TWI285864B - System and method for driving multiple lamps - Google Patents

System and method for driving multiple lamps Download PDF

Info

Publication number
TWI285864B
TWI285864B TW94129248A TW94129248A TWI285864B TW I285864 B TWI285864 B TW I285864B TW 94129248 A TW94129248 A TW 94129248A TW 94129248 A TW94129248 A TW 94129248A TW I285864 B TWI285864 B TW I285864B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
alternating current
filtering
transformer
Prior art date
Application number
TW94129248A
Other languages
Chinese (zh)
Other versions
TW200709153A (en
Inventor
Chih-Chan Ger
Wen-Lin Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94129248A priority Critical patent/TWI285864B/en
Publication of TW200709153A publication Critical patent/TW200709153A/en
Application granted granted Critical
Publication of TWI285864B publication Critical patent/TWI285864B/en

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

A system for driving multiple lamps includes a transformer circuit, a filter and steady-flow circuit, and a light source. The transformer circuit includes a first output end for outputting a first AC signal, and a second output end for outputting a second AC signal. The filter and steady-flow circuit includes plural filter and steady-flow circuit units that are respectively connected to the first output end for suppressing harmonic signal associated with the first AC signal, smoothing sinusoidal shape of the first AC signal, and transmitting plural third AC signals that have substantial same current values. Each of the filter and steady-flow circuit unit includes an inductance and a capacitor. The light source includes a plurality of lamps, each of which having one end is connected to one of the filter and steady-flow circuit units, and is driven by the third AC signal.

Description

1285864 ’九、發明說明· .【發明所屬之技術領域】 本發明關於一種燈管驅動系統,尤其係關於一種用於液晶 顯示器(Liquid Crystal DiSplay,LCD)背光模組(BackHght module)之多燈管驅動系統。 【先前技術】 _ 液晶顯示(Liquid Crystal Display,LCD)面板係以放 ‘電燈(DischargeLamp),特別係冷陰極螢光燈(ColdCathode • Fluorescent Lamp,CCFL)作為背光(Backlight)系統之光 源。典型地,冷陰極螢光燈係由換流電路(Inverter Circuit) 來驅動’其可供應父流訊號至燈管,並通常具有迴授控制電路 (feedback and control circuit)’以便監控維持燈管電流 之穩定性。在較大型之液晶顯示面板中,需要設置兩支或更多 _支冷陰極螢光燈以提供足夠的亮度。 第一圖顯示習知之多燈管驅動系統之功能模組圖。該系統 包括一換流電路101、一變壓及濾波電路1〇3、一電流平衡電 路105、一燈管組1〇7及一迴授控制電路1〇9。其中,換流電 路101用於將輸入之直流訊號轉換為一交流訊號。變壓及渡波 電路103耦接於換流電路101,用於改變交流訊號的電壓級, 並抑制交流訊號中的諧波訊號。通常變壓及濾波電路1〇3包括 一變壓器T1及一電容C1,電容C1並聯於變壓器τΐ次級繞組 1285864 兩端。利用變壓器T1的漏感及電容Cl形成一 LC濾波器,對 變壓器T1輸出的交流訊號進行濾波。電流平衡電路105耦接 於變壓及濾波電路103及燈管組107之間。由於燈管組107中 的各燈管間存在阻抗差異,導致流經各燈管的電流各不相同。 因此,需要電流平衡電路105來平衡流經各燈管之電流。迴授 控制電路109連接於燈管組1〇7與換流電路之間,用於依 照來自於燈管組107的迴授訊號控制換流電路1〇1。1285864 'Nine, the invention belongs to the technical field of the invention. The invention relates to a lamp driving system, in particular to a multi-tube for a liquid crystal display (LCD) backlight module (BackHght module) Drive System. [Prior Art] _ Liquid Crystal Display (LCD) panels are used as a light source for a Backlight system by placing a 'Discharge Lamp', especially a Cold Cathode Fluorescent Lamp (CCFL). Typically, a cold cathode fluorescent lamp is driven by an inverter circuit that can supply a parent flow signal to a lamp and typically has a feedback and control circuit to monitor the lamp current. Stability. In larger LCD panels, two or more cold cathode fluorescent lamps need to be provided to provide sufficient brightness. The first figure shows a functional module diagram of a conventional multi-lamp drive system. The system includes a commutation circuit 101, a transformer and filter circuit 1〇3, a current balancing circuit 105, a lamp group 1〇7, and a feedback control circuit 1〇9. The converter circuit 101 is configured to convert the input DC signal into an AC signal. The transformer circuit 103 is coupled to the converter circuit 101 for changing the voltage level of the AC signal and suppressing the harmonic signals in the AC signal. Generally, the transformer and filter circuit 1〇3 includes a transformer T1 and a capacitor C1 connected in parallel across the transformer τΐ secondary winding 1285864. An LC filter is formed by the leakage inductance of the transformer T1 and the capacitor C1 to filter the AC signal output from the transformer T1. The current balancing circuit 105 is coupled between the transformer and filter circuit 103 and the lamp group 107. Due to the difference in impedance between the lamps in the lamp group 107, the current flowing through the lamps varies. Therefore, current balancing circuit 105 is required to balance the current flowing through each of the lamps. The feedback control circuit 109 is connected between the lamp group 1〇7 and the commutation circuit for controlling the commutation circuit 1〇1 in accordance with the feedback signal from the lamp group 107.

請參閱第二圖,其為第一圖之具體電路圖。各功能模組間 的連接關係與第一圖相同。變壓及濾波電路103a由變壓器τι 與並聯於變壓器T1次級繞組兩端之電容G1組成。電流平衡電 路105a係由複數變壓器Τ11、Τ12、Τ13、..·τΐη構成。變壓器 Til、Τ12、Τ13、…Tin的初級繞組分別連接與變壓器π次級 繞組一端與燈管組107之複數燈管LpU、Lpl2呪pi3、…印h 一之間,其次級繞組依次串聯形成—環路。 上述習知之多燈管驅動系統,由_個變壓器提供能量去驅 動多個燈管,通常需要電流平衡電路,並且,燈管的數量越多, 其電流平衡電路的尺寸社’成本越高。其次,由於其據波電 路係利用變壓器之漏感及—外加電容,形成Lc濾波器。該漏 感的需求無形切大了變壓器之體積,也相應增加了電路尺寸 及成本。 請參閱第三圖,也係一種習知之多燈管驅動系統之功能模 組圖。與第一圖的區別在於’其變壓及渡波電路l〇3b包括有 1285864 tr 複數變壓器ΤΙ、T2、…Τη及複數電容Cl、C2、…Cn。每一變 Λ 壓器ΤΙ、Τ2、“·Τη與相應的電容Cl、C2、”·(]η形成一變壓及 濾波電路單元。每一變壓及濾波電路單元分別與燈管組107之 一燈管相連。一變壓及濾波電路單元驅動一燈管。 請參閱第四圖,係顯示另一種習知之多燈管驅動系統之功 能模組圖。與第一圖的區別在於,其變壓及濾波電路103c係 由一變壓器及複數電容Cl、C2、·_·(:η組成。變壓器係在同一 •磁芯上捲繞有多組繞組W卜W2、…如,每一繞組Wl、W2、…Wn ^ 與一電容Cl、C2、"πη形成一變壓及濾波電路單元。每一變 ' 壓及濾波電路單元分別與燈管組107之一燈管相連,藉由一變 壓及濾波電路單元來驅動一燈管。由於每一繞組Wl、W2、…Wn 將佔據一定空間,因此在同一變壓器上能容納的繞組數量有 限。 第三圖及第四圖所示的兩種習知之多燈管驅動系統雖然 _不需要電流平衡電路就可同時驅動多個燈管。但每一燈管就需 要一對應的變壓及濾波電路單元驅動。隨著,燈管數量的增 多,變壓及濾波電路的尺寸及成本便相應的增加。 【發明内容】 有鑑於此,需提供一種多燈管驅動系統,在不影響電路性 能的條件下,.簡化電路,進而降低成本。 另外,還需提供一種多燈管驅動方法,在不影響電路性能 的條件下,簡化電路,進而降低成本。 9 1285864 一種多燈管驅動系統包括:一變壓器電路、一濾波及穩流 暴 電路及一燈管組。變壓器電路用於轉換一輸入交流訊號之電壓 級,其包括:一第一輸出端,輸出一第一交流訊號;以及一第 二輸出端,輸出一第二交流訊號,該第二交流訊號與第一交流 訊號的相位相反。濾波及穩流電路包括複數濾波及穩流電路單 元,分別與該第一輸出端相連,用於抑制該第一交流訊號中的 諧波訊號,使該第一交流訊號的波形平滑,並分別輸出電流值 _大致相同的一第三交流訊號。其中,每一濾波及穩流電路單元 ^ 包括一電感及一電容。電感之一端連接於變壓器電路之第一輸 ' 出端。電容之一端連接於電感之另一端,電容之另一端接地電 位。燈管組包括複數燈管,每一燈管之一端分別與一濾波及穩 流電路單元相連,分別由該第三交流訊號驅動。 一種多燈管驅動系統包括一變壓器電路、一濾波及穩流電 路及一燈管組。其中,變壓器電路用於轉換一輸入交流訊號之 _電壓級,其包括:一第一輸出端,輸出一第一交流訊號;以及 一第二輸出端,輸出一第二交流訊號,該第二交流訊號與第一 交流訊號的相位相反。濾波及穩流電路包括複數濾波及穩流電 路單元,分別與第一輸出端及第二輸出端相連。其中,每一濾 波及穩流電路單元包括一第一電感以及一第二電感。第一電感 之一端連接於變壓器電路之第一輸出端,其另一端為一第三輸 出端,並從第三輸出端輸出電流值大致相同的一第三交流訊 號。第二電感之一端連接於變壓器電路之第二輸出端,其另一 1285864 端為一第四輸出端,並從第四輸出端輸出電流值大致相同的一 "第四交流訊號。其中,第四交流訊號與第三交流訊號的電流值 .大致相同,且相位相反。燈管組包括複數燈管,每一燈管之一 端分別與濾波及穩流電路單元之其中一者之第三輸出端相 連,分別由第三交流訊號驅動。 一種多燈管驅動方法包括步驟··接收一直流訊號;轉換直 流訊號為一方波交流訊號;轉換方波交流訊號之電壓級;藉由 籲一濾波及穩流電路之複數濾波及穩流電路單元轉換該經過轉 • 換電壓級後之方波交流訊號為電流值大致相同的複數弦波交 " 流訊號;分別輸出弦波交流訊號至燈管組之各燈管;其中,該 等濾波及穩流電路是透過控制複數阻抗值相同的電感和電 容,使得該等弦波交流訊號的電流值大致相同。 本發明之多燈管驅動系統,透過控制各濾波及穩流電路單 元中電感的阻抗值大致相同及電容的阻抗值大致相同,可使流 籲經燈管組各燈管間交流訊號之電流值大致相同,進而不受各燈 管其自生阻抗差異的影響,因此在電路設計中無須增加電流平 衡電路。 其次,在變壓器電路與燈管組之每一燈管間均串聯一濾波 及穩流電路單元。濾波及穩流電路單元係通過一外加電感及一 外加電容而形成LC濾波器,因此,變壓器電路中,變壓器設 計不需考慮漏感的需求,其尺寸可以減小。 再次,每一燈管都有一電感與其相連,故,每一燈管的短 11 1285864 m 路或開路狀態,燈管兩端的電壓變化幅度較大,有利於燈管保 護電路之設計。 【實施方式】 明參閱第五圖,係顯示本發明之多燈管驅動系統之第一實 施例之功能模組圖。本實施例中,多燈管驅動系統包括:一換 流電路(Inverter Circuit) 201、一變壓器電路203、一濾波 及穩流電路205、一燈管組207及一迴授控制電路(i?eedback 鲁Control Circuit) 209。換流電路201用於將一輸入之直流訊 • 號轉換為一方波交流訊號。在實際的電路中,換流電路201可 - 以係一半橋式(Half-bridge)換流電路、一全橋式 (Full-bridge)換流電路或一推挽式(Push-pull)換流電路 等。變壓器電路203耦接於換流電路201,用於轉換交流訊號 之電壓級,以提供燈管組207所需電源。濾波及穩流電路205 耦接於變壓器電路203與燈管組207之間,用於抑制從變壓器 _電路203輸出之交流訊號的諧波訊號,使其波形平滑,且輸出 交流訊號至燈管組207。迴授控制電路209耦接於燈管組207 與換流電路201之間,用於依照來自於燈管組207的迴授訊號 控制該換流電路201。 請參閱第六圖,係第五圖所示之多燈管驅動系統之第一實 施例之第一變化例之具體電路圖。換流電路201用於接收一輸 入直流訊號Vin,並將其轉換為一交流訊號。變壓器電路2〇3a 可為一變壓器T21。變壓器T21.的初級繞組耦接於換流電路 12 1285864 201 ,用於轉換交流訊號之電壓級,並從變壓器T21之次級繞 組輸出。變壓器T21次級繞阻之一端定義為第一輸出端’另一 端為第二輸出端。第一輸出端及第二述輸出端分別輸出一第一 交流訊號及一第二交流訊號。第一交流訊號與第二交流訊號僅 相位相反。在本實施例中,濾波及穩流電路205a包括複數電 感 L21、L22、L23、…L2n 及複數電容 C2卜 C22、C23、…C2n。 電感 L21、L22、L23、."L2n 與一對應的電容〇2^〇22、〇23、··42η •組成之濾波及穩流電路單元定義為第一濾波及穩流電路單 • 元,分別串聯於變壓器Τ21次級繞組之第一輸出端與燈管組 -207a 之一燈管 Lp21、Lp22、Lp23、之間。例如,電感 L21與電容C21組成一第一濾波及穩流電路單元,串聯於變壓 器T21次級繞組之第一輸出端與燈管Lp21之間。第一濾波及 穩流電路單元分別用於抑制第一交流訊號中的諧波訊號,使該 第一交流訊號的波形平滑,並分別輸出電流值大致相同的第三 _交流訊號。燈管Lp21、Lp22、Lp23、分別由一第三交 流訊號驅動。 在本實施例中,複數電感L21、L22、L23、."I^n之一端 並聯連接於變壓器T21次級繞組之第一輸出端。變壓器T21次 級繞組之第二輸出端接地電位。燈管組207a之複數燈管Please refer to the second figure, which is a specific circuit diagram of the first figure. The connection relationship between the function modules is the same as in the first figure. The transformer and filter circuit 103a is composed of a transformer τι and a capacitor G1 connected in parallel across the secondary winding of the transformer T1. The current balancing circuit 105a is composed of a plurality of transformers Τ11, Τ12, Τ13, ..·τΐη. The primary windings of the transformers Til, Τ12, Τ13, . . . Tin are respectively connected between the end of the transformer π secondary winding and the plurality of lamps LpU, Lpl2呪pi3, ..., and the lamp group 107, and the secondary windings are sequentially connected in series - Loop. The conventional multi-lamp driving system described above provides energy to drive a plurality of lamps by a transformer, and usually requires a current balancing circuit, and the more the number of lamps, the higher the size of the current balancing circuit. Secondly, the Lc filter is formed by the leakage inductance of the transformer and the external capacitor according to the wave circuit system. The demand for leakage inductance has invisiblely increased the size of the transformer and increased the circuit size and cost. Please refer to the third figure, which is also a functional model diagram of a conventional multi-lamp drive system. The difference from the first figure is that the 'variable voltage and wave circuit l〇3b includes 1285864 tr complex transformers T, T2, ... Τη and complex capacitors C1, C2, ... Cn. Each of the transformers ΤΙ, Τ2, "·Τη and the corresponding capacitors Cl, C2," () η form a transformer and filter circuit unit. Each of the transformer and filter circuit units is respectively associated with the lamp group 107 A lamp is connected. A transformer and filter circuit unit drives a lamp. Please refer to the fourth figure, which shows another functional module diagram of a conventional multi-lamp drive system. The difference from the first figure is that The voltage and filter circuit 103c is composed of a transformer and a plurality of capacitors Cl, C2, ·_·(: η. The transformer is wound on the same core with a plurality of sets of windings W, W2, ..., for each winding Wl, W2, ... Wn ^ forms a transformer and filter circuit unit with a capacitor Cl, C2, "πη. Each of the variable voltage and filter circuit units is respectively connected to one of the lamps of the lamp group 107, by a transformer And the filter circuit unit drives a lamp. Since each of the windings W1, W2, ... Wn will occupy a certain space, the number of windings that can be accommodated on the same transformer is limited. The two drawings shown in the third and fourth figures Knowing how many lamp drive systems can be used simultaneously without the need for a current balancing circuit Multiple lamps are required. However, each lamp tube needs a corresponding transformer and filter circuit unit drive. As the number of lamps increases, the size and cost of the transformer and filter circuit increase accordingly. In view of this, it is necessary to provide a multi-lamp driving system to simplify the circuit and reduce the cost without affecting the performance of the circuit. In addition, it is necessary to provide a multi-lamp driving method without affecting the performance of the circuit. The utility model simplifies the circuit and reduces the cost. 9 1285864 A multi-lamp driving system comprises: a transformer circuit, a filtering and steady current circuit and a lamp group. The transformer circuit is used for converting a voltage level of an input AC signal, The method includes: a first output end, outputting a first alternating current signal; and a second output end outputting a second alternating current signal, the second alternating current signal being opposite to a phase of the first alternating current signal. The filtering and current stabilizing circuit includes a plurality of a filtering and current stabilizing circuit unit, respectively connected to the first output end, configured to suppress a harmonic signal in the first alternating current signal, so that the first alternating current The waveform of the signal is smooth, and respectively output a third alternating current signal whose current value is substantially the same. Each of the filtering and current stabilizing circuit units includes an inductor and a capacitor. One end of the inductor is connected to the first input of the transformer circuit. One end of the capacitor is connected to the other end of the inductor, and the other end of the capacitor is grounded. The tube group includes a plurality of tubes, one end of each tube is respectively connected to a filtering and steady current circuit unit, respectively, by the third The multi-lamp driving system comprises a transformer circuit, a filtering and steady current circuit and a lamp group, wherein the transformer circuit is used for converting a voltage level of an input AC signal, comprising: a first output And outputting a first alternating current signal; and outputting a second alternating current signal, the second alternating current signal is opposite to the phase of the first alternating current signal. The filtering and current stabilizing circuit includes a plurality of filtering and steady current circuit units connected to the first output end and the second output end, respectively. Each of the filtering and current stabilizing circuit units includes a first inductor and a second inductor. One end of the first inductor is connected to the first output end of the transformer circuit, and the other end is a third output end, and a third alternating current signal having substantially the same current value is output from the third output end. One end of the second inductor is connected to the second output end of the transformer circuit, and the other 1285864 end is a fourth output end, and a fourth alternating current signal whose current value is substantially the same is output from the fourth output end. The fourth alternating current signal and the third alternating current signal have substantially the same current value and opposite phases. The lamp group includes a plurality of lamps, one end of each of the lamps being connected to a third output of one of the filtering and steady current circuit units, respectively, and driven by the third alternating current signal. A multi-lamp driving method includes the steps of: receiving a DC signal; converting a DC signal into a square wave AC signal; converting a voltage level of a square wave AC signal; and a plurality of filtering and steady current circuit units by a filtering and steady current circuit Converting the square wave AC signal after the conversion voltage level to a plurality of sine wave intersections with the same current value; respectively outputting the sine wave AC signal to each of the lamps of the lamp group; wherein the filtering and The steady current circuit controls the capacitances of the sinusoidal alternating current signals to be substantially the same by controlling the same inductance and capacitance of the complex impedance values. The multi-lamp driving system of the present invention can control the current value of the alternating signal between the lamps of the lamp group through the control of the impedance values of the inductances in the filtering and current-stabilizing circuit units being substantially the same and the impedance values of the capacitors being substantially the same. The same is true, and thus is not affected by the difference in the self-generated impedance of each tube, so there is no need to increase the current balancing circuit in the circuit design. Secondly, a filter and steady current circuit unit is connected in series between each of the transformer circuit and the lamp tube. The filtering and current stabilizing circuit unit forms an LC filter through an external inductor and an external capacitor. Therefore, in the transformer circuit, the transformer design does not need to consider the leakage inductance, and the size thereof can be reduced. Again, each lamp has an inductance connected to it. Therefore, each lamp has a short 11 1285864 m or open state, and the voltage across the lamp varies greatly, which is beneficial to the design of the lamp protection circuit. [Embodiment] Referring to Fig. 5, there is shown a functional block diagram of a first embodiment of a multi-lamp driving system of the present invention. In this embodiment, the multi-lamp driving system includes: an inverter circuit 201, a transformer circuit 203, a filtering and steady current circuit 205, a lamp group 207, and a feedback control circuit (i?eedback) Lu Control Circuit) 209. The commutation circuit 201 is configured to convert an input DC signal into a square wave AC signal. In an actual circuit, the commutation circuit 201 can be a half-bridge converter circuit, a full-bridge converter circuit, or a push-pull commutation. Circuits, etc. The transformer circuit 203 is coupled to the converter circuit 201 for converting the voltage level of the AC signal to provide the power required by the lamp group 207. The filtering and current stabilizing circuit 205 is coupled between the transformer circuit 203 and the lamp group 207 for suppressing the harmonic signal of the AC signal outputted from the transformer_circuit 203, smoothing the waveform, and outputting the AC signal to the lamp group 207. The feedback control circuit 209 is coupled between the lamp group 207 and the converter circuit 201 for controlling the converter circuit 201 in accordance with a feedback signal from the lamp group 207. Please refer to the sixth drawing, which is a specific circuit diagram of a first variation of the first embodiment of the multi-lamp driving system shown in FIG. The commutation circuit 201 is configured to receive an input DC signal Vin and convert it into an AC signal. The transformer circuit 2〇3a can be a transformer T21. The primary winding of the transformer T21. is coupled to the commutation circuit 12 1285864 201 for converting the voltage level of the alternating current signal and outputting from the secondary winding of the transformer T21. One end of the secondary winding of transformer T21 is defined as a first output terminal and the other end is a second output terminal. The first output end and the second output end respectively output a first alternating current signal and a second alternating current signal. The first alternating current signal is only opposite in phase to the second alternating current signal. In the present embodiment, the filtering and current stabilizing circuit 205a includes complex inductances L21, L22, L23, ... L2n and complex capacitors C2, C22, C23, ..., C2n. The inductors L21, L22, L23, . " L2n and a corresponding capacitor 〇2^〇22, 〇23, ···42n • The filtering and steady current circuit unit is defined as the first filter and the current stabilizing circuit unit. The first output end of the secondary winding of the transformer Τ21 is connected in series with one of the lamps Lp21, Lp22, Lp23 of the lamp group -207a. For example, the inductor L21 and the capacitor C21 form a first filtering and current stabilizing circuit unit, which is connected in series between the first output end of the secondary winding of the transformer T21 and the lamp Lp21. The first filtering and current stabilizing circuit unit is configured to suppress the harmonic signals in the first alternating current signal, smooth the waveform of the first alternating current signal, and output third _ alternating current signals having substantially the same current value. The lamps Lp21, Lp22, and Lp23 are respectively driven by a third AC signal. In this embodiment, one of the plurality of inductors L21, L22, L23, . . . , is connected in parallel to the first output of the secondary winding of the transformer T21. The second output of the transformer T21 secondary winding is grounded. Multiple tubes of tube group 207a

Lp21、Lp22、Lp23、…Lp2n —端分別連接於複數電感L2hL22、 L23、“·ί2η 之另一端。複數電容 C21、C22、C23、"·02η 的一 端分別連接於複數電感L21、L22、L23、與複數燈管 13 1285864Lp21, Lp22, Lp23, ... Lp2n - terminals are respectively connected to the other ends of the complex inductors L2hL22, L23, "·ί2η. One ends of the complex capacitors C21, C22, C23, "·02η are respectively connected to the complex inductors L21, L22, L23 With multiple lamps 13 1285864

Lp21、Lp22、Lp23、之間。複數電容 C21、C22、C23、.4211 的另一端則接地電位。燈管Lp21、Lp22、Lp23、."Lp2n的另 一端透過一電阻R2接地電位。在本實施例以外的其它實施例 中,電阻R2可由其他的阻抗元件所替代。迴授控制電路209 耦接於複數燈管Lp21、Lp22、Lp23、的另一端與換流 電路201之間。 為了便於㊂兄明電路原理,在本實施例中,僅以電感L21、 電容C21及燈管Lp21形成之支路來舉例說明。其他支路與此 支路原理相同,不再--敘述。在本實施例中,燈管Lp21係 一冷陰極螢光燈(Cold Cathode Fluorescent Lamp,CCFL), 其通常需要30KHz至lOOKHz的交流訊號來驅動。因此,需要 換流電路201輸出之交流訊號之頻率較高。在高頻輸入的情況 下,電感Lp21的等效阻抗愈高。此時,電感L21相當於一電 流源,燈管Lp21的阻抗變化,對流經燈管Lp21的電流影響可 忽略。並且,各支路電感L21、L22、L23、…L2n的阻抗值大 致相同,電容C21、C22、C23、…C2n的阻抗值大致相同,在 此種情況下,使得流經各燈管Lp21、Lp22、Lp23、之 第三交流訊號的電流值大致相同。每一支路中,各燈管Lp21、 Lp22、Lp23、一1^)211本身的阻抗差異,對流經各燈管Lp21、 Lp22、Lp23、…Lp2n電流值的影響不大。因此,本發明多燈管 驅動電路,無須外加電流平衡電路。 其次,在本實施例中,電感L21與電容C21形成一 LC濾 14 1285864 波器,用於抑制第一交流訊號的諧波訊號,使其波形平滑。故, 變壓器T21不需考慮漏感之需求,可選用尺寸較小之變壓器, 以降低成本。並且,可實現由一變壓器T21同時驅動複數燈管 Lp21、Lp22、Lp23、。在本實施例中,變壓器T21輸出 之交流訊號係一經升壓後之方波交流訊號,經過電感L21及電 容C21濾波後轉換為一平滑之弦波交流訊號,用以驅動燈管Between Lp21, Lp22, Lp23, and. The other end of the complex capacitors C21, C22, C23, .4211 is grounded. The other end of the lamps Lp21, Lp22, Lp23, ."Lp2n is grounded via a resistor R2. In other embodiments than this embodiment, resistor R2 can be replaced by other impedance elements. The feedback control circuit 209 is coupled between the other ends of the plurality of lamps Lp21, Lp22, and Lp23 and the commutation circuit 201. In order to facilitate the circuit principle of the three brothers, in the present embodiment, only the branch formed by the inductor L21, the capacitor C21 and the lamp Lp21 is exemplified. The other branches have the same principle as this branch and are no longer described. In this embodiment, the lamp Lp21 is a Cold Cathode Fluorescent Lamp (CCFL), which usually requires an AC signal of 30 kHz to 10 kHz to drive. Therefore, the frequency of the AC signal output from the converter circuit 201 is required to be high. In the case of high frequency input, the higher the equivalent impedance of the inductor Lp21. At this time, the inductance L21 corresponds to a current source, and the impedance of the lamp Lp21 changes, and the influence of the current flowing through the lamp Lp21 is negligible. Further, the impedance values of the respective branch inductors L21, L22, L23, ..., L2n are substantially the same, and the impedance values of the capacitors C21, C22, C23, ..., C2n are substantially the same, and in this case, flow through the respective lamps Lp21, Lp22 The current values of the third alternating current signal of Lp23 and the third alternating current signal are substantially the same. In each of the paths, the impedance difference of each of the lamps Lp21, Lp22, Lp23, and 1^) 211 itself has little effect on the current values flowing through the lamps Lp21, Lp22, Lp23, ... Lp2n. Therefore, the multi-lamp driving circuit of the present invention does not require an external current balancing circuit. Next, in this embodiment, the inductor L21 and the capacitor C21 form an LC filter 14 1285864 wave filter for suppressing the harmonic signal of the first alternating current signal to smooth the waveform. Therefore, the transformer T21 does not need to consider the leakage inductance requirement, and a smaller size transformer can be selected to reduce the cost. Further, it is possible to simultaneously drive the plurality of lamps Lp21, Lp22, and Lp23 by a transformer T21. In this embodiment, the AC signal outputted by the transformer T21 is a boosted square wave AC signal, which is filtered by the inductor L21 and the capacitor C21 to be converted into a smooth sine wave AC signal for driving the lamp.

Lp2卜 再次,由於燈管Lp21與電感L21相連,燈管Lp21在短路 或開路狀態下,其兩端的電壓差異較大,有利於燈管Lp21之 保護電路設計。 第七圖係第五圖所示之多燈管驅動系統之第一實施例之 第二變化例之具體電路圖。與第六圖的區別在於,濾波及穩流 電路205b包括複數第一濾波及穩流電路單元及複數第二濾波 及穩流電路單元;燈管組207b包括複數第一燈管Lp31、 Lp32、及複數第二燈管Lp41、Lp42、。其中, 每一電感L31、L32、…L3n分別與一對應之電容C31、C32、."C3n 組成一第一濾波及穩流電路單元。每一電感L41、L42、 分別與一對應之電容C41、C42、…〔如組成一第二濾波及穩流 電路單元。第一濾波及穩流電路單元及第二濾波及穩流電路單 元的組成元件及連接關係均與第五圖中之第一濾波及穩流電 路相同。第一濾波及穩流電路連接到變壓器T31次級繞組之第 一輸出端,用於抑制第一輸出端輸出之第一交流訊號中的諧波 15 1285864 訊號,使其波形平滑,並輪出電流值大致相同的第三交流訊 號。第二遽波及穩流電路連結到變麼器T31次級繞組之第二輸 出端,用於抑制第二輸出端輸出之第二交流訊號中的諧波訊 號,使其波形平滑,並輸出電流值大致相同的第四交流訊號。 第四交流訊5虎與第二父流訊號僅相位相反。 燈管組207b的每一第一燈管Lp31、Lp32、…Lp3n之一端 分別與一第一滤波及穩流電路相連,並分別由一第三交流訊號 ,驅動,每一第二燈管Lp41、Lp42、之一端分別與一第 二濾波及穩流電路相連,並分別由一第四交流訊號驅動。 在本實施例中,複數電感L31、L32、."LpSii、Lp41、 Lp42、…Lp4n的阻抗值均大致相同,複數電容C31、C32、…C3n、 C41、C42、^/411的阻抗值均大致相同。 請參閱第八圖,係本發明之多燈管驅動系統之第二實施例 之功能模組圖。本實施例中,多燈管驅動系統包括:一換流電 ’路3(H、一變壓器電路303、一濾波及穩流電路305、一燈管組 307及一迴授控制電路309。與第五圖所示之多燈管驅動系統 不同在於,迴授控制電路309耦接於變壓器電路303與換流電 路3 01之間’用於依照來自於變壓器電路3 0 3的迴授訊號控制 換流電路301。 請參閱第九圖,係第八圖所示之多燈管驅動系統之第二實 施例之第一變化例之具體電路圖。與第六圖的區別在於,變壓 器電路303a包括變壓器T51、變壓器T61、全橋電路300a及 16 1285864 電阻R5。變壓器T51的初級繞阻及變壓器T61的初級繞阻並聯 連接於換流電路301。變壓器T51次級繞阻的一端定義為第一 輸出端,另一端接全橋電路300a的第一端。變壓器次級 繞阻的一端連接於全橋電路300a的第三端,第三端與第一端 相對。全橋電路300a的第二端透過電阻R5接地電位。全橋電 路300a的第四端接地電位。變壓器T61次級繞阻的另一端定 義為弟一輸出端。迴授控制電路309a連接於全橋電路之 .苐一4與換流電路301之間。全橋電路300a用於從變壓哭T51 及T61中取得迴授訊號,並輸出給迴授控制電路3〇9a。 濾波及穩流電路305a與第七圖同樣包括複數第一濾波及 备流電路早元及複數第二慮波及穩流電路單元,並分別輸出複 數苐二父流訊5虎及弟四交流訊號。不同在於,燈管組之每一燈 管Lp51、Lp52、"·ΐ4)5η的一端分別連接於一第一濾波及穩流 電路單元,另一端分別連接於一第二渡波及穩流電路單元。每 _ 一燈管Lp51、Lp52、同時由第三交流訊號及第四交流 訊號驅動。 在本實施例中’複數電感L51、L52、.“LpSii、Lp61、 Lp62、…Lp6n的阻抗值均大致相同,複數電容C5pC52、…C5n、 C61、C62、..4611的阻抗值均大致相同。 請參閱第十圖’係第八圖所示之多燈管驅動系統之第二實 施例之第二變化例之具體電路圖。其中換流電路3{n、變壓器 電路303b及迴授控制電路3〇9b的組成及連接關係均與第九圖 17 Ϊ285864 .中訝應部分相同。區別在於,濾波及穩流電路305b包括複數 .濾波及穩流電路單元,與第六圖、第七圖、第九圖所述的第一 或第二濾波及穩流電路單元的結構均不相同。 如第十圖所示,濾波及穩流電路305b包括有複數電感 171、172—丄711、1^81、[82、〜1811及複數電容〇71、〇72、〜〇711。 其中,複數電感L71、L72、"·:ί7η連接到變壓器電路303b之 第一輸出端,複數電感L81、L82、〜L8n連接到變壓器電路303b I之第二輸出端。在本實施例中,每一濾波及穩流電路單元包括 兩電感及一電容,兩電感之一端分別連接變壓器電路303b的 第一輸出端及第二輸出端’兩電感之另一端分別被定義為第三 輸出端及第四輸出端,電容連接於第三輸出端與第四輸出端之 間。例如,電感L71、電感L81及電容C71組成一濾波及穩流 電路單元。濾波及穩流電路單元用於抑制從變壓器電路303b 的第一輸出端及第二輸出端輸出之第一交流訊號及第二交流 .訊號中的諧波訊號,使其波行平滑,並分別從第三輸出端及第 四輸出端輸出第三交流訊號及第四交流訊號。第三交流訊號與 第四交流訊號僅相位相反。燈管組307b之複數燈管Lp71、 Lp72、…Lp7n的一端分別連接於每一濾波及穩流電路單元之第 三輸出端,燈管Lp71、Lp72、的另一端分別連接於每 一遽波及穩流電路單元之第四輸出端。每一燈管Lp71、 Lp72、同時由第三交流訊號及第四交流訊號驅動。 在本實施例中,複數電感L71、L72、…L7n、L81、L82、*"L8n 18 1285864 的阻抗值均大致相同,複數電容C71、C72、^/711的阻抗值均 大致相同。 請參閱第十一圖,係第八圖所示之多燈管驅動系統之第二 實施例之第三變化例之具體電路圖。換流電路301、變壓器電 路303c、濾波及穩流電路305c及迴授控制電路309c的組成元 件及連接關係均與第十圖對應部分相同,相同之元件省略說 明。不同在於,燈管組307c包括複數第一燈管Lp91、 Lp92、及複數第二燈管 LplOl、Lpl02、".LplOn。每一 第一燈管Lp91、Lp92、…Lp9n之一端分別連接於每一濾波及 穩流電路單元之第三輸出端,另一端透過一電阻R10接地電 位。複數第一燈管Lp91、Lp92、."Lp9n分別由第三交流訊號 驅動。每一第二燈管LplOl、Lpl02、...14)1011之一端分別與每 一濾波及穩流電路單元之第四輸出端,另一端透過一電阻Rl〇 接地電位。複數弟—燈管Lpl01、Lpl02、."LplOn分別由第四 交流訊號驅動。 在本實施例中,複數電感L91、L92、"·ί9η、L101、 L102、"·ί10η的阻抗值均大致相同,複數電容C71、C72、…αη 的阻抗值均大致相同。 上述第七圖至第十一圖所示之多燈管驅動系統的電路原 理均與U所*之多燈管驅動系統的電路原理相同,具有相 同之優點。 請參閱第十二圖’係本發明之多燈管驅動方法之第一實施 19 1285864 例之流程圖。首先,在步驟S1001,換流電路201接收一直流 訊號。在步驟S1003,換流電路201轉換直流訊號為一方波交 流訊5虎。在步驟S10 〇 5,經由變壓器電路2 0 3轉換方波父流訊 號之電壓級。在步驟S1007,經由濾波及穩流電路205之複數 濾波及穩流電路單元將經轉換電壓級後之方波交流訊號轉換 為電流值大致相同的複數弦波交流訊號。在步驟S1009,將電 流值大致相同的弦波交流訊號分別輸出給燈管組207之複數燈 鲁管。最後’在步驟S1011,迴授控制電路209根據從燈管組207 獲取之迴授訊號控制換流電路2〇1將直流訊號向方波交流訊號 .轉換。 請參閱第十三圖,係本發明之多燈管驅動方法之第二實施 例之流程圖。其中,步驟S20(U、步驟S2003、步驟S2005、步 驟S2007及步驟S2009均與第十一圖所示之步驟sl〇〇1、步驟 籲sio〇3、步驟sio〇5、步驟S100?及步驟S1_相同。不同在於, 在步驟S2G1卜迴授控制電路_根據從變壓器電路聊獲取 之迴授訊號控制換流電路3〇1將直流訊號向方波交流訊號轉 換。 &綜上所述’本發明符合發明專利要件,爰依法提出專利申 二二:上:述者僅為本發明之較佳實施例,舉凡熟悉本案 ^ 歧本案發㈣神所作之等___化,皆 應包含於以下之申請專利範圍内。 巾飞k化白 【圖式簡單說明】 20 1285864 第一圖係第一習知之多燈管驅動系統之功能模組圖。 第一圖係第一圖所示之多燈管驅動系統之電路圖。 第二圖係第二習知之多燈管驅動系統之功能模組圖。 第四圖係第三習知之多燈管驅動系統之功能模組圖。 第五圖係本發明之多燈管驅動系統之第一實施例之功能模組 圖。 第六圖係本發明之多燈管驅動系統之第一實施例之第一變化 •例之電路圖。 •第七圖係本發明之多燈管驅動系統之第一實施例之第二變化 例之電路圖。 第八圖係本發明之多燈管驅動系統之第二實施例之功能模組 圖。 第九圖係本發明之多燈管驅動系統之第二實施例之第一變化 例之電路圖。 第十圖係本發明之多燈管驅動系統之第二實施例之第二變化 例之電路圖。 第十一圖係本發明之多燈管驅動系統之第二實施例之第三變 化例之電路圖。 第十二圖係本發明之多燈管驅動方法之第一實施例之流程圖。 第十三圖係本發明之多燈管驅動方法之第二實施例之流程圖。 【主要元件符號說明】 換流電路 101 、 201 、 3〇1 21 1285864 變壓及濾波電路 電流平衡電路 燈管組 迴授控制電路 103 、 103a 、 103b 、 103c 105 、 105a 107、107a、207、207a、207b、307、 307a、307b、307c 109、209、209a、209b、309、309a、 309b 、 309c 變壓器電路 203、203a、203b、303、303a、303b、Lp2 Bu Again, since the lamp Lp21 is connected to the inductor L21, the voltage difference between the two ends of the lamp Lp21 in the short-circuit or open-circuit state is large, which is beneficial to the protection circuit design of the lamp Lp21. Fig. 7 is a detailed circuit diagram showing a second variation of the first embodiment of the multi-lamp driving system shown in Fig. 5. The difference from the sixth figure is that the filtering and current stabilizing circuit 205b includes a plurality of first filtering and steady current circuit units and a plurality of second filtering and current stabilizing circuit units; the lamp tube group 207b includes a plurality of first lamps Lp31, Lp32, and A plurality of second lamps Lp41, Lp42, and . Each of the inductors L31, L32, ... L3n and a corresponding capacitor C31, C32, . " C3n respectively constitute a first filtering and current stabilizing circuit unit. Each of the inductors L41, L42, and a corresponding capacitor C41, C42, ... [such as a second filter and steady current circuit unit. The components and connection relationships of the first filtering and steady current circuit unit and the second filtering and current stabilizing circuit unit are the same as those of the first filtering and current stabilizing circuit in the fifth figure. The first filtering and current stabilizing circuit is connected to the first output end of the secondary winding of the transformer T31, for suppressing the harmonic 15 1585864 signal in the first alternating current signal outputted by the first output terminal, smoothing the waveform, and rotating the current A third alternating signal with roughly the same value. The second chopping and steady current circuit is coupled to the second output end of the secondary winding of the transformer T31 for suppressing the harmonic signal in the second alternating current signal outputted by the second output terminal, smoothing the waveform, and outputting the current value The same fourth alternating signal. The fourth communication 5 tiger and the second parent flow signal are only in opposite phase. One end of each of the first lamps Lp31, Lp32, ... Lp3n of the lamp group 207b is respectively connected to a first filtering and current stabilizing circuit, and is respectively driven by a third alternating current signal, and each second lamp Lp41, One end of the Lp42 is respectively connected to a second filtering and current stabilizing circuit, and is respectively driven by a fourth alternating current signal. In this embodiment, the impedance values of the complex inductors L31, L32, ." LpSii, Lp41, Lp42, ... Lp4n are substantially the same, and the impedance values of the complex capacitors C31, C32, ... C3n, C41, C42, ^/411 are all Roughly the same. Referring to the eighth drawing, there is shown a functional block diagram of a second embodiment of the multi-lamp driving system of the present invention. In this embodiment, the multi-lamp driving system includes: a commutating electric circuit 3 (H, a transformer circuit 303, a filtering and steady current circuit 305, a lamp tube group 307, and a feedback control circuit 309. The multi-lamp driving system shown in FIG. 5 is different in that the feedback control circuit 309 is coupled between the transformer circuit 303 and the converter circuit 310 for controlling the commutation according to the feedback signal from the transformer circuit 300. Circuit 301. Please refer to the ninth embodiment, which is a specific circuit diagram of a first variation of the second embodiment of the multi-lamp driving system shown in the eighth figure. The difference from the sixth figure is that the transformer circuit 303a includes a transformer T51, Transformer T61, full-bridge circuit 300a and 16 1285864 resistor R5. The primary winding of transformer T51 and the primary winding of transformer T61 are connected in parallel to commutating circuit 301. One end of the secondary winding of transformer T51 is defined as the first output, and the other One end is connected to the first end of the full bridge circuit 300a. One end of the transformer secondary winding is connected to the third end of the full bridge circuit 300a, and the third end is opposite to the first end. The second end of the full bridge circuit 300a is grounded through the resistor R5. Potential. full bridge The fourth end of the circuit 300a is grounded. The other end of the secondary winding of the transformer T61 is defined as an output terminal. The feedback control circuit 309a is connected between the full bridge circuit and the converter circuit 301. The full bridge The circuit 300a is configured to obtain a feedback signal from the transformers T51 and T61, and output the feedback signal to the feedback control circuit 3〇9a. The filtering and current stabilization circuit 305a and the seventh diagram also include a plurality of first filtering and standby circuit early elements. And a plurality of second wave and steady current circuit units, and respectively output a plurality of 苐 父 父 流 5 虎 虎 虎 虎 虎 虎 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 One end is respectively connected to a first filtering and steady current circuit unit, and the other end is respectively connected to a second wave and steady current circuit unit. Each of the lamps Lp51 and Lp52 is simultaneously driven by the third alternating current signal and the fourth alternating current signal. In the present embodiment, the impedance values of the complex inductors L51, L52, and "LpSii, Lp61, Lp62, ..., Lp6n are substantially the same, and the impedance values of the complex capacitors C5pC52, ..., C5n, C61, C62, .. 4611 are substantially the same. Please refer to the tenth figure, which is a specific circuit diagram of a second variation of the second embodiment of the multi-lamp driving system shown in the eighth figure, wherein the commutation circuit 3{n, the transformer circuit 303b and the feedback control circuit 3〇 The composition and connection relationship of 9b are the same as those in the ninth figure 17 285 864. The difference is that the filtering and current stabilizing circuit 305b includes a plurality of filtering and steady current circuit units, and the sixth, seventh, and ninth The structure of the first or second filtering and current stabilizing circuit unit is different. As shown in the tenth figure, the filtering and current stabilizing circuit 305b includes a plurality of inductors 171, 172-丄711, 1^81, [ 82, 〜1811 and a plurality of capacitors 〇71, 〇72, 〇711. Among them, the complex inductors L71, L72, "·: ί7η are connected to the first output end of the transformer circuit 303b, and the complex inductors L81, L82, 〜L8n are connected To the second output of the transformer circuit 303b I. In this implementation In the example, each of the filtering and current stabilizing circuit units includes two inductors and a capacitor. One of the two inductors is respectively connected to the first output end and the second output end of the transformer circuit 303b. The other ends of the two inductors are respectively defined as the third output. And a fourth output end, the capacitor is connected between the third output end and the fourth output end. For example, the inductor L71, the inductor L81 and the capacitor C71 form a filtering and steady current circuit unit. The filtering and steady current circuit unit is used for suppressing The first alternating current signal and the second output end of the transformer circuit 303b output the first alternating current signal and the second alternating current signal, and the harmonic signals in the second alternating current signal are smoothed, and are respectively output from the third output end and the fourth output end. The third alternating current signal and the fourth alternating current signal are output. The third alternating current signal and the fourth alternating current signal are only opposite in phase. One ends of the plurality of lamps Lp71, Lp72, ... Lp7n of the lamp group 307b are respectively connected to each of the filtering and steady current circuits. The third output end of the unit, the other ends of the lamps Lp71 and Lp72 are respectively connected to the fourth output end of each chopper and steady current circuit unit. Each of the lamps Lp71, Lp72 and the third exchange are simultaneously In the present embodiment, the impedance values of the complex inductors L71, L72, ..., L7n, L81, L82, *" L8n 18 1285864 are substantially the same, and the complex capacitors C71, C72, ^/711 The impedance values are substantially the same. Please refer to the eleventh figure, which is a specific circuit diagram of the third variation of the second embodiment of the multi-lamp driving system shown in the eighth figure. The commutation circuit 301, the transformer circuit 303c, the filtering and The constituent elements and the connection relationship of the steady current circuit 305c and the feedback control circuit 309c are the same as those of the corresponding portions of the tenth figure, and the same elements are omitted. The difference is that the lamp group 307c includes a plurality of first lamps Lp91, Lp92, and a plurality of second tubes LplOl, Lpl02, ".LplOn. One end of each of the first lamps Lp91, Lp92, ... Lp9n is respectively connected to the third output end of each of the filtering and steady current circuit units, and the other end is grounded through a resistor R10. The plurality of first lamps Lp91, Lp92, ."Lp9n are respectively driven by the third alternating current signal. One end of each of the second lamps LplO1, Lpl02, ... 14) 1011 is respectively connected to the fourth output end of each of the filtering and steady current circuit units, and the other end is transmitted through a resistor R1 接地 to the ground potential. The plural brothers - LLP01, Lpl02, ."LplOn are driven by the fourth AC signal. In the present embodiment, the impedance values of the complex inductors L91, L92, "·ί9η, L101, L102, "·1010 are substantially the same, and the impedance values of the complex capacitors C71, C72, ..., αη are substantially the same. The circuit principle of the multi-lamp driving system shown in the above seventh to eleventh drawings is the same as that of the multi-lamp driving system of U, and has the same advantages. Referring to Figure 12, a flow chart of a first embodiment of the multi-lamp driving method of the present invention 19 1285864. First, in step S1001, the commutation circuit 201 receives the constant stream signal. In step S1003, the commutation circuit 201 converts the direct current signal into a horizontal wave communication. At step S10 〇 5, the voltage level of the square wave parent stream signal is converted via the transformer circuit 203. In step S1007, the square wave alternating current signal after the converted voltage level is converted into a complex sine wave alternating current signal having substantially the same current value via the complex filtering and current stabilizing circuit unit of the filtering and steady current circuit 205. In step S1009, the sine wave alternating current signals having substantially the same current value are respectively output to the plurality of lamps of the lamp group 207. Finally, in step S1011, the feedback control circuit 209 controls the commutation circuit 2〇1 to convert the DC signal to the square wave AC signal based on the feedback signal obtained from the lamp group 207. Referring to Fig. 13, there is shown a flow chart of a second embodiment of the multi-lamp driving method of the present invention. Step S20 (U, step S2003, step S2005, step S2007, and step S2009 are the same as step s1 〇〇1, step sio 〇 3, step sio 〇 5, step S100 ??? and step S1 shown in the eleventh figure. _ the same. The difference is that in step S2G1, the feedback control circuit _ converts the direct current signal to the square wave alternating signal according to the feedback signal controlled by the transformer circuit to obtain the commutating circuit 3〇1. The invention meets the requirements of the invention patent, and the patent application 22 is according to law: the above description is only the preferred embodiment of the present invention, and all the ___ifications of the case (4) God should be included in The following patent application scope. Tow fly k white [simplified description] 20 1285864 The first picture is the functional module diagram of the first conventional multi-lamp drive system. The first picture is shown in the first figure. The circuit diagram of the lamp driving system. The second figure is the functional module diagram of the second conventional multi-lamp driving system. The fourth figure is the functional module diagram of the third conventional multi-lamp driving system. The work of the first embodiment of the inventive multi-lamp drive system The sixth diagram is a circuit diagram of a first variation of the first embodiment of the multi-lamp driving system of the present invention. The seventh diagram is a first embodiment of the multi-lamp driving system of the present invention. Figure 8 is a circuit diagram of a second embodiment of the multi-lamp driving system of the present invention. The ninth drawing is the first embodiment of the second embodiment of the multi-lamp driving system of the present invention. 10 is a circuit diagram of a second variation of the second embodiment of the multi-lamp driving system of the present invention. FIG. 11 is a second embodiment of the multi-lamp driving system of the present invention. Fig. 12 is a flow chart showing a first embodiment of the multi-lamp driving method of the present invention. Fig. 13 is a flow chart showing a second embodiment of the multi-lamp driving method of the present invention. [Description of main component symbols] Converter circuit 101, 201, 3〇1 21 1285864 Transformer and filter circuit current balancing circuit lamp group feedback control circuit 103, 103a, 103b, 103c 105, 105a 107, 107a, 207, 207a , 207b, 307, 307 a, 307b, 307c 109, 209, 209a, 209b, 309, 309a, 309b, 309c transformer circuit 203, 203a, 203b, 303, 303a, 303b,

303c 變壓器 Π、Τ2、Τη、ΤΗ、Τ12、Τ13、Τ1η、 T21、T3卜 T51、T6 卜 T7卜 T8卜 T9卜 Τ101 濾波及穩流電路 205、205a、205b、305、305a、305b、 305c 繞組 •電容 W卜 W2、Wn C卜 C2、Cn、C2卜 C22、C23、C2n、 C3 卜 C32、C3n、C4J、C42、C4n、 C5卜 C52、C5n、C6卜 C62、C6n、 C7卜 C72、C7n、C9;l、C92、C9n 電感 L2卜 L22、L23、L2n、L3卜 L32、 L3n、L4卜 L42、L4n、L5卜 L52、 L5n、L6卜 L62、L6n、L7卜 L72、 L7n、L8卜 L82、L8n、L9卜 L92、 22 1285864 L9n 、 L1(H 、 L102 、 LlOn 燈管303c Transformer Π, Τ2, Τη, ΤΗ, Τ12, Τ13, Τ1η, T21, T3, T51, T6, T7, T8, T9, 9, 101, filter, and current-stabilizing circuits 205, 205a, 205b, 305, 305a, 305b, 305c • Capacitor W Bu W2, Wn C Bu C2, Cn, C2 Bu C22, C23, C2n, C3 Bu C32, C3n, C4J, C42, C4n, C5 Bu C52, C5n, C6 Bu C62, C6n, C7 Bu C72, C7n , C9; l, C92, C9n Inductance L2, L22, L23, L2n, L3, L32, L3n, L4, L42, L4n, L5, L52, L5n, L6, L62, L6n, L7, L72, L7n, L8, L82 , L8n, L9 Bu L92, 22 1285864 L9n, L1 (H, L102, LlOn tube

LpH、Lpl2、Lpl3、Lpln、Lp21、LpH, Lpl2, Lpl3, Lpln, Lp21,

Lp22 、 Lp23 、 Lp2n 、 Lp31 、 Lp32 、Lp22, Lp23, Lp2n, Lp31, Lp32,

Lp3n、Lp41、Lp42、Lp4n、Lp51、Lp3n, Lp41, Lp42, Lp4n, Lp51,

Lp52 、 Lp5n 、 Lp71 、 Lp72 、 L7n 'Lp52, Lp5n, Lp71, Lp72, L7n '

Lp91、Lp92、Lp9n、LplOl、Lpl02、Lp91, Lp92, Lp9n, LplOl, Lpl02,

LplOn _電阻 全橋電路 R2、R3、R4、R5、R7、R9、RIO 300a、300b、300cLplOn _ resistance Full-bridge circuit R2, R3, R4, R5, R7, R9, RIO 300a, 300b, 300c

23twenty three

Claims (1)

1285864 十、申請專利範圍: • 1.一種多燈管驅動系統’包括· 一變壓器電路,用於轉換一輸入交流訊號之電壓級,該變壓 器電路包括: 一第一輸出端,輸出一第一交流訊號’以及 一第二輸出端,輸出一第二交流訊號,該第二交流訊號與第 一交流訊號的相位相反; _ 一濾波及穩流電路,包括複數濾波及穩流電路單元’分別與 談第一輸出端相連,用於抑制該第一交流訊號中的諳波訊 號,使該第一交流訊號的波形平滑,並分別輸出電流值大致 相同的一第三交流訊號,其中,每一濾波及穩流電路單元均 包括= 一電感,一端連接於該變壓器電路之第一輸出端;以及 _ 一電容,一端連接於該電感之另一端,電容之另一端接地電 位;以及 一燈管組,包括複數燈管,每一燈管之一端分別與該等濾波 及穩流電路單元之其中一者相連,分別由該第三交流訊號驅 動。 2·如申請專利範圍第1項所述之多燈管驅動系統,其中該等 濾波及穩流電路單元中的各電感的阻抗值大致相同,各電容 的阻抗值大致相同,使得流經該等燈管的第三交流訊號的電 24 1285864 流值大致相同。 3. 如申請專利範圍第1項所述之多燈管驅動系統,其中該變壓 器電路之第二輸出端接地電位。 4. 如申請專利範圍第1項所述之多燈管驅動系統,其中該濾波 及穩流電路更包括複數濾波及穩流電路單元,分別與該變壓 器電路之第二輸出端相連,用於抑制該第二交流訊號中的諧 波訊號,使該第二交流訊號的波形平滑,並分別輸出電流值 • 大致相同的第四交流訊號。 5. 如申請專利範圍第4項所述之多燈管驅動系統,其中該第三 * 交流訊號與該第四交流訊號的電流值大致相同,且相位相 反。 6. 如申請專利範圍第4項所述之多燈管驅動系統,其中該燈管 組更包括複數燈管,每一燈管之一端分別與該等連接於變壓 器電路之第二輸出端之濾波及穩流電路單元之其中一者相 _ 連,分別由該第四交流訊號驅動。 7. 如申請專利範圍第4項所述之多燈管驅動系統,其中該燈管 組之每一燈管之另一端分別與該等連接於變壓器電路之第 二輸出端之濾波及穩流電路單元之其中一者相連,分別由該 第三交流訊號及該第四交流訊號驅動同時驅動。 8. 如申請專利範圍第1項所述之多燈管驅動系統,其更包括一 換流電路,與該變壓器電路相連,用於將一輸入之直流訊號 轉換為一交流訊號,並輸出給該變壓器電路。 25 1285864 罾 9. 如申請專利範圍第8項所地之多燈管驅動系統,其更包括一 迴授控制電路’耦接於該燈管組與該換流電路之間,用於依 照來自於該燈管組的迴授訊號控制該換流電路。 10. 如申請專利範圍第8項所叙多燈管驅動系統,其更包括 -迴授控制電路’搞接於讀變壓器電路與該換流電路之間, 用於依照來自於該變_電_迴授訊號㈣該換流電路。 11. 一種多燈管驅動系統,包括· _ -變壓器電路,用於轉換1人交流訊號之電壓級,該變壓 器電路包括: ‘-第-輸出端’輸出卞交流訊號;以及 一第二輸出端’輸Λ "Ί交流訊號,該第二交流訊號與第 一交流訊號的相位相反; 一濾波及穩流電路’包括複數濾波及穩流電路單元,分別與 該第一輸出端及第二輪出端相連,其中,每一濾波及穩流電 •路單元均包括: 一第一電感,一端連接於該變壓器電路之第一輸出端,其另 一端為一第三輸出端’並從該第三輸出端輸出電流值大致相 同的第三交流訊號;及 一第二電感,一端連接於該變壓器電路之第二輸出端,其另 一端為一第四輸出端,並從該第四輸出端輸出電流值大致相 同的第四交流訊號,其中,該第四交流訊號與該第三交流訊 號的電流值大致相同,且相位相反;以及 26 1285864 一燈管組,包括複數燈管,每一燈管之一端分別與該等濾波 及穩流電路單元之其中一者之第三輸出端相連,分別由該第 三交流訊號驅動。 12. 如申請專利範圍第11項所述之多燈管驅動系統,其中該濾 波及穩流電路單元還包括一電容,連接於該第三輸出端與該 第四輸出端之間。 13. 如申請專利範圍第12項所述之多燈管驅動系統,其中該等 • 濾波及穩流電路單元中,各第一電感及第二電感的阻抗值均 大致相同,且各電容的阻抗值大致相同,使得各第三交流訊 號與各第四交流訊號之電流值大致相同,且相位相反。 14. 如申請專利範圍第11項所述之多燈管驅動系統,其中該燈 管組更包括複數燈管,該複數燈管之一端分別與該等濾波及 穩流電路單元之其中一者之第四輸出端相連,分別由該第四 交流訊號驅動。 ® 15.如申請專利範圍第11項所述之多燈管驅動系統,其中該燈 管組之每一燈管之另一端分別與該等濾波及穩流電路單元 之其中一者之第四輸出端相連,分別由該第三交流訊號及該 第四交流訊號同時驅動。 16. 如申請專利範圍第11項所述之多燈管驅動系統,其更包括 一換流電路,與該變壓器電路相連,用於將一輸入之直流訊 號轉換為一交流訊號,並輸出給該變壓器電路。 17. 如申請專利範圍第16項所述之多燈管驅動系統,其更包括 27 1285864 p -迴授控制電路,減闕燈管組與該換流電路之間,用、 依照來自於該燈管組的迴授訊號控制該換流電路。 於 18·如申請專利範圍第16項所述之多燈管驅動系統,其更包 一迴授控制電路,耦接於該變壓器電路與該換流電路之間 用於依照來自於該變壓器電路的迴授訊號控制該換流電略 19. 一種多燈管驅動方法,包括: ° 接收一直流訊號; • 轉換該直流訊號為一方波交流訊號; 轉換該方波交流訊號之電壓級; - 藉由一濾波及穩流電路轉換該改變電壓級後之方波交流訊 號為電流值大致相同的複數弦波交流訊號;以及 分別輸出該等弦波交流訊號至複數燈管; 其中,該等濾波及穩流電路單元是透過控制複數阻抗值相同 的電感和電容,使得該等弦波交流訊號的電流值大致相同。 籲20·如申請專利範圍第19項所述之多燈管驅動方法,其更包括 以下步驟: 經由流經該等燈管之弦波交流訊號產生一迴授控制訊號;以 及 根據該迴授控制訊號控制該直流訊號向該方波交流訊號轉 換。 21.如申請專利範圍第19項所述之多燈管驅動方法,其更包括 以下步驟: 28 1285864 經由轉換該方波交流訊號之電壓級之變壓器電路產生一迴 授控制訊號;以及 根據該迴授控制訊號控制該直流訊號向該方波交流訊號轉 換01285864 X. Patent application scope: • 1. A multi-lamp driving system 'includes a transformer circuit for converting a voltage level of an input AC signal, the transformer circuit comprising: a first output terminal, outputting a first alternating current The signal 'and a second output terminal output a second alternating current signal, the second alternating current signal is opposite to the phase of the first alternating current signal; _ a filtering and steady current circuit comprising a plurality of filtering and steady current circuit units respectively The first output end is connected to suppress the chopping signal in the first alternating current signal, smooth the waveform of the first alternating current signal, and output a third alternating current signal having substantially the same current value, wherein each filtering and The steady current circuit unit comprises: an inductor, one end is connected to the first output end of the transformer circuit; and _ a capacitor, one end is connected to the other end of the inductor, the other end of the capacitor is grounded; and a lamp group includes a plurality of lamps, one end of each of the lamps being respectively connected to one of the filtering and steady current circuit units, respectively, by the third exchange No. driving. 2. The multi-lamp driving system of claim 1, wherein the impedance values of the respective inductors in the filtering and current-stabilizing circuit units are substantially the same, and the impedance values of the capacitors are substantially the same, such that flowing through the The current value of the second AC signal of the lamp 24 1285864 is approximately the same. 3. The multi-lamp drive system of claim 1, wherein the second output of the transformer circuit is grounded. 4. The multi-lamp driving system of claim 1, wherein the filtering and current stabilizing circuit further comprises a plurality of filtering and steady current circuit units respectively connected to the second output end of the transformer circuit for suppressing The harmonic signal in the second alternating current signal smoothes the waveform of the second alternating current signal, and outputs a fourth alternating current signal whose current value is substantially the same. 5. The multi-lamp driving system of claim 4, wherein the third* alternating current signal and the fourth alternating current signal have substantially the same current value and opposite phases. 6. The multi-lamp driving system of claim 4, wherein the lamp group further comprises a plurality of lamps, one of the ends of each tube and the second output of the transformer circuit are respectively filtered And one of the steady current circuit units is respectively driven by the fourth alternating current signal. 7. The multi-lamp driving system of claim 4, wherein the other end of each of the tube sets is respectively connected to the filtering and steady-current circuit of the second output end of the transformer circuit. One of the units is connected, and is driven by the third alternating current signal and the fourth alternating current signal respectively. 8. The multi-lamp driving system of claim 1, further comprising a converter circuit connected to the transformer circuit for converting an input DC signal into an AC signal and outputting the signal to the AC signal Transformer circuit. 25 1285864 罾9. The multi-lamp driving system of claim 8 further comprising a feedback control circuit coupled between the tube group and the converter circuit for The feedback signal of the lamp group controls the commutation circuit. 10. The multi-lamp driving system as recited in claim 8 further includes a feedback control circuit that is coupled between the read transformer circuit and the commutation circuit for use in accordance with the change_electric_ The feedback signal (4) is the commutation circuit. 11. A multi-lamp driving system comprising: _-transformer circuit for converting a voltage level of a one-person alternating current signal, the transformer circuit comprising: a '-first-output terminal' output 卞 alternating current signal; and a second output end 'Transmission "Ί alternating signal, the second alternating signal is opposite to the phase of the first alternating current signal; a filtering and steady current circuit 'comprising a plurality of filtering and steady current circuit units, respectively, and the first output end and the second round The output terminals are connected, wherein each of the filtering and steady current circuit units comprises: a first inductor, one end connected to the first output end of the transformer circuit, and the other end being a third output end and from the first a third alternating current signal having substantially the same output current value; and a second inductor having one end connected to the second output end of the transformer circuit and the other end being a fourth output end, and outputting from the fourth output end a fourth alternating current signal having substantially the same current value, wherein the fourth alternating current signal and the third alternating current signal have substantially the same current value and opposite phases; and 26 1285864 a light tube group, Comprising a plurality of tubes, one end of each tube are connected with those of the third output terminal wherein one of the filter means and the constant current circuit, are driven by the third alternating current signal. 12. The multi-lamp driving system of claim 11, wherein the filtering and stabilizing circuit unit further comprises a capacitor connected between the third output and the fourth output. 13. The multi-lamp driving system according to claim 12, wherein in the filtering and current stabilizing circuit unit, the impedance values of the first inductor and the second inductor are substantially the same, and the impedance of each capacitor The values are substantially the same, such that the current values of the third alternating current signal and the fourth alternating current signal are substantially the same and the phases are opposite. 14. The multi-lamp driving system of claim 11, wherein the tube group further comprises a plurality of tubes, one of the plurality of tubes and one of the filtering and current-stabilizing circuit units respectively The fourth output ends are connected, and are respectively driven by the fourth alternating current signal. The multi-lamp drive system of claim 11, wherein the other end of each of the tubes of the tube group and the fourth output of one of the filter and current-stabilizing circuit units The terminals are connected to each other, and the third alternating current signal and the fourth alternating current signal are simultaneously driven. 16. The multi-lamp driving system of claim 11, further comprising a converter circuit connected to the transformer circuit for converting an input DC signal into an AC signal and outputting the signal to the AC signal Transformer circuit. 17. The multi-lamp driving system of claim 16, further comprising a 27 1285864 p-feedback control circuit, between the reduced lamp tube group and the commutation circuit, in accordance with the light from the lamp The feedback signal of the pipe group controls the commutation circuit. The multi-lamp driving system of claim 16, further comprising a feedback control circuit coupled between the transformer circuit and the commutation circuit for operating in accordance with the transformer circuit The feedback signal controls the commutation function. 19. A multi-lamp driving method, comprising: ° receiving a DC signal; • converting the DC signal to a square wave AC signal; converting a voltage level of the square wave AC signal; a filtering and steady current circuit converts the square wave alternating current signal after the changing voltage level to a complex sine wave alternating current signal having substantially the same current value; and respectively outputting the sinusoidal alternating current signals to the plurality of light tubes; wherein the filtering and stabilization The flow circuit unit controls the capacitance and capacitance of the same complex impedance value such that the current values of the sine wave AC signals are substantially the same. The multi-lamp driving method of claim 19, further comprising the steps of: generating a feedback control signal via a sine wave alternating signal flowing through the lamps; and controlling the feedback according to the feedback The signal controls the DC signal to convert to the square wave AC signal. 21. The multi-lamp driving method of claim 19, further comprising the steps of: 28 1285864 generating a feedback control signal via a transformer circuit that converts the voltage level of the square wave alternating signal; and according to the The control signal is controlled to convert the DC signal to the square wave AC signal. 29 1285864 十一、圖式: 1285864 七、指定代表圖: (一) 本案指定代表圖為:第(六)圖。 (二) 本代表圖之元件符號簡單說明: 換流電路 201 變壓器電路 203a 濾波及穩流電路 205a 燈管組 207a 迴授控制電路 209a 變壓器 T21 電感 L2卜 L22 、 L23 、 L2n 電容 C2卜 C22 、 C23 、 C2n 燈管 Lp21 、Lp22 、 Lp23 、 Lp2n 電阻 R2 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無 629 1285864 XI. Schema: 1285864 VII. Designated representative map: (1) The representative representative of the case is: (6). (2) Brief description of the components of the representative diagram: Converter circuit 201 Transformer circuit 203a Filtering and steady current circuit 205a Lamp group 207a Feedback control circuit 209a Transformer T21 Inductance L2 L22, L23, L2n Capacitor C2 C22, C23 , C2n lamp Lp21, Lp22, Lp23, Lp2n resistor R2 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: None 6
TW94129248A 2005-08-26 2005-08-26 System and method for driving multiple lamps TWI285864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94129248A TWI285864B (en) 2005-08-26 2005-08-26 System and method for driving multiple lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94129248A TWI285864B (en) 2005-08-26 2005-08-26 System and method for driving multiple lamps

Publications (2)

Publication Number Publication Date
TW200709153A TW200709153A (en) 2007-03-01
TWI285864B true TWI285864B (en) 2007-08-21

Family

ID=39457386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94129248A TWI285864B (en) 2005-08-26 2005-08-26 System and method for driving multiple lamps

Country Status (1)

Country Link
TW (1) TWI285864B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415520B (en) * 2007-04-17 2013-11-11 Shigemi Hota Fluorescent lamp device
TWI409765B (en) * 2008-10-17 2013-09-21 Chunghwa Picture Tubes Ltd Driving circuit for backlight system

Also Published As

Publication number Publication date
TW200709153A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
CN100426056C (en) Multiple lamp tube driving system and method
TWI312261B (en)
TWI291841B (en) Method and apparatus for driving an external electrode fluorescent lamp
JP2006344594A (en) Driving method of lamp, driving circuit of lamp, and basic circuit block used for them
US7977888B2 (en) Direct coupled balancer drive for floating lamp structure
JP4458166B2 (en) Discharge tube lighting circuit and electronic device
TWI285864B (en) System and method for driving multiple lamps
CN1886021B (en) Multi lamp tube driving system
TW200826737A (en) Muti-lamp drive system and current balance circuit thereof
JPH0878172A (en) Driving circuit device of low-pressure discharge lamp
CN1306854C (en) Electric discharge lamp and electric discharge lamp drive device
EP1978623A2 (en) Fluorescent lamp power driver
KR20040073533A (en) Circuit arrangement for operation of one or more lamps
TWI284331B (en) Transformer and multi-lamp driving circuit using the same
JP4988831B2 (en) Discharge tube drive
CN101321422A (en) Cold cathode fluorescent lighting discharge tube device
JP2008258166A (en) Fluorescent lamp drive power supply
CA2267918C (en) Circuit arrangement for operating low-pressure discharge lamps
JP4333787B2 (en) Cold cathode discharge lamp lighting device
CN101500364A (en) Discharge lamp driving apparatus and driving method
TWI258162B (en) A three-phase electronic ballast with current equalization function
TWI282955B (en) Lamp drive circuit
TWM338370U (en) Multi-lamp backlight apparatus
JPH07272883A (en) Pulse illumination circuit device for discharge lamp
TWI290707B (en) Multiple-tube parallel driver circuit for LCD monitor and its current-sharing control method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees