TWI286076B - Block copolymers and nano micelles comprising the same - Google Patents

Block copolymers and nano micelles comprising the same Download PDF

Info

Publication number
TWI286076B
TWI286076B TW94147873A TW94147873A TWI286076B TW I286076 B TWI286076 B TW I286076B TW 94147873 A TW94147873 A TW 94147873A TW 94147873 A TW94147873 A TW 94147873A TW I286076 B TWI286076 B TW I286076B
Authority
TW
Taiwan
Prior art keywords
nanocell
segment
poly
polymer
polyethyleneimine
Prior art date
Application number
TW94147873A
Other languages
Chinese (zh)
Other versions
TW200724162A (en
Inventor
Chau-Hui Wang
Ging-Ho Hsiue
Che-Ping Lin
Shian-Jy Jass Wang
Chin-I Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW94147873A priority Critical patent/TWI286076B/en
Publication of TW200724162A publication Critical patent/TW200724162A/en
Application granted granted Critical
Publication of TWI286076B publication Critical patent/TWI286076B/en

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyamides (AREA)

Abstract

A block copolymer. The block copolymer includes A block and B block, wherein the A block represents a polyamide and the B block represents a copolymer including a polyethylenimine and a polyamide. The invention also provides a nano micelle including the block copolymer.

Description

1286076 、· ·. 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種高分子’特別是有關於一種團鏈 共聚南分子及包含此共聚南分子之奈米被胞。 【先前技術】 近年來,酸鹼應答型高分子微胞是熱門的研究領域, 但大多著重於物性探討。其設計原理通常是在高分子上加 入聚電解質(polyelectrolyte),也就是離子性高分子,藉由 φ 聚電解質解離前後親、疏水性或電荷的變化改變微胞構型。 二乙胺基乙基-葡聚糖(diethyhminoethyKdextran, DEAE-dextran)是最早用於基因治療的陽離子南分子, Yamaoka等人發現帶電官能基二乙胺基乙基(DEAE)與葡 聚糖(dextran)的比例會影響聚複合體(polycomplex)在基因 轉染上的表現,實驗結果顯示,二乙胺基乙基-葡聚糖的細 胞毒性隨著二乙胺基乙基含量的減少而降低,轉染效果也 跟著變差(Chem· Lett· 11,1171,(1998))。然而,二乙胺基乙 • 基-葡聚糖的轉染效率低,細胞毒性卻高,以及不具生物可 分解性,使其在實際應用上倍受限制。Yamaoka等人曾經 對許多不同結構的陽離子高分子進行基因表現的比較,結 果發現其實這些高分子與DNA形成的聚複合體無論是體 積或是介面電位都非常類似,但只有具有氫氧基(hydr〇xyl group)、醯胺基(amide group)、三級胺(tertiary amine)與四 級胺(quaternary amine)的高分子基因表現效果特別好。一 般認為,氫氧基與醯胺基的親水性可以讓聚複合體之間避 0424-A21354TWF(N2);P02940056TW; david 5 1286076 Λ f * « 免聚集,並有利於DNA解離。[Technical Field] The present invention relates to a polymer, and particularly relates to a group copolymerized south molecule and a nanocapsule comprising the copolymerized south molecule. [Prior Art] In recent years, acid-base responsive polymer micelles have been a hot research field, but most of them focus on physical properties. The design principle is usually to add a polyelectrolyte to the polymer, that is, an ionic polymer, which changes the configuration of the microcells by the change of affinity, hydrophobicity or charge before and after dissociation of the φ polyelectrolyte. Diethylaminoethyl-glucan (diethyhminoethy Kdextran, DEAE-dextran) was the first cationic south molecule for gene therapy. Yamaoka et al. found charged functional diethylaminoethyl (DEAE) and dextran (dextran). The ratio of polycomplex affects gene transfection. The results show that the cytotoxicity of diethylaminoethyl-glucan decreases with the decrease of diethylaminoethyl content. The transfection effect also deteriorated (Chem. Lett. 11, 1171, (1998)). However, diethylaminoethyl-glucan has low transfection efficiency, high cytotoxicity, and is not biodegradable, which limits its practical application. Yamaoka et al. have compared the gene expression of many different cationic polymers, and found that the aggregates formed by these polymers and DNA are very similar in volume or interface potential, but only have hydroxyl groups. The polymer genes of 〇xyl group), amide group, tertiary amine and quaternary amine are particularly effective. It is generally believed that the hydrophilicity of the hydroxyl group and the guanamine group allows the polycomplex to avoid 0424-A21354TWF(N2); P02940056TW; david 5 1286076 Λ f * «free aggregation and facilitate DNA dissociation.

Alonso等人製備聚乳酸·聚 乙二醇(p〇ly(lactic acid)-p〇ly(ethylene glycol),PLA-PEG)團鏈共聚物,並包覆 DNA作為基因載體。此一高分子無正電荷,因此,利用水 相/油相/水相(water-oil-water)乳化法包覆 DNA(J· Control·Alonso et al. prepared a poly(lactic acid)-p〇ly (ethylene glycol) chain copolymer and coated DNA as a gene carrier. This polymer has no positive charge, so it is coated with water/oil-water emulsification method (J· Control·

Release,75, 211.(2001)) 〇Release, 75, 211. (2001)) 〇

Lemieux以Pluronic®共聚高分子包覆DNA,在體外實 驗並無明顯效果,而利用肌肉注射,其轉染效率大約高出 着直接使用 DNA 的 5〜20 倍(Gene Ther·,7, 986(2000))。Lemieux coated DNA with Pluronic® copolymer polymer, which has no significant effect in vitro. With intramuscular injection, the transfection efficiency is about 5 to 20 times higher than that of direct DNA (Gene Ther·, 7, 986 (2000). )).

Jeong 等人利用聚乳酸-甘醇酸 (poly(d5l-lactic-co-glycolic acid), PLGA)與寡核酸 (oligonucleotide, ODN)鍵結,在水相環境下形成聚乳酸-甘 醇酸在内,寡核酸在外的微胞結構(Bioconjug. Chem·,12, 917(2001))。其藉由聚乳酸-甘醇酸降解而釋出寡核酸所需 的時間較長,屬於長效釋放(sustained release)。寡核酸經常 為反義(antisense)的DNA片段,進入細胞後可與DNA相互 ® 結合,阻擋其功能並抑制蛋白質表現。Jeong et al. used poly(d5l-lactic-co-glycolic acid, PLGA) to bond with oligonucleotide (ODN) to form polylactic acid-glycolic acid in an aqueous environment. The microcell structure of the oligonucleic acid (Bioconjug. Chem., 12, 917 (2001)). It takes a long time to release the oligonucleic acid by degradation of polylactic acid-glycolic acid, which is a sustained release. Oligonucleic acids are often antisense DNA fragments that, when introduced into a cell, bind to DNA and block their function and inhibit protein expression.

Maruyama 以聚乳酸(poly(lactic acid), PLA)包覆 DNA,並利用與 poly(L-lysine)-graft-polysaccharide 的靜電 力進行改質,外層覆以聚聽類(polysaccharide)後,蛋白質 吸附與聚集的現象可有效改善(Bioconjug. Chem·, 8, 735(1997)”Maruyama coats DNA with poly(lactic acid), PLA, and uses the electrostatic force of poly(L-lysine)-graft-polysaccharide to modify the outer layer. After the outer layer is coated with polysaccharide, the protein is adsorbed. The phenomenon of aggregation can be effectively improved (Bioconjug. Chem., 8, 735 (1997)"

Kataoka等人合成聚乙二醇-聚乙烯亞胺(poly(ethylene glycol)-&-polyethylenimine,PEG-PEI)團鏈共聚物,利用線 0424-A21354TWF(N2);P02940056TW; david 6 1286076 1 ' · 6 性聚乙烯亞胺包覆DNA,親水性的聚乙二醇在外層保護聚 複合體(Macromolecules,33, 5841(2000))。然而,實驗結果 顯示如果不藉由受體媒介胞飲作用(receptor-mediated endocytosis),聚乙二醇反而會降低聚乙烯亞胺的轉染效果 (Gene Ther·,7, 126(2000))。Kataoka et al. synthesized poly(ethylene glycol-&-polyethylenimine, PEG-PEI) copolymer chain using line 0424-A21354TWF(N2); P02940056TW; david 6 1286076 1 ' • 6-polyethyleneimine coated DNA, hydrophilic polyethylene glycol protects the polyplex in the outer layer (Macromolecules, 33, 5841 (2000)). However, the experimental results show that polyethylene glycol can reduce the transfection effect of polyethyleneimine without receptor-mediated endocytosis (Gene Ther·, 7, 126 (2000)).

Petersen等人將一系列具有不同聚乙二醇 (poly(ethylene glycol),PEG)分子量及接枝程度的聚乙二醇-聚乙烯亞胺(poly(ethylene glycol)-g-polyethylenimine, • PEG_g-PEI)作為探討的對象(Bioconj. Chem·,13,845, (2002))。結果發現,除了聚乙二醇分子量小於5kDa的共 聚物之外,聚複合體粒徑表現在0.15M氯化鈉的離子強度 下都相當安定,並能減少紅血球的凝集。而隨著聚乙二醇 分子量與接枝程度的增加,介面電位會逐漸下降。另外, 不同分子量的聚乙二醇對於聚乙烯亞胺的DNA包覆能力 影響不大,但相較於未接枝聚乙二醇的聚乙烯亞胺,聚乙 二醇-g-聚乙烯亞胺需要較多的量以包覆DNA,顯示聚乙二 • 醇會阻礙聚乙烯亞胺與DNA結合。 在對細胞的測試中,當聚乙二醇的接枝率增加,對細 胞的毒性就越低,但同樣也會使轉染效率下降。Frisch等 人以聚乙二醇/線性聚乙烯亞胺(p〇ly(ethylene glycol)/L_polyethylenimine,PEG/L-PEI)團鏈共聚物作為基 因載體,同樣得到水溶性上升、細胞毒性及轉染效率降低 的結果(J Control. Release,81,379,(2002))。 因此,利用親水性高分子聚乙二醇對陽離子高分子改 0424-A21354TWF(N2);P02940056TW; david 7 1286076 .* * . 質,可增加聚複合體親水性,遮蔽陽離子高分子正電荷, 而達到穩定聚複合體的作用,此外,尚能降低陽離子高分 子的細胞毒性。然而,對於聚乙烯亞胺而言,聚乙二醇人線 性聚乙烯亞胺(polyethylene glycol)/L_p〇lyethylenimine, PEG/L-PEI)共聚物轉染效率不佳仍限制了其應用價值。 【發明内容】 ' 本發明提供一種團鏈共聚高分子,包括A鏈段與B鏈 段’其中A鏈段為聚醢胺’ B鏈段為聚乙烯亞胺與聚酿胺 | 之共聚物。 本發明另提供-種奈米微胞,包括i數個丨述之團鏈 共聚高分子以及-DNA片段,包覆於該微胞内部。 【實施方式】 本發明提供一種團鏈共聚高分子,包括A鏈段與8鏈 段。結構中的A鏈段可為聚醯胺,B鏈段可為聚乙烯亞胺 與聚醯胺組成的共聚物,且B鏈段在中性水相環境中可帶 正電。 • 此團鍵共聚高分子可為二團鏈(diblock)共聚高分子, 結構中的聚醯胺可包括聚噚唑啉(p〇ly(〇xaz〇line),?〇2)或 其衍生物,聚乙烯亞胺可為直鏈或支鏈的聚乙烯亞胺,而 以直鏈的聚乙烯亞胺為較佳選擇。 本發明團鏈共聚高分子可由下列化學式⑴表示之。 L+g - CH2-CH2j7D+CH2CH2.NHiCH2.CH2—j^L 、 、 土 Π (I) 化學式(I)中,L可為開環聚合反應之起始劑,例如氮 或烷基,較佳為烷基,Z可為氫或C2 2i醯基,較佳為醯基, 0424-A21354TWF(N2);P02940056TW; david 8 1286076 1廬 · D可為硫-硫、醯基或自旨基’較佳為硫_硫鍵,χ、m與η可 為1〜10,000的整數,而x/(m+n)可為〇〜5。 本發明另提供一種奈米微胞,包括複數個上述之團鏈 共聚高分子以及一 DNA片段,包覆於微包内部。團鏈共聚 高分子與DNA片段的重量比大體介於1 : 1〇〇〜1〇〇 : 1。 微胞中,團鏈共聚高分子帶正電的B鏈段藉由正、負 電荷之間的靜電吸引力(electrostatic force)與帶負電的 DNA片段相互結合,使A鏈段暴露於微胞外部,如此一來, 馨奈米微胞内部呈疏水性,外部呈親水性,其粒徑大體介於 10〜1,000奈米,介面電位大體介於-50〜50mV。 由於本發明奈米微胞呈電中性,遂可順利通過細胞膜 進入細胞,而當微胞處於酸性環境下時,例如pH值低於 5.5 ’會自行崩解而釋出DNA進行轉錄(transcription)、轉 譯(translation)的工作。 本發明設計一種酸鹼應答型例如聚噚唑啉-聚噚唑啉/ 聚乙烯亞胺(p〇ly(〇xazoline)_6_p〇ly(oxaz〇iine/ethylenimine), • P〇z-6-P(Oz/EI))的團鏈共聚物作為智慧型基因載體,其利 用企液與細胞内酸鹼值的變化控制及幫助基因釋放。請參 閱第1圖,說明團鏈共聚物與基因結合形成微胞的過程。 團鏈共聚物1分成例如親水性聚卩萼唑啉的A鏈段與例如聚 噚唑啉/聚乙烯亞胺共聚物的B鏈段,在中性水相環境中, 團鏈共聚物1的B鏈段會與基因2結合而形成一 a鏈段在 外,B鏈段與基因2在内的微胞核殼結構(c〇re-shell structure)3 〇 0424-A21354TWF(N2);P02940056TW; david 9 1286076 ,* · * 之後,當環境酸驗值下降時,上述A鏈段的聚曙唑U林 之間會產生分子内與分子間的氫鍵而聚集收縮,致微胞結 構3遭受破壞而釋放基因2。藉此特殊的機制可控制基因 於細胞内釋放,達到高轉染及治療的效果。同時,藉由調 整適當水解程度,亦可使上述B鏈段的聚噚唑啉/聚乙烯亞 胺提供一親水力幫助基因脫附,種種均有助於基因傳遞及 釋放。 此外,本發明使用的高分子,除具有酸鹼敏感性外, 參 與習知基因載體材料相比,例如聚乳酸-聚乙二醇 (PLA-PEG)、聚乳酸甘醇酸-寡核酸(PLGA-ODN)、聚乙二 醇-聚乙烯亞胺(PEG-PEI)或聚乙二醇-g-聚乙烯亞胺 (PEG-g-PEI),亦具有較低毒性及良好的生物相容性。 本發明團鏈共聚高分子可由下述方式合成。首先,利 用單官能基起始劑例如甲基苯磺酸(methyl j^-toluenesulfonate, MeOTs)、甲基曱磺酸(methyl methanesulfonate,MeOMs)或峨甲烧(iodomethane,Mel)對 Φ 例如2·乙基-2-曙唾琳(2-ethyl-2-oxazoline)的醯胺單體進行 陽離子開環聚合反應。反應終止後,先冷卻至室溫再加入 例如硫代乙酸鉀鹽(potassium thioacetate,KSAc)的固體,使 其末端導入例如硫代乙酸基(thioacetate,SAc)。 之後,將所得的例如末端為硫代乙酸基的聚噚唑啉 (POz-SAc)與例如 2,2雙硫批咬(2,2’_dithiodipyridine)的 P比 啶化合物反應,得到例如為聚噚唑啉-吡啶 (poly(oxazoline)-pyridine,POz-Py)的中間產物,之後,將上 0424-A21354TWF(N2);P02940056TW; david 10 1286076 -, 1 ^ 述含吡咬結構的中間產物置於例如鹽酸的酸性溶液進行水 解,以得到例如聚(噚唑啉/乙烯亞胺)-吡啶 (poly(oxazoline-co_ethylenimine)_pyridine,P(Oz/EI)-Py)的 水解產物。此水解產物再與例如末端帶硫代乙酸基的聚曙 唑啉(POz-SAc)反應,即可獲得最終例如聚噚唑啉-聚噚唑啉 /聚乙烯亞胺(P0z-b-P(0z/EI))團鏈共聚物。 以下藉由實施例以更進一步說明本發明之特徵及優Petersen et al. used a series of polyethylene glycol-polyethyleneimine (poly(ethylene glycol)-g-polyethylenimine, • PEG_g- with different molecular weight and grafting degree of poly(ethylene glycol). PEI) was the subject of investigation (Bioconj. Chem., 13, 845, (2002)). As a result, it was found that, besides the copolymer having a polyethylene glycol molecular weight of less than 5 kDa, the particle size of the polycomposite was quite stable at an ionic strength of 0.15 M sodium chloride, and the red blood cell agglutination was reduced. With the increase of the molecular weight and grafting degree of polyethylene glycol, the interface potential will gradually decrease. In addition, polyethylene glycols of different molecular weights have little effect on the DNA coating ability of polyethyleneimine, but polyethylene glycol-g-polyethylene is compared with polyethyleneimine which is not grafted with polyethylene glycol. The amine requires a greater amount to coat the DNA, indicating that the polyethylene glycol hinders the binding of the polyethyleneimine to the DNA. In the test of cells, when the grafting rate of polyethylene glycol is increased, the toxicity to cells is lower, but the transfection efficiency is also lowered. Frisch et al. used polyethylene glycol/linear polyethyleneimine (p〇ly(ethylene glycol)/L_polyethylenimine, PEG/L-PEI) copolymer chain as the gene carrier, which also obtained water solubility, cytotoxicity and transfection. The result of reduced efficiency (J Control. Release, 81, 379, (2002)). Therefore, the hydrophilic polymer polyethylene glycol is used to change the cationic polymer to 0424-A21354TWF(N2); P02940056TW; david 7 1286076.*. , which can increase the hydrophilicity of the polycomplex and mask the positive charge of the cationic polymer. The effect of stabilizing the polycomplex is achieved, and in addition, the cytotoxicity of the cationic polymer can be reduced. However, for polyethyleneimine, the poor transfection efficiency of polyethylene glycol manganese polyethyleneimine/L_p〇lyethylenimine, PEG/L-PEI) copolymers still limits its application value. SUMMARY OF THE INVENTION The present invention provides a group copolymerized polymer comprising a segment A and a segment B wherein the A segment is a polyamine amine B segment is a copolymer of polyethyleneimine and polybrene. The present invention further provides a nano-cell, comprising a plurality of agglomerated copolymers and a DNA fragment, which are described in the inside of the micelle. [Embodiment] The present invention provides a cluster copolymerized polymer comprising an A segment and an 8-strand segment. The A segment in the structure may be a polyamine, the B segment may be a copolymer of polyethyleneimine and polyamine, and the B segment may be positively charged in a neutral aqueous environment. • The group-copolymerized polymer may be a diblock copolymerized polymer, and the polyamine in the structure may include polyoxazoline (p〇ly (〇xaz〇line), ?〇2) or a derivative thereof The polyethyleneimine may be a linear or branched polyethyleneimine, and a linear polyethyleneimine is preferred. The copolymerized polymer of the present invention can be represented by the following chemical formula (1). L+g - CH2-CH2j7D+CH2CH2.NHiCH2.CH2—j^L , , Π (I) In the formula (I), L may be a starter for ring-opening polymerization, such as nitrogen or an alkyl group, preferably Is an alkyl group, Z may be hydrogen or C2 2i fluorenyl group, preferably fluorenyl group, 0424-A21354TWF(N2); P02940056TW; david 8 1286076 1庐·D may be sulfur-sulfur, sulfhydryl or self-priming Preferably, the sulfur-sulfur bond, χ, m and η may be an integer from 1 to 10,000, and x/(m+n) may be 〇~5. The present invention further provides a nanocapsule comprising a plurality of the above-mentioned copolymerized polymer and a DNA fragment coated inside the microcapsule. The chain copolymerization The weight ratio of the polymer to the DNA fragment is generally between 1: 1 〇〇 and 1 〇〇 : 1. In the microcell, the positively charged B segment of the cluster copolymer is bonded to the negatively charged DNA fragment by the electrostatic force between the positive and negative charges, and the A segment is exposed to the outside of the cell. In this way, the inside of the Xinnai cell is hydrophobic, the exterior is hydrophilic, the particle size is generally between 10 and 1,000 nm, and the interface potential is generally between -50 and 50 mV. Since the nano-cells of the present invention are electrically neutral, sputum can smoothly enter the cells through the cell membrane, and when the micelles are in an acidic environment, for example, a pH lower than 5.5 ′ will disintegrate spontaneously and release DNA for transcription. Translation work. The present invention contemplates an acid-base response type such as polyoxazoline-polyoxazoline/polyethyleneimine (p〇ly(〇xazoline)_6_p〇ly(oxaz〇iine/ethylenimine), • P〇z-6-P The (Oz/EI)) group chain copolymer is used as a smart gene carrier, which utilizes changes in the liquid phase and intracellular pH to control and help gene release. Please refer to Figure 1 for the process by which the copolymer of the cluster is combined with the gene to form the micelle. The group copolymer 1 is divided into, for example, a chain segment of a hydrophilic polyoxazoline and a B segment of a polyoxazoline/polyethyleneimine copolymer, in a neutral aqueous phase, a copolymer of a chain copolymer The B segment will bind to the gene 2 to form an a-segment, the B-segment and the gene 2, and the c〇re-shell structure 3 〇0424-A21354TWF(N2); P02940056TW; david 9 1286076 , * · * After the environmental acid test value decreases, the polyoxazole U forest of the above A segment will generate intramolecular and intermolecular hydrogen bonds to aggregate and shrink, causing damage to the microcell structure 3 Release gene 2. This special mechanism controls the release of genes into cells for high transfection and therapeutic effects. At the same time, by adjusting the degree of proper hydrolysis, the polyoxazoline/polyethyleneimine of the above B segment can also provide a hydrophilic force to assist gene desorption, all of which contribute to gene delivery and release. Further, the polymer used in the present invention, in addition to having acid-base sensitivity, is involved in conventional gene carrier materials such as polylactic acid-polyethylene glycol (PLA-PEG), polylactic acid glycolic acid-oligonucleic acid (PLGA). -ODN), polyethylene glycol-polyethyleneimine (PEG-PEI) or polyethylene glycol-g-polyethyleneimine (PEG-g-PEI), also has low toxicity and good biocompatibility . The copolymerized chain polymer of the present invention can be synthesized in the following manner. First, using a monofunctional starter such as methyl j^-toluenesulfonate (MeOTs), methyl methanesulfonate (MeOMs) or iodoethane (Mel) for Φ, for example, 2· The indoleamine monomer of 2-ethyl-2-oxazoline is subjected to cationic ring-opening polymerization. After the reaction is terminated, it is cooled to room temperature and then a solid such as potassium thioacetate (KSAc) is added thereto, and the terminal is introduced into, for example, thioacetate (SAc). Thereafter, the obtained polyoxazoline (POz-SAc) having a terminal thioacetic acid group is reacted with, for example, a 2,2 dithiol (2,2'-dithiodipyridine) P-pyridine compound to obtain, for example, polyfluorene. An intermediate product of oxazoline-pyridine (POz-Py), after which the intermediate product containing the butyl structure is placed on 0424-A21354TWF(N2); P02940056TW; david 10 1286076 -, 1 ^ For example, an acidic solution of hydrochloric acid is subjected to hydrolysis to obtain, for example, a hydrolysis product of poly(oxazoline-co-ethylenimine)-pyridine, P(Oz/EI)-Py. The hydrolyzed product is then reacted with, for example, a polyoxazoline (POz-SAc) having a terminal thioacetic acid group to obtain, for example, a polyoxazoline-polyoxazoline/polyethyleneimine (P0z-bP (0z/). EI)) agglomerate copolymer. The features and advantages of the present invention will be further illustrated by the following examples.

【實施例】 【實施例1】 聚2-乙基-2-噚唑啉-聚(2-乙基-2-噚唑啉/乙烯亞 胺)(PEOz-b-P(EOz/EI))合成[Examples] [Example 1] Poly-2-ethyl-2-oxazoline-poly(2-ethyl-2-oxazoline/ethyleneimine) (PEOz-b-P(EOz/EI)) synthesis

⑴聚2-乙基-2-噚唑啉-硫代乙酸基(尸五〇2-似c)合成(1) Synthesis of poly-2-ethyl-2-oxazoline-thioacetic acid (corporate quinone-2-like c)

kscoch3 o°c ο II S—c—CHqKscoch3 o°c ο II S-c-CHq

Er 首先,混合370毫克的甲基苯續酸(methyl -toluenesulfonate,MeOTs)(1.98mmol)與 20 毫升的 2乙基 -2-曙唑啉(2_ethyl-2_oxazoline,ΕΟζ)(197·72 mmol)溶於 60 0424-A21354TWF(N2);P02940056TW; david 11 1286076 «秦 »1 毫升的無水乙腈(acetonitrile)溶劑中,以製備一混合溶液。 接著,在氮氣環境下,加熱此混合溶液至攝氏100度並攪 拌24小時,進行高分子聚合反應。之後,在攝氏0度下, 加入0.7克的硫代乙酸斜鹽(potassium thioacetate)以終止上 述PEOz高分子聚合反應。續攪拌溶液24小時後,以矽膠 過濾並以乙醚沈澱純化。待完全乾燥後,即得到褐色粉末 的PEOz-SAc產物。PEOz-SAc高分子的分子量與其分布 (polydispersity)可藉由膠體透析儀(gel permeationEr First, mix 370 mg of methyl-toluenesulfonate (MeOTs) (1.98 mmol) with 20 ml of 2 ethyl-2-oxazoline (2_ethyl-2_oxazoline, ΕΟζ) (197·72 mmol) On 60 0424-A21354TWF (N2); P02940056TW; david 11 1286076 «Qin» 1 ml of anhydrous acetonitrile solvent to prepare a mixed solution. Next, the mixed solution was heated to 100 ° C under a nitrogen atmosphere and stirred for 24 hours to carry out a polymer polymerization reaction. Thereafter, 0.7 g of potassium thioacetate was added at 0 ° C to terminate the above PEOz polymer polymerization. After stirring the solution for 24 hours, it was filtered with hydrazine and purified by diethyl ether precipitation. After complete drying, a brown powder of PEOz-SAc product was obtained. The molecular weight and polydispersity of PEOz-SAc polymers can be determined by gel permeation (gel permeation).

chromatography,GPC)分析獲得。 (2)聚2-乙基·2-噚唑啉-B比啶合成 H3Sn^; >一C—ch3Chromatography, GPC) analysis obtained. (2) Synthesis of poly-2-ethyl-2-oxazoline-B-pyridinium H3Sn^; >-C-ch3

NH3/MeOH R.T. ⑶聚(2·乙基冬噚唑啉乙烯亞胺)-卩比啶(iY五〇£7>作)合成NH3/MeOH R.T. (3) Synthesis of poly(2·ethyloxazoline ethyleneimine)-indolepyridinium (iY 〇7)

首先,混合1克的PEOz-SAc(O.lmmol)與1Π毫克的 2,2,-雙硫吡啶(2,2,-dithiodipyridine)(〇.5mmol)溶於 20 宅 升的氨水/曱醇混合溶液(7N)中。接著,在氮氣環境及室溫 下,攪拌此混合溶液24小時,以移除溶劑。留下的殘留物 續重新溶解於二氯甲烷中並以乙醚沈澱數次。之後’真空 乾燥純化所得產物,即獲得一黃色粉末的PE0z-Py ° 接著,將1克的PEOz-Py加入1〇毫升濃鹽酸(35%)與 8毫升水的混合溶液中並加熱至攝氏1〇〇度持續3小時。 0424-A21354TWF(N2);P02940056TW; david 12 1286076 .· * » 之後,加入氫氧化納以調整此溶液的pH值至9〜10。產物 續以透析法純化3天。待完全乾燥後,即獲得一黏稠狀半 固態的P(EOz-EI)-Py產物。 (4)聚2-乙基-2-噚唑啉-聚(2-乙基-2-噚唑啉/乙烯亞 胺)(PEOz-b-P(EOz/EI))合成First, 1 gram of PEOz-SAc (0.1 mmol) was mixed with 1 mM of 2,2,-dithiodipyridine (〇.5 mmol) in 20 liters of ammonia/sterol. Solution (7N). Next, the mixed solution was stirred for 24 hours under a nitrogen atmosphere at room temperature to remove the solvent. The residue remaining was redissolved in dichloromethane and precipitated several times with diethyl ether. Thereafter, the obtained product was purified by vacuum drying to obtain a yellow powder of PE0z-Py. Next, 1 g of PEOz-Py was added to a mixed solution of 1 ml of concentrated hydrochloric acid (35%) and 8 ml of water and heated to Celsius 1. The temperature lasts for 3 hours. 0424-A21354TWF(N2); P02940056TW; david 12 1286076 .. * » After that, sodium hydroxide was added to adjust the pH of the solution to 9-10. The product was purified by dialysis for 3 days. After being completely dried, a viscous semi-solid P(EOz-EI)-Py product was obtained. (4) Synthesis of poly-2-ethyl-2-oxazoline-poly(2-ethyl-2-oxazoline/ethyleneimine) (PEOz-b-P(EOz/EI))

首先,在氮氣環境並室溫下,混合1克的 P(EOz-EI)-Py(0.196mmol)與 235 毫克的 PEOz-SAc (0.065mmol)溶於15毫升的氨水/甲醇混合溶液(7N)中反應 24小時。產物分別以曱醇及蒸顧水進行透析3天,以去除 未反應的P(EOz-EI)-Py與其他副產物。待蒸散步驟後,即 獲得最終產物 PEOz-b-P(EOz/EI)。高分子 PEOz_b-P(EOz/EI) 在未使用前係以攝氏-20度乾燥保存之。 【實施例2】 微胞製備 首先,取5pg的DNA與聚2-乙基-2-噚唑啉-聚(2-乙基-241 等唑 啉/乙烯亞胺)(PEOz-b-P(EOz/EI))共聚高分子混合,高分子與DNA 的重量比為込1〜20 0混合均勻後,在室溫下反應30分鐘即可獲得 一包覆DNA的微胞。本實施例選用的基因為含蟲螢光酶(ludferase) 基因的質體DNA (plasmid),,,PUHC 13-3”,屬於報導基因(reporter gene)的一種。 0424-A21354TWF(N2);P02940056TW; david 13 1286076 .* 1 > 【實施例3】 微胞粒徑分析 將微胞溶液置於丙烯酸容器中,測量微胞粒徑。結果 请參閱第2圖’說明聚(2-乙基-2-吗。坐琳/乙稀亞 胺)(P(EOz/EI))複合體與聚2-乙基-2-噚唑啉-聚(2_乙基_2_口萼 唑啉/乙烯亞胺)(PEOz-b-P(EOz/EI))複合體在不同溶液中的 粒徑變化,其中聚(2-乙基-2-噚唑啉/乙烯亞胺)複合體包括 B-PEI、L-76及L-89,聚2-乙基冬曙唾琳聚(2-乙基士曙 • 唑啉/乙烯亞胺)複合體包括4k-76及4k-89。 結果可看出,不論聚(2-乙基-2-Π萼唑琳/乙稀亞 fec)(P(EOz/EI))複合體或聚2-乙基-2-曙唾琳_聚(2_乙基_2口萼 唑啉/乙烯亞胺)(PEOz-b_P(EOz/EI))複合體在水中的粒徑大 約為200奈米。當溶液中離子濃度提高到〇15M時,聚(2_ 乙基-2-噚唑啉/乙烯亞胺)複合體會因凝集現象,使粒徑增 大2〜3倍,然聚2-乙基-2-曙唑啉·聚(2-乙基_2_Π萼唑琳/乙烯 亞胺)複合體的粒徑與在純水中的表現差異不大,顯示親水 鲁性的聚2-乙基-2-1½唆琳(ΡΕΟζ)確實有助於聚複合體結^的 穩定。 【實施例4】 微胞電位分析 請參閱第3圖,說明聚(2-乙基-2-Π萼唑琳/乙稀亞 胺)(Ρ(ΕΟζ/ΕΙ))複合體與聚2-乙基-2-曙唾琳-聚(2_乙基口μ σ坐琳/乙稀亞胺)(PEOz-b-P(EOz/EI))複合體所測得介面電位 的差異’其中聚(2-乙基-2_曙嗤琳/乙稀亞胺)複合體包括 0424-A21354TWF(N2);P02940056TW; david 14 1286076 .» 1 * B-PEI、L-76及L-89,聚2_乙基-2-嗜唾琳-聚(2_乙基-2-口萼 唑啉/乙烯亞胺)複合體包括4k-76及4k-89。 從圖中可看出,聚(2-乙基-2,唑啉/乙烯亞 胺)(P(EOz/EI))複合體帶有正電荷,而聚2_乙基-2-噚唑琳-聚(2-乙基_2_曙唾琳/乙烯亞胺)(pEOz-b-P(EOz/EI))複合體 則接近電中性。 【實施例5】 微胞酸鹼應答分析 • 請參閱第4〜6圖,說明聚(2-乙基-2-噚唑啉/乙烯亞 胺)(P(EOz/EI))複合體與聚2-乙基·2_噚唑啉_聚(2_乙基m萼 唑啉/乙烯亞胺)(PEOz-b-P(EOz/EI))複合體在各種ρΗ値的 酸驗應答’其中聚(2-乙基-2-曙唾琳/乙稀亞胺)複合體為 LI-76 ’ 1 2-乙基_2-〇亏唾淋-聚(2-乙基_2-曙哇琳/乙烯亞胺) 複合體包括4k-76及4k_89。 從電泳圖可觀察’聚2-乙基-2_卩萼唾琳-聚(2-乙基_2«•口萼 唑啉/乙烯亞胺)(PEOz-b-P(EOz/EI))複合體在中性環境下很 • 穩定,然而,當酸鹼值下降至5.5、5或4.5時,圖中會出 現清楚的條狀紋路,此即表示聚複合體已解離釋出DNA(第 5、ό圖)。同日守對聚(2·乙基-2-曙嗤琳/乙稀亞胺)(p(e〇z/ei)) 複合體作试驗發現,聚(2-乙基-2-曙唾琳/乙婦亞胺)複合體 在不同J衣i兄下都相當穩定(第4圖)。因此,可推論藉由聚 2-乙基-2-噚唑啉(PE〇z)高分子的酸鹼應答,確實可改變聚 複合體結構釋放出内含的核酸。 【實施例6】 0424-A21354TWF(N2);P02940056TW; david 15 1286076 .‘ ι . 微胞細胞毒性試驗 首先,將人類纖維母細胞(human diploid fibroblast)以 培養基培養在攝氏37度,二氧化碳濃度5%的恆溫培養箱 中,以倒立式顯微鏡觀察其生長情形。待細胞長至八分滿 後’使用0.25%的胰蛋白酶-乙二胺四醋酸鹽(trypsin-EDTA) 清洗液將培養皿中的細胞洗下,混合細胞染色劑trypan blue,在顯微鏡下以細胞計數器計算細胞數目。於96孔培 養盤中每孔種植1 xlO4個細胞。待24小時後,移除培養基 • 並加入含有不同聚(2-乙基-2-噚唑啉/乙烯亞胺)(Ρ(ΕΟζ/ΕΙ)) 複合體與聚2-乙基-2-噚唑啉-聚(2-乙基-2-噚唑啉/乙烯亞 胺)(PEOz-b-P(EOz/EI))複合體濃度的培養液,其濃度分別 為0.001、0.01、0.1、1及10mg/ml,。經過特定時間後, 更換新鮮培養基,並加入ΙΟμΕ的MTT(5mg/mL in PBS)反 應4小時。再次移除培養基,加入100μί的二甲基亞颯溶 解結晶物。待室溫反應12小時後,以96孔盤酵素判讀儀 讀取波長570奈米的吸收。實驗重複6次(η = 6),細胞存 • 活率(cell viability)的計算方式為: 細胞存活率(%)=吸收度sample/吸收度positive control 實驗結果發現,聚2-乙基-2-噚唑啉-聚(2-乙基-2-噚唑 啉/乙烯亞胺)(PEOz-b-P(EOz/EI))複合體的毒性明顯較聚 (2_乙基-2-噚唑啉/乙烯亞胺)(P(EOz/EI))複合體低,例如聚 2-乙基-2-噚唑啉-聚(2_乙基-2-噚唑啉/乙烯亞胺)複合體在 濃度lmg/ml時,仍可維持60 %以上的細胞存活率,請參 閱第7圖,圖中聚(2-乙基-2-噚唑啉/乙烯亞胺)複合體包括 0424-A21354TWF(N2);P02940056TW; david 16 1286076 .* 1 > Β·ΡΕΙ、L-76及L-89,聚2_乙基-2-噚唑啉-聚(2-乙基-2-口等 唑啉/乙烯亞胺)複合體包括4k-76及4k-89。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。First, 1 gram of P(EOz-EI)-Py (0.196 mmol) and 235 mg of PEOz-SAc (0.065 mmol) were mixed in 15 ml of ammonia/methanol mixed solution (7N) under nitrogen atmosphere at room temperature. The reaction was carried out for 24 hours. The product was dialyzed against decyl alcohol and distilled water for 3 days to remove unreacted P(EOz-EI)-Py and other by-products. After the evapotranspiration step, the final product PEOz-b-P (EOz/EI) is obtained. The polymer PEOz_b-P (EOz/EI) was stored dry at -20 ° C before use. [Example 2] Preparation of micelles First, 5 pg of DNA was taken with poly-2-ethyl-2-oxazoline-poly(2-ethyl-241 oxazoline/ethyleneimine) (PEOz-bP (EOz/) EI)) The copolymerized polymer is mixed, and the weight ratio of the polymer to the DNA is 込1 to 20 0. After uniformly mixing, a DNA-coated micelle is obtained by reacting at room temperature for 30 minutes. The gene selected in the present embodiment is a plastid DNA of a luciferase-containing gene, and a PUHC 13-3", which belongs to a reporter gene. 0424-A21354TWF(N2); P02940056TW ; david 13 1286076 .* 1 > [Example 3] Cellular particle size analysis The cell solution was placed in an acrylic container to measure the cell size. For the results, please refer to Fig. 2 'Illustration of poly(2-ethyl-) 2-?. Lin/Ethyleneimine) (P(EOz/EI)) complex with poly-2-ethyl-2-oxazoline-poly(2_ethyl_2_oxazoline/ethylene Particle size change of the PEOz-bP(EOz/EI) complex in different solutions, wherein the poly(2-ethyl-2-oxazoline/ethyleneimine) complex includes B-PEI, L -76 and L-89, poly 2-ethyl samarium salicin (2-ethylglycanoxazoline / ethyleneimine) complexes including 4k-76 and 4k-89. The results can be seen, regardless of the poly (2-ethyl-2-oxazolene/ethylene subfec) (P(EOz/EI)) complex or poly-2-ethyl-2-indole _ poly(2_ethyl_2 port The oxazoline/ethyleneimine) (PEOz-b_P(EOz/EI)) complex has a particle size of approximately 200 nm in water. When the ion concentration in the solution is increased to 〇15M The poly(2-ethyl-2-oxazoline/ethyleneimine) complex will increase the particle size by 2 to 3 times due to agglutination, but poly-2-ethyl-2-oxazoline poly(2-B) The particle size of the base 2_carbazide/ethyleneimine complex is not much different from that in pure water, and the poly-2-ethyl-2-11⁄2唆(唆) which shows hydrophilicity is indeed helpful. The stability of the polycomplex is stable. [Example 4] For the analysis of the cell potential, please refer to Figure 3 for the poly(2-ethyl-2-oxazolidine/ethyleneimine) (Ρ(ΕΟζ/ΕΙ) The interface potential measured by the complex and poly-2-ethyl-2-antimonin-poly(2_ethyl port μ σ sitin/ethyleneimine) (PEOz-bP(EOz/EI)) complex The difference 'in the poly(2-ethyl-2_曙嗤琳/ethyleneimine) complex includes 0424-A21354TWF(N2); P02940056TW; david 14 1286076 .» 1 * B-PEI, L-76 and L -89, poly-2-ethyl-2-salin-poly(2-ethyl-2-oxooxazoline/ethyleneimine) complexes including 4k-76 and 4k-89. , poly(2-ethyl-2,oxazoline/ethyleneimine) (P(EOz/EI)) complex with a positive charge, and poly-2-ethyl-2-oxazole-poly (2-B Base_2_曙曙琳/ethyleneimine)(p The EOz-b-P(EOz/EI)) complex is close to electrical neutrality. [Example 5] Analysis of microcellular acid-base response • Please refer to Figures 4 to 6 for poly(2-ethyl-2-oxazoline/ethyleneimine) (P(EOz/EI)) complex and poly 2-ethyl·2_oxazoline-poly(2-ethylmoxazoline/ethyleneimine) (PEOz-bP(EOz/EI)) complex in the acidity response of various ρΗ値' 2-Ethyl-2-hydrazine/ethyleneimine) complex is LI-76 ' 1 2-ethyl 2 - 〇 唾 唾 - - poly (2-ethyl _2 - 曙 琳 / ethene The imine) complexes include 4k-76 and 4k_89. From the electropherogram, we can observe the poly(2-ethyl-2_卩萼卩萼琳-poly(2-ethyl_2«•oxaxazoline/ethyleneimine) (PEOz-bP(EOz/EI)) complex. It is very stable in a neutral environment. However, when the pH value drops to 5.5, 5 or 4.5, a clear strip pattern appears in the figure, which means that the poly complex has dissociated and released DNA (5th, ό Figure). On the same day, the poly(2-ethyl-2-indene/ethyleneimine) (p(e〇z/ei)) complex was tested and found to be poly(2-ethyl-2-anthracene). /Ethymidine imine) complex is quite stable under different J clothing brothers (Fig. 4). Therefore, it can be inferred that by the acid-base reaction of the poly-2-ethyl-2-oxazoline (PE〇z) polymer, it is possible to change the structure of the poly complex to release the contained nucleic acid. [Example 6] 0424-A21354TWF(N2); P02940056TW; david 15 1286076 .' ι . Microcytotoxicity test First, human diploid fibroblast was cultured at 37 ° C, carbon dioxide concentration 5%. In a constant temperature incubator, the growth was observed with an inverted microscope. After the cells are up to eight minutes long, use the 0.25% trypsin-EDTA cleaning solution to wash the cells in the dish, mix the cell stain trypan blue, and use the cells under the microscope. The counter counts the number of cells. 1 x 10 4 cells were seeded per well in a 96-well culture dish. After 24 hours, remove the medium • and add the poly(2-ethyl-2-oxazoline/ethyleneimine) (Ρ(ΕΟζ/ΕΙ)) complex with poly-2-ethyl-2-hydrazine a concentration of oxazoline-poly(2-ethyl-2-oxazoline/ethyleneimine) (PEOz-bP(EOz/EI)) complex at concentrations of 0.001, 0.01, 0.1, 1 and 10 mg, respectively /ml,. After a certain period of time, fresh medium was replaced and ΙΟμΕ in MTT (5 mg/mL in PBS) was added for 4 hours. The medium was again removed, and 100 μί of dimethyl sulfoxide was added to dissolve the crystals. After reacting for 12 hours at room temperature, the absorption at a wavelength of 570 nm was read with a 96-well plate enzyme reader. The experiment was repeated 6 times (η = 6), and the cell viability was calculated as: cell viability (%) = absorbance sample / absorbance positive control experimental results found that poly 2-ethyl-2 -Oxazoline-poly(2-ethyl-2-oxazoline/ethyleneimine) (PEOz-bP(EOz/EI)) complex is significantly more toxic than poly(2-ethyl-2-oxazoline) /Ethyleneimine) (P(EOz/EI)) complex is low, such as poly-2-ethyl-2-oxazoline-poly(2-ethyl-2-oxazoline/ethyleneimine) complex At a concentration of 1 mg/ml, the cell viability of 60% or more can still be maintained. Please refer to Fig. 7, where the poly(2-ethyl-2-oxazoline/ethyleneimine) complex includes 0424-A21354TWF (N2). ); P02940056TW; david 16 1286076 .* 1 > Β·ΡΕΙ, L-76 and L-89, poly-2-ethyl-2-oxazoline-poly(2-ethyl-2-porto-oxazoline/ The ethyleneimine) complexes include 4k-76 and 4k-89. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

0424-A21354TWF(N2);P02940056TW; david 17 1286076 & ft 4 · 【圖式簡單說明】 第1圖係為本發明微胞結構示意圖。 第2圖係為本發明微胞之粒徑分析。 第3圖係為本發明微胞之介面電位比較圖。 第4〜6圖係為本發明微胞之酸鹼應答分析。 第7圖係為本發明微胞之細胞毒性試驗。 【主要元件符號說明】 1〜團鏈共聚物; , 2〜基因; 3〜微胞。0424-A21354TWF(N2); P02940056TW; david 17 1286076 & ft 4 · [Simplified Schematic] FIG. 1 is a schematic diagram of the structure of the microcell of the present invention. Figure 2 is a particle size analysis of the micelles of the present invention. Figure 3 is a comparison of the interface potentials of the micelles of the present invention. Figures 4 to 6 are the acid-base response analysis of the microcells of the present invention. Figure 7 is a cytotoxicity test of the micelles of the present invention. [Main component symbol description] 1 ~ group chain copolymer; , 2 ~ gene; 3 ~ micelle.

0424-A21354TWF(N2);P02940056TW; david 180424-A21354TWF(N2);P02940056TW; david 18

Claims (1)

1286076 … v * 十、申請專利範圍: 1. 一種團鏈共聚高分子,包括A鏈段與B鏈段,其中A 鏈段為聚醯胺,B鏈段為聚乙烯亞胺與聚醯胺之共聚物。 2. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該團鏈共聚高分子係為二團鏈共聚高分子。 3. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該B鏈段於水中係帶正電。 4. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該聚醯胺係包括聚曙唾啉(poly(oxazoline),POz)或其衍生 • 物。 5. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該聚乙烯亞胺係包括直鏈聚乙烯亞胺。 6. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該聚乙烯亞胺係包括支鏈聚乙烯亞胺。 7. 如申請專利範圍第1項所述之團鏈共聚高分子,其中 該團鏈共聚高分子,具有下列化學式(I): L+N - ΟΗ2-〇Η2|^+αΗ2-〇Η2-ΝΗ^·αΗ2·αΗ2-Ν^Η_ • 4 z CD 其中 L包括氮或烧基; Ζ包括氫或C 2-21酿基; D包括硫-硫、醯基或酯基;以及 X、m 與 η 為 1〜10,000。 8. 如申請專利範圍第7項所述之團鏈共聚高分子,其 中 x/(m+n)為 0〜5。 9. 如申請專利範圍第7項所述之團鏈共聚高分子,其 0424-A21354TWF(N2);P02940056TW; david 19 1286076 , * r * 中L為開環聚合反應之起始劑。 10. —種奈米微胞,包括: 複數個如申請專利範圍第1項所述之團鏈共聚高分 子;以及 一 DNA片段,包覆於該微胞内部。 11. 如申請專利範圍第10項所述之奈米微胞,其中該 等團鏈共聚高分子與該DNA片段之重量比大體介於1: 100〜100 : 1 。 12. 如申請專利範圍第10項所述之奈米微胞,其中該 • DNA片段與該團鏈共聚高分子之B鏈段係藉由靜電吸引力 (electrostatic force)相互結合。 13. 如申請專利範圍第10項所述之奈米微胞,其中該 團鏈共聚高分子之A鏈段係暴露於該微胞外部。 14. 如申請專利範圍第10項所述之奈米微胞,其中該 奈米微胞之内部為疏水性,外部為親水性。 15. 如申請專利範圍第10項所述之奈米微胞,其中該 奈米微胞之粒徑大體介於10〜1,〇〇〇奈米。 φ 16.如申請專利範圍第10項所述之奈米微胞,其中該 奈米微胞之介面電位大體介於-50〜50mV。 17. 如申請專利範圍第10項所述之奈米微胞,其中該 奈米微胞係為電中性。 18. 如申請專利範圍第10項所述之奈米微胞,其中該 奈米微胞於酸性環境下崩解,釋出該DNA片段。 19. 如申請專利範圍第18/項所述之奈米微胞,其中該 酸性環境之pH值大體低於5.5。 0424-A21354TWF(N2);P02940056TW; david 201286076 ... v * X. Patent application scope: 1. A group chain copolymer polymer, comprising A segment and B segment, wherein the A segment is polyamine and the B segment is polyethyleneimine and polyamine. Copolymer. 2. The copolymerization polymer according to claim 1, wherein the copolymerization polymer is a two-chain copolymer. 3. The group copolymerized polymer according to claim 1, wherein the B segment is positively charged in the water. 4. The copolymerization polymer according to claim 1, wherein the polyamine compound comprises poly(oxazoline, POz) or a derivative thereof. 5. The group copolymerized polymer according to claim 1, wherein the polyethyleneimine comprises a linear polyethyleneimine. 6. The group copolymerized polymer according to claim 1, wherein the polyethyleneimine comprises a branched polyethyleneimine. 7. The copolymerization polymer according to claim 1, wherein the copolymerization polymer has the following chemical formula (I): L+N - ΟΗ2-〇Η2|^+αΗ2-〇Η2-ΝΗ ^·αΗ2·αΗ2-Ν^Η_ • 4 z CD where L includes nitrogen or alkyl; Ζ includes hydrogen or C 2-21 broth; D includes sulphur-sulfur, sulfhydryl or ester group; and X, m and η It is 1 to 10,000. 8. The copolymerization polymer according to claim 7, wherein x/(m+n) is 0 to 5. 9. The copolymerization polymer of the group as described in claim 7, wherein 0424-A21354TWF(N2); P02940056TW; david 19 1286076, *r* is the initiator of ring-opening polymerization. 10. A nanocell, comprising: a plurality of agglomerate copolymers as described in claim 1; and a DNA fragment coated within the cell. 11. The nanocapsule of claim 10, wherein the weight ratio of the copolymerized polymer to the DNA fragment is substantially between 1:100 and 100:1. 12. The nanocapsule of claim 10, wherein the DNA segment and the B segment of the copolymerized polymer are bonded to each other by an electrostatic force. 13. The nanocell of the invention of claim 10, wherein the A segment of the copolymerized polymer is exposed to the outside of the microcell. 14. The nanocell of the invention of claim 10, wherein the inside of the nanocell is hydrophobic and the exterior is hydrophilic. 15. The nanocapsule of claim 10, wherein the nanocell has a particle size substantially between 10 and 1, 〇〇〇 nanometer. Φ 16. The nanocapsule of claim 10, wherein the interface potential of the nanocell is substantially between -50 and 50 mV. 17. The nanocell of the invention of claim 10, wherein the nanocell is electrically neutral. 18. The nanocell of the invention of claim 10, wherein the nanocell is disintegrated in an acidic environment to release the DNA fragment. 19. The nanocapsule of claim 18, wherein the pH of the acidic environment is substantially less than 5.5. 0424-A21354TWF(N2);P02940056TW; david 20
TW94147873A 2005-12-30 2005-12-30 Block copolymers and nano micelles comprising the same TWI286076B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94147873A TWI286076B (en) 2005-12-30 2005-12-30 Block copolymers and nano micelles comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94147873A TWI286076B (en) 2005-12-30 2005-12-30 Block copolymers and nano micelles comprising the same

Publications (2)

Publication Number Publication Date
TW200724162A TW200724162A (en) 2007-07-01
TWI286076B true TWI286076B (en) 2007-09-01

Family

ID=39458571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94147873A TWI286076B (en) 2005-12-30 2005-12-30 Block copolymers and nano micelles comprising the same

Country Status (1)

Country Link
TW (1) TWI286076B (en)

Also Published As

Publication number Publication date
TW200724162A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
Rossegger et al. Design strategies for functionalized poly (2-oxazoline) s and derived materials
Lin et al. Linear poly (amido amine) s with secondary and tertiary amino groups and variable amounts of disulfide linkages: synthesis and in vitro gene transfer properties
Xu et al. Polymer vectors via controlled/living radical polymerization for gene delivery
Jiang et al. Multi-arm carriers composed of an antioxidant lignin core and poly (glycidyl methacrylate-co-poly (ethylene glycol) methacrylate) derivative arms for highly efficient gene delivery
Zhong et al. Low molecular weight linear polyethylenimine-b-poly (ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties
Fan et al. Conjugation of poly (ethylene glycol) to poly (lactide)-based polyelectrolytes: An effective method to modulate cytotoxicity in gene delivery
EP1503802B1 (en) Controllably degradable polymeric biomolecule or drug carrier and method of synthesizing said carrier
Gao et al. Aminated linear and star-shape poly (glycerol methacrylate) s: synthesis and self-assembling properties
Xu et al. Cyclodextrin-based sustained gene release systems: A supramolecular solution towards clinical applications
US20040166089A1 (en) Biodegradable polyacetals
Hashemi et al. Gene delivery efficiency and cytotoxicity of heterocyclic amine-modified PAMAM and PPI dendrimers
Li et al. Synthesis and Characterization of pH‐Responsive Copolypeptides Vesicles for siRNA and Chemotherapeutic Drug Co‐Delivery
Zhang et al. Poly (ethylene glycol) analogs grafted with low molecular weight poly (ethylene imine) as non-viral gene vectors
Hua et al. Versatile strategy for the synthesis of dendronlike polypeptide/linear poly (ε-caprolactone) block copolymers via click chemistry
O’Keeffe Ahern et al. Brushlike cationic polymers with low charge density for gene delivery
Peng et al. Dendron-like polypeptide/linear poly (ethylene oxide) biohybrids with both asymmetrical and symmetrical topologies synthesized via the combination of click chemistry and ring-opening polymerization
Yi et al. Diol glycidyl ether-bridged cyclens: preparation and their applications in gene delivery
Hashemi et al. Gene transfer enhancement by alkylcarboxylation of poly (propylenimine)
Alavi et al. Hyperbranched–dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly (propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency
TWI607762B (en) Polycarbonates bearing aromatic n-heterocycles for drug delivery
Fischer et al. Hyperbranched polyamines for transfection
Albrecht et al. Nano-and microgels through addition reactions of functional oligomers and polymers
Garg et al. In vitro assessment of core-shell micellar nanostructures of amphiphilic cationic polymer-peptide conjugates as efficient gene and drug carriers
Guo et al. Synthesis and characterization of polycation block copolymer Poly (l-lysine)-b-poly [N-(N′, N′-diisopropyl-aminoethyl) aspartamide] as potential pH responsive gene delivery system
Zeng et al. Poly (L-lysine)-based cylindrical copolypeptide brushes as potential drug and gene carriers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees