TWI284667B - All-dielectric optical diffractive pigments - Google Patents

All-dielectric optical diffractive pigments Download PDF

Info

Publication number
TWI284667B
TWI284667B TW92112831A TW92112831A TWI284667B TW I284667 B TWI284667 B TW I284667B TW 92112831 A TW92112831 A TW 92112831A TW 92112831 A TW92112831 A TW 92112831A TW I284667 B TWI284667 B TW I284667B
Authority
TW
Taiwan
Prior art keywords
pigment
diffractive
layer
dielectric
color
Prior art date
Application number
TW92112831A
Other languages
Chinese (zh)
Other versions
TW200411021A (en
Inventor
Alberto Argoitia
Vladimir P Raksha
Paul T Kohlmann
Original Assignee
Flex Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flex Products Inc filed Critical Flex Products Inc
Publication of TW200411021A publication Critical patent/TW200411021A/en
Application granted granted Critical
Publication of TWI284667B publication Critical patent/TWI284667B/en

Links

Abstract

All-dielectric diffractive pigment flakes can be applied to an object to impart a diffractive effect to the object without substantially changing the background color of the object. In one case, such diffractive pigment flakes can be applied to a white object to impart a white diffractive effect. The thickness of the dielectric layers in the diffractive pigment flakes can be chosen to provide thin-film interference, as well as diffraction from the interfaces between layers patterned with a diffraction grating. In some cases, the thin-film interference can provide color shifting in addition to the diffractive effect.

Description

1284667 玖、發明說明: 相關寻利的相互參考 本專利申請案主張2002年5月31日忐λικ Α «由 Alberto Argoitia,1284667 玖, invention description: mutual reference for related profit seeking This patent application claims 5λικ Α « by Alberto Argoitia, May 31, 2002

Vladimir Raksha 和 Paul Kohlmann (代理人檔案編號 Fp〇223p) 申請之標題《全介質光學衍射顏料》*勺美國臨時專利第 60/384,629號的優先權。 【發明所屬之技術領域】 本發明有關光學可變顏料,尤其有關全介質光學衍射參 料,包括具有薄膜干涉結構的全介質光學衍射顏料’ 【先前技術】 光學可變顏料(“OVPs”™)已被廣泛應用。它們可以用在 塗料或墨水中,或與塑膠混合。這些塗料或墨水用於裝飾 用途或作為貨幣上的防偽措施。雖然顏料片可能很小,但 光學效果來自這些顏料片的综合效果,這些顏料片通常與 基材的平面排齊。一種〇vp採用在基材座的薄膜層以形成 法布里-伯羅(Fabry-Perot)型光學結構。通常,藉由介質(間 隔材)層將光學吸收材料層與反射層分開。為了得到其他效 果,可以增加其他層,如加入間隔材_吸收劑層配對。反射 層經常為金屬層’使顏料片變得不透明。以不透明顏料片 印刷或塗上的圖像亦不透明,或是顏料片會暗淡或改變下 面層的顏色。 使用介質材料交替層以(高-低-ife)n或(低-高-低)n形式可 製成透明顏料片以形成光學干涉堆疊,這通常稱為分色堆 疊。分色顏料片可以幾乎是透明的,並反射一種顏色同時 透射另一種顏色。以一些分色顏料片印製的圖案顏色會隨 85243 1284667 著觀察角度的變化而變化,而且’這種顏料可以套印,因 此觀察者可以透過分色顏料片觀察到下面的圖案。 另一類型的顏料使用-種衍射圖案(格栅),如:系列的小 槽,以生成衍射干涉結構。衍射格柵於顏料片内的反射芦 中形成,類似於衍射落中形成的圖案。衍射顏料已經被用 於印刷媒介和塗料中如汽車塗料中產生閃光效果。不幸 地’反射層通常不透明’因此衍射顏料片與法布里-伯羅型 不透明顏料片一樣會暗淡或改變下面層的顏色。 一 珠光塗料和珠光添加劑曾經很流行地用於噴繪汽車、摩 托車、小艇、頭盘和其他物體。許多這種顏料二吏用加工 過的雲母片製造,此種雲母片被鍍上高.指數材料,如氧化 鐵或氧錢。雲母及/或鍍層厚度可改變以獲得不同珠光顏 色,不過,以此種顏料做成的塗料並無衍射效果。 【發明内容】 根據本發明實施例製得之顏料片可提供無金屬反射層的 衍射效果。特定實施例中,衍射顏料片具有在無機介^薄 膜層表面上形成之衍射格栅。當顏料片分散於例如墨水媒 介或塗料媒介的載體中時,或當在衍射格柵上形成第二薄 膜層時,該表面可提供衍射介面。有些實施例中,衍射栅 袼圖案經由第二且可能經由隨後的薄膜層而複製,並形成 頭外衍射介面。當帶有五層或更少介質層的顏料片分散於 載體時,會生成強烈衍射效果。 ▼ 不像帶有不透明金屬反射材的衍射片,根據本發明的全 介質衍射顏料片的一些實施例為半透明,並且可以反射及/ 85243 1284667 或透射顏色以與所塗的物體相匹配。在其他實施例中中 心位於別奈米之帶有高·低_高_低_高之光學設計的全介質 衍射顏料片在塗到整個白色物體上時,可提供白色衍射效 果。此實施例另可塗到有色表面上以賦予衍射效果而實質 上不改變表面的背景顏色。根據本發明實施例做成的全介 質衍射顏料片的-些實施例中,介質層厚度係㈣以生成 薄膜干涉’並賦予變色或珠光效果以及衍射效果。 【實施方式】 I-前言 3 ^ 打射效果係採用纟有介質層的顏料片所獲得而無金屬反 射材。衍射效果可以與採用全介質多層光學堆疊的薄膜干 涉效果技術相結合。這種結合產生前所未有的新穎顏色效 果。介質鍍膜基本上是非吸收材料,導致具有高透射率或 高反射率之多層堆疊,而不像採用金屬反射層的幾乎不透 明的衍射結構。所透射或反射的顏色取決於光學設計並且 在該全介質系統中互補。 在一些設計中,所反射或/及透射的顏色將會隨著入射光 的角度發生很大變化。在變色設計的例子中,顏色效果是 獨特的,因為在散射光條件下,隨著觀察角的增大,顏色 會從長波長移向短波長。不過,在高度指向照明的條件下 (如%光)’顏色則隨著角度以相反方向從短波長向長波長移 • ^ 動。在散射光束下,觀察到的顏色由來自光學薄膜干涉中 的光學變色效果的顏色為主,而在高度指向光束下,光學 變色效果由衍射生成。 85243 1284667 在二此合照明的條件下,顏色會以非尋常方式移動, Γ為工時看到兩種物理變色現象(衍射和薄膜干涉)。另 夕卜,全介質顏料可為部分透明,因此被鍍膜物體的固有顏 也會影響物體的最後視覺外觀,或可以看到全介質顏料 下面的圖案。 在其他一些光學設計中,顏料的“背景顏色,,不隨入射光 角度發生月頌.以匕。考慮到i成顏_的全介質力學堆疊可 為:透明,在物體上觀察到的背景顏色很大程度上取緣 在塗上塗料前的物體固有(基礎)顏色。尤其是,全介質衍射 顏料可做成賦予很少及在有些情況下幾乎不職予背景顏色 改變。$顏料可用以獲得白色衍射效果,換言之說,物體 基本上呈現白色或珠光色,但取決於觀察的角度顯示可變 的感受顏色、亮度、色調及/或色度。 例如,由ZnS作為高折射率材料(H)和MgF2作為低折射材 料(L)之在530奈米有四分之一波長光學厚度(“qw〇t,,)的薄 膜層所做成的HLHLH型的光學設計,不會呈現特殊的顏色 色凋。It些材料僅為例舉,且亦可使用其他介質材料如丁丨〇2 作為高折射率材料和Si02作為低折射率材料。許多其他合 適的材料為眾所周知且可以各種組合使用。本文所用之高 折射率材料具有大於約丨.65的折射率,且較好大於約2 ,及 低折射率材料的折射率小於約i ·65。各高折射率層未必由 相同的高折射材料所做成,或各低折射率層未必由相同的。 低折射材料所做成,且該材料在層内之材料折射率可為梯 度或混合者。 85243 -9- 1284667 麻沈積在光柵數在每毫米〗,3〇〇與3,〇〇〇條之間的一個線 性格柵H這種5_層光學設計顯示強烈的衍射顏色效 果。光學薄膜層從具圖案之落上移除並處理成顏料片。當 此特定>顏~料應用在塗有白色之物體上時,在散射光束(如陰 天)中觀察到的顏色主要是物體的白色,但在高度指向(如陽 光)…、月仏件下,物體會出現衍射彩虹效果。當相同的光學 〃又计自53Ο τ、米移至更短或更長波長時,顏料會分別呈現帶 監色或帶紅色的反射及帶黃色或綠色的透射色。 a π有不透明金屬反射材的衍射顏料應用到白色背景時會 賦予顏色。因此,此顏料無法提供白色的衍射效果,但在 鋁反射材之例中,經常為帶銀色或帶灰色的衍射效果,在 鎳反射材之例中,經常為帶黃色的效果,而銅反射材經常 為帶紅色的效果。同樣地,當帶有金屬反射材的衍射顏料 用在有顏色的背景時,即使金屬反射材為半不透明,衍射 顏料也會使背景顏色變淡。例如,將金屬衍射顏料塗在紅 色背景時會產生帶粉紅色的衍射效果,而非紅色衍射效 果。因此,根據本發明的實施例的全介質衍射顏料可用於 事先塗有顏色的或有色物體上以提供衍射效果,該衍射效 果在提供衍射效果的同時基本上保持了物體的顏色。為了 得到特定效果,衍射效果可以經過選擇(設計)以便和特定背 景一起操作。 薄膜干涉結構可以與全介質衍射結構結合在一起以提供= 透明的(無色或帶色調)變色衍射顏料。薄膜干涉結構基本上 為介質薄膜堆疊,它不具有通常被用於法布里_伯羅類型干 85243 -10- 1284667 涉結構中的金屬反射層。 因此’介質薄膜堆疊可為透明, 一般具有特足的變色特性, 、 並與顏料片或箔的衍射效果一 起提供獨特的光學效果。 II.顏料片範例 圖11根據本發明的-實施例之做基材1〇2上形成之一 般何射沿100的簡化截面圖。不屬於衍射落⑽的一部分的 基材输製衍射結構103 (衍射格栅圖案),並在圖案化之基材Vladimir Raksha and Paul Kohlmann (Attorney Docket No. Fp 223p) The title of the application "All-Media Optical Diffraction Pigment" * Spoon US Priority Patent No. 60/384,629. FIELD OF THE INVENTION The present invention relates to optically variable pigments, and more particularly to all-media optical diffraction materials, including all-media optically diffractive pigments having a thin film interference structure. [Prior Art] Optically Variable Pigments ("OVPs"TM) Has been widely used. They can be used in paint or ink or mixed with plastic. These coatings or inks are used for decorative purposes or as a currency anti-counterfeiting measure. Although the pigment flakes may be small, the optical effect comes from the combined effect of these pigment flakes, which are usually aligned with the plane of the substrate. A 〇vp employs a thin film layer on a substrate holder to form a Fabry-Perot type optical structure. Typically, the layer of optically absorptive material is separated from the reflective layer by a layer of dielectric (spacer). In order to obtain other effects, other layers may be added, such as the addition of spacer-absorbent layer pairing. The reflective layer is often a metal layer 'to make the pigment flakes opaque. Images printed or coated with opaque pigment flakes are also opaque, or the flakes may dim or change the color of the underlying layer. Transparent pigment flakes can be formed in alternating layers of dielectric material in the form of (high-low-ife)n or (low-high-low)n to form an optical interference stack, which is commonly referred to as a color separation stack. The color separation pigment flakes can be almost transparent and reflect one color while transmitting the other. The color of the pattern printed with some of the dichroic pigment flakes varies with the viewing angle of 85243 1284667, and the pigment can be overprinted so that the observer can observe the underlying pattern through the dichroic pigment flakes. Another type of pigment uses a diffraction pattern (grid), such as a series of small grooves, to create a diffractive interference structure. The diffraction grating is formed in the reflection reed in the pigment flakes, similar to the pattern formed by diffraction. Diffractive pigments have been used to produce glittering effects in printing media and coatings such as automotive coatings. Unfortunately the 'reflective layer is typically opaque' so the diffractive pigment flakes will dim or change the color of the underlying layer as the Fabry-Berro type opaque pigment flakes. A pearlescent coating and pearlescent additive have been used in inkjet vehicles, motorcycles, boats, headboards and other objects. Many of these pigments are made from processed mica sheets which are coated with a high index material such as iron oxide or oxygen. The mica and/or plating thickness can be varied to achieve a different pearlescent color, however, coatings made from such pigments have no diffractive effect. SUMMARY OF THE INVENTION A pigment flake prepared according to an embodiment of the present invention can provide a diffraction effect of a metal-free reflective layer. In a particular embodiment, the diffractive pigment flakes have a diffraction grating formed on the surface of the inorganic thin film layer. The surface provides a diffractive interface when the pigment flakes are dispersed in a carrier such as an ink medium or a coating medium, or when a second thin film layer is formed on the diffraction grating. In some embodiments, the diffraction grating pattern is replicated via a second and possibly via a subsequent film layer and forms an off-head diffraction interface. When a pigment flake having five or less dielectric layers is dispersed on a carrier, a strong diffractive effect is produced. ▼ Unlike a diffractive sheet with an opaque metallic reflective material, some embodiments of the all-dielectric diffractive pigment flakes according to the present invention are translucent and can reflect and / 85243 1284667 or transmit color to match the applied object. In other embodiments, the all-media diffractive pigment flakes with an optical design of high, low, high, low, and high in the center of the benemeter provide a white diffraction effect when applied to the entire white object. This embodiment can be applied to a colored surface to impart a diffractive effect without substantially changing the background color of the surface. In some embodiments of the all-dielectric diffractive pigment flakes made in accordance with embodiments of the present invention, the dielectric layer thickness is (4) to create a film interference' and impart a discoloration or pearling effect as well as a diffractive effect. [Embodiment] I-Foreword 3 ^ The shooting effect is obtained by using a pigment sheet having a dielectric layer without a metal reflective material. The diffraction effect can be combined with thin film interference effects techniques using all-dielectric multilayer optical stacking. This combination produces an unprecedented color effect that is unprecedented. The dielectric coating is essentially a non-absorbent material, resulting in a multilayer stack with high transmission or high reflectivity, unlike an almost opaque diffractive structure employing a metallic reflective layer. The color that is transmitted or reflected depends on the optical design and is complementary in the all-media system. In some designs, the reflected or/and transmitted color will vary greatly with the angle of the incident light. In the case of a color-changing design, the color effect is unique because under scattered light conditions, as the viewing angle increases, the color shifts from a long wavelength to a short wavelength. However, under conditions of high-point illumination (such as % light), the color shifts from a short wavelength to a long wavelength in the opposite direction with the angle. Under the scattered beam, the observed color is dominated by the color of the optically discolored effect from the interference of the optical film, while under the highly directed beam, the optically discolored effect is generated by diffraction. 85243 1284667 Under the condition of two illuminations, the color will move in an unusual way, and two physical discolorations (diffraction and film interference) will be seen during the working hours. In addition, the all-media pigment can be partially transparent, so the inherent appearance of the coated object can also affect the final visual appearance of the object, or the pattern below the all-media pigment can be seen. In some other optical designs, the “background color of the pigment does not occur with the angle of incident light. 全. Considering the full-mechanical stacking of i-forming _ can be: transparent, the background color observed on the object The intrinsic (basic) color of the object before application of the coating is largely taken into account. In particular, the all-different diffractive pigment can be made to impart little or in some cases almost no background color change. The white diffraction effect, in other words, the object basically appears white or pearlescent, but shows a variable perceived color, brightness, hue and/or chromaticity depending on the angle of observation. For example, from ZnS as a high refractive index material (H) And HLHLH type optical design made of MgF2 as low refractive material (L) with a film thickness of 530 nm with a quarter wavelength optical thickness ("qw〇t,"), does not present a special color withered. It is merely an example, and other dielectric materials such as Ding 2 can be used as the high refractive index material and SiO 2 as the low refractive index material. Many other suitable materials are well known and can be used in various combinations. The high refractive index material used herein has a refractive index greater than about 丨.65, and preferably greater than about 2, and the refractive index of the low refractive index material is less than about i 65. Each of the high refractive index layers is not necessarily made of the same high refractive material, or the respective low refractive index layers are not necessarily the same. The low refractive material is made and the material has a refractive index in the layer which can be gradient or mixed. 85243 -9- 1284667 Hemp deposited in a grating number in a millimeter, between 3 〇〇 and 3, a linear grid H between the rafters. This 5-layer optical design shows a strong diffractive color effect. The optical film layer is removed from the patterned drop and processed into a pigment flake. When this particular color is applied to a white object, the color observed in the scattered light beam (such as cloudy) is mainly the white color of the object, but is pointed at the height (such as sunlight)... Underneath, the object will have a diffractive rainbow effect. When the same optical enthalpy is measured from 53 Ο τ, and the meter is moved to a shorter or longer wavelength, the pigment will exhibit a color-sensing or reddish reflection and a yellow or green transmission color. A π-diffractive pigment with an opaque metal reflector will impart color when applied to a white background. Therefore, this pigment cannot provide a white diffraction effect, but in the case of an aluminum reflective material, it is often a silver or grayish diffraction effect, and in the case of a nickel reflective material, it is often a yellowish effect, and a copper reflective material. Often a reddish effect. Similarly, when a diffractive pigment with a metallic reflective material is used in a colored background, even if the metallic reflective material is semi-opaque, the diffractive pigment will lighten the background color. For example, applying a metallic diffractive pigment to a red background produces a pink diffraction effect rather than a red diffraction effect. Thus, an all-media diffractive pigment according to an embodiment of the present invention can be used on a previously colored or colored object to provide a diffractive effect that substantially maintains the color of the object while providing a diffractive effect. To achieve a particular effect, the diffraction effect can be selected (designed) to operate with a particular background. The thin film interference structure can be combined with an all-dielectric diffractive structure to provide a = transparent (colorless or tinted) discolored diffractive pigment. The thin film interference structure is essentially a dielectric film stack which does not have a metal reflective layer that is commonly used in Fabry-Berro type dry 85243-10-1284667. Thus, the dielectric film stack can be transparent, generally has special discoloration characteristics, and provides a unique optical effect along with the diffraction effect of the pigment flakes or foil. II. Pigment Sheet Example Figure 11 is a simplified cross-sectional view of a generally formed edge 100 formed on a substrate 1〇2 in accordance with an embodiment of the present invention. The substrate which is not part of the diffraction drop (10) is supplied with the diffraction structure 103 (diffraction grid pattern) and is patterned on the substrate

上沉積介質材料層。例如,該圖案可為簡單的衍射圖案I 全息影像圖案。基材可為浮飾塑膠片,如聚對苯二甲酸乙 二醇酯(“PET”)捲’且薄膜層可以用捲式鍍膜系統沈積。基 材亦可為浮飾金屬ϋ或積層片,或浮飾晶圓、幻燈片或空 白片。 根據本發明實施例之—種適料生成顏料片的技術包含 ,連續薄膜層沈積到PET之圖案化捲上以形成衍射介質堆 疊。然後將介質堆疊自PET基材或“網,,上分離,再進行加工 處理,如磨碎和分類成顏料片。適宜顏料片一般在約1〇到 1,000微米的範圍内,約1到2微米厚,但這些尺寸僅為例 舉’且某些實施例的顏料中通常小於1〇〇微米。 在基材102上可形成視情況之釋離層ι〇4以助於自基材移 除沉積層。釋離層可溶於水,如Ca〇、CaF2、Na3AlF6 (冰 晶石)、NaN〇3及NaCl。其他材料包括有機材料、金屬和半 導體亦可用於釋離層。使用NaCl (ςς鹽”)可藉水啟動釋離 層,其他材料可使用酸性溶液、鹼性溶液或其他溶液(包括 有機溶液)予以釋離。 85243 • 11 - 1284667 在基材102及視情況之釋離層104上形成介質薄膜光學堆 疊105,該介質光學堆疊有許多高折射率(H)材料1〇6、u〇 和低折射率材料(L) 108、112的交替介質層。高和低折射率 交替層的介質光學堆疊可以各種組態形成在基座1〇2上,如 (HLr、(LHr、(LHL)n及(HLH)n及其組合,其中n表示㈣1〇〇 間之整數,通常是2到4,L和Η層在所選定之設計波長下各 為QWOT。其他適宜光學設計亦可藉由不同光學厚度的 L鍍層結合在一起獲得,在有些設計中,有些層在同一波羞 不具有QWOT。同樣地,一些光學設計可為對稱,如H(LH)n。 衍射基材落可以做成帶有線性、交又或其他結構的小 槽。槽形狀可為三角形、正弦曲線形、矩形波形等。這些 顏料中,鍍膜物體的光學外觀強烈取決於零和更高階的^ 射效率。不同階的效率係藉由選擇槽深度、形狀及落基材 格柵的頻率所完成。 例如’薄膜層可自基材上移除並作為薄膜或加工成顏料 片:便用於塗料、墨水、粉狀鍍膜、化妝品及塑膠擠壓和 %鑄。從基材釋離之前,薄膜層可粘合到搬運基材或墊片 上0 _圖1B是根據本發明的實施例之全介質衍射顏料片的 簡化截面圖。圖案化之介f片基材122藉外介質層⑵密封 j分散至載體126中,如塗料媒介或墨水媒介。或者,外介 質層不必密封該片狀基材。 ' 圖案化之介質片基材與外介質層有明顯很不同的折射率 以建立衍射介面128。雖然介質顏料片只有三層,但可形成 85243 -12- 1284667 四個衍射介面128、130、132、134。第一衍射介面i3〇位於 載體126和外介質層124之間,第二衍射介面128位於外介質 層和基材!22之間,第三衍射介面132位於基材和外介質層 另側面疋間及第四衍射介面134位於外介質層另一側面 與載體之間。因為顏料片是全介質的,各衍射介面都有助 於顏料的衍射效果,使光不會受到更低介面所衍射之上部 介面所衍射。在傳統的帶有金屬反射層的衍射片中,來自 上覆介質層的衍射效果並不主要歸因於顏料片的衍射,1 為介質層與周圍載體間之折射率差異不夠大,且層厚度一 般也沒達到可以生成衍射效果。 分/散於適當載體的三層介質堆疊通常可以達到2〇%到 40%範圍内〈反射率。例如,當用於需要高透射的顏料片 應用時,,例如當套印圖案時,可能需要此種低反射率衍射 顏料:田使用τ有相對低反射率的全介質顏料片時,應避 免顏料片重疊’因為透過上部顏料片的光束可以從下部顏 料片何射掉’且兩個顏料片衍射的光束可能會干涉,而降 低何射彩虹效果。此低反射率片可以使用或塗佈相對低 濃度以避免介質衍射顏料片重疊。 - 。外介質層之塗佈可使用溶膠-凝膠製程或真空沈積製 & —包括各種電衆·辅助之真空沈積製程或其他製程。在特 疋⑽例中’載體具有低折射率,而外介質層具有高折射 率。其他實施例中,外介質層可具有不會產生衍射的光滑· 外表面種情況下,要注意避免與載體 形成一個反射介 面4藉由在低折射率的載體中採用低折射率的外層。有 85243 -13- 1284667 !==於載體Γ帶有衍射格柵圖案的單層介質片 曰產生何射效果,如低折射率載體中的高折 反之亦然。 闺系片 圖ic是根據本發明另__實施例之全介質衍射顏料片⑽ 截面W °外層142、144為高折射率材料,中心声146 ‘:=射率材料,而中間層一為低折射率層曰,而 之光學設計。亦即,高折射率層係由帶 ::折=材料所做成,及低折射層係由低折射材祕 做成。根據本發明其他實施例的類似顏料片可具有更多或 二二^和其他帶有奇數層的設計可提供均為高折 ==144。這種結構對於將被分散至低折射 古-虹〜、料片來說為所需’因為如果外層的外表面緣製 拆拇’則兩個外層將會在載體中提供衍射介面。低 、、二夕層在低折射率載體中會有“消失,,的傾向,即使它 虱中產生反射介面。或者,-個5-層顏料片可具有用 、冋折射率載體中的例如,LHLHL之光學設計。 般說來取好用儘量少的層數來獲得所需的顏料效果。 曰可根據顏料片的所需反射率加以選擇。在高-低介質堆 疊中使用傳統材科,—個3-層堆疊通常可以在空氣中得到 。在、MG%《間的平均反射率,-個5_層堆疊通常具有約 、/射率及個11-層堆疊通常具有約9〇%之反射率。 色街射顏料之例中,在空氣中的平均反射率最好約為 20%,以提供谪合 〜 勺衍射效果’而在一些實施例中,在空 孔中的平均反射率最好小於9G%,以提供強烈的衍射效 85243 1284667 果’但仍然允許—些透射到下面的基材上。更多層通常產 生更多的反射直到介質堆叠達到完全反射。因此,僅帶有 /數;1質層的顏料片可達到適於衍射效果之適宜反射率。 當然,反射率與特定波長的光有關,而且在其他變數中也 取決於所用材料。 在介貝堆疊中可以選擇層的厚度以提供分色效果,其中 種顏色的光被反射,其他顏色的光透射通過介質堆疊。 此刀色堆f通#顯不一般悉知之顏色飄逸。顏色飄逸是蘧* 著觀察角度(或照明角度)的變化而產生的顏色變化。最好是 將分色效果與介質衍射結構結合以避免由帶有低到中等反 射率的介質衍射片的重疊產生的破壞性干涉。分色設計實 際上係作為濾波器。與白色衍射顏料(在可見光譜中心)相 比’ T有分色效果的衍射顏料將顯示出可見光譜的一部 分,過濾其他部分。衍射顏料可藉由將光學設計集中於可 見光瑨(白色)的中間,或藉由採用不生成明顯薄膜干涉的介 免薄膜堆疊,以顯示很少顏色飄逸的薄膜堆疊製得,但仍 然k供反射介面以生成衍射效果。 HI·實驗結果 製造並測試本發明實施例的許多不同類型的介質衍射顏 料片。顏料片以0.3:3.9 (顏料:黏合劑)的比例與透明塗料 幸占合劑混合以形成塗料調配物。塗料調配物以刮刀片塗在 勒内塔(LENETA™)卡上(通常為具有白色和黑色區域之卡) 以分散顏料。分散的墨水或塗料通常會將顏料片與卡表面 平面變平。塗料或墨水可使用其他技術,如噴灑,塗,絲 85243 -15- 1284667 屏塗層或凹雕印刷塗抹,這通常將顏料片與基材平面排齊。 反射率的測量係在散射照明條件下採用集成球及DATA COLOR SF000 +分光光度計測得。角度光譜光度計(“顏色飄 逸”)測量是根據標準的CIE™顏色公制慣例在45度入射角 在一個黑勒内塔卡範圍上從-32到80度的接收角測量得到。 製作許多背景顏色呈中性的樣品。此顏料可用在白色物 體上以獲得白色衍射效果。同樣地,透明的全介質顏料可 用在有色物體上以提供幾乎不改變底色的衍射效果。刽+ 如,透明衍射顏料片可塗在紅色物體上以提供衍射紅色效 果。採用金屬反射材的衍射顏料由於一般為不透明之金屬 層通常減淡或阻擋下面物體的顏色。 圖2 A為對本發明實施例的三種不同光學設計中測得之反 射率與波長關係的簡化曲線組圖。第一條曲線200是對設計 波長為450奈米的5-層設計(HLHLH),使用ZnS作為高折射 率材料及使用MgF2作為低折射材料。衍射格柵為2,000條/ 毫米。在反射觀察時,這種光學設計具有帶藍色的背景顏 色。A layer of dielectric material is deposited thereon. For example, the pattern can be a simple diffraction pattern I holographic image pattern. The substrate can be a embossed plastic sheet, such as a polyethylene terephthalate ("PET") roll, and the film layer can be deposited using a roll coating system. The substrate can also be a embossed metal enamel or laminate, or a embossed wafer, slide or blank. A technique for producing a pigment flake in accordance with an embodiment of the present invention comprises depositing a continuous film layer onto a patterned roll of PET to form a diffractive dielectric stack. The media is then stacked from a PET substrate or "web, separated, and processed, such as ground and classified into pigment flakes. Suitable pigment flakes are typically in the range of about 1 1,000 to 1,000 microns, about 1 to 2 microns thick, but these dimensions are merely exemplary 'and in some embodiments the pigment is typically less than 1 micron. On the substrate 102 an optional release layer ι 4 can be formed to aid in the migration from the substrate. In addition to the deposited layer, the release layer is soluble in water such as Ca〇, CaF2, Na3AlF6 (cryolite), NaN〇3 and NaCl. Other materials including organic materials, metals and semiconductors can also be used in the release layer. Salt ") can release the release layer by water, and other materials can be released using an acidic solution, an alkaline solution or other solutions (including organic solutions). 85243 • 11 - 1284667 Forming a dielectric thin film optical stack 105 on a substrate 102 and optionally a release layer 104 having a plurality of high refractive index (H) materials, 1 〇 6, u 〇 and low refractive index materials ( L) Alternating dielectric layers of 108, 112. The dielectric optical stack of alternating layers of high and low refractive indices can be formed on the pedestal 1 〇 2 in various configurations, such as (HLr, (LHr, (LHL)n, and (HLH)n, and combinations thereof, where n represents (four) 1 〇〇 The integers are usually 2 to 4, and the L and Η layers are each QWOT at the selected design wavelength. Other suitable optical designs can also be obtained by combining L coatings of different optical thicknesses, in some designs, some Layers do not have QWOT in the same wave. Similarly, some optical designs can be symmetrical, such as H(LH)n. Diffraction substrate can be made into small grooves with linear, cross or other structures. Triangles, sinusoidal shapes, rectangular waveforms, etc. Among these pigments, the optical appearance of the coated object is strongly dependent on the efficiency of zero and higher order. The efficiency of different orders is determined by selecting the groove depth, shape and falling substrate grid. The frequency is done. For example, the film layer can be removed from the substrate and processed as a film or into a pigment flake: it can be used in coatings, inks, powder coatings, cosmetics and plastic extrusions and % casting. Before being released from the substrate , the film layer can be bonded to the carrier Or on the spacer 0 - Figure 1B is a simplified cross-sectional view of an all-dielectric diffractive pigment flake in accordance with an embodiment of the present invention. The patterned inter-flake substrate 122 is dispersed into the carrier 126 by an outer dielectric layer (2) seal j, such as a coating Medium or ink medium. Alternatively, the outer dielectric layer does not have to seal the sheet substrate. 'The patterned dielectric sheet substrate has a significantly different refractive index than the outer dielectric layer to create the diffractive interface 128. Although the dielectric pigment sheet has only three layers , but can form 85234 -12 - 1284667 four diffraction interfaces 128, 130, 132, 134. The first diffraction interface i3 〇 is located between the carrier 126 and the outer dielectric layer 124, and the second diffraction interface 128 is located at the outer dielectric layer and the substrate Between 22, the third diffraction interface 132 is located between the substrate and the outer side of the outer dielectric layer and the fourth diffraction interface 134 is located between the other side of the outer dielectric layer and the carrier. Because the pigment flakes are all-media, each diffraction interface Both contribute to the diffraction effect of the pigment, so that the light is not diffracted by the upper interface diffracted by the lower interface. In the conventional diffraction sheet with the metal reflective layer, the diffraction effect from the overlying dielectric layer is not mainly In the diffraction of the pigment flakes, 1 is that the difference in refractive index between the dielectric layer and the surrounding carrier is not large enough, and the layer thickness is generally not up to a diffraction effect. The three-layer dielectric stack of the appropriate carrier can be up to 2%. Reflectivity in the range of 40%. For example, when used in pigment flake applications where high transmission is required, such as when overprinting patterns, such low reflectance diffractive pigments may be required: Fields using τ have relatively low reflectivity In the case of dielectric pigment flakes, the overlap of the pigment flakes should be avoided 'because the light beam transmitted through the upper pigment flakes can be shot off from the lower pigment flakes' and the beams diffracted by the two pigment flakes may interfere, thereby reducing the rainbow effect of the laser. This low reflectivity The sheet can be used or coated at a relatively low concentration to avoid overlap of the diffractive pigment flakes of the medium. - . The coating of the outer dielectric layer can be performed using a sol-gel process or vacuum deposition process - including various electric and auxiliary vacuum deposition processes or other processes. In the special case (10), the carrier has a low refractive index and the outer dielectric layer has a high refractive index. In other embodiments, where the outer dielectric layer can have a smooth outer surface species that does not produce diffraction, care should be taken to avoid forming a reflective interface 4 with the carrier by employing a low refractive index outer layer in the low refractive index carrier. There are 85243 -13 - 1284667 !== which produces a single-layer dielectric sheet with a diffraction grating pattern on the carrier, such as a high fold in a low refractive index carrier and vice versa. The enamel sheet ic is a full-media diffraction pigment sheet (10) according to another embodiment of the present invention. The cross-section W ° outer layers 142, 144 are high refractive index materials, the center sound 146 ':= radiance material, and the middle layer one is low. The refractive index layer is 曰, and the optical design. That is, the high refractive index layer is made of a material with a :: refractive index, and the low refractive layer is made of a low refractive material. Similar pigment flakes according to other embodiments of the present invention may have more or two or two other designs with odd layers providing a high fold == 144. This structure is desirable for the dispersion to the low refractive ancient-to-red, sheet because the outer layers will provide a diffractive interface in the carrier if the outer surface edge of the outer layer is removed. The low, Ershi layer has a tendency to "disappear" in the low refractive index carrier, even if it produces a reflective interface in the crucible. Alternatively, a 5-ply pigment flake can have, for example, LHLHL's optical design. Generally, use as few layers as possible to achieve the desired pigment effect. 曰 Choose according to the desired reflectance of the pigment flakes. Use traditional materials in high-low dielectric stacks, A 3-layer stack is typically available in air. The average reflectivity between MG%, a 5-layer stack typically has about, /, and an 11-layer stack typically has about 9% reflection. In the case of the color street pigment, the average reflectance in air is preferably about 20% to provide a twist-ditch diffraction effect'. In some embodiments, the average reflectance in the void is best. Less than 9G% to provide a strong diffraction effect 85243 1284667 'but still allows some to be transmitted to the underlying substrate. More layers usually produce more reflection until the dielectric stack reaches full reflection. Therefore, only with / 1 layer of pigment flakes can achieve diffraction efficiency The reflectivity is, of course, the reflectivity is related to the light of a particular wavelength, and in other variables depends on the material used. The thickness of the layer can be chosen in the stack of layers to provide a color separation effect, where the light of the color is Reflection, other colors of light are transmitted through the stack of media. This color of the color of the knife is not generally known as the color is elegant. The color is the color change caused by the change of the viewing angle (or illumination angle). Combine the color separation effect with the dielectric diffractive structure to avoid destructive interference caused by the overlap of dielectric diffractive sheets with low to moderate reflectance. The color separation design is actually used as a filter. With white diffractive pigments (in the center of the visible spectrum) A diffractive pigment that has a color separation effect compared to 'T will show a part of the visible spectrum and filter other parts. The diffractive pigment can be concentrated by focusing the optical design in the middle of visible light (white), or by using no significant film. Interference-free film stacking, which is produced by stacking thin films showing little color, but still k for the reflective interface to generate diffraction HI. EXPERIMENTAL RESULTS Many different types of dielectric diffractive pigment flakes of the examples of the present invention were made and tested. Pigment flakes were mixed with a clear coating fortune mixture in a ratio of 0.3:3.9 (pigment: binder) to form a coating formulation. The coating formulation is applied as a doctor blade to a LENETATM card (usually a card with white and black areas) to disperse the pigment. Dispersed ink or coating typically flattens the pigment flakes and the surface of the card surface. Or the ink can be applied by other techniques, such as spraying, coating, wire 85243 -15- 1284667 screen coating or intaglio printing, which usually aligns the pigment sheet with the substrate plane. The reflectance is measured under diffused lighting conditions. The integrated ball and DATA COLOR SF000 + spectrophotometer are measured. The angle spectrum photometer ("color drift") measurement is based on the standard CIETM color metric formula at a 45 degree angle of incidence on a black leneta card range from -32 to The 80 degree acceptance angle is measured. Make a number of neutral samples with a background color. This pigment can be used on a white object to obtain a white diffraction effect. Similarly, a clear all-media pigment can be used on colored objects to provide a diffractive effect with little change in background.刽+ For example, a transparent diffractive pigment flake can be applied to a red object to provide a diffractive red effect. Diffractive pigments using metallic reflective materials typically lighten or block the color of the underlying objects due to the generally opaque metal layer. Figure 2A is a simplified graph of the relationship between reflectance and wavelength measured in three different optical designs of an embodiment of the present invention. The first curve 200 is a 5-layer design (HLHLH) with a design wavelength of 450 nm, using ZnS as a high refractive index material and MgF2 as a low refractive material. The diffraction grating is 2,000 strips/mm. This optical design has a blue background color when viewed in reflection.

第二條曲線202為9-層設計,第一層為在500奈米為1 QWOT的ZnS層,第二層為在495奈米為2QWOT的MgF2層, 第三層為在500奈米為1 QWOT的ZnS層,第四層為在495奈 米為1 QWOT的MgF2層,第五層為在400奈米為1 QWOT的 ZnS層,第六層為在397奈米為2 QWOT的MgF2層,第七層 為在400奈米為2 QWOT的ZnS層,第八層為在397奈米為2 QWOT的MgF2層及第九層為在400奈米為2 QWOT的ZnS 85243 -16- 1284667 層。衍射格柵的光柵間隔為1,4〇〇條/毫米。此光學設計有相 當中性的顏色。 第三條曲線204為7層設計,第一層為在434奈米為2 QWOT的ZnS層,第二層為在375奈米為2 QWOT的MgF2層, 第三層為在391奈米為2QWOT的ZnS層,第四層為在354奈 米為2 QWOT的MgF2層,第五層為在391奈米為2 qW〇丁的 ZnS層,第六層為在375奈米為2 QWO丁的MgF2層及第七層 為在434奈米為2 QWOT的ZnS層。衍射格柵的光柵間隔為 1,400條/毫米。此光學設計在反射觀察時,具有帶金色的背 景顏色。 圖2B為圖2 A所示樣品的簡化角度光譜光度計曲線組 圖。第一條曲線206說明圖2A中的第一條曲線2〇〇所示的帶 藍色樣品的顏色飄逸。第二條208曲線說明圖2A中第二條曲 線202所示的中性樣品的顏色飄逸。第三條曲線21〇說明圖 2A中第二條曲線206所示的帶金色樣品的顏色飄逸。對其他 为景顏色可進行其他類似的設計和製作。 圖2A中所示的反射率曲線顯示一部分光譜的反射率比另 一邵分更高的典型特點。在可見光譜中,全介質片的平均 反射率為在約400到700奈米之間的反射率的平均。在全介 質衍射片中,未被反射的光通常透過顏料片。因此,透射 特丨生的曲線圖將為反射曲線的倒數。平均反射率提供顏料 片的反射率與透射率之間的平衡標示。在本發明一實施例、 中,全介質顏料片在可見光譜中的平均反射率至少為2〇0/0 (在空氣中測得)以提供所需的衍射效果。另一實施例中,全 85243 -17 - 1284667 介負顏料片在可見光譜中的平均反射率不超過90% (在空 氣中測得)以允許光透射通過衍射顏料片到下面基材,並且 允許下面基材上的顏色或圖像可被觀察到。 圖3 A為三種不同中性光學設計中所測得之反射率與波長 關係的簡化曲線組圖。不同層數(“層的數量”)會影響顏料的 總反射率。這些設計各均位於可見區域的中間以避免呈現 特定的背景顏色。所有三種樣品之衍射格栅數均為1,4〇〇條 /¾米,且各樣品使用ZnS作為高折射材料及使用MgF2作為 低折射材料。第一條曲線3〇〇顯示為3-層設計(HLH)的反射 性能,各層在550奈米為1 QWOT。雖然有3_層介質堆疊的 單一顏料片可以達到20到40%的反射,但相信本文中更高 反射是由於許多顏料片在一個淡背景上,顏料片的多層有 助於總反射率。第二條曲線302顯示7_層設計的反射性能: (HLH)在500奈米;(L)在550奈米及(HLH)在600奈米。第三 條曲線304顯示11-層設計的反射性能:(HLHLH)在5〇〇奈 米,(L)在550奈米及(HLHLH)在600奈米。 圖3B為圖3A中所示樣品的簡化角度光譜光度計曲線組 圖。注意,這裏的尺度與圖2B*所示的曲線組圖不同,而 且顏色飄逸也通常更少。第一條曲線3〇6為3_層設計,第二 條曲線308為7-層設計,第三條曲線31〇為11_層設計。該等 樣品顏色飄逸相對較少,其在某些應用中為需要者。 IV·衍射與非衍射顏料片的比較 介質衍射顏料係藉由將薄膜沈積到上覆聚合網基材的釋 離層上所形成。兩個聚合網基材以衍射格栅繪製圖案。介 85243 -18- 1284667 質衍射顏料片的一個樣品係做在頻率為1,400條/毫米的衍 射格柵圖案的基材上,且另一個樣品係做在頻率為2,000條 /毫米的衍射格柵圖案的基材上。非衍射全介質顏料係藉由 將相同薄膜沈積到上覆光滑(未經繪圖)聚合網基材的釋離 層上所形成。當與墨水載體混合並塗到黑色背景上時,沒 有衍射格柵的顏料片僅顯示藍到紫(“變色”)的顏色而沒有 衍射光學效果,而具有1,400條/毫米衍射格柵的顏料片和具 有2,000條/毫米衍射格柵的顏料片,除了藍到紫的背景變I, 外,都顯示衍射光學效果。這三個變色樣品在下文中稱為 “藍分色”樣品。 用於製作三個藍分色顏料片樣品的鍍膜設計如下: 在440奈米為1 QWOT的MgF2/在440奈米為1 QWOT之ZnS/ 在440奈米為1 QWOT的MgF2/在440奈米為1 QWOT的ZnS/ 在440奈米為1 QWOT的MgF2/在440奈米為1 QWOT的ZnS/ 在440奈米為1 QWOT的MgF2/在440奈米為3 QWOT的ZnS。 圖4A顯示使用散射8-度集成球測量的三個藍分色顏料樣 品的反射曲線組圖。各藍分色顏料樣品與透明載體混合並 塗在黑色卡上。第一條曲線400顯示具有1,400條/毫米的藍 分色衍射顏料片樣品的反射率。第二條曲線402顯示具有 2,000條/毫米的藍分色衍射顏料片樣品的反射率及第三條 曲線404顯示非衍射藍分色樣品的反射率。反射率顏色數據 顯示顏料樣品呈現以藍色為主的顏色。 圖4B-4D為上述1,400條/毫米、2,000條/毫米及平面(非衍 射)樣品的簡化角度光譜光度計顏色軌跡和染色性的曲線 85243 -19- Ϊ284667 組圖。顏色飄逸圖(通常稱為a*b*圖表)及反射率數據經由村 上(MURAKAMI)角度光譜光度計測得。a*b*圖表表示塗有 顏料片成分的固定樣品物體的顏色變化(a*,b*座標)。 圖4B表示隨著照明角度的變化在不同的觀察角度觀察到 的具有1,_條’毫米衍射光栅的藍分色顏料片樣品的顏色 軌跡圖。該等顏色軌跡有助於理解觀察者在鍍有(或塗上) 顏料的曲面物體上看到的顏色變化。每一條軌跡代表恒定 觀察角,-條連續軌跡線連接在一系列照明角上測到的數 據點(顏色值)。 、為了理解觀祭者對鍵有顏料的曲面物體感覺,單條軌跡 並不夠,因為觀察者和照明角度都在變化。在圖表中 隨著觀察者和照明情況的增加變化而橫移的顏色間隔有助 於大家理解從鍍有本發明實施例的塗料或墨水的曲面獲得 的光學效果。本發明顏料的優勢和將它用於塗料中的優勢 就是在:系列照明條件下強調了物體的彎曲。貞色間隔也 可以從第-條軌跡的任—點標出或得到,其中軌跡上的運 動表丁 ,,、、月源相對於表面法線的傾角變化^可以描緣相鄰 軌跡以對應觀察者的方向變化,如當固定觀察者看一個物 體的曲面時。 圖4B的圖表中的第—條曲線4〇3表示在邮的固定 Μ㈣0顏色軌跡’第二條曲線4()5表示在避的固定觀 察角時的顏色軌跡’第三條曲線術表示在3〇度的固定觀察: 角寺勺顏色軌5示第四條曲線4〇9表示在度的固定觀察角 寺勺顏色軌跡第五條曲線411表示在度的固定觀察角時 85243 -20- 1284667 的顏色軌跡’第六條曲線4 1 3表示在60度的固定觀察角時的 顏色軌跡,第七條曲線415表示在70度的固定觀察角時的顏 色軌跡及第八條曲線417表示在80度的固定觀察角時的顏 色軌跡。 圖4C顯示具有2,000條/毫米衍射格柵的藍分色顏料片樣 品的顏色軌跡圖。圖4C的a*b*圖表中的第一條曲線4〇3,表 示在12度的固定觀察角時的顏色軌跡,第二條曲線405,表 示在20度的固定觀察角時的顏色軌跡,第三條曲線4〇7,痛^ 示在30度的固定觀察角時的顏色軌跡,第四條曲線4〇9,表 示在40度的固定觀察角時的顏色軌跡,第五條曲線4ΐι,表 不在50度的固定觀察角時的顏色軌跡,第六條曲線413,表 示在60度的固定觀察角時的顏色軌跡,第七條曲線41 $,表 示在70度的固定觀察角時的顏色軌跡及第八條曲線41 7,表 示在80度的固定觀察角時的顏色軌跡。 圖4 D顯示無衍射格柵圖案的平面藍分色顏料片樣品的顏 色軌跡圖。圖4D的a*b*圖表中的第一條曲線4〇3”表示在12 度的固足觀祭角時的顏色軌跡,第二條曲線4〇5,,表示在2〇 度的固疋觀祭角時的顏色軌跡,第三條曲線4〇7,,表示在3〇 度的固疋觀察角時的顏色軌跡,第四條曲線409”表示在40 度的固疋觀察角時的顏色軌跡,第五條曲線411”表示在50 度的固定觀察角時的顏色軌跡,第六條曲線413”表示在60 度的固定觀祭角時的顏色軌跡,第七條曲線415,,表示在7〇 度的固定觀察角時的顏色軌跡及第八條曲線417”表示在80 度的固定觀察角時的顏色軌跡。 85243 -21 - 1284667 圖4B-4D中的顏色座標是當器具的照明源在每個觀察角 度從〇度到70度以每10度間隔增加時,從顏料的全回應光譜 計算所得。因此,各曲線上的各數據點表示照明源方向的 1 〇度間隔。因此’照明源在各數據點上的角度值可以藉由 各軌跡的起點或終點計數而得,起點或終點在圖中用0度或 70度表示。因此,在相對於樣品表面5〇度的觀察角,將照 明源從法線掃視到70度的入射角會產生對應於軌跡所觀察 到的顏色。 圖4E為圖4A-4C中討論的三種藍分色樣品在5〇度的觀察 角度下的顏色飄逸曲線組圖。第一條曲線4丨8表示照明角度 從相對於樣品的法線0度變到70度時,^々⑼條/毫米的藍分 色顏料樣品,第二條曲線420表示2,000條/毫米的藍分色顏 料樣w及第二條曲線422表示平滑的(沒有圖案)非衍射藍色 顏料樣品。 對於非衍射藍色顏料,圖4E的a*b*圖表中所示的顏色軌 跡422在接近鏡面條件處形成帶有頂點428的橢圓形,並以 逆時針方向移向在原點處的相對頂點41〇,該曲線為此種非 何射分色顏料片的典型軌跡。此種類型的顏色軌跡可以預 示在其他照明和觀察角度下的非衍射分色顏料的顏色軌 跡0 對於衍射藍分色顏料,圖4]5的a*b*圖表中所示的軌跡 418、420不形成一般分色顏料所有的規則顏色軌跡。這些: 軌跡的不規則路徑覆蓋了顏色空間更寬的區域並有最小的 重疊,此將會提供更明顯的顏色對比,以及沿著曲面的特 85243 -22- 1284667 殊顏色。因此’與鍍有不帶衍射結構的變色分色顏料的表 面相比’沿著鍍有衍射變色藍分色顏料的曲面的許多區域 將呈現出不同的顏色系列。 當光學衍射和干涉效果相結合時,顏色範圍一般來說並 非繞著一點對稱,而對於觀察者和照明的各位置是獨特 的。藉由將變色效果與衍射顏色相結合,物體的彎曲度和 深度以在散射和高度準直光束條件下都會變化的獨特的顏 色万式顯出。圖4E為樣品在50度觀察角度下當入射光邋α 到70度以10度的間隔變化時的顏色軌跡。非衍射樣品的最 高色度接近於鏡面反射428 (5〇度入射)。不過,在格柵頻率 為1,400條/愛米的衍射顏料中,最高色度可以在離法線約1〇 度的照明方向得到。在格柵頻率為2,〇〇〇條/毫米的衍射顏料 中,〇度(法線)照明處408是產生最高色度的條件。當然,其 他格拇頻率、形狀、深度等都會以前所未有的新的不同方 式改變顏色軌跡。 V.應用 圖5係根據本發明一實施例的物體5〇〇的一部分簡化截面 圖。物體或基材502塗上一層傳統塗料5〇4或其他鍍層或顏 色。例如,在有些實施例中,基材可為白色,並省去塗料 層。根據本發明一實施例的塗料層506塗在物體上。此塗料 包括分散至載體5 10如塗料媒介或墨水媒介中的全介質衍 射顏料片508。一實施例中,載體為透明,而在另一實施例· 中,載體為有色,但通常是透明的以利用顏料片的衍射特 性。有色的分色衍射顏料組合物可用以獲得類似於在白色 85243 -23- I284667 物體上採用“白色,,(中性)的衍射顏料混合物的衍射效果。 例如,紅色的分色衍射顏料組合物可用在紅色物體上以獲 得紅色的衍射效果。 一特定實施例中,物體被塗上白色的塗料,然後再塗上 本發明實施例之塗料。如果衍射顏料片為中性色的,則將 使物體生成白色的衍射效果,此可以大大突出物體的彎曲 表面。在另-實施例中,在第一個觀察角度時,衍射顏料 無法生成可以觀察到的背景顏色,但是在第二個 時,除了衍射顏色之外,又生成背景顏色。 τ' 4 νι·方法範例 圖6係根據本發明一實施例製作之具有衍射效果的物體 的一種方法600的簡化加工流程圖。提供帶有背景顏色的物 體(步驟602)。背景顏色可用傳統塗料塗在物體上,或可為 製作物體的材料本身的顏色。在一特定實施例中,背景顏 色為白色έ有全介为衍射顏料片的塗料被塗到物體上(步 驟604)。塗料可具有透明或染色載體,也可以含有其他顏 料。除了提供衍射以外,衍射顏料片可以包括分色或提供 薄膜干涉。 本發明可包括其他特定形式而不偏離本發明的精神或本 質特點。纟文描述的實施例僅用以說明本發明而㈣以限 制本發明。因& ’本發明的範圍係由後附的申請專利範固 所界定而非上述說明書。在_請專利範圍之含意和均等範: 圍内的任何改變都包括在本發明範圍内。 【圖式簡單說明】 85243 -24 - 1284667 圖1A係根據本發明實施例在具圖案之基材上形成之一般 多層介質堆疊的簡化截面圖。 圖1B係根據本發明之全介質衍射顏料片的簡化截面圖。 圖1C係根據本發明另—實施例之全介質衍射顏料片的簡 化截面圖。 圖2A係對根據本發明實施例的三種不同光學設計所測量 之反射率與波長關係的簡化曲線組圖。 圖2B為圖2A所纣論樣品的簡化角度光譜光度計曲線詛* 圖。 圖3 A為三種不同中性光學設計所測得之反射率與波長關 係的簡化曲線組圖。 圖3B為圖3 A所示的樣品的角度光譜光度計曲線組圖。 圖4A為比較衍射和非衍射樣品中反射率與波長關係的簡 化曲線組圖。 圖4B-4D為在不同角度觀察到的三種不同全介質顏料樣 品的簡化角度光譜光度計顏色軌跡與染色性的曲線組圖。 圖4E比較在同一角度觀察到的圖4B_4]D所示樣品的角度 光譜光度計曲線。 圖5係根據本發明一實施例的著色物體的簡化截面圖。 圖6係根據本發明一實施例的製程簡化流程圖。 【圖式代表符號說明】 100 衍射箔 102 基材 103 衍射結構 85243 -25- 1284667 104 105 106 108 110 112 120 122 124 126 128 130 132 134 140 142 144 146 148 150 釋離層 介質薄膜光學堆疊 高折射率材料 低折射率材料 高折射率材料 低折射率材料 全介質衍射顏料片 介質片基材 外介質層 載體 衍射介面 衍射介面 衍射介面 衍射介面 全介質衍射顏料片 外層 外層 中心層 低折射率層 低折射率層 85243 -26-The second curve 202 is a 9-layer design, the first layer is a ZnS layer of 1 QWOT at 500 nm, the second layer is a MgF2 layer of 2QWOT at 495 nm, and the third layer is 1 at 500 nm. The ZnS layer of QWOT, the fourth layer is a MgF2 layer of 1 QWOT at 495 nm, the fifth layer is a ZnS layer of 1 QWOT at 400 nm, and the sixth layer is a MgF2 layer of 2 QWOT at 397 nm. The seventh layer is a ZnS layer of 2 QWOT at 400 nm, the eighth layer is a MgF2 layer of 2 QWOT at 397 nm, and the ninth layer is a layer of ZnS 85243 -16 - 1284667 of 2 QWOT at 400 nm. The diffraction grating has a grating spacing of 1, 4 turns/mm. This optical design has a fairly neutral color. The third curve 204 is a 7-layer design. The first layer is a ZnS layer of 2 QWOT at 434 nm, the second layer is a MgF2 layer of 2 QWOT at 375 nm, and the third layer is 2QWOT at 391 nm. The ZnS layer, the fourth layer is a MgF2 layer of 2 QWOT at 354 nm, the fifth layer is a ZnS layer of 2 qW diced at 391 nm, and the sixth layer is MgF2 of 2 QWO butyl at 375 nm. The layer and the seventh layer are ZnS layers of 2 QWOT at 434 nm. The grating spacing of the diffraction grating is 1,400 strips/mm. This optical design has a golden background color for reflection viewing. Figure 2B is a simplified set of angled spectrophotometer curves for the sample of Figure 2A. The first curve 206 illustrates the color of the blue sample shown in the first curve 2 of Figure 2A. The second 208 curve illustrates the color of the neutral sample shown in the second curve 202 of Figure 2A. The third curve 21 〇 illustrates the color of the gold sample with the second curve 206 shown in Figure 2A. Other similar designs and productions can be made for other scene colors. The reflectance curve shown in Fig. 2A shows a typical characteristic that the reflectance of a part of the spectrum is higher than the other. In the visible spectrum, the average reflectance of the all-dielectric sheet is an average of the reflectance between about 400 and 700 nm. In a full dielectric diffractive sheet, unreflected light is typically transmitted through the pigment flakes. Therefore, the graph of the transmission characteristic will be the reciprocal of the reflection curve. The average reflectance provides a balance between the reflectance and transmittance of the pigment flakes. In one embodiment of the invention, the all-media pigment flakes have an average reflectance in the visible spectrum of at least 2 Å/0 (measured in air) to provide the desired diffractive effect. In another embodiment, the full 8524 -17 - 1284667 negative pigment flakes have an average reflectance in the visible spectrum of no more than 90% (measured in air) to allow light to pass through the diffractive pigment flakes to the underlying substrate and allow The color or image on the underlying substrate can be observed. Figure 3A is a simplified plot of the measured reflectance versus wavelength for three different neutral optical designs. The different layers ("number of layers") affect the total reflectivity of the pigment. These designs are each located in the middle of the visible area to avoid rendering a specific background color. The diffraction grating number of all three samples was 1,4 / / 3⁄4 m, and each sample used ZnS as a high refractive material and MgF 2 as a low refractive material. The first curve 3〇〇 shows the reflection performance of the 3-layer design (HLH), with each layer being 1 QWOT at 550 nm. Although a single pigment flake with a 3-layer media stack can achieve 20 to 40% reflection, it is believed that the higher reflectance in this paper is due to the fact that many pigment flakes are on a light background, and multiple layers of pigment flakes contribute to overall reflectivity. The second curve 302 shows the reflective properties of the 7-layer design: (HLH) at 500 nm; (L) at 550 nm and (HLH) at 600 nm. The third curve 304 shows the reflective properties of the 11-layer design: (HLHLH) at 5 nanometers, (L) at 550 nm and (HLHLH) at 600 nm. Figure 3B is a simplified set of angled spectrophotometer curves for the sample shown in Figure 3A. Note that the scale here is different from the curve set shown in Figure 2B*, and the color is usually less elegant. The first curve 3〇6 is a 3_layer design, the second curve 308 is a 7-layer design, and the third curve 31〇 is an 11_layer design. These samples are relatively light in color and are desirable in some applications. IV. Comparison of Diffractive and Non-Diffractive Pigment Sheets Diffractive pigments are formed by depositing a film onto the release layer of an overlying polymeric web substrate. The two polymeric mesh substrates are patterned in a diffraction grating. A sample of 85234 -18- 1284667 diffractive pigment flakes was fabricated on a substrate with a diffraction grating pattern at a frequency of 1,400 strips/mm, and the other sample was made at a diffraction grating with a frequency of 2,000 strips/mm. On the substrate of the gate pattern. The non-diffracting all-media pigment is formed by depositing the same film onto the release layer of the overlying smooth (undrawn) polymeric web substrate. When mixed with an ink vehicle and applied to a black background, the pigment flakes without the diffraction grating show only blue to violet ("discoloration") color without diffractive optical effects, while having a 1,400 strip/mm diffraction grating. The pigment flakes and the pigment flakes having a 2,000 strip/mm diffraction grating showed diffractive optical effects except for the blue to violet background I. These three color-changing samples are hereinafter referred to as "blue color separation" samples. The coating design used to make the samples of the three blue color pigment flakes is as follows: MgF2 of 1 QWOT at 440 nm / ZnS of 1 QWOT at 440 nm / MgF2 at 440 nm for 1 QWOT / at 440 nm ZnS for 1 QWOT / MgF2 at 440 nm for 1 QWOT / ZnS for 1 QWOT at 440 nm / MgF2 for 1 QWOT at 440 nm / ZnS for 3 QWOT at 440 nm. Figure 4A shows a set of reflection curves for three blue color separation pigment samples measured using a scattered 8-degree integrated sphere. Each blue color separation pigment sample was mixed with a transparent carrier and applied to a black card. The first curve 400 shows the reflectance of a sample of blue-separated diffractive pigment flakes having 1,400 strips/mm. The second curve 402 shows the reflectance of a sample of blue dichroic diffractive pigment flakes having 2,000 strips/mm and the third plot 404 shows the reflectance of the non-diffracting blue color separation sample. Reflectance Color Data Shows that the pigment sample exhibits a blue-based color. 4B-4D are curves of the color trajectory and dyeability of the simplified angle spectrophotometer of the above 1,400 strips/mm, 2,000 strips/mm and planar (non-diffractive) samples 85243 -19- Ϊ 284667. The color flow diagram (commonly referred to as an a*b* chart) and reflectance data were measured by a Murakami angle spectrophotometer. The a*b* chart indicates the color change (a*, b* coordinates) of a fixed sample object coated with a pigment flake component. Fig. 4B is a view showing a color trajectory of a sample of a blue color separation pigment sheet having a 1, ? strip mm diffraction grating observed at different viewing angles as a function of the illumination angle. These color trajectories help to understand the color changes seen by the viewer on curved objects coated with (or coated with) pigments. Each track represents a constant viewing angle, and a continuous track line connects the data points (color values) measured over a series of illumination angles. In order to understand the perception of the curved object with the paint on the key, the single track is not enough because the observer and the illumination angle are changing. The color shifts traversed in the graph as the observer and lighting conditions change are helpful to understand the optical effects obtained from the curved surface of the coating or ink plated with the embodiment of the present invention. The advantages of the pigments of the invention and the advantages of using them in coatings are the emphasis on the bending of objects under series illumination conditions. The 贞 color interval can also be marked or obtained from any point of the first trajectory, wherein the motion tensor on the trajectory, and the inclination of the moon source relative to the surface normal can be traced to the adjacent trajectory to correspond to the observation. The direction of the person changes, such as when the fixed observer looks at the surface of an object. The first curve 4〇3 in the graph of Fig. 4B indicates the fixed Μ(4)0 color trajectory in the post. The second curve 4()5 indicates the color trajectory at the fixed observation angle of avoidance. The third curve is indicated at 3 Fixed observation of twist: Angle temple spoon color track 5 shows the fourth curve 4〇9 indicates the fixed observation angle of the temple. The color curve of the fifth curve 411 indicates the fixed observation angle of degree 85224 -20- 1284667 The color trajectory 'the sixth curve 4 1 3 represents the color trajectory at a fixed observation angle of 60 degrees, the seventh curve 415 represents the color trajectory at a fixed observation angle of 70 degrees and the eighth curve 417 represents at 80 degrees The color trajectory of the fixed viewing angle. Figure 4C shows a color trajectory of a blue color separation pigment flake sample having a 2,000 strip/mm diffraction grating. The first curve 4〇3 in the a*b* chart of FIG. 4C represents the color trajectory at a fixed observation angle of 12 degrees, and the second curve 405 represents the color trajectory at a fixed observation angle of 20 degrees. The third curve 4〇7, the pain trajectory shows the color trajectory at a fixed observation angle of 30 degrees, and the fourth curve 4〇9 indicates the color trajectory at a fixed observation angle of 40 degrees, and the fifth curve 4ΐι, The color trajectory when the table is not at a fixed observation angle of 50 degrees, the sixth curve 413, the color trajectory at a fixed observation angle of 60 degrees, and the seventh curve 41 $, indicating the color at a fixed observation angle of 70 degrees. The trajectory and the eighth curve 41 7 represent the color trajectory at a fixed viewing angle of 80 degrees. Figure 4D shows a color trajectory of a sample of a planar blue color separation pigment flake without a diffraction grating pattern. The first curve 4〇3” in the a*b* chart of Fig. 4D represents the color trajectory at a solid angle of 12 degrees, and the second curve 4〇5, which represents a solid at 2 degrees. The color trajectory at the angle of observation, the third curve 4〇7, indicating the color trajectory at a solid angle of observation of 3 degrees, and the fourth curve 409” indicating the color at a solid angle of observation of 40 degrees The trajectory, the fifth curve 411" represents the color trajectory at a fixed observation angle of 50 degrees, the sixth curve 413" represents the color trajectory at a fixed viewing angle of 60 degrees, and the seventh curve 415, which indicates The color trajectory at a fixed observation angle of 7 degrees and the eighth curve 417" indicate the color trajectory at a fixed observation angle of 80 degrees. 85243 -21 - 1284667 The color coordinates in Figure 4B-4D are the illumination source of the appliance Calculated from the full response spectrum of the pigment as each observation angle increases from 10 to 70 degrees at intervals of 10 degrees. Therefore, each data point on each curve represents a 1 degree interval in the direction of the illumination source. The angle value of the source at each data point can be counted by the start or end point of each track. The starting point or the end point is represented by 0 or 70 degrees in the figure. Therefore, at an observation angle of 5 degrees with respect to the surface of the sample, the angle of incidence of the illumination source from the normal to 70 degrees will be observed corresponding to the trajectory. Figure 4E is a set of color drift curves for the three blue color samples discussed in Figures 4A-4C at an observation angle of 5 degrees. The first curve 4丨8 indicates the illumination angle from the sample relative to the sample. When the line is changed from 0 degrees to 70 degrees, a blue color separation pigment sample of 々(9)/mm, a second curve 420 indicates a 2,000 strip/mm blue color pigment sample w and a second curve 422 indicates smooth (no Pattern) Non-diffractive blue pigment sample. For non-diffracting blue pigment, the color trace 422 shown in the a*b* chart of Figure 4E forms an ellipse with apex 428 near the specular condition and is counterclockwise Moves to the opposite vertex 41〇 at the origin, which is the typical trajectory of such non-diffusing dichroic pigment flakes. This type of color trajectory can predict the color of non-diffracting dichroic pigments at other illumination and viewing angles. Track 0 for diffractive blue color separation pigment The trajectories 418, 420 shown in the a*b* diagram of Fig. 4] 5 do not form all the regular color trajectories of the general color separation pigment. These: The irregular path of the trajectory covers a wider area of the color space and has the smallest Overlap, this will provide a more pronounced color contrast, as well as a special color of 85234 -22- 1284667 along the curved surface. Therefore, 'diffraction along the surface of the plated surface with a discolored pigmented pigment without a diffractive structure' Many areas of the surface of a discolored blue color separation pigment will exhibit a different color series. When optical diffraction and interference effects are combined, the color range is generally not symmetrical about one point, but unique to each position of the viewer and illumination. of. By combining the color-changing effect with the diffractive color, the curvature and depth of the object are revealed in a unique color that changes under both scattered and highly collimated beam conditions. Figure 4E is a color trajectory of the sample as the incident pupil 邋α to 70 degrees are varied at an interval of 10 degrees at a viewing angle of 50 degrees. The highest chroma of the non-diffractive sample is close to specular reflection 428 (5 degree incidence). However, in diffractive pigments having a grid frequency of 1,400 strips/amimeter, the highest chroma can be obtained in an illumination direction about 1 degree from the normal. In diffractive pigments having a grid frequency of 2, purlins/mm, the twist (normal) illumination 408 is the condition that produces the highest chroma. Of course, other frequencies, shapes, depths, etc., will change the color trajectory in new ways that have never been seen before. V. Application Figure 5 is a simplified cross-sectional view of a portion of an object 5〇〇 in accordance with an embodiment of the present invention. The object or substrate 502 is coated with a conventional coating of 5 〇 4 or other coating or color. For example, in some embodiments, the substrate can be white and the coating layer omitted. A coating layer 506 in accordance with an embodiment of the present invention is applied to an object. The coating comprises an all-media diffractive pigment flake 508 dispersed into a carrier 5 10 such as a coating medium or an ink vehicle. In one embodiment, the carrier is transparent, while in another embodiment, the carrier is colored, but is generally transparent to take advantage of the diffraction characteristics of the pigment flakes. The colored dichroic diffractive pigment composition can be used to obtain a diffraction effect similar to the use of a "white, (neutral) diffractive pigment mixture on a white 85243-23-I284667 object. For example, a red dichroic diffractive pigment composition is available Obtaining a red diffractive effect on a red object. In a particular embodiment, the object is coated with a white paint and then coated with a coating of the embodiments of the invention. If the diffractive pigment flake is neutral, the object will be rendered A white diffraction effect is produced which can greatly highlight the curved surface of the object. In another embodiment, the diffractive pigment does not produce an observable background color at the first viewing angle, but in the second, except for diffraction In addition to the color, a background color is generated. τ' 4 νι. Method Example FIG. 6 is a simplified process flow diagram of a method 600 for fabricating a diffractive object in accordance with an embodiment of the present invention. An object with a background color is provided ( Step 602). The background color may be applied to the object by a conventional paint, or may be the color of the material itself for making the object. In the embodiment, the paint having a background color of white and having a full-scale diffractive pigment flake is applied to the object (step 604). The paint may have a transparent or dyed support, and may also contain other pigments. In addition to providing diffraction, the diffractive pigment flakes The present invention may include other specific forms without departing from the spirit or essential characteristics of the invention. The embodiments described herein are merely illustrative of the invention and (4) to limit the invention. The scope of the present invention is defined by the appended claims, and is not intended to be in the scope of the invention. Any changes in the scope of the invention are included in the scope of the invention. 85243 - 24 - 1284667 Figure 1A is a simplified cross-sectional view of a typical multilayer dielectric stack formed on a patterned substrate in accordance with an embodiment of the present invention. Figure 1B is a simplified cross-sectional view of a full dielectric diffractive pigment flake in accordance with the present invention. A simplified cross-sectional view of an all-dielectric diffractive pigment flake in accordance with another embodiment of the present invention. Figure 2A is a diagram of three different optical designs in accordance with an embodiment of the present invention. A simplified plot of the measured reflectance versus wavelength. Figure 2B is a simplified angular spectrophotometer curve 诅* of the sample of Figure 2A. Figure 3 A shows the reflectance measured for three different neutral optical designs. Figure 3B is a set of angled spectrophotometer curves for the sample shown in Figure 3 A. Figure 4A is a simplified set of plots of reflectance versus wavelength for comparing diffracted and non-diffracted samples. -4D is a graphical representation of the color trajectory and chromatability of a simplified angle spectrophotometer for three different all-media pigment samples observed at different angles. Figure 4E compares the angular spectra of the sample shown in Figure 4B_4]D observed at the same angle Photometer curve. Figure 5 is a simplified cross-sectional view of a colored object in accordance with an embodiment of the present invention. 6 is a flow chart of a simplified process in accordance with an embodiment of the present invention. [Description of Symbols] 100 Diffraction foil 102 Substrate 103 Diffraction structure 85243 -25 - 1284667 104 105 106 108 110 112 120 122 124 126 128 130 132 134 140 142 144 146 148 150 Release layer dielectric film optical stack high refraction Rate material low refractive index material high refractive index material low refractive index material all medium diffraction pigment sheet dielectric sheet substrate outer dielectric layer carrier diffraction interface diffraction interface diffraction interface diffraction interface all medium diffraction pigment sheet outer layer outer layer low refractive index layer low refraction Rate layer 85243 -26-

Claims (1)

似領说職號專利申請案 申睛專利範圍替換本(96年J月) 拾、申請專利範園: • 一種全介質衍射顏料片,包括: 含有具有用於衍射其上之入射光之衍射格柵圖案之表 面之無機介質薄膜層。 2·如申請專利範圍第丨項之全介質衍射顏料片,其進一步包 括在弟一播機介質薄膜層的表面上形成衍射介面之第二 個介質薄膜層。 3·如申請專利範圍第2項之全介質衍射顏料片,其中第二介 質薄膜層包括在第二表面上的衍射格柵圖案,該第二表 面遠離該無機介質薄膜層。 4· 一種全介質衍射顏料片,包括: 多層介負薄膜層’該多層介質薄膜層的至少一層包括 用於衍射其上之入射光之衍射格栅圖案,該全介質衍射 顏料片在空氣中測得之可見光譜中之平均反射率至少為 20% 〇 •如申請專利範圍第4項之全介質衍射顏料片,其中全介質 衍射顏料片在空氣中測得之可見光譜中之平均反射率不 大於90%。 6·如申請專利範圍第4項之全介質衍射顏料片,其中多層介 質薄膜層中至少有些層形成分色濾光器。 7·如申請專利範圍第6項之全介質衍射顏料片,其中分色濾 光器在第一個觀察角反射第一種顏色且在第二個觀察角 度反射第二種顏色。 8·如申請專利範圍第4項之全介質衍射顏料片,其中衍射格 85243 1284667 至少有些相鄰層所複 柵圖案係經由多層介質薄膜層之 製。 9.如申請專利範圍第4項之全介質衍射顏料片 一, ”…%职饤芍,其中多層 質薄膜層包括高折射率介質材料和低折射率介質材 交替層。 ' 10. —種全介質顏料片,包括: _具有衍射格栅圖案之多數介質層,該衍射格柵圖案係 經由多層介電層所複製而在相鄰介質層間形成衍射介 面。 11·如申請專利範圍第10項之全介質顏料片,其中衍射介面 提供在空氣中測量為20%到90%之間的综合反射率。 12. —種衍射顏料組合物,包括: 一種顏料媒介,及 分散於顏料媒介中之如申請專利範園第1項之多數全 介質衍射顏料片。 13·如申請專利範圍第12項之衍射顏料組合物,其中全介質 衍射顏料片進一步包括: 置於第一介質層的衍射格柵圖案上的第二介質層,以 形成弟一衍射介面,並該複製衍射格柵圖案,以在第二 介質層和顏料媒介之間形成第二衍射介面。 14·如申請專利範圍第12項之衍射顏料組合物,其中全介質 衍射顏料片包括奇數介質層,包括第一外層和複製該衍 射格栅圖案並與顏料媒介形成衍射介面之第二層。 15·如申請專利範圍第14項之衍射顏料組合物,其中第一外 85243 1284667 層和第二外層為高折射率層及顏料媒介為低折射率媒 介。 16·如申請專利範圍第14項之衍射顏料組合物,其中第一外 層和第二外層為低折射率層及顏料媒介為高折射率媒 介。 17·如申請專利範圍第12項之衍射顏料組合物,其中全介質 衍射顏料片包括不與顏料媒介形成衍射介面的外介質 層。 1 8·如申請專利範圍第17項之衍射顏料組合物,其中外介質 層為低折射率層及顏料媒介為低折射率媒介。 19·如申請專利範圍第12項之衍射顏料組合物,其中顏料媒 介為透明者。 20·如申請專利範圍第12項之衍射顏料組合物,其中顏料媒 介為有色或染色者。 21. 如申請專利範圍第12項之衍射顏料組合物,其中全介質 衍射顏料片進一步包括 一薄膜光學干涉結構。 22. 如申請專利範圍第21項之衍射顏料組合物,其中薄膜光 學干涉結構隨著觀察角度的變化提供變色。 23· —種對物體表面賦予衍射效果之方法,包括: 提供一具有背景顏色之物體,及 將全介質衍射顏料片塗佈在該物體上。 24·如申4專利範圍第23項之方法,其中背景顏色為白色及 物體上生成的衍射效果為白色衍射效果。 85243 1284667 25·如申請專利範圍第23項之方法,其中衍射效果實質上保 持物體的背景顏色。 26.如申請專利範圍第23項之方法,其中全介質衍射顏料片 包括薄膜干涉結構,且將全介質衍射顏料片塗佈到物體 上將進一步賦與物體之變色效果。 85243 4-Like the title patent application, the scope of the patent application is replaced (96 J). The patent application: • An all-media diffraction pigment flake comprising: a diffraction grating having incident light for diffracting thereon An inorganic dielectric film layer on the surface of the gate pattern. 2. The full dielectric diffractive pigment flake of claim </ RTI> further comprising a second dielectric film layer forming a diffractive interface on the surface of the dielectric film layer of the disc. 3. The all-different pigment flake sheet of claim 2, wherein the second dielectric film layer comprises a diffraction grating pattern on the second surface, the second surface being away from the inorganic dielectric film layer. 4. An all-different diffractive pigment flake comprising: a multi-layered negative film layer' wherein at least one layer of the multi-layer dielectric film layer comprises a diffraction grating pattern for diffracting incident light thereon, the all-dielectric diffractive pigment flake being measured in air The average reflectance in the visible spectrum is at least 20%. 〇• The full-media diffraction pigment flakes according to item 4 of the patent application, wherein the average reflectance of the visible diffracted pigment flakes in the visible spectrum measured in air is not more than 90%. 6. The all-different pigment flakes of claim 4, wherein at least some of the layers of the multi-layer dielectric film form a dichroic filter. 7. The full-media diffractive pigment flakes of claim 6, wherein the dichroic filter reflects the first color at a first viewing angle and the second color at a second viewing angle. 8. The full-media diffraction pigment flakes of claim 4, wherein the diffraction grating 85243 1284667 has at least some of the adjacent layers of the complex gate pattern formed by the multilayer dielectric film layer. 9. For the full-dimensional diffractive pigment flakes of claim 4, "...% of the work, wherein the multi-layered film layer comprises alternating layers of high refractive index dielectric material and low refractive index dielectric material. ' 10. The dielectric pigment flakes comprise: - a plurality of dielectric layers having a diffraction grating pattern, the diffractive grating patterns being replicated through the plurality of dielectric layers to form a diffraction interface between adjacent dielectric layers. 11) as claimed in claim 10 All-media pigment flakes, wherein the diffractive interface provides a comprehensive reflectance measured between 20% and 90% in air. 12. A diffractive pigment composition comprising: a pigment medium, and dispersed in a pigment medium as applied The diffractive pigment composition of claim 12, wherein the all-dielectric diffractive pigment flake further comprises: a diffraction grating pattern disposed on the first dielectric layer a second dielectric layer to form a diffractive interface, and the diffractive grating pattern is replicated to form a second diffractive interface between the second dielectric layer and the pigment medium. The diffractive pigment composition of claim 12, wherein the all-different diffractive pigment flakes comprise an odd-numbered dielectric layer comprising a first outer layer and a second layer replicating the diffractive grating pattern and forming a diffractive interface with the pigment medium. The diffractive pigment composition of claim 14, wherein the first outer 85242 1284667 layer and the second outer layer are high refractive index layers and the pigment medium is a low refractive index medium. 16. The diffractive pigment composition of claim 14 Wherein the first outer layer and the second outer layer are low refractive index layers and the pigment medium is a high refractive index medium. 17. The diffractive pigment composition of claim 12, wherein the all medium diffractive pigment flakes comprise no formation with a pigment medium. The outer surface layer of the diffraction interface. The dye composition according to claim 17, wherein the outer dielectric layer is a low refractive index layer and the pigment medium is a low refractive index medium. a diffractive pigment composition in which the pigment medium is transparent. 20. The diffractive pigment composition of claim 12, wherein the pigment medium 21. The diffractive pigment composition of claim 12, wherein the all-different pigment flakes further comprises a thin film optical interference structure. 22. The diffractive pigment composition of claim 21 Wherein the thin film optical interference structure provides discoloration as a function of the viewing angle. 23. A method of imparting a diffractive effect to an object surface, comprising: providing an object having a background color, and coating a full medium diffractive pigment flake on the object 24. The method of claim 23, wherein the background color is white and the diffraction effect generated on the object is a white diffraction effect. 85243 1284667 25. The method of claim 23, wherein the diffraction effect is substantially Keep the background color of the object on it. 26. The method of claim 23, wherein the all-different diffractive pigment flakes comprise a thin film interference structure, and applying the all-media diffractive pigment flake to the object further imparts a discoloration effect to the object. 85243 4-
TW92112831A 2002-05-31 2003-05-12 All-dielectric optical diffractive pigments TWI284667B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38462902P 2002-05-31 2002-05-31

Publications (2)

Publication Number Publication Date
TW200411021A TW200411021A (en) 2004-07-01
TWI284667B true TWI284667B (en) 2007-08-01

Family

ID=39445917

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112831A TWI284667B (en) 2002-05-31 2003-05-12 All-dielectric optical diffractive pigments

Country Status (2)

Country Link
ES (1) ES2356735T3 (en)
TW (1) TWI284667B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965748B (en) * 2020-07-07 2022-06-07 惠州市华阳光学技术有限公司 Optically variable pigment

Also Published As

Publication number Publication date
TW200411021A (en) 2004-07-01
ES2356735T3 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
US6815065B2 (en) All-dielectric optical diffractive pigments
TWI262323B (en) Chromatic diffractive pigments and foils
US7729026B2 (en) Security device with metameric features using diffractive pigment flakes
TW567343B (en) Achromatic multilayer diffractive pigments and foils
US9739917B2 (en) Red omnidirectional structural color made from metal and dielectric layers
CN110749945B (en) Optical film, structural color pigment and preparation method of optical film
US10597538B2 (en) Pigment composition and pigment flake
CN105549137A (en) Sub-wavelength grating structure color generation element and color generation product comprising the same
CN111093967A (en) Optical structure providing a bicolor effect
CN110341344B (en) Method for anti-counterfeiting by using structural color
TWI284667B (en) All-dielectric optical diffractive pigments
CN112987158B (en) Iron-based optically variable pigment and manufacturing method and application thereof
CN111239876A (en) Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers
TW201945183A (en) Multilayer optical thin film structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees