TWI284221B - Liquid crystal display and method of laser repairing - Google Patents

Liquid crystal display and method of laser repairing Download PDF

Info

Publication number
TWI284221B
TWI284221B TW93135930A TW93135930A TWI284221B TW I284221 B TWI284221 B TW I284221B TW 93135930 A TW93135930 A TW 93135930A TW 93135930 A TW93135930 A TW 93135930A TW I284221 B TWI284221 B TW I284221B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
display panel
electrode
laser
Prior art date
Application number
TW93135930A
Other languages
Chinese (zh)
Other versions
TW200617474A (en
Inventor
Cheng-Chung Wang
Kuo-Yang Chuang
Tsung-Ching Yang
Original Assignee
Chi Mei Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp filed Critical Chi Mei Optoelectronics Corp
Priority to TW93135930A priority Critical patent/TWI284221B/en
Publication of TW200617474A publication Critical patent/TW200617474A/en
Application granted granted Critical
Publication of TWI284221B publication Critical patent/TWI284221B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A method of laser repairing to repair a liquid crystal display is provided. The method of laser repairing is performed by providing a laser with specific wavelength. Then, the laser is incident into a liquid crystal display panel or a liquid crystal display module (LCM) from a front side thereof, such that the laser passes the liquid crystal layer to repair the TFT array. After repairing, a repaired pixel unit is formed on the TFT array corresponding to the position where the laser incident in, and a hole is formed on the opposite substrate above the repaired pixel unit.

Description

I2842aitwf.d〇c/m 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種液晶顯示面板及雷射修補方法 (laser repairing),且特別是有關於一種能夠從液晶顯示器 之正面(front side)直接進行修補動作並且會在液晶顯示面 板上形成一修補孔的雷射修補方法。 【先前技術】 自從第一台以陰極射線管(Cathode Ray Tube,CRT) 為工作模式的黑白電視機發明以來,顯示技術便以飛快的 速度不斷演進。然而,由於此種以陰極射線管模式工作的 顯示器具有體積大、重量重、轄射量高及晝質較差等缺點, 因此平面顯示技術便不斷的開發出新技術。在這些平面顯 不技術中’又以具有輕薄短小、省電、無轄射、全彩及方 便攜帶等優點的液晶顯示器(Liquid Crystal Display,LGD;) 技術最為純熟且普及化。舉凡手機、語言翻譯機、數位相 機、數位攝影機、個人數位助理(PDA)、筆記型電腦甚至 於桌上型顯示器都有其應用範圍。 雖然液晶顯示器技術已趨成熟,但顯示面板在製造過 程之中難免會產生一些瑕疵,而這些瑕疵在顯示器顯像時 會造成感官上的不適,若直接報廢丟棄這些有瑕疵的顯示 面板’將會使得製造成本大幅增加。一般來說,只依賴改 善製程技術來實現零瑕疲率是非常困難的,因此液晶顯示 面板的瑕疵修補技術變得相當的重要。在習知技術中,液 晶顯示面板的瑕疵修補通常係採用雷射鎔接(1狀沉welding) I2842215twf.d〇c/m 或雷射切割(laser cutting)等方式進行。以薄膜電晶體液晶 顯示面板(TFT-LCD)為例,雷射修補或切割的動作通常是 在薄膜電晶體陣列(TFT array)製作完成後進行。然而,液 晶顯示顯示面板中瑕疵點(defects)有可能在液晶顯示顯示 面板與背光模組組立之後(即液晶顯示模組(LCM)階段) 才被檢出。因此,製造者已經相繼提出一些能夠在液晶顯 示模組階段進行的雷射修補技術。 ^ 在液晶顯示模組階段進行之雷射修補技術大致上可 分為兩種。其中一種雷射修補技術是將背光模組由液晶顯 示模組上拆解下來後,再從液晶顯示面板的背面(TFT侧之 基板)打入雷射光束以進行修補。此作法的缺點是拆解及組 裝背光模組需要耗費人力及拆解、組裝工時,且物件拆解 後放置會佔據不少空間。 承上述,另外一種雷射修補技術則不需要拆解液晶顯 示模組,可直接由液晶顯示面板的正面打入雷射光束以進 行修補。更具體來說,上述之雷射修補技術係先從液晶顯 示面板的正面打入一功率約為1〇5毫焦耳之雷射光束,使 液晶受熱之後排開,液晶被排開的位置上將形成氣泡 (bubble)。接著,再連續打入另一雷射光束以破壞配向膜。 之後,將液晶顯示模組靜置約4小時,等待氣泡消失後再 進行點燈測試。由於局部區域上之配向膜已被雷射光束所 破壞’故此區域内的液晶排列散亂,可被修補為暗點。 值得注意的是,上述修補技術需以掃描的方式破壞配 向膜,耗費相當多的時間。此外,在液晶排開後,無法立 12842^l5twf.doc/m 即檢測修補的結果,需靜置長相後才能點燈檢測。在靜 置的過程中需有適當的空辭以存放,轉修補失敗則必 須再次重複等待,非常耗時。 【發明内容】 本發明的目的就是在提供一種雷射修補技術,其能夠 從液晶顯示器之正面直接進行修補動作。 本發明的另一目的就是在提供一種雷射修補技術,其 能夠從液晶顯示模組之正面直接進行修補動作。 本發明的再一目的就是在提供一種液晶顯示面板,可 藉由上述之雷射修補技術對此液晶顯示面板之正面直接進 行修補動作。 為達上述之目的,本發明提供一種雷射修補方法,適 於修補一液晶顯示面板,此液晶顯示面板包括一主動元件 陣列基板、一對向基板及一配置於主動元件陣列基板與對 向基板間的液晶層。本發明之雷射修補方法係先提供一雷 射光束,接著將所提供的雷射光束經過對向基板及液晶層 照射於液晶顯示面板中的主動元件陣列基板上,以修補液 晶顯示面板之點瑕疲(dot defect)。 為達上述之目的,本發明提供另一種雷射修補方法, 適用於修補一液晶顯示模組,液晶顯示模組包括一液晶顯 示面板以及一裝置在液晶面板下的背光源。其中,液晶顯 示面板包括一主動元件陣列基板,一對向基板及一配置於 主動元件陣列基板與對向基板間的液晶層。本發明之雷射 修補方法係先提供一雷射光束,接著將所提供的雷射光束 照射於液示©板巾的主動元件_基板上,以修補液 晶顯示模組之點瑕/疵。 本發明之一實施例中,雷射光束功率例如係介於〇65 毫焦耳至1.05毫焦耳之間。 本發明之-實施财,絲元件_基板包括多個掃描 配件、多個資料配線以及多個晝素單元,且主動元件陣列基板 中的每一個畫素單元包括一薄膜電晶體以及一與薄膜電晶體 電性連接之畫素電極,且晝素電極係與掃描配線耦合成一儲存 電容(Cs on Gate)。此時,本實施例可藉由雷射光束使有瑕疵 的晝素單元内之薄膜電晶體失效。承上述,當液晶顯示面板 為常態白晝面模式(Normally White mode)時,雷射光束將 ,使薄膜電晶體失效,並使晝素電極與其對應的掃描配線 4電壓’以將瑕疫之畫素單元修補成暗點。 本發明之一實施例中,主動元件陣列基板包括多個掃 描配線、多個資料配線以及多個晝素單元,且主動元件陣 列基板中的每一晝素單元包括一薄膜電晶體、一與薄膜電 晶體電性連接之畫素電極以及一共用配線,且畫素電極係 與共用配線輛合成一儲存電容(Cs 〇n Common)。此時,本 實施例可藉由雷射光束使有瑕疵的畫素單元内之儲存電容 失效。承上述,當液晶顯示面板為常態黑畫面模式 (Normally Black mode)時,雷射光束的修補將會使儲存電 容失效,並使畫素電極與對應之共用配線等電壓,以將瑕 疯之畫素單元修補成暗點。 為達上述之目的,本發明更提供一種液晶顯示面板, 12842i26!5twf.doc/m 此液晶顯示面板包括一主動元件陣列基板、一對向基板以 及一液晶層。上述之主動元件陣列基板包括多個掃描配 線、多個資料配線以及多個畫素單元,其中晝素單元中至 少包括一已修補晝素單元。對向基板則配置於主動元件陣 列基板上方,並且具有一修補孔,此修補孔位於已修補之 晝素單元上方。而液晶層係配置於主動元件陣列基板與對 向基板之間。 Μ 本發明之一實施例中,液晶顯示面板内之主動元件陣 列基板包括多個掃描配線、多個資料配線以及多個畫素單 兀。。其中,每一晝素單元例如包括一薄膜電晶體以及一晝 素電極,且畫素電極與薄膜電晶體係為電性連接,並與掃 描配線輕合成—儲存電容。此外,經由f射修補而形成之 修補孔係位於已修補畫素單元中之薄膜電晶體上方。 本發明之一實施例中,液晶顯示面板内的主動元件陣 列,板例如包括多個掃描配線、多個資料配線以及多個晝 素單元其中,母一晝素單元包括一薄膜電晶體、一畫素 ΐϊϊί—共用配線。上述之畫素電極與薄膜1晶體係為 」 ,且與共用配線耦合成一儲存電容。此外,經由 配I2842aitwf.d〇c/m IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display panel and a laser repairing method, and in particular to a front view of a liquid crystal display (front side) A laser repairing method in which a repairing action is directly performed and a repair hole is formed on the liquid crystal display panel. [Prior Art] Since the invention of the first black-and-white television set operating in the cathode ray tube (CRT), the display technology has been evolving at a rapid rate. However, since such a display operating in a cathode ray tube mode has disadvantages such as large size, heavy weight, high arranging amount, and poor enamel, the flat display technology has continuously developed new technologies. In these flat display technologies, the liquid crystal display (LGD;) technology with advantages of lightness, thinness, power saving, no administration, full color and portable tape is the most sophisticated and popular. Mobile phones, language translators, digital cameras, digital cameras, personal digital assistants (PDAs), notebook computers and even desktop displays have applications. Although the liquid crystal display technology has matured, the display panel will inevitably produce some flaws in the manufacturing process, and these defects will cause sensory discomfort when the display is displayed. If these defects are directly discarded, the defective display panel will be discarded. This has led to a significant increase in manufacturing costs. In general, it is very difficult to rely solely on the improvement of process technology to achieve zero fatigue rate. Therefore, the repair technology of liquid crystal display panels has become quite important. In the prior art, the repair of the liquid crystal display panel is usually carried out by means of laser splicing (I-shaped sinking) I2842215 twf.d〇c/m or laser cutting. Taking a thin film transistor liquid crystal display panel (TFT-LCD) as an example, the laser repairing or cutting operation is usually performed after the TFT array is completed. However, the defects in the liquid crystal display panel may be detected after the liquid crystal display panel and the backlight module are assembled (i.e., the liquid crystal display module (LCM) stage). Therefore, manufacturers have proposed some laser repair techniques that can be performed at the stage of the liquid crystal display module. ^ Laser repair technology in the LCD module stage can be roughly divided into two types. One of the laser repair techniques is to disassemble the backlight module from the liquid crystal display module, and then inject a laser beam from the back surface of the liquid crystal display panel (the substrate on the TFT side) for repair. The disadvantage of this method is that it takes labor and disassembly and assembly man-hours to disassemble and assemble the backlight module, and the object will occupy a lot of space after being disassembled. In view of the above, another laser repairing technique does not require disassembly of the liquid crystal display module, and the laser beam can be directly applied to the front side of the liquid crystal display panel for repair. More specifically, the above-mentioned laser repairing technology firstly inserts a laser beam having a power of about 1 〇5 mJ from the front surface of the liquid crystal display panel, so that the liquid crystal is heated and then discharged, and the liquid crystal is discharged. A bubble is formed. Then, another laser beam is continuously driven to destroy the alignment film. After that, the liquid crystal display module was allowed to stand for about 4 hours, and the lighting test was performed after waiting for the bubble to disappear. Since the alignment film on the partial region has been destroyed by the laser beam, the liquid crystal alignment in this region is scattered and can be repaired to a dark spot. It is worth noting that the above-mentioned repairing technology requires a scanning method to destroy the alignment film, which takes a considerable amount of time. In addition, after the liquid crystal is discharged, it is impossible to stand the test at 12842^l5twf.doc/m, and it is necessary to stand still before the light is detected. In the process of standing, it is necessary to have an appropriate empty word to store. If the repair fails, it must be repeated again, which is very time consuming. SUMMARY OF THE INVENTION An object of the present invention is to provide a laser repairing technique capable of directly performing a repairing operation from the front surface of a liquid crystal display. Another object of the present invention is to provide a laser repairing technique capable of directly performing a repairing operation from the front side of a liquid crystal display module. Still another object of the present invention is to provide a liquid crystal display panel which can be directly repaired on the front side of the liquid crystal display panel by the above-described laser repair technique. In order to achieve the above object, the present invention provides a laser repairing method, which is suitable for repairing a liquid crystal display panel. The liquid crystal display panel includes an active device array substrate, a pair of substrates, and an active device array substrate and a counter substrate. The liquid crystal layer between. The laser repairing method of the present invention first provides a laser beam, and then irradiates the provided laser beam through the opposite substrate and the liquid crystal layer on the active device array substrate in the liquid crystal display panel to repair the liquid crystal display panel. Dot defect. To achieve the above object, the present invention provides another laser repairing method suitable for repairing a liquid crystal display module. The liquid crystal display module includes a liquid crystal display panel and a backlight of the device under the liquid crystal panel. The liquid crystal display panel comprises an active device array substrate, a pair of substrates and a liquid crystal layer disposed between the active device array substrate and the opposite substrate. The laser repairing method of the present invention first provides a laser beam, and then irradiates the supplied laser beam onto the active device _ substrate of the liquid stencil to repair the spot/疵 of the liquid crystal display module. In one embodiment of the invention, the laser beam power is, for example, between 毫65 millijoules to 1.05 millijoules. In the present invention, the wire component_substrate includes a plurality of scanning accessories, a plurality of data wires, and a plurality of pixel units, and each of the pixel units in the active device array substrate includes a thin film transistor and a thin film transistor The crystal is electrically connected to the pixel electrode, and the halogen electrode is coupled to the scan line to form a storage capacitor (Cs on Gate). At this time, the present embodiment can disable the thin film transistor in the germanium cell unit by the laser beam. According to the above, when the liquid crystal display panel is in the normal state of the white mode, the laser beam will cause the thin film transistor to fail, and the voltage of the halogen electrode and its corresponding scanning wiring 4 will be used to plague the plaque. The unit is patched into a dark spot. In an embodiment of the present invention, the active device array substrate includes a plurality of scan wires, a plurality of data wires, and a plurality of pixel units, and each of the pixel units in the active device array substrate includes a thin film transistor, a film and a film. The transistor is electrically connected to the pixel electrode and a common wiring, and the pixel electrode and the shared wiring unit are combined to form a storage capacitor (Cs 〇n Common). At this time, the present embodiment can disable the storage capacitance in the defective pixel unit by the laser beam. According to the above, when the liquid crystal display panel is in the Normally Black mode, the repair of the laser beam will invalidate the storage capacitor, and the voltage of the pixel electrode and the corresponding shared wiring will be used to draw the madness. The prime unit is patched into a dark spot. In order to achieve the above object, the present invention further provides a liquid crystal display panel, 12842i26!5twf.doc/m. The liquid crystal display panel comprises an active device array substrate, a pair of substrates and a liquid crystal layer. The active device array substrate includes a plurality of scan lines, a plurality of data lines, and a plurality of pixel units, wherein the pixel unit includes at least one repaired pixel unit. The opposite substrate is disposed above the active device array substrate and has a repair hole located above the repaired halogen unit. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate. In one embodiment of the invention, the active device array substrate in the liquid crystal display panel includes a plurality of scan lines, a plurality of data lines, and a plurality of pixel sheets. . Each of the pixel units includes, for example, a thin film transistor and a germanium electrode, and the pixel electrode is electrically connected to the thin film electro-crystal system, and is lightly synthesized with the scanning wiring-storage capacitor. Further, the repair hole formed by the f-shot repair is located above the thin film transistor in the repaired pixel unit. In an embodiment of the present invention, the active device array in the liquid crystal display panel includes, for example, a plurality of scan lines, a plurality of data lines, and a plurality of pixel units, wherein the mother unit includes a thin film transistor and a picture Su ΐϊϊ 共用 - shared wiring. The above-mentioned pixel electrode and the film 1 crystal system are coupled to each other and coupled to a common storage wiring to form a storage capacitor. In addition,

雷射修補而形成之修補孔係位於已修補畫素單元之共用 線上方。 A ,上所述’本發明之雷射修補方法係將雷射光束直接 示_正面穿透對向基板與液晶層,並利用雷射 β㈣產生之祕賴存㈣社電極與下電極鎔接,或 疋、4膜電晶體的閘極與錄相鎔接,以達到瑕疲點修補 128422itwf.doc/m 的效果,並且會在對向基板上形成一修補孔。 由於上述之雷射修補方法並不需要拆解背光模組,而 且可以即時得知修補結果,因此本發明可有效地簡化雷射 修補製程,節省拆裝模組之人力成本,並進一步提高產能 (throughput) 〇 匕 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細^ 明如下。 ” 【實施方式】 、圖1繪示為依照本發明一較佳實施例雷射修補方法之 流,圖。請參照圖i,首先提供一待修補之液晶顯示模組 或是液晶顯示面板(S1GG)。本實施例中,液晶顯示面板 例如係由一主動元件陣列基板、一對向基板以及一配置於 主動元件陣列基板與對向基板之間的液晶層所構成(將詳 述於後),而液晶顯示模組例如係由上述之液晶顯示面板 與一位於液晶面板下方之背光源所構成(將詳述於後)。 同樣清參照圖1,在提供待修補之液晶顯示模組或是 液晶顯示面板之後,接著提供一適當功率與波長之雷射光 ,(S110)。本實施例中,雷射光束的功率例如係介於〇.65 宅焦耳至1·〇5毫焦耳之間,雷射光束的波長可視液晶層之 材料特性而定,續選狀雷射光束的波長範圍以不被液 晶層吸收者為佳。 一之後,令雷射光束經過對向基板與液晶層而照射於主 動元件陣列基板上(S12G) ’以修補主航件陣列基板。 12 842l26!5twf.doc/m 值得注意的是,在進行雷射修補的過程中,由於絕大部分 的雷射光束將可穿透液晶層並照射於主動元件陣列基板, 因此液晶層不會受熱而排開,且所提供之雷射光束可直接 對主動元件陣列基板上之元件進行修補(溶接),使得雷 射修補的效率大幅提昇。以下,本發明將針對液晶顯示模 組之結構、組裝於其内之液晶顯示面板之結構,以及雷射 修補的細節進行描述。 圖2繪示為本發明較佳實施例中液晶顯示模組之結構 示意圖。請先參考圖2,本實施例之液晶顯示模組2〇〇包 # 括液日日顯不面板300以及背光源400。其中,背光源4〇〇 係配置於液晶顯示面板300之下方,以提供液晶顯示模組 200在顯示時所需之光源410。 請繼續參照圖2,本實施例之液晶顯示面板3〇〇包括 一主動元件陣列基板310、一對向基板320以及一配置於 對向基板320與主動元件基板310之間的液晶層33〇。此 外’依照不同的產品設計’本實施例可以在液晶面板3〇〇 的上、下表面選擇性地貼附適當偏振方向的偏光片 麵 (Polarizer)340。上述之主動元件陣列基板310例如為薄膜 電晶體陣列基板(TFT array substrate),或是其他的主動元 件陣列基板。承上述,本實施例中對向基板320例如係由 一上基板322及一彩色濾光薄膜(Color Filter Film)324所組 成,其中彩色濾光薄膜324係位於上基板322之下。此外, 本實施例中主動元件陣列基板310例如係由一基板312、 多數個掃描配線314、多數個資料配線316,及多數個晝素 11 12842 之!5twf.d〇c/m 單元318所構成。其中,掃描配線314、資料配線316與 畫素單元318係配置於基板312上,而各個晝素單元318 係與對應之掃描配線314與資料配線316電性連接。 在本實施例中,上基板322例如為玻璃基板、塑膠基 板或是其他軟質或硬質材質之透明基板,基板312例如為 玻璃基板、塑膠基板或是其他軟質或硬質材質之基板。如 圖2所示,掃描配線314與資料配線310配置於基板312 上,將基板312區分為多數個畫素區域。更詳細的說,掃 描配線314例如為彼此平行地配置於基板312之上,資料 _ 配線316亦例如為彼此平行的配置在基板312上,且掃描 配線314與資料配線316的延伸方向例如是彼此垂直,以 將基板312區分為多數個矩形的晝素區域,而各個晝素單 元318係配置於對應之畫素區域内。 圖3A繪示為本發明中一較佳實施例之液晶顯示面板 剖面示意圖。請同時參考圖2與圖3 A,本實施例之晝素 單元318例如包括一薄膜電晶體(TFT)318a以及一晝素電 極(Pixel electrode)318b。其中,薄膜電晶體3丨8β具有一源 籲 極S、一;及極D、一閘極g以及一通道層c。值得注意的 是,晝素電極318b係與薄膜電晶體31心的汲極D電性連 接。本實_中,_底電極結構之薄膜電晶體(b〇tt〇m gate TFT)為例子進行說明,但本發明之薄膜電晶體 並不限定於底電極結構之薄膜電晶體,亦可以採用頂電極 結構之薄膜電晶體(t〇p gate TFT)。 、 圖4A繪示為依照本發明一較佳實施例之薄膜電晶體 12 1284226l75twf.doc/m 陣列基板之上視示意圖。請同時參照圖3A與圖4A,在本 實施例之晝素單元318中,晝素電極3i8b的部分區域會與 掃描配線3H重疊,以耦合成一儲存電容cst。 曰^ 圖5A繪示為依照本發明較佳實施例中常態白書面模 式液晶顯示面板之薄膜電晶體陣列基板雷射鎔接剖^示意 圖。請同時參考圖4A及圖5A。以常態白晝面模式液晶顯 示面板(NWmodeLCDpanel)300 (繪示於圖2中)為例, 當畫素單元318發生瑕疵而無法正常顯示時,為了將晝素 單元318修補成暗點,本實施例可由液晶顯示面板之 正面打入一雷射光束,穿過對向基板32〇及液晶層33〇將 薄膜電晶體318α之閘極G與汲極D焊接在一起,以使對 應之薄膜電晶體318α失效。具體而言,雷射光束例如可照 射於鎔接點W1上,以將薄膜電晶體318β之閘極G與汲 極D焊接。 在經過上述之雷射修補後,當一開啟電壓Vg被提供 至掃描配線314以開啟晝素單元318中之薄膜電晶體31心 時,晝素電極318b亦會維持在開啟電壓V(j之位準,因此 瑕疵的畫素單元318便可被修補為恆暗點。此時,對向基 板320中的彩色濾光薄膜324上會形成有一修補孔322&amp;, 且此修補孔322a係位於被修補的畫素單元318的上方。 圖3B繪示為本發明中另一較佳實施例之液晶顯示面 板剖面示意圖,圖4B則纷示為依照本發明另一較佳實施 例之薄膜電晶體陣列基板之上視示意圖。請同時參照圖3B 與圖4B,本實施例與前一實施例相似,惟其差異之處在 13 1284226t5twf.doc/m 於:本實施例之薄膜電晶體陣列基板310除了包括係由一 基板312、掃描配線314、資料配線316、畫素單元318 之外,更包括多條配置於相鄰之掃描配線314之間的共用 配線314’。此外,本實施例之晝素單元318中,晝素電極 318b的部分區域會與一耦接至共用電壓Vc〇M之共用配線 314’重疊,以耦合成一儲存電容cst。 圖5B繪示為依照本發明較佳實施例中常態黑晝面模 式液晶顯示面板之薄膜電晶體陣列基板雷射鎔接剖面示意 圖。請同時參考圖4B及圖5B。以常態黑晝面模式液晶顯 示面板(NB mode LCD panel)300 (繪示於圖2中)為例, 當畫素單元318發生瑕疵而無法正常顯示時,為了將畫素 單元318修補成暗點,本實施例可由液晶顯示面板3〇〇之 正面打入一雷射光束,穿過對向基板32〇及液晶層33〇將 儲存電容Cst的上電極(晝素電極318b)與下電極(共用 配線314’)焊接在一起,以使對應之儲存電容cst失效。 具體而言,雷射光束例如可照射於鎔接點W2上,以將儲 存電谷Cst之上電極(畫素電極3i8b)與下電極(共用配 線314’)焊接。 在經過上述之雷射修補後,當一開啟電壓V(}被提供 至掃描配線314以開啟晝素單元318中之薄膜電晶體318α 之後’一顯示資訊電壓VDATA便會透過資料配線316寫入 晝素電極318b上,由於晝素電極318b與共用配線314,已 被焊接為一體,故晝素電極318b與共用配線314,仍會維 持在共用電壓VCOM之位準,也因此瑕疵的晝素單元318 128422!5twf.doc/m 便可被修補為悝暗點。此時,對向基板320中的彩色濾光 薄膜324上會形成有一修補孔322b,且此修補孔322b係 位於被修補的晝素單元318的上方。請參照圖5A與圖5B, 更具體而言,經過上述修補步驟之後,液晶顯示面板3〇〇 中的主動元件陣列基板310上至少包括一已修補畫素單元 318,而對應於已修補晝素單元318上方之對向基板32〇 上具有一修補孔332a/332b。 值得注意的是,本實施例所採用的雷射光束係由液晶 顯示模組200或液晶面板300的正面入射至薄膜電晶體陣鲁 列基板310上。另外,由於所選定的雷射光束為直接穿透 液晶層而對主動元件陣列基板31〇做鎔接修補的動作,因 此不會使液晶分子產生汽化現象,可以有效地節省修補與 靜置空間’並減少再次修補之可能性。 綜上所述,在本發明之雷射修補方法至少具有以下之 優點: 1·本發明直接由液晶面板正面進行雷射修補,不用拆 解液晶顯示模組,可節省修補時所需耗費之人力與工時。 2·本發明直接由液晶面板正面進行雷射修補,可減少 再次修補之可能性。 3·本發明直接由液晶面板正面進行雷射修補,可立即 確涊修補結果,進而省去不必要之工時與靜置空間。 4·本發明直接由液晶面板正面進行雷射修補,可適用 於已貼附偏光板之液晶顯示面板、未貼附偏光板之液晶顯 不面板,或已完成組立之液晶顯示模組。 15 128422itwf.doc/m 十雖然本發明已以較佳實施例揭露如上,然其並非用以 限^本發明,任何熟習此技藝者,在不麟本發明之精神 t範圍内’當可作些許之更動與麟,因此本發明之保護 範圍當視_之巾請專魏圍所界定者為準。 【圖式簡單說明】 圖1繪示為依照本發明一較佳實施例雷射修補方法之 流程圖。 圖2繪不為本發明較佳實施例中液晶顯示模組之結構 示意圖。 圖3A繪不為本發明中一較佳實施例之液晶顯示面板 剖面示意圖。 圖3B繪不為本發明中另一較佳實施例之液晶顯示面 板剖面示意圖。 圖4A繪示為依照本發明一較佳實施例之薄膜 陣列基板之上視示意圖。 3 圖4B繪示為依照本發明另一較佳實施例之薄膜 體陣列基板之上視示意圖。 圖5A繪示為依照本發明較佳實施例中常態白晝面模 式液晶顯示面板之薄膜電晶體陣列基板雷射鎔接剖=示音 ffl ° ^ 、圖5B緣示為依照本發明較佳實施例中常態黑書面模 式液晶顯示面板之薄膜電晶體陣列基板雷射鎔接剖面示音、 圖。 【主要元件符號說明】 12842^!5twf.doc/m 板漏:提供—待修補之液晶顯賴組錢液晶顯示面 S110 :提供一適當功率與波長之雷射光束 S120 ·令雷射光束經過對向基板與液晶層而照射於主 動元件陣列基板上 200 :液晶顯示模組 300 ·液晶顯不面板 310:薄膜電晶體陣列基板 312 :基板 314 :掃描配線 314’ :共用配線 316 :資料配線 318 :晝素單元 318β :薄膜電晶體 318b :晝素電極 320 ·對向基板 322 :上基板 324 :彩色濾光薄膜 326a/b :修補孔 330 :液晶層 340 :偏光片 350 :雷射光 400 :背光源 410 :光源 12842]26!5twf.d〇c/】 s :源極 D :没極 G :閘極 C :通道層 Cst :儲存電容 W1/W2 :鎔接點 VG :開啟電壓 V〇ata :顯示貧訊電壓 Vc〇M : 共用電壓The repair holes formed by the laser repair are located above the common line of the repaired pixel unit. A. The laser repairing method of the present invention directly indicates that the laser beam is directly penetrated to the opposite substrate and the liquid crystal layer, and is generated by using the laser β (four). Or the gate of the 膜4 membrane transistor is connected with the phase to achieve the effect of repairing 128422itwf.doc/m, and a repair hole is formed on the opposite substrate. Since the laser repair method does not need to disassemble the backlight module, and the repair result can be known immediately, the invention can effectively simplify the laser repair process, save the labor cost of the disassembly module, and further increase the productivity ( The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. [Embodiment] FIG. 1 is a flow chart of a laser repairing method according to a preferred embodiment of the present invention. Referring to FIG. 1, a liquid crystal display module or a liquid crystal display panel to be repaired is first provided (S1GG). In this embodiment, the liquid crystal display panel is composed of, for example, an active device array substrate, a pair of substrates, and a liquid crystal layer disposed between the active device array substrate and the opposite substrate (described in detail later). The liquid crystal display module is composed of, for example, the above liquid crystal display panel and a backlight located under the liquid crystal panel (which will be described later in detail). Referring to FIG. 1, the liquid crystal display module or liquid crystal to be repaired is provided. After the display panel, a laser beam of appropriate power and wavelength is then provided (S110). In this embodiment, the power of the laser beam is, for example, between 〇.65 焦焦耳至1·〇5 millijoules, laser The wavelength of the light beam may depend on the material properties of the liquid crystal layer, and the wavelength range of the continuously selected laser beam is preferably not absorbed by the liquid crystal layer. Thereafter, the laser beam is passed through the opposite substrate and the liquid crystal layer. On the active device array substrate (S12G) 'to repair the main frame array substrate. 12 842l26! 5twf.doc/m It is worth noting that during the laser repair process, most of the laser beam will be available. Passing through the liquid crystal layer and illuminating the active device array substrate, so that the liquid crystal layer is not discharged by heat, and the provided laser beam can directly repair (solder) the components on the active device array substrate, so that the laser repair is performed. The efficiency is greatly improved. Hereinafter, the present invention will be described with respect to the structure of the liquid crystal display module, the structure of the liquid crystal display panel assembled therein, and the details of the laser repair. FIG. 2 illustrates a liquid crystal according to a preferred embodiment of the present invention. Referring to FIG. 2, the liquid crystal display module 2 of the present embodiment includes a liquid crystal display panel 300 and a backlight 400. The backlight 4 is configured on the liquid crystal. The display panel 300 is disposed below the display panel 300 to provide the light source 410 required for the liquid crystal display module 200 to be displayed. Referring to FIG. 2, the liquid crystal display panel 3 of the present embodiment includes an active component. The column substrate 310, the pair of substrates 320, and a liquid crystal layer 33 disposed between the opposite substrate 320 and the active device substrate 310. Further, 'according to different product designs', the present embodiment can be on the liquid crystal panel 3 The lower surface is selectively attached with a polarizer surface 340 of a suitable polarization direction. The active device array substrate 310 is, for example, a TFT array substrate or other active device array substrate. In the above embodiment, the opposite substrate 320 is composed of, for example, an upper substrate 322 and a color filter film 324, wherein the color filter film 324 is located under the upper substrate 322. In addition, in this embodiment, the active device array substrate 310 is composed of, for example, a substrate 312, a plurality of scan lines 314, a plurality of data lines 316, and a plurality of tw11 11842 55 twf.d〇c/m units 318. . The scan line 314, the data line 316, and the pixel unit 318 are disposed on the substrate 312, and each of the pixel units 318 is electrically connected to the corresponding scan line 314 and the data line 316. In the present embodiment, the upper substrate 322 is, for example, a glass substrate, a plastic substrate or a transparent substrate of other soft or hard materials. The substrate 312 is, for example, a glass substrate, a plastic substrate or other substrate of a soft or hard material. As shown in Fig. 2, the scanning wiring 314 and the data wiring 310 are disposed on the substrate 312, and the substrate 312 is divided into a plurality of pixel regions. In more detail, the scan lines 314 are disposed on the substrate 312 in parallel, for example, and the material_wirings 316 are also disposed on the substrate 312, for example, in parallel with each other, and the extending directions of the scan lines 314 and the data lines 316 are, for example, each other. Vertically, the substrate 312 is divided into a plurality of rectangular pixel regions, and each of the pixel units 318 is disposed in the corresponding pixel region. 3A is a cross-sectional view showing a liquid crystal display panel in accordance with a preferred embodiment of the present invention. Referring to FIG. 2 and FIG. 3A simultaneously, the halogen unit 318 of the present embodiment includes, for example, a thin film transistor (TFT) 318a and a pixel electrode 318b. The thin film transistor 3丨8β has a source S, a; and a pole D, a gate g and a channel layer c. It is to be noted that the halogen electrode 318b is electrically connected to the drain D of the core of the thin film transistor 31. The thin film transistor (b〇tt〇m gate TFT) of the present invention is described as an example, but the thin film transistor of the present invention is not limited to the thin film transistor of the bottom electrode structure, and may also be used. A thin film transistor (t〇p gate TFT) of an electrode structure. 4A is a top plan view of a thin film transistor 12 1284226l75twf.doc/m array substrate in accordance with a preferred embodiment of the present invention. Referring to FIG. 3A and FIG. 4A simultaneously, in the pixel unit 318 of the present embodiment, a partial region of the pixel electrode 3i8b overlaps with the scanning wiring 3H to be coupled into a storage capacitor cst. 5A is a schematic view showing a laser splicing of a thin film transistor array substrate of a normal white writing mode liquid crystal display panel in accordance with a preferred embodiment of the present invention. Please refer to FIG. 4A and FIG. 5A at the same time. Taking the normal white-faced liquid crystal display panel (NWmode LCD panel) 300 (shown in FIG. 2 ) as an example, when the pixel unit 318 is not displayed properly, in order to repair the pixel unit 318 into a dark spot, the embodiment A laser beam can be driven from the front surface of the liquid crystal display panel, and the gate G and the drain D of the thin film transistor 318α are soldered through the opposite substrate 32 and the liquid crystal layer 33 to make the corresponding thin film transistor 318α. Invalid. Specifically, the laser beam can be irradiated, for example, on the splicing point W1 to solder the gate G of the thin film transistor 318β to the ytterbium D. After the above-described laser repair, when a turn-on voltage Vg is supplied to the scan wiring 314 to turn on the core of the thin film transistor 31 in the pixel unit 318, the pixel electrode 318b is also maintained at the turn-on voltage V (j position). Therefore, the pixel unit 318 of the crucible can be repaired as a constant dark point. At this time, a repair hole 322 &amp; </ RTI> is formed on the color filter film 324 in the opposite substrate 320, and the repair hole 322a is located at the repaired surface. FIG. 3B is a cross-sectional view of a liquid crystal display panel according to another preferred embodiment of the present invention, and FIG. 4B is a schematic view of a thin film transistor array substrate according to another preferred embodiment of the present invention. Referring to FIG. 3B and FIG. 4B simultaneously, this embodiment is similar to the previous embodiment except that the difference is 13 1284226t5twf.doc/m. The thin film transistor array substrate 310 of the present embodiment includes a system. In addition to the substrate 312, the scanning wiring 314, the data wiring 316, and the pixel unit 318, a plurality of common wirings 314' disposed between the adjacent scanning wirings 314 are further included. Further, the pixel unit 318 of the present embodiment. Medium A portion of the electrode 318b overlaps with a common wiring 314' coupled to the common voltage Vc〇M to be coupled into a storage capacitor cst. FIG. 5B illustrates a normal black-faced mode liquid crystal display according to a preferred embodiment of the present invention. Schematic diagram of the laser splicing of the thin film transistor array substrate of the panel. Please refer to FIG. 4B and FIG. 5B simultaneously. Take the normal NB mode LCD panel 300 (shown in FIG. 2 ) as an example. When the pixel unit 318 is not displayed properly, in order to repair the pixel unit 318 into a dark spot, the present embodiment can drive a laser beam from the front surface of the liquid crystal display panel 3 through the opposite substrate 32. And the liquid crystal layer 33〇 solders the upper electrode (the halogen electrode 318b) of the storage capacitor Cst and the lower electrode (the common wiring 314') to disable the corresponding storage capacitor cst. Specifically, the laser beam can be irradiated, for example. At the contact point W2, the upper electrode (the pixel electrode 3i8b) of the storage cell Cst is soldered to the lower electrode (the common line 314'). After the above-described laser repair, when the turn-on voltage V(} is Provided to After the wiring 314 is traced to turn on the thin film transistor 318α in the pixel unit 318, a display information voltage VDATA is written on the pixel electrode 318b through the data wiring 316. Since the halogen electrode 318b and the common wiring 314 have been soldered as As a whole, the halogen electrode 318b and the common wiring 314 are still maintained at the level of the common voltage VCOM, and thus the defective unit 318 128422!5twf.doc/m can be repaired to a dark point. A repair hole 322b is formed on the color filter film 324 in the opposite substrate 320, and the repair hole 322b is located above the repaired halogen element 318. Referring to FIG. 5A and FIG. 5B , more specifically, after the repairing step, the active device array substrate 310 in the liquid crystal display panel 3 includes at least one repaired pixel unit 318 corresponding to the repaired pixel. The opposite substrate 32 above the unit 318 has a repair hole 332a/332b. It should be noted that the laser beam used in this embodiment is incident on the thin film transistor array substrate 310 from the front surface of the liquid crystal display module 200 or the liquid crystal panel 300. In addition, since the selected laser beam directly penetrates the liquid crystal layer and performs the action of repairing the active device array substrate 31, the liquid crystal molecules are not vaporized, and the repairing and restroom space can be effectively saved. And reduce the possibility of repairing again. In summary, the laser repairing method of the present invention has at least the following advantages: 1. The present invention directly performs laser repair on the front side of the liquid crystal panel, and does not need to disassemble the liquid crystal display module, thereby saving labor required for repairing. And working hours. 2. The present invention directly performs laser repair on the front side of the liquid crystal panel, thereby reducing the possibility of re-patching. 3. The invention directly performs laser repair on the front side of the liquid crystal panel, and can immediately correct the repair result, thereby eliminating unnecessary working hours and standing space. 4. The invention directly performs laser repair on the front side of the liquid crystal panel, and can be applied to a liquid crystal display panel to which a polarizing plate is attached, a liquid crystal display panel to which a polarizing plate is not attached, or a liquid crystal display module which has been assembled. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; The change of the scope of the invention, therefore, the scope of protection of the present invention is subject to the definition of Wei Wai. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a laser repairing method in accordance with a preferred embodiment of the present invention. 2 is a schematic view showing the structure of a liquid crystal display module in a preferred embodiment of the present invention. Figure 3A is a cross-sectional view showing a liquid crystal display panel which is not a preferred embodiment of the present invention. Figure 3B is a cross-sectional view showing a liquid crystal display panel which is not another preferred embodiment of the present invention. 4A is a top plan view of a thin film array substrate in accordance with a preferred embodiment of the present invention. 3B is a top plan view of a film bulk array substrate in accordance with another embodiment of the present invention. 5A is a perspective view of a thin film transistor array substrate of a normal white-faced mode liquid crystal display panel in accordance with a preferred embodiment of the present invention; FIG. 5B is a view showing a preferred embodiment of the present invention. In the normal state black written mode liquid crystal display panel, the thin film transistor array substrate laser splicing profile shows sound, figure. [Main component symbol description] 12842^!5twf.doc/m Board drain: Provided - LCD to be repaired, money display liquid crystal display surface S110: Provide a suitable power and wavelength of the laser beam S120 · Let the laser beam pass through The substrate and the liquid crystal layer are irradiated onto the active device array substrate 200: the liquid crystal display module 300. The liquid crystal display panel 310: the thin film transistor array substrate 312: the substrate 314: the scanning wiring 314': the common wiring 316: the data wiring 318: Alizarin unit 318β: thin film transistor 318b: halogen electrode 320 • opposite substrate 322: upper substrate 324: color filter film 326a/b: repair hole 330: liquid crystal layer 340: polarizer 350: laser light 400: backlight 410: light source 12842] 26! 5twf.d〇c/] s : source D: no pole G: gate C: channel layer Cst: storage capacitor W1/W2: 镕 contact VG: turn-on voltage V〇ata: display Lean voltage Vc〇M : common voltage

Claims (1)

十、申請專利範圍: I 一種雷射修補方法,該雷射修補方法包括·· 提供一液晶顯示面板,該液晶顯示面板包括一主動 元件陣列基板、一對向基板以及一配置於該主動元件陣 列基板與該對向基板之間的液晶層,其中該主動元件陣 列基板包含多數個掃描配線、多數個資料配線以及多數 個畫素單元,每一該些畫素單元包括一薄膜電晶體、一 晝素電極、一儲存電容與一共用配線; 提供一雷射光束;以及 令該雷射光束經過該對向基板與該液晶層而照射於 該主動元件陣列基板上,使該些薄膜電晶體其中之一或 該些儲存電容其中之一失效。 2·如申請專利範圍第1項所述之雷射修補方法,其中 該雷射光束之功率係介於〇·65毫焦耳至1〇5毫焦耳之間。 3·如申請專利範圍第丨項所述之雷射修補方法,其中 該儲存電容係由該畫素電極與該掃描配線耦合而成。 4·如申請專利範圍第3項所述之雷射修補方法,其中 該液晶顯示面板為-常態白畫面模式(而mQde)液晶顯示 面板,而該雷射光束係鎔接該些薄膜電晶體之一汲極或一 源極與該些薄膜電晶體之一閘極。 5·如申明專利|&amp;圍第丨項所述之雷射修補方法,其中 I2842^5twfdoc/m §亥儲存電容係由該畫素電極與該共用配線耦合而成。 6·如申請專利範圍第5項所述之雷射修補方法,其中 該液晶顯示面板為一常態黑晝面模式(NB mode)液晶顯示 面板,而該雷射光束係鎔接該晝素電極與該共用配線。 7·—種雷射修補方法,該雷射修補方法包括: 提供一液晶顯示模組,該液晶顯示模組包括一液晶 顯示面板與一位於該液晶面板下方之背光源,且該液晶 顯示面板包括一主動元件陣列基板、一對向基板以及一 φ 配置於該主動元件陣列基板與該對向基板之間的液晶 層,其中該主動元件陣列基板包含多數個掃描配線、多 數個資料配線以及多數個晝素單元,每一該些晝素單元 包括一薄膜電晶體、一晝素電極、一儲存電容與一共用 配線; 提供一雷射光束;以及 令該雷射光束經過該對向基板與該液晶層而照射於 籲 該主動70件陣列基板上,使該些薄膜電晶體其中之一或 該些儲存電容其中之一失效。 8·如申請專利範圍第7項所述之雷射修補方法,其中 該雷射光束之功率係介於0·65毫焦耳至1〇5毫焦耳之間。 9·如申請專利範圍第7項所述之雷射修補方法,其中 該儲存電容係由該晝素電極與該掃描配線粞合而成。 20 10.如申請專利範圍第9項所述之雷射修補方法其中 該液晶顯示面板為-常態白晝面模式(NW mQde)液晶顯示 面板,而該雷射光束係鎔接該些薄膜電晶體之—汲極 源極與該些薄膜電晶體之一閘極。 11 ·如申請專利範圍第7項所述之雷射修補方法,其中 该儲存電谷係由該晝素電極與該共用配線耦合而。 12·如申請專利範圍第11項所述之雷射修補方法,其 中該液晶顯示面板為一常態黑畫面模式(NB mode)液晶顯 鲁 示面板’而該雷射光束係鎔接該晝素電極與該共用配線。 13·—種液晶顯示面板,包括: 一主動元件陣列基板,該主動元件陣列基板包括多數 個掃描配線、多數個資料配線、一共用配線以及多數個晝 素單元,每一該些晝素單元包括一薄膜電晶體、一畫素 電極與一儲存電容,其中該些畫素單元中至少包括一已 修補畫素單元; φ 一對向基板,配置於該主動元件陣列基板上方,其中 該對向基板具有一修補孔,位於該已修補晝素單元上方; 以及 一液晶層,配置於該主動元件陣列基板與該對向基板 之間。 其中,係使用一雷射光束使得該已修補畫素單元中 21 5twf.doc/m 之該薄膜電晶體或該儲存電容其中之。X. Patent Application Range: I A laser repairing method, comprising: providing a liquid crystal display panel, the liquid crystal display panel comprising an active device array substrate, a pair of substrates, and an array of active devices a liquid crystal layer between the substrate and the opposite substrate, wherein the active device array substrate comprises a plurality of scan lines, a plurality of data lines, and a plurality of pixel units, each of the pixel units including a thin film transistor, a stack a storage electrode and a common wiring; providing a laser beam; and irradiating the laser beam onto the active device array substrate through the opposite substrate and the liquid crystal layer, wherein the thin film transistors are One or one of the storage capacitors fails. 2. The laser repairing method of claim 1, wherein the power of the laser beam is between 65·65 mJ and 〇5 mJ. 3. The laser repairing method according to claim 2, wherein the storage capacitor is formed by coupling the pixel electrode to the scanning wiring. 4. The laser repairing method of claim 3, wherein the liquid crystal display panel is a normal white mode (and mQde) liquid crystal display panel, and the laser beam is coupled to the thin film transistors. A drain or a source is associated with one of the thin film transistors. 5. The laser repairing method according to the above-mentioned claim, wherein the I2842^5twfdoc/m § hai storage capacitor is formed by coupling the pixel electrode to the common wiring. 6. The laser repairing method of claim 5, wherein the liquid crystal display panel is a normal black 昼 mode (NB mode) liquid crystal display panel, and the laser beam is coupled to the pixel electrode and This shared wiring. A laser repairing method includes: providing a liquid crystal display module, the liquid crystal display module comprising a liquid crystal display panel and a backlight located under the liquid crystal panel, and the liquid crystal display panel comprises An active device array substrate, a pair of substrates, and a liquid crystal layer disposed between the active device array substrate and the opposite substrate, wherein the active device array substrate includes a plurality of scan lines, a plurality of data lines, and a plurality of a halogen unit, each of the pixel units including a thin film transistor, a halogen electrode, a storage capacitor and a common wiring; providing a laser beam; and passing the laser beam through the opposite substrate and the liquid crystal The layer is irradiated onto the active 70-piece array substrate to disable one of the thin film transistors or one of the storage capacitors. 8. The laser repairing method of claim 7, wherein the power of the laser beam is between 0.65 mJ and 1 毫5 mJ. 9. The laser repairing method of claim 7, wherein the storage capacitor is formed by combining the halogen electrode with the scanning wiring. The laser repairing method of claim 9, wherein the liquid crystal display panel is a normalized white-faced mode (NW mQde) liquid crystal display panel, and the laser beam is coupled to the thin film transistors. - The gate of the drain and one of the gates of the thin film transistors. The laser repairing method of claim 7, wherein the storage electric valley is coupled to the common wiring by the halogen electrode. 12. The laser repairing method of claim 11, wherein the liquid crystal display panel is a normal black screen mode (NB mode) liquid crystal display panel and the laser beam is coupled to the pixel electrode Share the wiring with this. A liquid crystal display panel comprising: an active device array substrate, the active device array substrate comprising a plurality of scan lines, a plurality of data lines, a common line, and a plurality of pixel units, each of the plurality of pixel units including a thin film transistor, a pixel electrode and a storage capacitor, wherein the pixel units include at least one repaired pixel unit; φ a pair of substrates disposed above the active device array substrate, wherein the opposite substrate Having a repair hole above the repaired pixel unit; and a liquid crystal layer disposed between the active device array substrate and the opposite substrate. Wherein, a laser beam is used to make 21 5 twf.doc/m of the thin film transistor or the storage capacitor in the repaired pixel unit. =申:專利範圍第13所述之液晶顯示面板,其中 該畫素電極與該掃描配線轉合成一儲存電容 15.如申請專利制第14所述之液㈣示面板,其中 該修補孔餘於該⑽補晝素單元中之該賴電晶體上 方0The liquid crystal display panel of claim 13, wherein the pixel electrode and the scan wire are converted into a storage capacitor. 15. The liquid (four) display panel according to claim 14 of the patent application, wherein the repair hole is The (10) accompaniment unit is above the lasing transistor 0 16·如申4專利範圍第13所述之液晶顯示面板,其中 該共用配線能晝素電極輕合成—儲存電容。The liquid crystal display panel of claim 13, wherein the common wiring can lightly synthesize a storage capacitor. 17·如申請專利範圍第16所述之液晶顯示面板,其中 該修補孔係位_已修補晝素單元中之該共祕線上方。 18·-種雷射修補方法,該雷射修補方法包括: 提供-液晶顯示面板,該液晶顯示面板包括一主動 兀件陣列基板、一對向基板以及一配置於該主動元件陣 列基板與該對向基板之間的液晶層,其中該主動元件陣 列基板包含多數個掃描配線、多數個資料配線以及多數 個畫素單元,每一該些晝素單元係包含一第一電極與一 第二電極; 提供一雷射光束;以及 令該雷射光束經過該對向基板與該液晶層而照射於 該主動元件陣列基板上,鎔接該第一電極與該第二 電極。 22 12842¾ 5twf.doc/m 19. 如申請專利範圍第18項所述之雷射修補方法,其 中該雷射光束之功率係介於0.65毫焦耳至1.05毫焦耳 之間。 20. 如申請專利範圍第18項所述之雷射修補方法,其 中每一該些晝素單元包括一薄膜電晶體、一畫素電極、 一儲存電容與一共用配線。 21. 如申請專利範圍第20項所述之雷射修補方法,其 中該儲存電容係由該畫素電極與該掃描配線耦合而成。 22. 如申請專利範圍第18項所述之雷射修補方法,其 中該儲存電容係由畫素電極與該共用配線耦合而成。 23. 如申請專利範圍第18項所述之雷射修補方法,其中 每一該些晝素單元包括一薄膜電晶體,且該第一電極為該 薄膜電晶體之閘極’該第二電極為該薄膜電晶體之》及極。 24. 如申請專利範圍第18項所述之雷射修補方法,其中 每一該些晝素單元包括一薄膜電晶體,且該第一電極為該 薄膜電晶體之閘極,該第二電極為該薄膜電晶體之源極。 25. 如申請專利範圍第18項所述之雷射修補方法,其中 該第一電極為晝素電極,該第二電極為掃描配線電極。 23 12842l26l5twf.doc/m 七、 指定代表圖: (一) 本案指定代表圖為:圖(1)。 (二) 本代表圖之元件符號簡單說明: S100 :提供一待修補之液晶顯示模組或是液晶顯示面 板 S110 :提供一適當功率與波長之雷射光束 S120 :令雷射光束經過對向基板與液晶層而照射於主 動元件陣列基板上 八、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無The liquid crystal display panel of claim 16, wherein the repair hole is located above the common line in the repaired pixel unit. The laser repairing method includes: providing a liquid crystal display panel, the liquid crystal display panel comprising an active component array substrate, a pair of substrates, and a substrate disposed on the active device array and the pair a liquid crystal layer between the substrates, wherein the active device array substrate comprises a plurality of scan lines, a plurality of data lines, and a plurality of pixel units, each of the plurality of pixel units comprising a first electrode and a second electrode; Providing a laser beam; and irradiating the laser beam onto the active device array substrate through the opposite substrate and the liquid crystal layer, and tying the first electrode and the second electrode. The method of claim 18, wherein the power of the laser beam is between 0.65 millijoules and 1.05 millijoules. 20. The laser repairing method of claim 18, wherein each of the halogen units comprises a thin film transistor, a pixel electrode, a storage capacitor and a common wiring. 21. The laser repair method of claim 20, wherein the storage capacitor is coupled to the scan line by the pixel electrode. 22. The laser repairing method of claim 18, wherein the storage capacitor is formed by coupling a pixel electrode to the common wiring. 23. The laser repairing method of claim 18, wherein each of the halogen units comprises a thin film transistor, and the first electrode is a gate of the thin film transistor, the second electrode is The thin film transistor and the pole. 24. The laser repairing method of claim 18, wherein each of the halogen units comprises a thin film transistor, and the first electrode is a gate of the thin film transistor, and the second electrode is The source of the thin film transistor. 25. The laser repairing method of claim 18, wherein the first electrode is a halogen electrode and the second electrode is a scan wiring electrode. 23 12842l26l5twf.doc/m VII. Designated representative map: (1) The representative representative of the case is: Figure (1). (2) A brief description of the component symbols of the representative figure: S100: providing a liquid crystal display module to be repaired or a liquid crystal display panel S110: providing a laser beam of appropriate power and wavelength S120: passing the laser beam through the opposite substrate And the liquid crystal layer is irradiated on the active device array substrate. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW93135930A 2004-11-23 2004-11-23 Liquid crystal display and method of laser repairing TWI284221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93135930A TWI284221B (en) 2004-11-23 2004-11-23 Liquid crystal display and method of laser repairing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93135930A TWI284221B (en) 2004-11-23 2004-11-23 Liquid crystal display and method of laser repairing

Publications (2)

Publication Number Publication Date
TW200617474A TW200617474A (en) 2006-06-01
TWI284221B true TWI284221B (en) 2007-07-21

Family

ID=39455039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93135930A TWI284221B (en) 2004-11-23 2004-11-23 Liquid crystal display and method of laser repairing

Country Status (1)

Country Link
TW (1) TWI284221B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180042A1 (en) * 2013-05-06 2014-11-13 深圳市华星光电技术有限公司 Dark spot repairing method of liquid crystal display panel and liquid crystal display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180042A1 (en) * 2013-05-06 2014-11-13 深圳市华星光电技术有限公司 Dark spot repairing method of liquid crystal display panel and liquid crystal display panel
US9256108B2 (en) 2013-05-06 2016-02-09 Shenzhen China Star Optoelectronics Technology Co., Ltd Dark spot repair method of liquid crystal panel and liquid crystal panel

Also Published As

Publication number Publication date
TW200617474A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7969535B2 (en) Pixel unit, liquid crystal display panel, electro-optical apparatus, and methods for manufacturing the same
JP3891846B2 (en) Liquid crystal display
KR101800669B1 (en) Liquid crystal display devece
JP4019697B2 (en) Liquid crystal display
TWI305270B (en) Electro-optical device, method of testing the same, and electronic apparatus
JP3482856B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0846206A (en) Liquid crystal display
JPH11142850A (en) Method and device for polarization irradiation
US8208113B2 (en) Pixel structure
JP2007183532A (en) Pixel structure and liquid crystal display panel
JP2000019527A (en) Liquid crystal display device
TW200708814A (en) Multi-domain vertical alignment liquid crystal display panel, thin film transistor array, and methods of fabricating the same
JP4165172B2 (en) Electro-optical device and electronic apparatus
TW200828214A (en) Display panel and plane display device using the same
KR100557498B1 (en) Liquid crystal display device and fabrication method thereof
TWI284221B (en) Liquid crystal display and method of laser repairing
JP2011186285A (en) Electrooptic device and method for manufacturing the same, and electronic equipment
JP2001166318A (en) Liquid crystal display device
JP2003195350A (en) Active matrix type display device
JP2004045561A (en) Electrooptical device, method for manufacturing the same, and electronic apparatus
JP2004102057A (en) Manufacturing method and manufacturing device of electrooptical panel and electronic device
TWI280434B (en) Display panel with open/short test design
JP5649235B2 (en) Liquid crystal display
US20050012886A1 (en) [optically self-compensated birefringence liquid crystal display]
TWI308982B (en) Transflective liquid crystal display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees