ^ 40·如申請專利範圍第%項的結構元件,其特徵 ,’在該電極(130、160)之間配置有-電洞運輪層,其 疋以一種鹼性材料所η摻雜,並具有一介於2〇奈米至2 U米之間的厚度,特別是一介於3〇奈米至3〇〇奈米之間的 厚度。 g 41. 如申請專利範圍第37項的結構元件,其特 於二在該等電極(13G、⑽)之_置有-電子it輪層, 其疋以-種施體有機材料所n摻雜,並具有一介於 至2微米之間的厚度,特別是―介於30奈米至3G0夺^ 42. 如申請專利範圍第37項的結構元件,其特徵在 =’在該電極(130、16〇)之間配置有一電洞運輪層,发 =-種驗性材料所n摻雜,並具有—介於】奈米g 厚度。予又特別疋一介於3〇奈米至300奈米之間的 43. 如申請專利範圍第1、2、3、4、6、8、9及&quot; 構轉,其特徵在於該異質性⑽是在抑 緣層(140)表面上,並且右—八 夏隹⑹巴 間的。U—,丨於0.05微米至10微米之 36 1286449 44.如申請專利範圍第43項姓甚二 於’在該等電極⑽,)間配置 ==運, 是以-種受體有機材料卿摻雜,並—介於,二其 的厚度。 /丨於3〇奈米至_奈米之間 於二^申請專利範圍第44項的結構元件,龙特… 二電Γ13。、16°)之間配置有-電“ ^ 八疋以一種域有機材料所n摻雜,並具一 二 至2微米之間的厚度,特別日人 以7丨於20奈米 間的厚度。 特別疋―介於30奈米至細奈米之 如申請專利範圍第44項的結構元件,盆_ 於,在_極(13G、16G)之間 洞展1 微米之_厚度姻是:介於2G奈米至2 厚度。 训疋/丨於30奈米至奈米之間的 於,二Γ請專利範圍第43項的結構元件,其特徵在 心以%i,(13G、16G)之間配置有—電子運輪層, 觀體有機材料所n摻雜,並具有一介於20奈米 至2被米之間的厚度,转日人 ’、卡 間的厚度。 特別疋一介於3〇奈米至300奈米之 於,項的結構元件,其特徵在 是以插AM:从 )之間配置有一電洞運輪層,A 料所n摻雜,並具有, 心之間的厚度’特別是—介於3〇奈米至酿奈米之^ 37 1286449 厚度。 49.如申清專利範圚第i至 值 件,其特徵在於,在誃笔番4弟項中任一項的結構元 洞運輸層,其是以一種。:(130、16〇)間配置有-電 介於―微推雜,並具有- 至300奈米之間的厚度。予又’特別是一介於30奈米 於,在第49項的結構元件,其特徵在 在料電極(130、160)之間配置有一電子運輸声, =以一種施體有機材料所4雜,並具有-介於^米 間的介w3〇〇奈二 如申請專利範圍第49項的結構元件,其餘 、’在该電極(13〇、副)之間配置—運^ 是以-種驗性材料所n摻雜,並具有一二】層,其 _ 52.如申請專利範圍第i至第12項中任—項 辑,其舰在於,在該等電極(13〇、16〇)之門的結構 -電子運輪層,其是以一種施體有機材料所二摻有 有一介於20奈米至2微米之間的厚度,特別曰二’並具 奈米至300奈米之間的厚度。 介於3〇 53.如申請專利範圍第)至第匕項中往〜工 元件,其特徵在於,在該電極(13〇、16〇)之=項的結構 電洞運輸層,其是以一種鹼性材料所11摻雜,^配置有〜 我具有一介 1286449 於20奈米至2微米之間的厚度,特別是一介於30奈米至 300奈米之間的厚度。 54. —種製造以有機發光二極體為基礎的結構元件 的方法,特別是一種有機發光二極體(OLED)主動矩陣 顯示器,具有以下步驟: _準備一基板, -在該基板上施加顯示電子電路, -在該顯示電子電路上沈積一具有引線至該顯示電 子電路的鈍態層, -在該鈍態層上施加一像素建構第一電極,其透過連 接至該顯示電子的該鈍態層的該引線所電傳導, -在該建構第一電極上沈積並建構一絕緣層, -沈積至少一發光有機層, -施加一第二電極, 其特徵在於提供該絕緣層(140)光學作用光散佈及 增加異質性的填充係數。 55. 如申請專利範圍第54項的方法,其特徵在於該 絕緣層(140)是在該第一電極(130)上喷減:、成長或剝 離。 56. 如申請專利範圍第54項的方法,其特徵在於該 絕緣層(140)是利用濕式化學方式沈積在該第一電極(130) 上。 57. 如申請專利範圍第56項的方法,其特徵在於該 絕緣層(140)是從一主動矩陣所形成,其以具有預定尺寸 39 1286449 的散佈顆粒(180 )所混合。 58·如申請專利範圍第55項的方法,其特徵在於該 絕緣層(140)是從氣相開始氣相沈積,藉以該氣相沈積參 數的選擇,較佳地是以形成多結晶微結構與偏移的方式。 59·如申請專利範圍第55項的方法,其特徵在於利 用一冷卻喷灑方法置入形成該光學作用異質性的材料。1286449 X. Patent application scope: Θ 1·-A structural element based on organic light-emitting diodes, especially a stack-emitting one-pole (OLED) active matrix display, including a substrate and a substrate a first electrode, a first electrode disposed away from the substrate, and at least a light-emitting organic layer disposed between the electrodes, wherein the emitted light is transmitted through at least the two electrodes, and the first electrode is a pixel To construct, in order to dispose in the direction of the image riding surface = insulating layer is characterized in that the insulating layer (14 〇) is optically coupled with the luminescent layer (15 〇) and has optically active light dispersion, and increases heterogeneity ( A fill factor of 1 rib, 1 卯), wherein the insulating layer is micro-constructed to conform to and be processed on the pixel structure of the first electrode (130). The structural element of claim 1 is characterized in that the insulating layer (140) has a refractive factor between 丨.3 and 2 2, in particular between 1.6 and 2·〇. . , the patent element 2 _ structural element, characterized in that the thickness d of the layer (140) is between ο. 1 micron and ίο micron, especially 02 between 02 micron 盥 5 half of the Pa1, shoe last, / 曰 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素It has a size close to (10) micrometers to 5 micrometers. H, shellfish 1', where b is the enthalpy concentration is between G.3*b/x and iG*b/x, ', ', ~ shellfish The average diameter, ^ is the most 29 1286449 - small pitch of the two adjacent pixels. 6. The structural element of claim 2, characterized in that the heterogeneity (180) is disposed in the insulating layer (140) The heterogeneity is a size having a size of approximately 0.05 micrometers to 5 micrometers. 7. The structural element according to claim 6 of the patent application, characterized in that the volume concentration of the heterogeneity (180) is between 0.3*b/x and 10 Between *b/x, where b is the average diameter of the heterogeneity and X is the minimum spacing of the two adjacent pixels. The structural element of claim 1 is characterized in that the thickness d of the insulating layer (140) is between 0.1 μm and 10 μm, in particular between 0.2 μm and 5 μm, whereby d is smaller than the minimum of the two adjacent pixels A half of the spacing X. 9. A structural element according to claim 8 of the patent application, characterized in that the heterogeneity (180) is disposed in the insulating layer (140), the heterogeneity being close to 〇.〇5 μm to 5 The size of the structure. The structural element according to claim 9 is characterized in that the volume concentration of the heterogeneity (180) is between 0.3*b/x and 10*b/x, wherein b The average diameter of the heterogeneity, and X is the minimum spacing of the two adjacent pixels. 11. The structural element of claim 1, characterized in that the heterogeneity (180) is disposed in the insulating layer (140) The heterogeneity is a size having a size of approximately 0.05 micrometers to 5 micrometers. 12. The structural element of claim 11, characterized in that the volume concentration of the heterogeneity (180) is between 0.3*b/x Between 10*b/x, 30 1286449 where b is the average diameter of the heterogeneity, χ is the two adjacent images having a small pitch. ^13. The structural elements of the items of the claims of the first to the twelfth items are characterized in that the insulating layer ((10)) has a matrix material. The structural element of the scope of the item, which is characterized by the external optical active heterogeneity of the material of the 5th matrix. 15. The structural element of claim 14 of the patent application, [, between the electrodes (130, 鸠) The configuration has an electric_wheel layer 2, which is doped with a kind of acceptor organic material, and has a relationship between 2 〇 too ς (10), _ is - between 3G 奈赵细奈 ^ 16. 15 structural elements, μ and other f poles (m, 16 〇) are arranged with an electron 2 = = seed organic material n is mixed, and has a thickness between the ^ ^, especially - 3.奈一17. The structural element H ^ of the fifteenth patent scope of the patent application is arranged between the electrodes (10) and (10)), which is doped with the n-type of the test material, and has The thickness of the 23 layers 'between the micrometers, especially one to between 〇 and 2 meters. Between 300 and 300 nm, the structural element of claim 14 of the patent application range = between the electrodes (10) and (10)), the Mn is doped with the organic material of the donor material, #士士Electricity on the transport layer, / Cai - between 2 〇 nanometer 1286449 ^ micron thickness, especially a thickness between 3 〇 nano-marriage. 19. The structural element of claim 14 is characterized in that a hole carrier layer is disposed between the Ί(four) poles (m, 划), and the 疋 is doped with a kind of secret material, and Having a thickness ranging from -3 to 2 =, in particular - Φ 20 between 3G nanometer and argon. The structural element of the Uth article of the patent application, and the special: the insulating layer (10) ) Spatially different phase or phase limitations of active isothermal materials including intrinsic optics. ^^20 j ^ : The electrode (130, 160) is provided with a hole transport layer, which is doped with an acceptor organic material P and has a thickness of between 20 and 2 micrometers. In particular, a thickness between 30 nanometers and 300 nanometers. 22. The structural element according to claim 21, characterized in that: at the electrodes (13G, there is disposed an electron transport layer, the niobium is doped with a seed organic material, and has a thickness between the nanometers and 2 micrometers, in particular - a thickness of between 30 nanometers and 300 nanometers. 23. A structural element according to claim 21 of the patent application, characterized in that the electrode is 130, 160) is equipped with a hole transport layer, the thickness between 20 2 U meters 'especially a thickness of 32 1286449 between 3 〇 nanometers to 3 〇〇 nanometers. a feature, characterized in that an electron transport layer is disposed between the Ganzi C 30 160), the seed organic material is n-doped, and has a thickness between 2 〇 nanometers = 'particularly - between - Nano to nano, the structural element of the two, characterized by a hole 160) is provided with a hole transport layer, which is n-doped with a secret material and has - between 20 nm to The thickness of the two 'particularly' - between the nanometers and the nanometers, the structural elements of the St/terms are characterized by The 疋 疋 is disposed on the surface of the insulating layer (14 〇) and has a size of between 0.05 μm and 10 μm. And as in the 26th section of the patent application, Lu is a hole transport layer of the organic material of the acceptor type, which has a thickness of between 2 microns, and has a thickness of -20 nm. Special heart - between 30 nm and nano · 28. 27 . In, talk about the electrode (130, 16 〇) Ban Shi ten, special convergence in the use of a kind of organic matter The wheel layer 'to m material # is doped and has a thickness of between 20 and a half U, especially in the thickness of 'd, no.结构 30 30 30 30 30 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 The thickness between 1 and especially - the thickness between 30 nm and 3 gg nm. 30. The structural element of claim 26, wherein the electro-transport layer is disposed between the electrodes (m, 16G), and the niobium is doped with a donor organic material. And has a thickness between the thickness of the nanometer, especially I between the 3σ Ness lion. H. The structural element of the 26th patent scope of the patent in May, characterized in that a hole transport layer is disposed between the Qianji (13〇, 16〇), and an inspective material is n-doped, and It has a thickness of -20 nm to 2, which is between - such as nanometer to 3. . Nano, _, 2, 2, the structural element of the 13th patent range, characterized by Τ (13 ° &quot; 160) 疋 an acceptor organic material mixed with a thickness of 2 microns between people, especially θ —j and has a thickness of between 2 nanometers.疋人丨 between 30 nm and 300 nm ^ (130. 160) It is the secret of the material - the electronic transport layer, to 2 micro-half doping, and has - between 20 The thickness between the nanometers U, especially ~ between 30 nanometers and 34 nanometers (the thickness of 1286449. 34. The structural element of the 32nd article of the patent application, characterized in j at the electrode There is a hole transport layer between (13〇, 16〇), which is n-doped with an inspective material and has a thickness between 20 nm and 2 = 'especially one between nanometers y sub-degree to 300 nm. 35. The structural element of claim 13 of the patent application is characterized in that an electron transport layer is disposed between the two electrodes (1) 〇, 16G), /, 疋乂The doping of the organic material is η, and the thickness is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 'The hole transport layer is disposed between the electrodes (13G, 160), n-doped with the test material, and has a thickness between 20 nm and 2 Κ. In particular, a 37 between 3 〇 nanometer and 3 (10) nanometer. The special feature of any one of claims 1 to 12 is that the insulating layer (14°) includes an intrinsic optical master' In particular, the space of the material of the layer is different in phase or phase limitation. The structural element of the 37th patent range is characterized in that a hole transport layer is disposed between the J poles (130, 160).疋 疋 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋a structural element characterized in that: an electron transport layer is disposed between the electrodes (13〇, 160), the germanium is doped with a donor organic material, and has a thickness of, for example, nanometers to 2 micrometers. The thickness between the thicknesses, in particular - between 30 nm and 300 m ^ ^ ^ ^ ^ ^ ^ ^ ^ 40 · The structural element of the scope of the patent application, the feature, 'at the electrode (130 And 160) are provided with a - hole transport layer, which is doped with an alkaline material, Having a thickness of between 2 nanometers and 2 nanometers, in particular a thickness of between 3 nanometers and 3 nanometers. g 41. The structural element of claim 37, In particular, the electrodes (13G, (10)) are provided with an electron current wheel layer, which is doped with a seed organic material and has a thickness of between 2 microns, in particular ― between 30 nm and 3G0 ^ 42. The structural element of claim 37, characterized in that there is a hole transport layer between the electrodes (130, 16 〇), send =- The test material is n-doped and has a thickness of - nanometer g. It is also particularly suitable for a range of between 3 nanometers and 300 nanometers. 43. If the patent application scopes 1, 2, 3, 4, 6, 8, 9 and &quot; configuration, it is characterized by the heterogeneity (10) It is on the surface of the marginal layer (140), and right-eight-summer (6) between the bars. U—, 36 286 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Miscellaneous, and - between, two of its thickness. / 丨 between 3 〇 nanometer to _ nano between the two ^ apply for the patent range of the 44th structural component, Longte ... 2 electric Γ 13. Between 16°), there is a “electricity” that is doped with a domain organic material and has a thickness of between one and two micrometers, especially between 7 and 20 nanometers. Special 疋 ― Between 30 nanometers and fine nanometers, as in the 44th structural component of the patent application, the basin _ _, between the _ pole (13G, 16G), the hole is 1 micron. 2G nanometer to 2 thickness. Instructor / 丨 between 30 nm and nano, and the second structural element of the patent scope, the feature is in the heart between %i, (13G, 16G) There is an electron transport layer, the organic material is n-doped, and has a thickness between 20 nm and 2 m, and the thickness of the Japanese and the card. Special one is between 3 nm. Up to 300 nm, the structural element of the item is characterized in that a hole transport layer is disposed between the plug AM and the slave, the material A is doped with n, and the thickness between the cores is 'specifically - between 3 〇 nanometers and brewed rice ^ 37 1286449 thickness. 49. For example, Shen Qing patent 圚 圚 i to value pieces, which is characterized by Any one of the structural element transport layers, which is a type: (130, 16 〇) is configured with - electricity between - micro-negative, and has a thickness between - and 300 nm. Is a structural element between 30 nm and in item 49, characterized in that an electron transport sound is arranged between the material electrodes (130, 160), = is mixed with a donor organic material, and has a In the case of the m-meter, the w3 〇〇奈二 is as the structural element of the 49th patent application, and the rest, 'between the electrode (13〇, 副) is arranged - the operation is based on - the kind of test material Miscellaneous, and has a layer of two, _ 52. As claimed in the scope of the patent range i to 12, the ship is in the structure of the door of the electrode (13 〇, 16 〇) - electronic The transport layer is a thickness of between 20 nm and 2 μm, preferably between 奈2' and a thickness of between 300 nm and 300 nm. 〇53. As in the patent application scope) to the second component, the characteristic component is that the structure of the electrode (13〇, 16〇) = hole The layer, which is doped with an alkaline material, has a thickness of between 20 nanometers and 2 micrometers, especially a thickness of between 30 nanometers and 300 nanometers. 54. A method of fabricating a structural element based on an organic light emitting diode, in particular an organic light emitting diode (OLED) active matrix display, having the steps of: preparing a substrate, applying a display on the substrate An electronic circuit, - depositing on the display electronic circuit a passivation layer having leads to the display electronic circuit, - applying a pixel on the passivation layer to construct a first electrode that transmits the passivation state connected to the display electron The lead of the layer is electrically conductive, - an insulating layer is deposited and constructed on the first electrode, - at least one luminescent organic layer is deposited, - a second electrode is applied, characterized in that the insulating layer (140) is provided for optical effect Light dispersion and fill factor for increasing heterogeneity. 55. The method of claim 54, wherein the insulating layer (140) is sprayed on the first electrode (130): grown or peeled off. 56. The method of claim 54, wherein the insulating layer (140) is deposited on the first electrode (130) by wet chemical means. 57. The method of claim 56, wherein the insulating layer (140) is formed from an active matrix that is mixed with dispersed particles (180) having a predetermined dimension 39 1286449. 58. The method of claim 55, wherein the insulating layer (140) is vapor deposited from the gas phase, whereby the vapor deposition parameter is selected, preferably by forming a polycrystalline microstructure and The way the offset is. 59. The method of claim 55, wherein the material forming the optically heterogeneous property is placed by a cooling spray method. 60·如申請專利範圍第55項的方法,其特徵在於為 了形成該絕緣層(140)的目的,至少氣相沈積一自身結晶 或一自身部分結晶有機層。 61·如甲晴專利範圍第55項的方法,其特徵在於, 了形成該絕緣層(MO )的目的,交替地喷濺或氣相沈積 絕緣層的材料與形成該散佈中心的材料。 62·如申請專利範圍第54至第61項中任一項的 ^其特徵在於該光學異質性(19G)是在該絕緣層雜 第一電極(160)的表面上產生。 63.如申請專利範圍第62項的方法,寺在 利 加力 *(F1、;2;的 ⑽·如申请專利範園第9从+、: 絕緣層(14〇)的外邱.而 、、法’其特徵在於 卩表面是以光微影方式所建構。 1286449 七、指定代表圖: (一) 本案指定代表圖為:第(3a )圖。 (二) 本代表圖之元件符號簡單說明·· 100 主動矩陣顯示器 110 基板與顯示電子 120 鈍態層 130 第一、下方電極 140 絕緣層 150 有機層/層結構 160 第二、上方電極 180 散射顆粒 B1 vB2 以頂部發光顯示器所傳播的光 八、本案若有化學式時,請揭示最能顯示發明特徵的 化學式:60. The method of claim 55, wherein at least a self-crystallized or a partially partially crystalline organic layer is vapor deposited for the purpose of forming the insulating layer (140). 61. The method of claim 55, wherein the material of the insulating layer and the material forming the scattering center are alternately sputtered or vapor-deposited for the purpose of forming the insulating layer (MO). 62. The method according to any one of claims 54 to 61, wherein the optical heterogeneity (19G) is generated on the surface of the insulating layer first electrode (160). 63. If the method of claim 62 is applied, the temple is in Lijiali* (F1,; 2; (10)· If the patent application is 9th from +,: the insulation layer (14〇) is outside the Qiu. The method is characterized in that the surface of the crucible is constructed by means of photolithography. 1286449 VII. Designated representative map: (1) The representative representative map of this case is: (3a). (2) A brief description of the symbol of the representative figure. · 100 active matrix display 110 substrate and display electrons 120 passive layer 130 first, lower electrode 140 insulating layer 150 organic layer / layer structure 160 second, upper electrode 180 scattering particles B1 vB2 light transmitted by the top light emitting display If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW94128831A 2004-08-25 2005-08-23 A display on the basis of organic light-emitting diodes and a method for its manufacture TWI286449B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10404137 2004-08-25

Publications (2)

Publication Number Publication Date
TW200608828A TW200608828A (en) 2006-03-01
TWI286449B true TWI286449B (en) 2007-09-01

Family

ID=39458700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94128831A TWI286449B (en) 2004-08-25 2005-08-23 A display on the basis of organic light-emitting diodes and a method for its manufacture

Country Status (1)

Country Link
TW (1) TWI286449B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608984B1 (en) 2010-04-08 2020-11-11 Agc Inc. Organic led element

Also Published As

Publication number Publication date
TW200608828A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP5037344B2 (en) Display based on organic light emitting diodes and method of manufacturing the same
US20130181242A1 (en) Organic electroluminescent device and method for manufacturing thereof
TWI292678B (en) Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht
US11522164B2 (en) Light-emitting device and display apparatus including the light-emitting device
CN105655346B (en) Thin-film transistor array base-plate
US7589463B2 (en) Top-emitting device and illumination device
TWI528570B (en) Textured optoelectronic devices and associated methods of manufacture
US9692015B2 (en) Organic light emitting device and manufacturing method thereof
US11211432B2 (en) Light emitting device and display apparatus including the light emitting device
TW200945648A (en) Oganic thin film transistor and pixel and method for manufacturing the same and display panel
TW201201622A (en) Organic EL device
CN103597623B (en) There is the organic light emitting apparatus of the light extraction of improvement
WO2023207692A1 (en) Display substrate, packaging substrate, and display device
CN103097113B (en) Manufacture the method for metallic mold for nano-imprint, utilize the method that the metallic mold for nano-imprint manufactured thus manufactures light emitting diode and the light emitting diode manufactured thus
TWI286449B (en) A display on the basis of organic light-emitting diodes and a method for its manufacture
CN108281518B (en) A kind of flexible LED device and preparation method thereof
CN1774811B (en) Light emitting systems
TWI646377B (en) Display device and method of manufacturing same
US11864402B2 (en) Combined auxiliary electrode and partially scattering bank for three-dimensional QLED pixel
TW201714334A (en) Metallic mold, method of manufacturing organic light-emitting diode and organic light-emitting diode
Zhang et al. Fabrication of heteromorphic microlens arrays built in the TiO 2/ormosils composite films for organic light-emitting diode applications
KR100948856B1 (en) Light emitting device and manufacturing method for the same
CN110350103B (en) OLED device structure and preparation method thereof
Zhu et al. A Cost Effective Process for Large Area Photonic Array Applied in Light Emitting Diodes for Light Extraction Enhancement
CN112786763B (en) Display panel and display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees