TWI284997B - Electrochemical electrode for high-power application - Google Patents

Electrochemical electrode for high-power application Download PDF

Info

Publication number
TWI284997B
TWI284997B TW094126624A TW94126624A TWI284997B TW I284997 B TWI284997 B TW I284997B TW 094126624 A TW094126624 A TW 094126624A TW 94126624 A TW94126624 A TW 94126624A TW I284997 B TWI284997 B TW I284997B
Authority
TW
Taiwan
Prior art keywords
electrochemical
electrode
precipitate
metal
solution
Prior art date
Application number
TW094126624A
Other languages
Chinese (zh)
Other versions
TW200707826A (en
Inventor
Nae-Lih Wu
Shin-Liang Kuo
Original Assignee
Nae-Lih Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nae-Lih Wu filed Critical Nae-Lih Wu
Priority to TW094126624A priority Critical patent/TWI284997B/en
Publication of TW200707826A publication Critical patent/TW200707826A/en
Application granted granted Critical
Publication of TWI284997B publication Critical patent/TWI284997B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention provides a novel electrode which contains an electrode coating thereon, an electrochemical component having the novel electrode and the fabrication method thereof. The electrode coating contains at least a ferrite of a spinel structure having the chemical composition represented by M1+xFe2-xO4, where -0.2 <= x <= 0.2 and M is one of non-Fe transition metal elements and the combination thereof. The electrochemical component relates to an electrochemical cell which has the high-power capability and is suitable for supercapacitor applications.

Description

1284997 九、發明說明: 【發明所屬之技術領域】 ‘ 本發明是關於一種電化學電極與其組合所形成的電容器 及其製備方法’特別疋關於一種應用鐵氧化物(ferrite)之電極 與其組合所形成的超高電容器及其製備方法。 【先前技術】 長久以來,電池是最常被使用的能源儲存裝置,雖然二 次電池能提供較佳的能量密度,但其不足以負荷過於頻繁之 • 尚功率輸出。已知在高功率充放電的情況下,電池易受損並 導致循環壽命急遽減少。此項缺點將致使電池無法滿足需瞬 間提供大電流之機械的電力需求,如電動汽車,因此急需開 發足以搭配電池之南功率儲能元件。 超咼電容器(supercapacitor)又稱為電化學電容器 (electrochemical capacitor)。自1990年以來,超高電容器儼然 已被視為一種介於電池與傳統陶瓷電容器的新型儲能元件, φ 討在有限體積内儲存高達數千法拉的電容量,且具有高功 率毯度、咼充放電週期以及高庫侖效率的特性。由於兼備上 述之特性,超高電容器除了可直接作為小型電器之備用電源 外’更主要的是可作為可攜式軒產品、魏啟動器以及電 動車的瞬間大電流供應器。此一概念源自超高電容器和電池 所組成之混合麵,當兩者並聯細下,由超高電容器提供 任何所而之瞬間電流,而電池則能在特定電流下進行放電; 此一均載效應將可延長電池的使用壽命。 依據電荷儲存機制的不同,超高電容器可大致區分為 5 二,一為電雙層電容器,另一則為偽電容器。其中,電雙層 電容器的儲電方式乃源自在電極與電解液界面進行靜電性之 電荷分離,其作動僅牽涉一單純之物理性吸附行為。通常, 電雙層電容ϋ主要使用具高比絲獅碳材作為電極材料。 另一方面,偽電容器(pseudocapacitor)則擁有一不相同的儲電 機制。偽電容器之電容量除了少部分來自電雙層電容外,其 主要源自活性物質在電極表面進行電吸附或是法拉第反應, 由於僅有位在接近表面區域的物質參與反應,因此其充放電 速率遠較電池為快,而仍能滿足電容之特性且廣泛地被應 用。此外,因為偽電容之單位電容量遠較電雙層電容為高, 近期之超咼電容器相關研究多投注在偽電容之範w壽。 先前技術揭示偽電容器之電極材料主要集中在過渡金屬 氧化物及導電高分子,其中又以過渡金屬氧化物發展為最。 近年來,氧化釕(Ru〇2)已被廣泛地研究及應用在超高電容器 之範彆,Journal of the Electrochemical Society,142,pp 2699-2703 (1995)論文揭示’非晶型氧化舒在硫魏解液中可 提供一高達720 F/g之比電容量。但由於氧化釕非常昂貴,並 不具有實質«化的效益。先前技術包括Gf s〇lid1284997 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a capacitor formed by an electrochemical electrode and a combination thereof, and a method for preparing the same, in particular, a combination of an electrode using ferrite and a combination thereof Ultra-high capacitor and its preparation method. [Prior Art] Batteries have long been the most commonly used energy storage devices. Although secondary batteries provide better energy density, they are not sufficient for excessive power output. It is known that in the case of high power charge and discharge, the battery is easily damaged and the cycle life is drastically reduced. This shortcoming will result in the battery not meeting the power needs of machines that need to supply large currents in an instant, such as electric vehicles, so it is urgent to develop a south power storage component that is sufficient to match the battery. A supercapacitor is also known as an electrochemical capacitor. Since 1990, ultra-high capacitors have been regarded as a new energy storage component between batteries and traditional ceramic capacitors, φ to store up to thousands of farads of capacitance in a limited volume, with high power blanket, 咼Charge and discharge cycles and high coulombic efficiency characteristics. Due to the above characteristics, ultra-high capacitors can be used directly as a backup power source for small appliances. More importantly, it can be used as a portable high-current supply for portable Xuan products, Wei starters and electric vehicles. This concept is derived from the hybrid surface of ultra-high capacitors and batteries. When the two are connected in parallel, any ultra-high capacitors provide any instantaneous current, and the battery can discharge at a specific current; The effect will extend the life of the battery. Depending on the charge storage mechanism, ultra-high capacitors can be roughly divided into 5 two, one is an electric double layer capacitor, and the other is a pseudo capacitor. Among them, the electric storage method of the electric double layer capacitor is derived from the electrostatic charge separation at the interface between the electrode and the electrolyte, and the operation only involves a simple physical adsorption behavior. In general, electric double layer capacitors are mainly used as electrode materials with high ratio silk stone carbon materials. On the other hand, pseudocapacitors have a different power storage mechanism. The capacitance of the pseudocapacitor is mainly derived from the electric double layer capacitor, which is mainly caused by the electrosorption or Faraday reaction of the active material on the surface of the electrode. Since only the substance located near the surface area participates in the reaction, the charge and discharge rate It is much faster than the battery, but still meets the characteristics of the capacitor and is widely used. In addition, because the unit capacitance of the pseudo-capacitor is much higher than that of the electric double-layer capacitor, recent research on super-tantalum capacitors has been bet on the pseudo-capacitor. The prior art discloses that the electrode material of the pseudo capacitor is mainly concentrated in the transition metal oxide and the conductive polymer, and the transition metal oxide is further developed. In recent years, ruthenium oxide (Ru〇2) has been widely studied and applied in the category of ultra-high capacitors. Journal of the Electrochemical Society, 142, pp 2699-2703 (1995) reveals that 'amorphous oxidized sulphur in sulfur A specific capacity of up to 720 F/g can be provided in the solution. However, since cerium oxide is very expensive, it does not have substantial benefits. Prior art includes Gf s〇lid

State Chemistry,144, PP„ 220-223 (1999)論文及美國專利第 M1M75 6,339,538 a 化錳(Mn〇2)則為一具有潛力之偽電容器電極材料,除了價格 ,宜及對環境友善之特性,其搭配之巾性水㈣解液亦不對 環境會造成污染。_,最大之缺失在於非晶叙二氣化锰 的電子‘電度不佳’因此該材料多以薄膜的型式披覆在導電 ^84997 =載體(substrate)上使用,方能得到車 率,=料翻轉統厚職_錄麟紅充放電功 6,762)926 其中較為超高電容器之電極材料, F 乳化三鐵(FeA)呈現較高之電容值。秋而 庫ΙΪΓΓ度差且其賊容係來自陰軒的氧化财反 較慢’因此在高峨速率下電容值急遽下降, 不適於鬲充放電功率的應用。 方之加屬於心日石結構,該結構是由氧原子形成—面心立 ㈣於金柄軒巾言財_郎位置,其中 1/3的鐵離子佔據四面體中 、 體的中心m + 的鐵離子則佔據八面 f的中、位置。本發_相其它麵離子置_三分之一 的鐵離子數仍可得到一维持尖曰 (ferr㈣之多成分氣化物、上曰曰石4,俗稱為鐵氧體 雷^ 其€容概,祕電容值與充放 電功率,較純Fe3〇4大幅提昇。 目的之i開發—相較於氧顿之價格低廉的 材料。本發明的另一目的則冀期該電極材料 擁有从的電子導電度岐贿供高 【發明内容】 _ 隸之第-構想在於提供—種電化學電極,其包含一 -電極塗層’該電極塗層係塗佈於該基材上,且至少 各有一鐵氧化物,其化學組成為M1+XFe2為,其中处x S 0·2,且Μ為一非鐵(Fe)過渡金屬元素。 根據上述構想,其中該基材係一金屬片。 7 2上述構想’其中該鐵氧化物具—技石結構。 2迷構想,其中M係選自由鐘 ㈣)、銅(cu)及其組合所構成之族群其中之一。 上2明之第二構想在於提供—觀化學元件,其包含具 上4特斂之電化學電極。 根據上述構想,該電化學元件係—電化學儲能元件。 根據上述構想’其巾該金屬無機魏與該金屬有機鹽類 更包含-齡族金屬元錢—駐齡屬元素其中之一。 根據上述構想,其+嫌麵金屬元雜包含链(Li)、鈉 (Na)、鉀(K)、铷(Rb)、铯(cs)及其組合。 ,根據上述構想’其中該驗土族金屬元素係包含鈹(Be)、 鎂(Mg)、鈣(Ca)、勰(sr)、鋇(Ba)及其組合。 根據上述構想,其巾該金屬無機麵更包含氣化物、硫 根據上述構想,該統學元件更包含-電解質,該電解 負係一金屬無機贿與—金射機_其中之一。 氧化物、亞硫氧化物、硝氧化物及其組合。 根據上述構想,其巾該金屬有機麵更包含六氟鱗氧化 物、四氟硼氧化物、過氣氧化物、三敦甲基石黃氧化物及其組 合0 本發明之第三構想在於提供一種電極塗層之製備方法, 其包含下列步驟:⑻製備一溶液,該溶液含有Fe3+離子與 M2+離子’且Fe離子與m2+離子的濃度比為2:1 ;⑻將該溶 液加入一鹼性溶液中,以形成一沉澱物;(c)熱處理該沉澱 物,以形成一鐵氧化物粉體;(d)添加一黏著劑與一溶劑於該 •1284997 鐵氧化物體中’以形成-混合聚料;以及⑹將該混合聚料塗 敷於一金屬片基材上。 根據上述構想,其中Μ係選自由猛(Μη)、始(Cu)、鎳 (Ni)、銅(Cu)及其組合所構成之族群其中之一。 根據上述構想,其中該鹼性溶液中更包含一多孔性導電 性材料。 根據上述構想’該製備方法於步驟(b)後更包含:(bl)持 繽授拌该溶液以使反應完全;(b2)以過量去離子水清洗該沉 # 澱物;以及〇3)乾燥該沉澱物。 根據上述構想,其於步驟⑹中,係於一無氧環境中熱處 理該沉澱物。 . 根據上述構想,其於步驟(c)中,係以350oc〜600〇c之溫 度範圍熱處理該沉澱物。 根據上述構想’其中雜著劑係選自—聚二氟乙稀樹脂 (PVdF)、-聚笨乙烯丁二烯橡膠触㈣ 鲁 與一壓克力樹脂(Acrylic resin)其中之一。 根據上述構想,其巾雜舰_正甲基轉細师?) 與水其中之一。 本案得藉由下列圖式及詳細說明,俾得以令讀者更深入 - 了解: 【實施方式】 以下將詳細說明本發明之電極塗層與包含該電極塗層之 電化學電極的詳細製備步驟,並將糊分析結果標示於圖式 中,以進-步綱本發日狀電化學電極及電化學元件的特徵 1284997 與優勢。 〔請參閱第-圖’其係-方法流程圖,用以說明本發明之 • t姆層製備方法的主要步驟。首先,製備一含有Fe3+離子 與M2+離子之溶液系統,如步驟u所示,其中該Fe3+離子與 该M2+離子的濃度比為2:1。接著,將該溶液加入一驗性溶液 中,步驟12所示,此時於溶液中即形成一沉澱物。持續携 拌该溶液以使反應完全並以過量去離子水清洗該沉澱物,分 W如步驟13與步驟14所示;然後將該沉澱物乾燥後,於— 無氧環境中熱處理該沉澱物,以形成—鐵氧化物粉體,分別 ^步驟15與步驟16所示。最後於該鐵氧化物體中添加一黏 著劑與-溶劑(如步驟17所示),即成為該電極塗層之漿料, 其可進—步塗佈於—紐上,以形成-電化學f極,如步驟 18所示。) 卩下將詳細酬本發明之各實蝴的韻雕與分析結 果: _ 【實施例1】 將0.024莫耳Feci3 · 6H2〇以及〇·〇ΐ2莫耳MC12,其中 _ M 為 Fe、Co、Ni 或 Cu,或是 〇·〇ΐ2 莫耳 MnS04 · H20 溶於 20亳升1MHC1的去氧水溶液中,此時溶液Fe3+與其它另一 金屬(Co、Ni、Cu或Μη)離子濃度比為2:1。 接著將此酸性鹽類溶液逐滴加入2〇〇毫升的15MNaOH ^溶液中,隨即產生棕黑色沈澱,並持續攪拌30分鐘以使沈 澱反應完全。經以過量去離子水清洗此棕黑色沈澱以移除多 餘的離子後,將沈澱物取出並於5G°C空氣巾乾燥,其中除 10 1284997State Chemistry, 144, PP „ 220-223 (1999) paper and US Patent No. M1M75 6,339,538 a manganese (Mn〇2) is a potential pseudocapacitor electrode material, in addition to price, and environmentally friendly characteristics, The combination of the towel water (4) solution does not cause pollution to the environment. _, the biggest missing is the electronic 'electricity is not good' of the amorphous sulphide Mn. Therefore, the material is mostly coated with a thin film. 84997 = used on the carrier, in order to get the car rate, = material flipping thickening _ _ lin red charge and discharge work 6,762) 926 which is the electrode material of the ultra-high capacitor, F emulsified three iron (FeA) is higher The capacitance value. The autumn is poor and the thief capacity is from the Yin Xuan's oxidation is slower. Therefore, the capacitance value drops sharply at the high enthalpy rate, which is not suitable for the application of charge and discharge power. The structure of the Japanese stone, the structure is formed by oxygen atoms - the face of the heart (4) in the position of the gold handle Xuanyuan, the 1/3 of the iron ions occupy the tetrahedron, the center of the body m + the iron ions occupy the eight sides f Medium and position. Sub-set _ third of the number of iron ions can still obtain a multi-component gasification of ferr (four), upper vermiculite 4, commonly known as ferrite thunder, its capacity, secret capacitance and charge and discharge The power is much higher than that of pure Fe3〇4. The purpose of i is to develop a material that is cheaper than the price of oxygen. Another object of the invention is that the electrode material has the electronic conductivity from the bribe. The content of the invention is to provide an electrochemical electrode comprising an -electrode coating. The electrode coating is coated on the substrate, and at least one of the iron oxides has a chemical composition of M1. +XFe2 is, where x S 0·2, and Μ is a non-ferrous (Fe) transition metal element. According to the above concept, the substrate is a metal piece. 7 2 The above concept 'where the iron oxide has - Technical stone structure. 2 conception, wherein M is selected from one of the group consisting of bell (four)), copper (cu) and combinations thereof. The second concept of the above is to provide a chemical element, which includes A special electrochemical electrode. According to the above concept, the electrochemical component is electrically-electricized. According to the above concept, the metal inorganic and the metal organic salt contain one of the elements of the age-old metal element. According to the above concept, the + surface metal element contains Chain (Li), sodium (Na), potassium (K), ruthenium (Rb), ruthenium (cs), and combinations thereof. According to the above concept, the soil member of the soil test group includes beryllium (Be) and magnesium (Mg). Calcium (Ca), strontium (sr), strontium (Ba), and combinations thereof. According to the above concept, the metal inorganic surface of the towel further comprises a vapor, sulfur. According to the above concept, the scientific component further comprises an electrolyte, the electrolysis Negative one metal-inorganic bribe and one-gold ejector _ one of them. Oxides, sulphur oxides, nitrates, and combinations thereof. According to the above concept, the metal organic surface of the towel further comprises hexafluorosean oxide, tetrafluoroborate, peroxy oxide, Sandon methyl feldspar oxide and combinations thereof. The third concept of the present invention is to provide a A method for preparing an electrode coating, comprising the steps of: (8) preparing a solution containing Fe3+ ions and M2+ ions' and a concentration ratio of Fe ions to m2+ ions of 2:1; (8) adding the solution to an alkaline solution To form a precipitate; (c) heat treating the precipitate to form an iron oxide powder; (d) adding an adhesive and a solvent in the "1284997 iron oxide body" to form a mixed polymer; And (6) applying the mixed polymer to a metal sheet substrate. According to the above concept, the lanthanide is one selected from the group consisting of 猛η, )(Cu), nickel(Ni), copper(Cu), and combinations thereof. According to the above concept, the alkaline solution further comprises a porous electrically conductive material. According to the above concept, the preparation method further comprises after step (b): (bl) mixing the solution to complete the reaction; (b2) washing the precipitate with excess deionized water; and drying) The precipitate. According to the above concept, in the step (6), the precipitate is heat-treated in an oxygen-free environment. According to the above concept, in the step (c), the precipitate is heat-treated at a temperature ranging from 350 oc to 600 〇c. According to the above concept, wherein the hybrid agent is selected from the group consisting of: polyvinylidene fluoride resin (PVdF), polystyrene butadiene rubber touch (tetra), and one of acrylic resin (Acrylic resin). According to the above concept, its towel is one of the waters. In the present invention, the following drawings and detailed descriptions can be used to further the reader-understand: [Embodiment] The detailed preparation steps of the electrode coating of the present invention and the electrochemical electrode including the electrode coating layer will be described in detail below, and The results of the paste analysis are indicated in the figure, and the advantages of the Japanese electrochemical electrode and the electrochemical element 1284997 are further advanced. [Please refer to the figure-method flow chart for explaining the main steps of the method for preparing the m layer of the present invention. First, a solution system containing Fe3+ ions and M2+ ions is prepared, as shown in step u, wherein the concentration ratio of the Fe3+ ions to the M2+ ions is 2:1. Next, the solution is added to an assay solution, as shown in step 12, at which point a precipitate forms in the solution. The solution is continuously mixed to complete the reaction and the precipitate is washed with excess deionized water, as shown in steps 13 and 14; after the precipitate is dried, the precipitate is heat treated in an anaerobic environment. To form - iron oxide powder, respectively, step 15 and step 16. Finally, an adhesive and a solvent (as shown in step 17) are added to the iron oxide body to form a slurry of the electrode coating, which can be further coated on the button to form an electrochemical f. Extreme, as shown in step 18. The following will be the details of the rhyme carving and analysis results of the actual invention: _ [Example 1] 0.024 mol Feci3 · 6H2〇 and 〇·〇ΐ2 Moer MC12, where _ M is Fe, Co, Ni or Cu, or 〇·〇ΐ2 Moer MnS04 · H20 is dissolved in 20 liters of 1MHC1 deoxygenated water solution, at which time the concentration ratio of solution Fe3+ to another metal (Co, Ni, Cu or Μη) is 2 :1. This acidic salt solution was then added dropwise to 2 mL of a 15 M NaOH solution, followed by a brown-black precipitate and stirring was continued for 30 minutes to complete the precipitation reaction. After washing the brown-black precipitate with excess deionized water to remove excess ions, the precipitate was taken out and dried at 5 ° C air towel, except for 10 1284997

Fe3〇4已經是結晶相外,其餘游以〇4粉體為非結晶相;在氮 氣環境中以600。(:熱處理該沉澱物2小時以使其結晶。 由第二圖之各結晶粉體的X光繞射圖譜可證實其來自合 成之粉體的繞射峰係屬於尖晶石(Spinel)之結構。 將所合成之上述粉體先行加入重量百分比為的導電 性碳黑並隨之加入適量黏著劑與溶劑,其中黏著劑為聚二氟 乙烯樹脂(PVdF)而溶劑為正曱基吡咯烷酮(NMP),即形成一 電極塗層漿料;將此漿料均勻塗佈在一鈦片基材上即完成電 化學電極之製作。最後將此電極於12〇°C真空中乾燥6小時 以移除溶劑。 本實驗使用循環伏安法(CV)來進行電極之電化學分析, 此分析採用三電極式系統在lMNaCl電解液中進行量測;在 w亥里測糸統中,工作電極、辅助電極及參考電極分別為 MnFhO4電極、鉑網以及Ag/Agci/飽和KC1溶液(其電位相 對於標準氫電極為(U97V)。 電極材料之電容C可以下式(1)評估: C = Γi/s dV/w h (1) 其中i為電流(早位為安培)’ s為電位掃目苗速率(單位為伏 特/秒),w為重量(單位為克),Vi及Vf分別為電壓範圍(單位 為伏特,此時Vi及Vf分別為0.0V及0.7V)。 根據公式⑴计鼻並扣除奴黑之貝獻’可得到各種Mpe2Q 粉體之電容值。表(一)比較不同MFe2〇4電極在1Μ 電 解液中所表現之電容量。由表㈠可知,以本發明所揭示之 不同過渡金屬取代之結晶MFezO4的電容值皆較習知的 11 • 1284997 高’其中又以MnFe2〇4及CoFe2〇4的效果最佳。 表(一) 成分相 電容量ff/g) Fe304 1.2 MnFe2〇4 14.9 CoFe2〇4 7.1 NiFe204 2.0 CuFe204 3.0 此外’為了進一步提升MFe204的電容值,在以下之實 施例中對粉體結晶溫度與合成方法作較佳的選擇。 【實施例2】 將 0.024 莫耳 Feci3 · 6H20 以及 0.012 莫耳 MnS04 · H20 依序溶於20毫升的iM HC1水溶液中,此時溶液中Fe3+與 Μη離子濃度比為2:1。再將2.76克的碳黑經研磨後加入前 述之溶液並持續攪拌30分鐘,以使碳黑能均勻分散於溶液 • 巾。接著將此溶液逐滴加人200毫升的ΐ·5Μ NaOH水溶液 中,隨即產生棕黑色沈殿,並持續授拌3〇分鐘以使沈澱反應 - $全。㈣過量去離子水清洗此棕黑色沈顧移除多餘的離 錢,將沈搬物取出並於抓空氣中乾燥,爾後在氮氣環境 中以35G C熱處理2小時。X光繞射分析顯示該複合粉體中 包含一 MnFe204結晶相。 ^字經熱處理之MnFeA/碳黑複合粉體補並加入適量 ^占著别與/合劑,其中黏著劑為pvdF、溶劑為NMp,將此裝 料句勻k佈在鈦片基材上以完成電極,並將此電極於⑽。c 12 1284997 真空乾燥6小時以移除溶劑。 同樣的,利用循環伏安法(CV)來進行電極之電化學分 ^、所II彳之MnFe2〇4電極在丨M NaC1水溶液巾以掃猫速 ^為20 mV/s條件下之簡之娜伏安分析絲如第三圖所 不。此分析仍採用三電極式系統。由第三圖可知 ,此CV曲 :、除了有X廣的氧化還原峰外,幾乎呈現_矩形,且當電 墾反轉時,電流很快達到反向穩定值,趨近一典型之電容器。 再者’在料不同掃目旨速率下,該電極轉幾近相同之 特,’此顯示MnFe204具有良好之f容特性、反應可逆性以 及π功率輸ώ之雖。根據公式⑴計算得知,扣除碳黑成份 之電容量後,可淨得其中Μ_〇4所貢獻的電容量為1〇2 F/g。 【比較例1】 同貝把例2之]VInFe2〇4粉體,然改變其熱處理條件,使 其在氮氣環境中以200〇C熱處理2小時。 同樣對由上述粉體所製得之電極進行循環伏安分析,其 於1 M NaCl水溶液中以掃猫速率為2〇 mV/s條件下之循環伏 安分析結果如第四®所示,此分析仍採用三電極絲統。由 氧化還原反應,而非呈現一典型之電容行為。此一現象揭示 如熱處理溫度過低,則所形成的非尖晶石結構晶型之 MnFe2〇4並不具有作為超高電容器電極材料的潛力。 【實施例3】Fe3〇4 is already a crystalline phase, and the rest is a non-crystalline phase of 〇4 powder; 600 in a nitrogen atmosphere. (: The precipitate was heat-treated for 2 hours to crystallize it. From the X-ray diffraction pattern of each of the crystal powders of the second figure, it was confirmed that the diffraction peak derived from the synthesized powder belongs to the structure of spinel. The above-mentioned powder is first added to the conductive carbon black in a weight percentage and then an appropriate amount of adhesive and solvent are added, wherein the adhesive is polyvinylidene fluoride resin (PVdF) and the solvent is n-decylpyrrolidone (NMP). That is, an electrode coating slurry is formed; the slurry is uniformly coated on a titanium substrate to complete the fabrication of the electrochemical electrode. Finally, the electrode is dried in a vacuum at 12 ° C for 6 hours to remove the solvent. This experiment uses cyclic voltammetry (CV) to perform electrochemical analysis of the electrode. This analysis uses a three-electrode system to measure in 1M NaCl electrolyte; in the W-Tai system, the working electrode, auxiliary electrode and The reference electrodes are MnFhO4 electrode, platinum mesh and Ag/Agci/saturated KC1 solution (the potential is relative to the standard hydrogen electrode (U97V). The capacitance C of the electrode material can be evaluated by the following formula (1): C = Γi/s dV/ Wh (1) where i is the current (early ampere)' s Potential sweep rate (in volts per second), w is weight (in grams), Vi and Vf are voltage ranges (in volts, Vi and Vf are 0.0V and 0.7V, respectively). (1) Calculating the capacitance of various Mpe2Q powders by counting the nose and deducting the black-skinned ones. Table (1) Comparing the capacitances of different MFe2〇4 electrodes in the 1Μ electrolyte. As shown in Table (1), the present invention The capacitance values of MFezO4 substituted by different transition metals are better than those of the conventional 11 • 1284997 high. Among them, MnFe2〇4 and CoFe2〇4 are the best. Table (1) Component phase capacitance ff/g) Fe304 1.2 MnFe2〇4 14.9 CoFe2〇4 7.1 NiFe204 2.0 CuFe204 3.0 In addition, in order to further increase the capacitance value of MFe204, the powder crystallization temperature and synthesis method are preferably selected in the following examples. [Example 2] 0.024 Moxi Feci3 · 6H20 and 0.012 Mo Er MnS04 · H20 were dissolved in 20 ml of iM HC1 aqueous solution at this time, the ratio of Fe3+ to Μη ion concentration in the solution was 2:1. Then 2.76 g of carbon black was ground. Add the aforementioned solution and continue to stir 3 0 minutes, so that the carbon black can be evenly dispersed in the solution • towel. Then add this solution dropwise to 200 ml of ΐ·5Μ NaOH aqueous solution, then produce a brown-black phlegm, and continue to stir for 3 以 minutes to make the precipitation reaction. - $全. (d) Excessive deionized water cleaning This brown-black wash removes excess excess money, removes the sinking material and dries it in air, and then heats it at 35G C for 2 hours in a nitrogen atmosphere. X-ray diffraction analysis revealed that the composite powder contained a crystalline phase of MnFe204. ^ The heat-treated MnFeA/carbon black composite powder is added and added to the appropriate amount, and the adhesive is pvdF, the solvent is NMp, and the loading sentence is uniformly distributed on the titanium substrate to complete Electrode and place this electrode at (10). c 12 1284997 Dry in vacuo for 6 hours to remove solvent. Similarly, using the cyclic voltammetry (CV) to carry out the electrochemical separation of the electrodes, the MnFe2〇4 electrode of the II 丨 Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na The analysis wire is not as shown in the third figure. This analysis still uses a three-electrode system. As can be seen from the third figure, this CV curve: almost has a _ rectangle except for the X-ray redox peak, and when the electrode is reversed, the current quickly reaches a reverse stable value, approaching a typical capacitor. Furthermore, the electrode turns almost the same at the different scanning rate, which shows that MnFe204 has good f-capacitance characteristics, reaction reversibility, and π-power transmission. According to the formula (1), after subtracting the capacitance of the carbon black component, the capacitance contributed by Μ_〇4 can be netted to 1〇2 F/g. [Comparative Example 1] The VInFe2〇4 powder of Example 2 was replaced with a heat treatment condition, and it was heat-treated at 200 ° C for 2 hours in a nitrogen atmosphere. The cyclic voltammetric analysis of the electrode prepared from the above powder was also carried out, and the cyclic voltammetry analysis result of the sweeping cat rate of 2 〇mV/s in an aqueous solution of 1 M NaCl was as shown in the fourth®. The analysis still uses a three-electrode wire system. Instead of exhibiting a typical capacitive behavior, it is a redox reaction. This phenomenon reveals that if the heat treatment temperature is too low, the formed non-spinel crystal form of MnFe2〇4 does not have the potential as an ultrahigh capacitor electrode material. [Example 3]

根據貫施例2而製造一超高電容器,其中電解液改用1M 13 • 1284997 KC1水溶液。根據分析,其電容量為94 F/g。 【實施例4】 同只施例2製備MnFe2〇4電極,然改採用二電極式系統 進行循環伏析。此分析是將利目組成相同之電極相對置 於道NaCl電解液中。第五圖所示為該等電極在m制! 水溶液中㈣位獅速率為施v/s之循環伏㈣試結果。 因為二極式系統可視為兩電容器串聯使用,其等效電容表示 如下:An ultrahigh capacitor was fabricated according to Example 2, wherein the electrolyte was changed to a 1 M 13 • 1284997 KC1 aqueous solution. According to the analysis, its capacitance is 94 F/g. [Example 4] The MnFe2?4 electrode was prepared in the same manner as in Example 2, and the two-electrode system was used for cyclic voltalysis. In this analysis, the electrodes with the same composition are placed in the channel NaCl electrolyte. The fifth figure shows the results of the cycle of the four electrodes in the m system! (four) lion rate is the v / s cycle (four) test results. Since the two-pole system can be regarded as a series connection of two capacitors, its equivalent capacitance is expressed as follows:

(2) ⑶(2) (3)

1/Ce = 1/C + 1/0 2/C C = 2Ce 早位電極之電容量為實際量測值_倍,根據公式⑴及 ⑶計算得知施_4貢獻電容量為議F/g。當電位掃猫速 率提高到2GGmV/S時,電容值降為約78F/g,估算其中1/Ce = 1/C + 1/0 2/C C = 2Ce The capacitance of the early electrode is the actual measured value _ times, and the contribution capacity of the application _4 is calculated according to the formulas (1) and (3). When the potential sweeping cat rate is increased to 2GGmV/S, the capacitance value drops to about 78F/g, which is estimated.

MnFe204的充放電功率約為! 5 k慨§。此一輸出功率:習知 之Fe304電極的1〇倍以上。The charge and discharge power of MnFe204 is about! 5 k §. This output power is more than 1〇 of the conventional Fe304 electrode.

第六圖則為該等電極在1M NaC1水溶液中以固定W mAW電流紐之定魏進行綠電躲絲意圖,干The sixth figure is that the electrodes are in the 1M NaC1 aqueous solution with a fixed W mAW current.

在廣電壓範圍内之充放電曲線接近直線且顯= 電位降,為一典型之電容器。 ^、、頁之1R 【實施例5】 根據實施例2而製造—電化學電容器,其中 用1觀_4水溶液。經過分析,該偷 = 量為63F/g-MnFe204。 #盗之電令 【實施例6】 1284997 將 0·024 莫耳 FeCl3,6H20 以及 0.012 莫耳 CoCl2 · 6H20 依序溶於20毫升的iM HC1水溶液中,此時溶液中j?e3+與 Co2+的離子濃度比為2:1 ;接著將2.815克的碳黑經研磨後加 入前述之溶液並持續攪拌30分鐘,以使碳黑能均勻分散於該 溶液中。然後將此溶液逐滴加入200毫升的i.5MNaOH水溶 液中,隨即產生棕黑色沈澱,並持續攪拌30分鐘以使沈澱反 應完全。以過量去離子水清洗此棕黑色沈澱以移除多餘的離 子後,即將沈澱物取出並於5(TC空氣中乾燥,爾後在氮氣環 境中以400°C熱處理2小時。 接著根據實施例2進行電極之製備,且仍採用二極式系 統對该電極進行電化學測試(即循環伏安分析)。經過分析與 式(1)及(3)之計算’可知c〇Fe204貢獻電容量為45F/g。 【實施例8】 將 0.0216 莫耳 FeCb · 6氏0 與 0.0144 莫耳 MnS04 · H20 依序溶於20毫升的1M HC1水溶液中,此時溶液中與 Mn2+的離子濃度比為m2。將2.815克的碳黑經研磨後加 入前述之溶液並持續攪拌30分鐘,以使碳黑能均勻分散於溶 液中,接著將此溶液逐滴加入預先加熱至8〇〇c的2⑻毫升 1.5MNaOH水溶液中,隨即產生棕黑色沈澱,並持續攪拌3〇 分鐘以使沈澱反應完全。触崎去鮮水清洗此棕黑色沈 澱以移除多餘的離子後,將沈澱物取出並於5〇〇c空氣中乾 燥,此時該粉體具有Mn^Feuh之化學組成。 同樣根據貫施例2所揭露的方法進行電極之製作,且採 用二極式系統進行循環伏安分析;帛七圖即為利用三極式系 1284997 統在1M NaC1水溶液中測試該電極之循環伏安圖,經過八 析,在此實施例中所製得的電極材料之電容為4〇F/g。刀The charge-discharge curve in the wide voltage range is close to a straight line and shows a potential drop, which is a typical capacitor. ^, page 1R [Example 5] An electrochemical capacitor was produced according to Example 2, in which an aqueous solution of 1 _4 was used. After analysis, the stolen amount was 63F/g-MnFe204. #盗之令 [Example 6] 1284997 0.024 Mo Er FeCl3,6H20 and 0.012 MoC CoCl2 · 6H20 were sequentially dissolved in 20 ml of iM HC1 aqueous solution, at this time j?e3+ and Co2+ ions in the solution The concentration ratio was 2:1; then 2.815 g of carbon black was ground and added to the above solution and stirring was continued for 30 minutes to allow the carbon black to be uniformly dispersed in the solution. This solution was then added dropwise to 200 ml of an aqueous solution of i.5 M NaOH, followed by a brown-black precipitate, which was stirred continuously for 30 minutes to allow the precipitation to proceed completely. After washing the brown-black precipitate with excess deionized water to remove excess ions, the precipitate was taken out and dried in 5 (TC air, and then heat treated at 400 ° C for 2 hours in a nitrogen atmosphere. Next, proceed according to Example 2. The electrode was prepared and the electrode was still electrochemically tested (ie, cyclic voltammetry) using a two-pole system. After analysis and calculations of equations (1) and (3), it is known that the contribution capacity of c〇Fe204 is 45F/ g. [Example 8] 0.0216 moles of FeCb · 6 Å and 0.0144 moles of MnS04 · H20 were sequentially dissolved in 20 ml of 1 M HCl aqueous solution, and the ratio of ion concentration in the solution to Mn 2+ was m2. The gram of carbon black was ground and added to the above solution and stirring was continued for 30 minutes to uniformly disperse the carbon black in the solution, and then the solution was added dropwise to 2 (8) ml of 1.5 M NaOH aqueous solution previously heated to 8 〇〇c. A brown-black precipitate was then produced and stirring was continued for 3 minutes to complete the precipitation reaction. After washing the brown-black precipitate with fresh water to remove excess ions, the precipitate was taken out and dried in air at 5 °c. At this time the powder It has the chemical composition of Mn^Feuh. The electrode is also fabricated according to the method disclosed in Example 2, and the cyclic voltammetry is performed using a two-pole system; the seven-figure diagram is the use of the three-pole system 1284997 in 1M NaC1. The cyclic voltammogram of the electrode was tested in an aqueous solution, and after eight analysis, the capacitance of the electrode material prepared in this example was 4 〇F/g.

製得的各種娜执粉體均具有尖晶石的 …冓’各金麟子間的gj態互溶度高,因此可崎不同的 Μ’金屬離子,其中 M、M,=Mn、Co、Ni'CiiH^ =同之比例組合形成_,WFe2.x〇4,其中_〇.2汹).2 ;當χ 落於-0.2〜0.2的範圍内時,所製得的電極材料的電容值^ 佳’若於該範圍以外,則電容值將快速降低。 相車乂於白知之氧化钉材料,本發明提供了一系列價格較 低廉之新_高電舞電料歸料,且她於習知的四氧 化三鐵(Fe3〇4) ’本發明所提供之具結晶型之更具 較佳之充放電功率。 ^ 、’、不&amp;上述說明,本發明實為一新穎、進步且具產業實用 性之發明,深具發展價值。 〃、 、本發明得由熟悉技藝之人任施匠思而為諸般修飾,然不 脫如附申請範圍所欲保護者。 【圖式簡單說明】The various kinds of powders produced by Na Na have spinel... The gj state of each Jinlinzi has high mutual solubility, so it can be different from the metal ions, M, M, =Mn, Co, Ni. 'CiiH^ = the same ratio is combined to form _, WFe2.x〇4, where _〇.2汹).2; when the χ falls within the range of -0.2 to 0.2, the capacitance value of the prepared electrode material^ If the value is outside the range, the capacitance value will decrease rapidly. The invention provides a series of cheaper new _ high electric dance electric material return materials, and she is known in the art of ferroferric oxide (Fe3〇4) 'provided by the present invention More crystalline charge and discharge power. ^, ', No &amp; The above description, the present invention is a novel, progressive and industrially practical invention, which has profound development value. The invention may be modified by a person skilled in the art, without departing from the scope of the application. [Simple description of the map]

第一圖係一方法流程圖,用以說明本發明之電極塗 備方法的主要步驟; I 第二圖係一 X光繞射圖譜,其證實本發明所製備之粉體 的繞射峰係屬於尖晶石(spinel)之結構,在圖譜中之Si(l 11)峰 係來自於添加之内含標準(internal standard)物質。 第二圖係根據本發明之較佳實施例所製得的MnFe2〇4電 極的三電極式系統循環伏安分析結果,其中MnFe204的熱處 1284997 理溫度為35〇°c ; 第四圖係根據本發明之比較例所製得的MnFe204電極的 循環伏女分析結果,其中MnFe204的熱處理溫度為200〇C ; 第五圖係根據本發明之較佳實施例所製得的MnFe2〇4電 極的一電極式系統循環伏安分析結果,其中電位掃瞄速率為 20mV/s ; 第六圖係根據本發明之較佳實施例所製得的MnFe2〇4電 極的二電極式系祕賴安分析結果,其巾細Q 5mA/cm2 電流密度之定電流進行充放電;以及 第七圖係根據本發明之另-較佳實施例所製得的 MnuFe^O4電極的三電極式系統循環伏安分析社果。 【主要元件符號說明】 11〜18步驟The first figure is a method flow chart for explaining the main steps of the electrode coating method of the present invention; I The second figure is an X-ray diffraction pattern, which confirms that the diffraction peak of the powder prepared by the present invention belongs to The structure of the spinel, the Si (l 11) peak in the map is derived from the added internal standard material. The second figure is a cyclic voltammetric analysis result of a three-electrode system of MnFe2〇4 electrode prepared according to the preferred embodiment of the present invention, wherein the heat of MnFe204 is 1284997 and the temperature is 35〇°c; The result of cyclic voltammetry analysis of the MnFe204 electrode prepared in the comparative example of the present invention, wherein the heat treatment temperature of MnFe204 is 200 〇C; the fifth figure is a MnFe2〇4 electrode prepared according to the preferred embodiment of the present invention. The result of the cyclic voltammetry analysis of the electrode system, wherein the potential scanning rate is 20 mV/s; the sixth figure is the result of the two-electrode system of the MnFe2〇4 electrode prepared according to the preferred embodiment of the present invention, The battery is charged and discharged with a constant current of Q 5 mA/cm 2 current density; and the seventh diagram is a three-electrode system cyclic voltammetric analysis of the MnuFe^O 4 electrode prepared according to another preferred embodiment of the present invention. . [Main component symbol description] 11~18 steps

1717

Claims (1)

1284997 十、申請專利範圍: L-種f化學電極,其包含: 一基材; —電極塗層,其係塗佈於該基材上,該電極塗層係 至)含有一鐵氧化物,其化學組成為M1+xFe2_x04,其中 -0 2&lt; · :X$0·2,且Μ為一非鐵(Fe)過渡金屬元素。 2·如申凊專利範圍第1項之電化學電極,其中該基材係-_ 金屬片。 3·如申睛專利範圍® 1項之電化學電極,其中該鐵氧化物 具一尖晶石結構。 4. 如申睛專利範圍第1項之電化學電極,其中Μ係選自由 猛(Mn)、@(Cu)、錄_、銅(Cu)及其組合所構成之族群 其中之一。 5. -種電化學元件’其包含如_請專利細第丨項至第4 項之電化學電極。 • 6.如申請專利範圍第5項之電化學元件,其係-電化學儲 能元件。 . 7.如巾請專利翻第5項之電化學元件,更包含一電解 質,該電解質係-金屬無機鹽類與—金屬有機鹽類其中 — 〇 8. 如申請專利範圍第7項之電化學元件,其中該金屬無機 鹽類與該金屬有機雜更包含—驗纽金屬元素與;2驗 土族金屬元素其中之一。 9. 如申請專利範圍第8項之電化學元件,其中該驗金族金 18 屬元素係包含鋰(Li)、鈉(Na)、鉀(K)、铷(Rb)、鉋(Cs)及 其組合。 10.如申請專利範圍第8項之電化學元件,其中該鹼土族金 屬元素係包含鈹(Be)、鎮(Mg)、鈣(Ca)、錄(Sr)、鋇(Ba) 及其組合。 U.如申請專利範圍第7項之電化學元件,其中該金屬無機 鹽類更包含氯化物、硫氧化物、亞硫氧化物、硝氧化物 及其組合。 U·如申凊專利範圍第7項之電化學元件,其中該金屬有機 鹽類更包含六氟磷氧化物、四氟硼氧化物、過氣氧化物、 二亂甲基礦乳化物及其組合。 13· —種電極塗層之製備方法,其包含下列步驟·· ⑻製備一溶液’該溶液含有Fe3+離子與m2+離子,且Fe3+ 離子與M2+離子的濃度比為2:1 ; (b) 將該溶液加入一鹼性溶液中,以形成一沉澱物; (c) 熱處理該沉澱物,以形成一鐵氧化物粉體; (d) 添加一黏著劑與一溶劑於該鐵氧化物體中,以形成一 混合聚料;以及 (e) 將該混合漿料塗敷於一金屬片基材上。 14·如申請專利範圍第13項之製備方法,其中選自由 錳(Μη)、鈷(Cu)、鎳(Ni)、鋼(Cu)及其組合所構成之族群 其中之一。 、 is.如申請專利範圍f 13項之製備方法,其中該驗性溶液 中更包一多孔性導電性材料。 1284997 16·如申請專利範圍第15項之製備方法,該多孔性導電性 材料係選自一碳黑、一金屬氧化物及其組合其中之〜 17·如申請專利範圍第13項之製備方法,其於步驟(b) 包含: &amp; (bl)持續攪拌該溶液以使反應完全; (b2)以過量去離子水清洗該沉澱物;以及 (b3)乾燥該沉澱物。 18·如申請專利範圍第13項之製備方法,其於步驟中, 係於一無氧環境中熱處理該沉澱物。 19·如申請專利範圍第13項之製備方法,其於步驟(e)中, 係以350°C〜600°C之溫度範圍熱處理該沉澱物。 20·如申請專利範圍第13項之製備方法,其中該黏著劑係 選自一聚二氟乙烯樹脂(PVdF)、一聚苯乙烯丁二烯橡膠 (Styrene-Butadiene- Rubber)與一壓克力樹脂(Acrylic resin) 其中之一。 21·如申請專利範圍第13項之製備方法,其中該溶劑係一 正曱基吼各:院J同(NMP)與水其中之一。 201284997 X. Patent application scope: L-type f chemical electrode, comprising: a substrate; an electrode coating coated on the substrate, the electrode coating layer containing an iron oxide, The chemical composition is M1+xFe2_x04, where -2 2 &lt; · : X$0·2, and Μ is a non-ferrous (Fe) transition metal element. 2. The electrochemical electrode of claim 1, wherein the substrate is a metal sheet. 3. The electrochemical electrode of claim 1, wherein the iron oxide has a spinel structure. 4. The electrochemical electrode according to claim 1, wherein the lanthanide is one selected from the group consisting of Mn, @(Cu), _, copper (Cu), and combinations thereof. 5. An electrochemical element 'which comprises an electrochemical electrode as described in pp. • 6. The electrochemical component of claim 5, which is an electrochemical energy storage component. 7. The invention relates to the electrochemical element of the fifth item, and further comprises an electrolyte, the electrolyte system - the metal inorganic salt and the metal organic salt, wherein - 8. The electrochemical method of claim 7 An element, wherein the metal inorganic salt and the metal organic impurity further comprise - a metal element; and 2 one of the earth metal elements. 9. The electrochemical component of claim 8, wherein the gold-based element of the gold-receiving group comprises lithium (Li), sodium (Na), potassium (K), antimony (Rb), planer (Cs), and Its combination. 10. The electrochemical component of claim 8, wherein the alkaline earth metal element comprises beryllium (Be), town (Mg), calcium (Ca), sor (Sr), barium (Ba), and combinations thereof. U. The electrochemical component of claim 7, wherein the metal inorganic salt further comprises a chloride, a sulfur oxide, a sulfurous oxide, a nitrate, and combinations thereof. U. The electrochemical component of claim 7, wherein the metal organic salt further comprises hexafluorophosphorus oxide, tetrafluoroborate, over-gas oxide, m-methyl sulfide emulsion, and combinations thereof. . 13. A method for preparing an electrode coating comprising the following steps: (8) preparing a solution containing Fe3+ ions and m2+ ions, and a concentration ratio of Fe3+ ions to M2+ ions is 2:1; (b) The solution is added to an alkaline solution to form a precipitate; (c) heat treating the precipitate to form an iron oxide powder; (d) adding an adhesive and a solvent to the iron oxide body to form a mixed polymer; and (e) applying the mixed slurry to a metal sheet substrate. 14. The preparation method of claim 13, wherein one of the group consisting of manganese (Mn), cobalt (Cu), nickel (Ni), steel (Cu), and combinations thereof is selected. The preparation method of claim 13 wherein the test solution further comprises a porous conductive material. 1284997. The preparation method of claim 15, wherein the porous conductive material is selected from the group consisting of carbon black, a metal oxide, and a combination thereof. It comprises in step (b): &amp; (bl) continuously stirring the solution to complete the reaction; (b2) washing the precipitate with excess deionized water; and (b3) drying the precipitate. 18. The preparation method of claim 13, wherein in the step, the precipitate is heat treated in an oxygen-free environment. 19. The preparation method of claim 13, wherein in step (e), the precipitate is heat-treated at a temperature ranging from 350 ° C to 600 ° C. 20. The preparation method of claim 13, wherein the adhesive is selected from the group consisting of a polyvinylidene fluoride resin (PVdF), a polystyrene butadiene rubber (Styrene-Butadiene-Rubber), and an acryl. One of the resins (Acrylic resin). 21. The preparation method of claim 13, wherein the solvent is one of the following: one of the N and the water. 20
TW094126624A 2005-08-04 2005-08-04 Electrochemical electrode for high-power application TWI284997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094126624A TWI284997B (en) 2005-08-04 2005-08-04 Electrochemical electrode for high-power application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094126624A TWI284997B (en) 2005-08-04 2005-08-04 Electrochemical electrode for high-power application

Publications (2)

Publication Number Publication Date
TW200707826A TW200707826A (en) 2007-02-16
TWI284997B true TWI284997B (en) 2007-08-01

Family

ID=39446037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094126624A TWI284997B (en) 2005-08-04 2005-08-04 Electrochemical electrode for high-power application

Country Status (1)

Country Link
TW (1) TWI284997B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679798B (en) * 2014-09-23 2019-12-11 美商應用材料股份有限公司 Electrochemical cell with protected negative electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679798B (en) * 2014-09-23 2019-12-11 美商應用材料股份有限公司 Electrochemical cell with protected negative electrode

Also Published As

Publication number Publication date
TW200707826A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
Zhang et al. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes
Yao et al. A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor
Wang et al. Hydrothermal synthesis of CuCo 2 O 4/CuO nanowire arrays and RGO/Fe 2 O 3 composites for high-performance aqueous asymmetric supercapacitors
Hou et al. Nanoporous metal based flexible asymmetric pseudocapacitors
Ajdari et al. New synthesized ionic liquid functionalized graphene oxide: synthesis, characterization and its nanocomposite with conjugated polymer as effective electrode materials in an energy storage device
Wang et al. Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor
Chen et al. Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors
Rajesh et al. Rambutan-like cobalt nickel sulfide (CoNi2S4) hierarchitecture for high-performance symmetric aqueous supercapacitors
Zhai et al. 3D MnO 2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors
JP2020523796A (en) Electrodes and electrolytes for aqueous electrochemical energy storage devices
CN103474254B (en) Contain MnCo2O4.5The preparation method of electrode material for super capacitor
WO2003067687A1 (en) Redox active reversible electrode and novel cell using it
CN101546650B (en) Electrode material of super capacitor and its preparation method
WO2017170944A1 (en) Aqueous secondary cell
JP4884710B2 (en) Carbon material / conductive polymer composite material and manufacturing method thereof
Zhu et al. Porous Fe-Mn-O nanocomposites: synthesis and supercapacitor electrode application
CN103011143A (en) Graphene and fabrication method thereof and super capacitor
JP2014041824A (en) Highly electron conductive polymer and electric energy storage device with high capacity and high power using the same
Rohit et al. Facile synthesis of Ce-doped α-cobalt hydroxide nanoflakes battery type electrode with an enhanced capacitive contribution for asymmetric supercapacitors
CN107346711A (en) A kind of composite PANI/Ti3C2TxPreparation and application
CN1925076A (en) High-power electrochemical electrode
CN103474258A (en) Method for preparing super capacitor electrode material with foamed nickel loaded with Cu and Cu2O
Kim et al. Enhanced energy density of supercapacitors using hybrid electrodes based on Fe2O3 and MnO2 nanoparticles
Krishnan et al. A stable aqueous ammonium ion hybrid supercapacitor based on pre-intercalated MnOx electrodes and ammonium sulphate electrolyte
TWI284997B (en) Electrochemical electrode for high-power application

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees