TWI282684B - Optimum interpolator method and apparatus for digital timing adjustment - Google Patents

Optimum interpolator method and apparatus for digital timing adjustment Download PDF

Info

Publication number
TWI282684B
TWI282684B TW092127121A TW92127121A TWI282684B TW I282684 B TWI282684 B TW I282684B TW 092127121 A TW092127121 A TW 092127121A TW 92127121 A TW92127121 A TW 92127121A TW I282684 B TWI282684 B TW I282684B
Authority
TW
Taiwan
Prior art keywords
timing
code
received signal
delay
estimate
Prior art date
Application number
TW092127121A
Other languages
Chinese (zh)
Other versions
TW200415897A (en
Inventor
Aykut Bultan
Donald M Grieco
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200415897A publication Critical patent/TW200415897A/en
Application granted granted Critical
Publication of TWI282684B publication Critical patent/TWI282684B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0029Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of received data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70756Jumping within the code, i.e. masking or slewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/7117Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0004Initialisation of the receiver

Abstract

A digital timing synchronizer of a receiver is provided for timing synchronization to a transmitter in a wireless communication system, wherein the received signal has a timing error with respect to a reference code. A channel estimator estimates an initial code phase of the received signal. A code generator generates a timing reference code that is adjustable by integer increments. An interpolation feedback circuit is configured for interpolation and correction of the timing error, whereby the interpolation is achieved through an integer code shift, plus a quantized fractional adjustment selected from a look-up table of quantized fractional adjustment values and their associated predetermine interpolator coefficients, from which a time corrected version of the received signal is produced.

Description

ι 1282684 九、發明說明·· 發明所屬之技術 本發明翁紐辦辆步器,且制有_數位時序 同步器中之間插器的有效執行。 先前技術 在未來,無線傳輸/接收單元⑽_包含但不受麟使用者 °又備行動站’固定或行動用戶單元,呼叫器或可於無線環境中 操作之任何無麵裝置。纽眼於絲,—台係包含但不受 _基地#,細,細侧ϋ,存概或無_境巾之Μ 介面裝置。 在辦員雙工_)或分時雙工⑽的無線通信系統中,基地 台及無線傳輸/接收單元之被傳輸及接收訊號間之時序同步對促 進雙向通㈣為重要。_,若行雜收ϋ正在鑛,杜普勒效 應可對頻差嫌。為了抵消基地台局部振盡器及無線傳輸/接收 單几局部振盈器間之時序差,若接收器無多輕處理,則對無線 傳輸/接收單元接找局部紐||之冑單輕係可藉由對採樣速 率施t領先或延遲來修正誤差。然而,由於多路徑訊號效應,無 線私系統之傳統接收器係運用可偵測多路捏訊號之裝置及可 重建被傳輸訊號之裝置,如耙式(_)接收器。 各路赠序係以兩階段來估計。首先,頻道估計器係被用來 及時搜尋乡路徑通信頻道之各路徑近似位置。其次,針對各路 .1282684 徑’與錄指細finger)相關之相碼追職係可及時搜尋 路徑球顧置翻觀觀。_各赌具細辆時序位 置’所以透鄉部紐器單獨來控制碼時序並不能修正_ 道環境中之時序誤差。 為了處理乡路湖題,瑪追職可使闕插雜執行關數位 時序同步以代替控制局部紐器。為了有效執行間插器,可以使 用有限脈衝麵(pIR)f·!!。有腿衝__轉有不同已 知二法。最簡單方法係使用截取sinc函數當做有衝響應間 插器。另-輸細多項式間絲。晴,最小均方差(_) 間插器柯樹朗。這麟算巾,最悄方差與有限長度 理想的間插器相較下可提供最小誤差。應注意,若缺乏可確保間 插器被放置於sinc函數之主波瓣中央(也就是間插函數中央〉之 有放間U肩單元,綱插II可產生較給定精確度所需更高之 有_衝響應係數。超額係數之缺點係間插計算數成為累費,且 於某些社成__财。絲了更械叙乡雜效應而 使被運用追蹤器數增加時,此特別複雜。因此,擴充耗指追縱器 貞狀辦職具細奐關係。 發明内容 本發明係提供—雛收11之數辦剌步n,其功能是在 無線通信系統中之發送器做時序同步。頻道估計器係可估計被接 1282684 目位。魅生器可產生被 考碼。間插回授電路係被配置來間插及修正時序 «數碼餘’及観自麵定離器魏娜之片段延 遲估计被S化值之查找表之被量化#段延遲估計來達成,藉此產 i被接收§flj虎之時序修正版本。 間插峨t财,被鮮化·魏率之_雜被配置藉 由片I又延遲或領先來及時移位被接收的訊號。時序誤差估計器可 胁間插回授電路之輸ώ訊號及碼產生器之時序參考碼間之時 序差來決定時序誤差估計。可回應時序誤差估計之間插器控制器 係可以時序誤差估計反方向來產生及傳送整數碼移位訊號至碼 產生為’且可產生片段延遲估計,藉此,間插可藉由維持片段延 遲估計於預定範圍内而被控制。具存有預定間插器係數之查找表 之量化器’且該預定間插器係數與被量化片段延遲估計值相關, 選擇最接近片段延遲估計值之被量化片段延遲估計。該間插器可 處理被量化片段延遲估計相關之係數。 本發明可從以下較佳實施例及附圖而更詳細了解。 實施方式 雖然本實施例係說明使用分時雙工模式之第三代合作計劃 (3GPP)寬頻分碼多重存取(W-CD亂系統,但本實施例係可應用至 任何混合分碼多重存取(CDMA)/分時多重存取(TDMA)通信系統。 1282684 此外,本實施例係可應用至通常如第三代合作計劃之提議分頻雙 工(FDD)之分碼多重存取(CDMA)系統。 第1圖顯示碼追蹤器10之較佳實施例塊狀圖,包含頻道估計 器11,後處理單元12 ’碼產生器13,間插器14,下採樣器15,時 序誤差例,迴路舰||17,偷驗繼18,量化器19及 功率量測20。被接收訊號21成為對頻道估計器^及間插器14之輸 入訊號。碼追縱器10可執行接收器至對應無線發送器之數位時序 同步。例如’第三代合作計劃類似系統中,碼追縱器1〇係放置行 · 動無線傳輸/接收單元接收器内以與基地台發送數位時序同 步〇 頻道估計器11可粗估輸入訊號21之起始碼相位,也就是及時 2位置。用以估計該頻道估計之一方法包含但不受使用滑動 窗相關器。頻道估計紐之採樣期間應小於或等於2TC,其中Tc 為一晶片職之期間。舉例而言,若是於時序誤差估計器16係使 用早晚閘同步盗,則該起始時序誤差碼應被限制UdTd · 間。否則’時序誤差可能超出細且演算無法操作。然而,本發 明並不受_早晚閘同步器且任何其他時序誤差估計器16亦可 被使用。後者例中,頻道估計器之不同採樣區間可被使用。藉由 使用具有小於2Tc之採樣區間之頻道估計器11,路徑位置中 始誤差係被限制在-Tc至Tc的範圍。 後處理單元12可對雜訊門檻估計訊號及雜訊功率。後處理完 8 Ϊ282684 成後,所有具有雜訊門捏以上之功率位準之路徑係被辨識。這些 及日讀路棱的位置係被稱為啟始路徑相位22。最強的路徑可被單 獨使用或特定門根以上之路徑組可被用於耙式⑽接收器結 構中。由於把式(RAKE)接收器可有效使用頻道的分時,所以其於 多路徑頻道環境中非常有用。 在具有被選擇最強路徑例子中,僅有一碼追蹤器1〇,其包含 一間插器14及-間插器控制器18。針對把式(RAKE)接收器,其應 具有被各路徑專用之一碼追蹤器1〇。然而,該例中,頻道估計器 Π及後處理單元12對所有被使帛之碼追蹤器係為共用。藉由為從 後處理單元12至碼產生器13的單路徑施加啟始碼相位22開始時 序同步。 針對耙式(_)接收器之各碼追縱器1〇,碼產生器13可產生 對於基本時序的參考碼當做時脈。啟始碼相位22可僅藉由及時領 先或延遲產生該參考碼的時序來調整複婁文晶片中之碼產生器13 之啟始時序偏移。啟始修正完成後,碼產生器13鶴由來自間插 态控制斋18之碼移位指令28來控制。啟始路徑相位22僅於兩情況 下被應用·接收器首次被啟動,及訊號功率掉落雜訊門檻以下的 任何時間。碼移位28係為被間插器控制器18於領先或延遲方向產 生之一晶片的移位指令。啟始修正完成後,最壞時序誤差估計例 係被限制為-Tc至Tc之區間範圍。 包含間插器14,下採樣器15,時序誤差估計器16,迴路濾波 1282684 器Π及間插器控制器μ之碼追縱器10之間插回授迴路35現在將 詳細被解釋。間插回授迴路35可驅動時序誤差估計訊號24至接近 零之值,及驅動延遲估計25朝向實際延遲存續期間。 間插器14可以相等於被接收自被量化片段延遲估計29之量 及時數學移位該被接收訊號。來自理論間插器之輸出訊號係被方 程式1表示為: 00 y{n) = χ{η + 〇)= ^χ(η - m)Sinc{m -fa) 方程式 1 n=~〇〇 其中n為整數時間指標,x(n)為過度採樣被接收訊號21,ό代表被 量化片段延遲估計29,而Sine函數被定義為: 方程式2ι 1282684 IX. INSTRUCTIONS OF THE INVENTION · The technology to which the invention pertains The invention has a stepper of the New Zealand office, and has an effective execution of the interpolator in the _digit timing synchronizer. Prior Art In the future, the WTRU (10)_ includes but is not protected by the mobile station's mobile station's fixed or mobile subscriber unit, pager or any faceless device that can operate in a wireless environment. Neweye is in the silk, the Taiwanese system contains but is not subject to _base#, fine, fine side ϋ, deposit or no _land towel interface device. In the wireless communication system of the duplexer _) or the time division duplex (10), the timing synchronization between the transmitted and received signals of the base station and the WTRU is important for promoting the two-way communication (4). _, if the line is in the mine, the Doppler effect can be suspected of the frequency difference. In order to offset the timing difference between the base station local oscillator and the wireless transmission/reception single local oscillator, if the receiver does not have much light processing, then the wireless transmission/reception unit is connected to the local button|| The error can be corrected by applying a lead or delay to the sampling rate. However, due to the multipath signal effect, the conventional receiver of the wireless private system uses a device that can detect the multi-channel pinch signal and a device that can reconstruct the transmitted signal, such as a 耙 (_) receiver. Each route is estimated in two stages. First, the channel estimator is used to search for the approximate location of each path of the rural path communication channel in time. Secondly, for each channel, the 12822684 path and the finger-finger finger related tracking system can search for the path in time. _ Each gambling has a fine timing position. Therefore, it is not possible to correct the timing error in the _ channel environment by controlling the code timing separately. In order to deal with the problem of the township lake, Ma pursued the job to make the 执行 执行 execute the digital timing synchronization instead of controlling the local keeper. To effectively execute the interposer, a finite pulse plane (pIR) f·!! can be used. There are legs that are __ turn to have different methods. The simplest method is to use the intercept sinc function as a flush response interleaver. Another - the thin polynomial filament. Clear, minimum mean square error (_) interleaver Ke Shulang. This lining towel, the quietest variance and the finite length of the ideal inter-interpolator provides the smallest error. It should be noted that if there is a lack of a spacer U shoulder unit that ensures that the interposer is placed in the center of the main lobe of the sinc function (that is, in the middle of the interpolated function), the interpreter II can produce a higher precision than required. There is a _ impulse response coefficient. The shortcomings of the excess coefficient are intervening calculations, and in some social _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Therefore, the expansion of the consumption of the tracking device is a fine relationship. SUMMARY OF THE INVENTION The present invention provides a method for the transmission of a sequence in a wireless communication system. The channel estimator can be estimated to be connected to 1282684. The enchantment device can generate the code to be tested. The interleaved feedback circuit is configured to interpolate and correct the timing «Digital Yu' and 観自面定器魏娜之The segment delay estimation is achieved by the quantized # segment delay estimate of the S-valued lookup table, whereby the production i is received by the §flj tiger's time-corrected version. Interpolated 峨t财, is freshed, and the rate is _ Configuring to shift the received signal in time by delaying or leading the slice I. The error estimator can determine the timing error estimate by the timing difference between the input signal of the interleaving circuit and the timing reference code of the code generator. The inter-interpolator controller can respond to the timing error estimation and the timing error can be estimated in the opposite direction. Generating and transmitting the integer digital shift signal to the code is generated as 'and a segment delay estimate can be generated, whereby the interleaving can be controlled by maintaining the segment delay estimate within a predetermined range. Having the predetermined interpolator coefficient Locating the quantizer of the table' and the predetermined interpolator coefficient is correlated with the quantized segment delay estimate, selecting the quantized segment delay estimate that is closest to the segment delay estimate. The interpolator can process the coefficient of the quantized segment delay estimate correlation The present invention can be understood in more detail from the following preferred embodiments and the accompanying drawings. Embodiments Although this embodiment illustrates the third generation cooperation plan (3GPP) wideband code division multiple access using the time division duplex mode (W- CD chaotic system, but this embodiment is applicable to any hybrid code division multiple access (CDMA) / time division multiple access (TDMA) communication system. 1282684 Furthermore, this embodiment is It can be applied to a code division multiple access (CDMA) system, such as the proposed frequency division duplex (FDD) of the 3rd Generation Partnership Project. Figure 1 shows a block diagram of a preferred embodiment of the code tracker 10, including channel estimates. 11, post-processing unit 12 'code generator 13, interleaver 14, down sampler 15, timing error example, loop ship||17, stealing test 18, quantizer 19 and power measurement 20. Received signal 21 becomes an input signal to the channel estimator and interleaver 14. The code tracker 10 can perform digital timing synchronization of the receiver to the corresponding wireless transmitter. For example, in the third generation cooperation plan similar system, the code tracker 1 放置 放置 · 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 动 〇 〇 〇 〇 One method for estimating the channel estimate includes but is not subject to the use of a sliding window correlator. The sampling period of the channel estimate should be less than or equal to 2TC, where Tc is the period of a wafer job. For example, if the timing error estimator 16 uses early and late gate synchronization, the start timing error code should be limited to UdTd. Otherwise, the timing error may be fine and the calculation cannot be operated. However, the present invention is not subject to the _ early and late gate synchronizer and any other timing error estimator 16 may be used. In the latter case, different sampling intervals of the channel estimator can be used. By using the channel estimator 11 having a sampling interval of less than 2Tc, the path position intermediate error is limited to the range of -Tc to Tc. The post-processing unit 12 can estimate the signal and noise power for the noise threshold. After the post-processing 8 Ϊ 282684, all the paths with the power level above the noise gate are recognized. The position of these and day read ridges is referred to as the start path phase 22. The strongest path can be used alone or the path group above a particular root can be used in the ( (10) receiver structure. Since the RAKE receiver can effectively use the time division of the channel, it is very useful in a multipath channel environment. In the example with the strongest selected path, there is only one code tracker, which includes an interleaver 14 and an interleaver controller 18. For a RAKE receiver, it should have a one-bit tracker dedicated to each path. However, in this example, the channel estimator and post-processing unit 12 are common to all of the coded trackers. The timing synchronization is started by applying a start code phase 22 for a single path from the post-processing unit 12 to the code generator 13. For each code tracker of the ( (_) receiver, the code generator 13 can generate a reference code for the basic timing as a clock. The start code phase 22 can adjust the start timing offset of the code generator 13 in the reticle wafer only by timing in which the reference code is generated in a timely manner or delayed. After the start of the correction is completed, the code generator 13 is controlled by the code shift instruction 28 from the inter-insertion control. The start path phase 22 is applied only in two cases. The receiver is activated for the first time, and the signal power drops any time below the noise threshold. The code shift 28 is a shift command that is generated by the interleaver controller 18 in one of the leading or retarding directions. After the start correction is completed, the worst timing error estimation example is limited to the range of -Tc to Tc. Interleaving loop 35, interleaved with interleaver 14, downsampler 15, timing error estimator 16, loop filter 1282684, and interleaver controller μ, will now be explained in detail. Interleaved feedback loop 35 drives timing error estimate signal 24 to a value close to zero, and drive delay estimate 25 toward the actual delay duration. The interpolator 14 can mathematically shift the received signal in time equal to the amount received from the quantized segment delay estimate 29. The output signal from the theoretical interleaver is expressed by Equation 1 as: 00 y{n) = χ{η + 〇)= ^χ(η - m)Sinc{m -fa) Equation 1 n=~〇〇 where n For the integer time index, x(n) is the oversampled received signal 21, ό represents the quantized segment delay estimate 29, and the Sine function is defined as: Equation 2

7DC 針對經由間插回授迴路35之啟始重複,被量化片段延遲估計 29係被重設為零,導致通過間插器14之被接收訊號未被修正。關 於操作間插器14及公式化被量化片段延遲估計29(也就是0值), 關於間插回授迴路35之第二及以外的重複將做進一步詳細說明。 下採樣器15可藉由被間插器14處理後之過度採樣因子l來降 低被接收訊號21之過度採樣速率。具有間插器μ之碼追縱器1〇可 被施加至以大於或等於1之任何整數值L之採樣速率操作之接收 器。碼追縱器10可執行時序調整之最佳採樣速率範圍係丨^^ 8。Μ例係對應不過度採樣。另一方面,若採樣速率與整數 相關,則時序誤差降低至1/16W皆值,藉此間插器單元14之貢獻 1282684 係被明顯降低而經由下採樣器15之簡單採樣移位則自給自足。然 而,當L-8之高過度採樣速率產生接收器資源之超額功率消耗 時,則有利於以低採樣速率操作並對依據第1圖之碼追縱器1〇執 行碼追蹤° 下採樣器15可轉換採樣速率為晶片速率,使採樣速率區間Ts 於下採樣裔15之輸出處專於晶片速率區間Tc。因此,下採樣器15 之輸出可以z(n)表示如下·· z(n)=y(L-n+k) 方程式 3 其中k為代表下採樣器15之基點26之整數。例如,針對具有採樣 速率因子L=4之過度採樣訊號,下採樣器15前之採樣速率區間係 為Ts=TC/L=Tc/4,而下採樣後’其為Ts=Tc。最初,基點部被 重設為零。k值變異將稍後參考方程式6a,6嫩解釋。 下採樣器15之輸出係為被無線傳輸/接收單元接收器進一步 處理之時間修正輸出訊號23。功率量測單元2〇可處理輪出23並傳 送訊號之功率量測至頻道估計器u當作及時定位各路徑之近似 位置給多路麵道之輸人。為了時序的精確,下採樣·之輸出 23亦經由碼追縱㈣之間插回授迴聰至時序誤差估計腿,其 輸入訊號之時序誤差係被量測並被傳送為時序誤差估計以。時序 誤差估計器16可依據各種已知時序誤差估計演算來操作。較佳實 施例係運用早晚閘同步器。 、 接著,迴路濾波器17可接收時序誤差估計姆產生延遲估計 .1282684 25。迴路濾波器17類型之選擇係視頻道情況而定。然而,本發明 並不受限於被使用之特殊迴路濾波器。較佳是,迴路濾波器17係 為第一或第二階濾波器。例如,已知比例積分器(PI)濾波器可被 當作迴路濾波器17。第一階自迴歸(AR)濾波器亦可被當作迴路濾 波器17〇 弟2圖顯示迴路濾波器17之較佳配置,包含第二階比例積分 器濾波器50,累積器56,反向乘法器57。比例積分器濾波器50包 含積分器51,其包含乘法器52,累積器53,乘法器54及加法器55。 乘法器52及54可分別施加常數3及13至時序誤差估計24輸入,其於 比例積分器濾波器50之輸入處被分割。時序誤差估計24輸入係被 積分裔51積分’而被乘上平行積分器51之常婁丈b。平行輸出係被 加法器55加總產生比例積分器濾波器輸出。接著,比例積分器濾 波态輸出係被累積器56累積且被具有常婁文—c之乘法器處理。乘 法态57中之常數c相反符號可產生反向時序修正以補償訊號中之 時序誤差估計24 ’對第1圖所示之負回授系統有用。視迴路濾波 器17階而定,碼追縱㈣可包含第―,第二或甚至更高階回授迴 路。乘法器57之輸出係為延遲估計25。 迴路濾波器17之輸出延遲估計25係;^Td表示如下: 方程式4The 7DC is reset to zero by the initial repetition of the interleaved feedback loop 35, causing the received signal through interleaver 14 to be uncorrected. Regarding the operation interleaver 14 and formulating the quantized segment delay estimate 29 (i.e., a value of zero), the second and other repetitions of the interleaved feedback loop 35 will be described in further detail. The downsampler 15 can reduce the oversampling rate of the received signal 21 by the oversampling factor 1 processed by the interleaver 14. A code tracker 1 having an interpolator μ can be applied to a receiver operating at a sampling rate of any integer value L greater than or equal to one. The code tracker 10 can perform an optimal sampling rate range of timing adjustments 丨^^ 8. The example corresponds to not oversampling. On the other hand, if the sampling rate is related to an integer, the timing error is reduced to a value of 1/16 W, whereby the contribution 1282684 of the interleaver unit 14 is significantly reduced and self-sufficient by the simple sampling shift of the downsampler 15. However, when the high oversampling rate of L-8 produces excessive power consumption of the receiver resources, it is advantageous to operate at a low sampling rate and perform code tracking on the code tracker 1 according to FIG. 1 . The convertible sampling rate is the wafer rate such that the sampling rate interval Ts is dedicated to the wafer rate interval Tc at the output of the downsampling 15 . Therefore, the output of the downsampler 15 can be expressed as z(n) as follows: z(n) = y(L - n + k) Equation 3 where k is an integer representing the base point 26 of the downsampler 15. For example, for an oversampled signal having a sample rate factor of L = 4, the sample rate interval before the down sampler 15 is Ts = TC / L = Tc / 4, and after downsampling 'which is Ts = Tc. Initially, the base point is reset to zero. The k-value variation will be explained later with reference to Equations 6a, 6 . The output of the downsampler 15 is a time correction output signal 23 that is further processed by the WTRU receiver. The power measurement unit 2 can process the round-out 23 and transmit the power measurement of the signal to the channel estimator u as a timely location of the approximate location of each path to the input of the multi-pathway. For the accuracy of the timing, the downsampling output 23 is also inserted back to the timing error estimation leg via the code tracking (4), and the timing error of the input signal is measured and transmitted as a timing error estimate. Timing error estimator 16 can operate in accordance with various known timing error estimation calculus. The preferred embodiment utilizes a morning and evening gate synchronizer. Then, the loop filter 17 can receive the timing error estimate and generate a delay estimate. 1282684 25. The choice of the type of loop filter 17 depends on the video channel. However, the invention is not limited to the particular loop filter being used. Preferably, the loop filter 17 is a first or second order filter. For example, a known proportional integrator (PI) filter can be regarded as the loop filter 17. The first-order autoregressive (AR) filter can also be used as the loop filter. The second diagram shows the preferred configuration of the loop filter 17, including the second-order proportional integrator filter 50, the accumulator 56, and the reverse. Multiplier 57. The proportional integrator filter 50 includes an integrator 51 including a multiplier 52, an accumulator 53, a multiplier 54 and an adder 55. Multipliers 52 and 54 can apply constants 3 and 13 to the timing error estimate 24 input, respectively, which are split at the input of the proportional integrator filter 50. The timing error estimate 24 input is multiplied by the constant integrator 51 of the parallel integrator 51. The parallel output is summed by adder 55 to produce a proportional integrator filter output. Next, the proportional integrator filtered state output is accumulated by the accumulator 56 and processed by a multiplier having a constant-c. The opposite sign of the constant c in multiply state 57 can produce a reverse timing correction to compensate for the timing error estimate 24' in the signal useful for the negative feedback system shown in Figure 1. Depending on the order of the loop filter, the code trace (4) may contain the first, second or even higher order feedback loop. The output of multiplier 57 is a delay estimate of 25. The output delay of the loop filter 17 is estimated to be 25 systems; ^Td is expressed as follows: Equation 4

Td=-r(Te) 其中Te為來自時序誤差估計器16之時序誤差估計24,而(()為線 _算心延遲估計25係被傳送至間插!!控制器18做進一步處 12 1282684 理。 間插器控制器18可提供兩個主要功能:管制延遲估計25範圍 及最小化間插器係數。首先,關於保持_____ 技率操作細…_作細魏鱗絲料腿之狀選 擇而定。例如’針對早晚_步器型時序誤差估計訓,該操作 細鎌_倾_為L。有兩卿時序誤差估計觀 工作麵限制訊號時序變異之方式。首先此可藉由移位下採樣器 15之基點2_延細t25的及_達成。然而,此縣整個 · 接收器對應改變幀之起始。僅可理解是否僅有單向傳輸路徑至接 收器。然而’在多路徑環境中,以延遲估計25反方向移位路徑專 用之碼追縱器10之碼產生器13是較佳的。 實施時序誤差估計器16之外,被接收訊號21之時序誤差估計 24係被以碼產生器13產生之在接收器中之參考碼來量測。間插器 抆U8可I控延遲估計25且無論其何出特定範圍之外,其 均可反向移位碼產生器13。因為碼產生器13係以區間了〇之晶片速 _ 率來運作,所以最小移位量係等於晶片存續綱,也就是Tc。因 此’無論延遲估計25何時變成记&gt;7(:/娜〈一Tc/2,執行碼移 位28為較佳。 夕 在貫際通信系統的實施中,基地台及行動無線傳輸/接收單 兀接收器間之路徑相對延遲可超_變。主要地,其可針對以下 原因而發生。首先,行動無線傳輸/接收單元接收器之移動可及 13 1282684 時改變延雜。針_絲叙摘_輪/接鮮. 收器移動’時序誤差中係具有第一階改變。第二姆因係基地台 及行動無線傳輸/接收單元接收關之局部震盪器頻差。此亦導 贿遲估計25之第一階改變。這些效應會形成累積。然而,時序 驗變並不第一改變。針對細階改變之碼追縱㈣, 若有需要,間插器控制器18可遵循w階改變,並可於任何需要 日寸執行石馬移位。 碼追蹤器10所做之碼移位決定係很堅定,不阻擔低訊號雜訊 · 比(SNR)及絲驗奴。為了 •目雜概干擾造成之振_ 移位操作而運賴轉後賴。延雜計騎紐偏移及定速 行動無線傳輸/接收單元動作之改變時序目係被顯示於第3A圖及 第3B圖。時間偏移係因線性改變時間延遲之週期時間偏移而產生 鋸齒狀波形。如第3A圖所示,延遲估計25係線性遞增。峰值轉變 發生於碼移位沈處,為Tc/2 + △,碼移位28係以負向執行以補償 遞增延遲估計25。相反地,第糊中,線性遞減延遲估計25係被 _ 正碼移位28補償。雖然延遲估計25之線性改變係#皮描繪於第从圖 及第3B圖,應注意的是碼追縱器1〇並不受限於延遲估計25之線性 改變,但會作用於延遲估計25更新之任何類型改變。碼移位28如 上述地延遲或領先發生於兩方向。如第3A圖及第邪圖所示,△(如 〇· 〇5Tc)之任意小值係被用於避免碼移位25點附近之振動行為。 碼移位28發生後,被間插器控制器丨8使用之新延遲估計值25 14 1282684 係被導出如下: $ = ?^副 方程 其中sgn[.]表示碼移位28之方向(也就是正、負或兩者皆非) 且被定義為: ^7^,/2 + Δ 方程式5b 哪(乃)叫 0,-7;/2 一△ &lt; 7; &lt; 7;/2 + △ I 一 w—TcmTd = -r(Te) where Te is the timing error estimate 24 from the timing error estimator 16, and (() is the line_calculus delay estimate 25 is transmitted to the interleaved!! controller 18 for further processing 12 1282684 The interleaver controller 18 provides two main functions: a control delay estimate of 25 ranges and a minimum interpolator coefficient. First, regarding the maintenance of the _____ skill rate, the fineness is determined by the choice of the fine weighed wire legs. For example, 'for the early and late _ step type timing error estimation training, the operation 镰 _ _ _ L. There are two Qing timing error estimation view of the working surface limit signal timing variation. First of this can be shifted by the downsampler The base point of 2_2 is extended by t25 and _ is reached. However, the entire receiver of this county corresponds to the start of the change frame. It can only be understood whether there is only one-way transmission path to the receiver. However, in the multi-path environment, Preferably, the code generator 13 of the code tracker 10 dedicated to the delay direction shifting path is used in the delay estimation 25. In addition to the timing error estimator 16, the timing error estimate 24 of the received signal 21 is used as a code generator. 13 generated the reference code in the receiver The interleaver 抆U8 can control the delay estimate 25 and can reverse the shift code generator 13 regardless of its specific range. Since the code generator 13 is in the range of the chip rate _ rate To operate, the minimum shift amount is equal to the wafer persistence, that is, Tc. Therefore, 'when the delay estimate 25 becomes a record> 7 (: / Na < one Tc/2, the execution code shift 28 is better. In the implementation of the inter-communication system, the relative delay between the base station and the mobile radio transmission/reception unit receiver may be excessively changed. Mainly, it may occur for the following reasons. First, the mobile radio transmission/reception unit The movement of the receiver can be changed to 13 1282684. The needle-spinning _ wheel/storage. The receiver movement has a first-order change in the timing error. The second dynasty base station and mobile wireless transmission/ The receiving unit receives the local oscillator frequency difference. This also leads to the second-order change of 25 estimates. These effects will accumulate. However, the timing change is not the first change. The code for the fine-order change (4) Interleaver controller 18 can be used if needed According to the w-order change, the Shima shift can be performed at any required time. The code shifting decision made by the code tracker 10 is firm and does not hinder the low signal noise (SNR) and the silk test slave. In order to avoid the vibration caused by the disturbance, the shift operation depends on the shift. The delay timing and the fixed-speed action wireless transmission/reception unit action change timing are displayed in Figure 3A and 3B. The time offset is a sawtooth waveform due to the cyclic time shift of the linearly varying time delay. As shown in Figure 3A, the delay estimate 25 is linearly increasing. The peak transition occurs at the code shift sink, which is Tc/ 2 + Δ, code shift 28 is performed in a negative direction to compensate for the incremental delay estimate 25. Conversely, in the second paste, the linear degressive delay estimate 25 is compensated by the _ positive code shift 28. Although the linear change of the delay estimate 25 is depicted in the second and third graphs, it should be noted that the code tracker 1 is not limited to the linear change of the delay estimate 25, but will act on the delay estimate 25 update. Any type of change. The code shift 28 occurs in both directions as described above for delay or lead. As shown in Fig. 3A and the evil diagram, any small value of Δ (such as 〇·〇5Tc) is used to avoid the vibration behavior near the 25-point shift of the code. After the code shift 28 occurs, the new delay estimate 25 14 1282684 used by the interleaver controller 丨8 is derived as follows: $ = ?^ The subroutine where sgn[.] indicates the direction of the code shift 28 (ie Positive, negative or neither) and is defined as: ^7^,/2 + Δ Equation 5b Which is called 0,-7;/2 △ &lt;7;&lt;7;/2 + △ I a w-Tcm

有關間插裔控制裔18之弟二函婁文與最小化係婁丈,具有限大小 之貝際間插係被最j圭化來達成最小誤差。回到方程抑中之具有 無限係數_躺姉麵錄__不可實施的。有限大小 間插器之最佳間插器係數係可經由如最小均方差(瞧)之最佳 演异來最小化独誤差。胁下—縣被詳述。細,因有限大 小間插器之近似誤差係可藉由儘可能最小化片舰遲估計27而 方程式6aRegarding the inter-inclusion of the sect of the sect of the sect of the sect of the sect of the sect of the sect of the sect of the sect. Returning to the equation, there is an infinite coefficient _ lying down __ can not be implemented. The optimal interpolator coefficients for a finite-size interleaver can minimize the unique error via the best variation, such as the minimum mean square error (瞧). Under the threat - the county is detailed. Fine, because the approximation error of the finite-interpolator can be minimized by using the ship's late estimation 27 as the equation 6a

被進-步降低。因此’間插制觀被配置來達成此目的。碼 移位處理後之延遲估計25可被寫為: fd=k,Ts+a.Ts 其中k被定義如下: k= ^ 方程式6bBeing stepped down. Therefore the 'interpolation view' is configured to achieve this. The delay estimate 25 after the code shift processing can be written as: fd = k, Ts + a. Ts where k is defined as follows: k = ^ Equation 6b

UJ 運算元[X]代表X之最大整數。k值對應存在於ξ中之過度採樣的樣 本區間數ϋ此’延遲或領先的Μ藉由等同於k樣本之量對應至 過度採樣的輸入訊號之簡單移位。此移贿輕祕由方程式3所 15 1282684 示之整數k達成移位下採樣器之基點26。基點26移位後,剩餘時 間移位係等於The UJ operand [X] represents the largest integer of X. The k value corresponds to the number of sample intervals of oversampling present in ξ. This delay or leading 简单 is a simple shift corresponding to the oversampled input signal by the amount equivalent to the k sample. This transfer of bribes is achieved by the integer k of Equation 3, 15 1282684, which reaches the base point 26 of the shift downsampler. After the base point 26 is shifted, the remaining time shift is equal to

Td:Td — k.Ts = a,Ts 方程式 7Td:Td — k.Ts = a,Ts Equation 7

因為間插裔14被標準化為採樣速率ts,所以在量化後間插器μ之 值係為片段延遲估計27(也就是0)。同時,重要的是要注意分解 延遲估計25後(也就是方程式如中之巧值及方程式乩中之^), 片槪遲估計27係被限制為一1 &lt; α &lt; 1範圍。此範圍限制使片段 延遲估計27保持最小並達成預期增加間插誤差。 為了描繪間插器控制器18之操作,以以下例子呈現。假設被 過濾時序誤差估計25為Td=0· 64Tc,且過度採樣速率為l=4。因 此,採樣速率為Ts=TC/L=Tc/4。依據方程式5a及5b,碼移位28係 需要的,所以碼移位延遲估計25為巧=0· 64Tc—Tc= —0· 36Tc。從 方私式6b來看,基點26為k= -1,且從方程式6a來看,片段延遲 估計27為 a =-〇· 44 〇Since the interleaver 14 is normalized to the sampling rate ts, the value of the interpolator μ after quantization is the segment delay estimate 27 (i.e., 0). At the same time, it is important to note that after the decomposition delay estimate 25 (i.e., the equation is as good as the value of the equation and ^ in the equation )), the slice delay estimate 27 is limited to a range of 1 &lt; α &lt; 1 . This range limitation keeps the segment delay estimate 27 to a minimum and achieves the expected increase in interleaving errors. To depict the operation of the interleaver controller 18, it is presented in the following example. Assume that the filtered timing error estimate 25 is Td = 0.66 Tc and the oversampling rate is l = 4. Therefore, the sampling rate is Ts = TC / L = Tc / 4. According to Equations 5a and 5b, the code shift 28 is required, so the code shift delay estimate 25 is =0 = 64Tc - Tc = -0 · 36Tc. From the perspective of the private 6b, the base point 26 is k = -1, and from the equation 6a, the segment delay estimate 27 is a = - 〇 · 44 〇

里化斋19係為間插回授迴路35之最後剩餘階段。片段延遲估 計27係於被間插器使用之前被量化器19量化(也就是被離散)。量 化1§19對間插器係數的限制計算很有用,以避免延遲估計25每次 被更新之计异。置化器19包含一查找表,用以儲存與一組可用量 化片段延遲估計值相關之預先計算間插器係數。此查找表可降低 間插之計异複雜度且亦增加處理速度。量化器丨9可基於所需時序 精確度及過度採樣速率L決定若干數量的位準以量化該片段延遲 16 &gt; 1282684 估計。用以時序調整所需之時序精確度係為Tc/q,其中轉正整 數。其遵撕議她嫌e/Q。____二 ^&lt;α&lt;1細之嶋化位準。例如,針糊騰4,時 =錢需之綱蝴耻/16,犧測卿細的位 準。接著,依據上例,糾段延遲估計27為α 44,則被量 化延遲可從自量储附之錢鍵擇最近姆絲決定。因為 此為位揭量储’所以可職絲自以下_ ,王不產生間插所以不被使用)。因為_0·似最接近A 5,所以 被&amp;擇里制觀€料29縣耻―U,細枝至間插器 14 ° 遵循間插回授迴路35之起始迭代,延遲估侧擁作繼續 被重複以追縱時序誤差之改變。 回到間插器14,方程式1之有限間插將被說明,包含間插器 ,不脈當間插器 14最初處理 被接收财υ21。如方程幻所示,理想間插係為無限長度的加總。 為了有效心_必概行方程式1之有限加總。以下方程 式8a係頒不此輸出无之有限表示如下: m2 方程式8a x〜㈣⑻ 其〜⑻代表間插ϋ係數,被導出如下: 1282684 方程式8b 方程式9 ^ά(η) = Sinc(m + ά) 無限長度濾波器之理想間插器之頻率響應係如下: 8(ω,αΤ3) = ίτ^&amp;αΤ\\ω/2π\ &lt;l/(2Ts) [ 0, otherwise 輸出訊號誤差丑⑹係被定A為理想間插器輪出及間插器之有限 表示間之差異·· 方程式10 Ε(ά) = χ(/7 + ά) - χ(^η _μ ^Lihuazhai 19 is the last remaining stage of the interleaving feedback loop 35. The segment delay estimate 27 is quantized (i.e., discretized) by the quantizer 19 before being used by the interleaver. Quantization 1 § 19 is useful for the calculation of the interpolator coefficient limits to avoid delay estimation 25 being updated each time. The arbitrator 19 includes a lookup table for storing pre-computed interpolator coefficients associated with a set of available quantized segment delay estimates. This lookup table reduces the complexity of interleaving and increases processing speed. Quantizer 丨9 may determine a number of levels based on the required timing accuracy and oversampling rate L to quantize the segment delay 16 &gt; 1282684 estimate. The timing accuracy required for timing adjustment is Tc/q, which is a positive integer. She refused to suspect her e/Q. ____ 2 ^&lt;α&lt;1 fine 嶋化 level. For example, if the needle is 4, the price of money needs to be shameful/16, and the level of fineness of the test is fine. Then, according to the above example, the correction segment delay estimate 27 is α 44, and the quantized delay can be determined from the nearest money of the self-contained money key. Because this is a bit of a store, so the job is from the following _, the king does not create interleaving so it is not used). Because _0· seems to be closest to A 5, it is the same as the initial iteration of the inter-insertion loop 35 The continuation is repeated to track the change in timing error. Returning to inter-interpolator 14, the finite interleaving of Equation 1 will be described, including an interleaver, which is initially processed to receive revenue 21. As shown by the equation, the ideal interpolated system is the sum of infinite lengths. In order to be effective, _ must be a finite addition of Equation 1. The following equation 8a indicates that the output is not limited to the following: m2 Equation 8a x~(4)(8) Its ~(8) represents the interpolated coefficient, which is derived as follows: 1282684 Equation 8b Equation 9 ^ά(η) = Sinc(m + ά) The frequency response of the ideal interpolator of the infinite length filter is as follows: 8(ω,αΤ3) = ίτ^&amp;αΤ\\ω/2π\ &lt;l/(2Ts) [ 0, otherwise Output signal error ugly (6) The difference between the finite representation of the ideal interpolator rotation and the interleaver is determined by equation A. Ε(ά) = χ(/7 + ά) - χ(^η _μ ^

最猶_衝_間插器之係數…係藉由最小化以下方 程式11來決定’騰量化版輯估·之所有可H被使 用之最適方法躲州方差綠。目鱗息之頻妒―小於 l/(2Ts) ’施加Parseval關係至方程式1〇產生: Ε\ά)=] jwaTs M2- YjhMe'ji m--Mx jcoaTs άω 方程式11The most _ _ _ inter-interpolator coefficient... is determined by minimizing the following program 11 to determine the best way to use the errata version. The frequency of the scales is less than l/(2Ts) ‘Applying the Parseval relationship to Equation 1〇 produces: Ε\ά)=] jwaTs M2- YjhMe'ji m--Mx jcoaTs άω Equation 11

方程式11係代表有限脈衝響應濾、波器之最小均方差版本,其為間 插器14之’ϋ較鋪型。雜式u具有若干不同解法。例如, Fletcher-Powell方法可被用來解決方程式u。應注意本發明實 施例不受限於方程式11之任何特定解決方法。若(M1=M)及 (Μ24Η)被選擇用於2Μ係數總數,則最小差·係被達成。由於 係數從方程式12被找出,最適之最小均方差有限脈衝響應間插器 14可以下列方程式來表示: Μ-1 ^a) = ^{n-m)hM) 方程式 i2 18 1282684 如熟練技術人士所知係數係為輪Μ,其可被寫為 ^(1-幻 1) ' 當不可即日梅岭財11,方簡職事先㈣所13 值’且預定係數係被儲存於量化器19之查找表。此導出Μ · ((Q/D-2)大小之實數人σ之查餘,其慨為量化驗準 婁ΛΛ:而□為α-0疋全不會產生間插,所以其被排除於量化器 19查找表之外。藉由使用方程式13之對稱特性,查找表大小可藉 由M ((Q/L) 2)/2 κ數來降低。可替代是,視被實施間插器結構 · 而疋’如多項式間插器,查找表可藉由即時計算來刪除及取代。 實施中,視可被負擔之間插誤差而定,M d具有2Μ係數 W)。例如,為第三代合作計劃狀錢 接收單元接收态所設計的碼追縱器,包含早晚閘同步器,兩次過 度採樣(L=2),及包含被串聯如第2圖累積器之積分器舰器之第 一P白迴路濾波态,在母個量化器位準產生M=2或總共四個係數。 針對Tc/16之所需精確度(也就是Q=i6),所使用之量化器位準數 · 為8〇 依據本發明,藉由最適化間插,不管是否使用係數限制數, 有效降低時序誤差之有利結果均可被達成。雖然本發明已參考多 路徑衰落頻道及耙式(RAKE)接收器做說明,但其不受限於這些應 用來建構。碼追縱器10之替代實施例係包含但不受限於具有下 列類型間之間插器:多項式有限脈衝響應間插器,線性間插器, 19 1282684 及Lagrange間插。 圖式簡單說明 第1圖顯示具有最佳間插之碼追蹤器塊狀圖; 第2圖顯示迴路濾波器塊狀圖; 第3A圖,第3B圖顯示碼追蹤器之碼移位時序圖;Equation 11 represents the finite impulse response filter, the minimum mean square error version of the waver, which is the 'ϋ compared type of the interleaver 14. The formula u has several different solutions. For example, the Fletcher-Powell method can be used to solve equation u. It should be noted that embodiments of the invention are not limited to any particular solution of Equation 11. If (M1=M) and (Μ24Η) are selected for the total number of 2Μ coefficients, the minimum difference is achieved. Since the coefficients are found from Equation 12, the optimal minimum mean squared finite impulse response interpolator 14 can be represented by the following equation: Μ-1 ^a) = ^{nm)hM) Equation i2 18 1282684, as known to the skilled artisan The coefficient is a rim, which can be written as ^(1-Fantasy 1)' When it is not possible, the value of the 13th value of the previous (4) and the predetermined coefficient is stored in the lookup table of the quantizer 19. This derivation Μ · ((Q/D-2) size of the real number of people σ check, its genemark is quantitative quiz: and □ is α-0疋 all will not produce interpolated, so it is excluded from quantification The lookup table size can be reduced by the M ((Q/L) 2)/2 κ number by using the symmetry property of Equation 13. Alternatively, the interleaver structure is implemented. However, if a polynomial interleaver is used, the lookup table can be deleted and replaced by an instant calculation. In practice, depending on the interpolation error, M d has a 2 Μ coefficient W). For example, the code tracker designed for the receiving state of the third generation cooperative plan receiving unit includes the early and late gate synchronizer, two oversampling (L=2), and the integral including the accumulator as shown in Fig. 2. The first P white loop filter state of the vessel produces M=2 or a total of four coefficients at the parent quantizer level. For the required accuracy of Tc/16 (that is, Q=i6), the quantizer level used is 8. According to the present invention, by optimizing the interpolation, the timing is effectively reduced regardless of whether or not the coefficient limit number is used. The favorable results of the error can be achieved. Although the present invention has been described with reference to a multipath fading channel and a rake receiver, it is not limited to these applications. Alternative embodiments of code tracker 10 include, but are not limited to, inter-interleavers of the following types: polynomial finite impulse response interleaver, linear interleaver, 19 1282684 and Lagrange interleaving. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a block diagram of a code tracker with optimal interleaving; Fig. 2 shows a block diagram of a loop filter; Fig. 3A, Fig. 3B shows a code shift timing diagram of a code tracker;

元件符號說明: 10 碼追蹤器 11 頻道估計器 12 後處理單元 13 碼產生器 14 間插器 15 下採樣器 16 時序誤差估計器 17 迴路濾波器 18 間插器控制器 19 量化器 20 功率量測單元 21 被接收訊號 22 啟始路徑相位 23 時間修正輸出 訊號 24 時序誤差估計訊號 25 延遲估計值 26 基點 27 片段延遲估計 28 碼移位指令 35 間插回授迴路 29 量化片段延遲 估計 50 比例積分器滤·波斋 51 積分器 53 、56 累積器 55 加法器 52 、54、57乘法器 a ^ b常數Component symbol description: 10 code tracker 11 channel estimator 12 post processing unit 13 code generator 14 interleaver 15 down sampler 16 timing error estimator 17 loop filter 18 interleaver controller 19 quantizer 20 power measurement Unit 21 is received signal 22 Start path phase 23 Time correction output signal 24 Timing error estimation signal 25 Delay estimation value 26 Base point 27 Fragment delay estimation 28 Code shift instruction 35 Interleaving feedback loop 29 Quantization segment delay estimation 50 Proportional integrator Filter·wave fast 51 integrator 53 , 56 accumulator 55 adder 52 , 54 , 57 multiplier a ^ b constant

2020

Claims (1)

1282684 十、申請專利範園·· 1· 一種可對無線通信系統中之發送器做時序同步之接收器 之數位時相步II,其憎被接魏聽具有對參相之時序誤 差,包含: 、 被配置用來估計該被接收訊號之起始碼相位之頻道估計器; 被配朗來產生可藉由整數增量調整之時序參考碼之碼產 生器;及 被配置用來間插及修正該時序誤差之間插回授電路,藉此該 參 間插可藉由整數碼移位及被挑選自量化片段延遲估計值之查找 表之里化狀賴料及翻顧定間絲係絲達成,該被接 收訊號之時間修正版本係從其被產生。 2·如申請專利範圍第1項之數位時序同步H ,其中該間插回 授電路進一步包含: 被i準化為祕速率之間插器’係被配置來片舰遲或領先 及時移位該被接收訊號; φ ▲守序吳差估汁為’可絲^該間插回授電路之輸出訊號及該時 序參考碼此鱗絲較轉誤紐彳; 間插器控制器,可回應該時序誤差估計以該時序誤差估計反 向來產生及傳__峨域啦m預定範圍内產 生片段延遲估計以騎_魏;及 /、有,、預定I化片舨遲估計值相關之被儲存間插 21 1282684 益係數之該雜表,雜峨觀查财麵最接近刻段延遲 估計之量化片段延遲估計值。 3·如申請專利範圍第2項之數位時序同步器,其中該間插回 授電路進-步包含可驗科輕差估相產生具有該時序誤 差估計反向標記之延遲估計值之濾波器,藉此該間插器控制器可 於該時序紐料II配肋狀預錄作細峰管制該延遲 估計。 4.如申請專利細第3項之數位時序同步器,其中該間插回 · 觀路進一步包含可回應該間插器控制器之下採樣器,其被配置 藉由過度纖因子及依據該被接收訊號及該延遲估計之採樣速 率之該比率相關之基點來降低該被接收訊號之該採樣速率。 5·如申請專利範圍第2項之數位時序同步器,其中該間插器 係為最小均方差最適化有限脈衝響應間插器。 6. 如申請專利範圍第i項之數位時序同步器,其中該被接收 訊號係包含多職,而該間插回授電路進_步包含後處裡單心 # 被來處職㈣計起始碼她及料碱間檀之雜 訊功率,藉此產生該碼產生器發展該參考碼之起始碼相位。 7. 如申請專利麵第1項之數位時序同步器,其巾該片段延 遲估計之該預定範圍係介於(_1)A(1)之間。 、如申睛專利範圍第!項之數位時序同步器,其中該被接收 訊號係被L因子過度鎌且量化片段調整值之該預定數係為依 22 ' I282684 ^於時序調整之翻時序精確度t/q來決定之量化位準队 ’其:τ代表該採樣期間’ Q代表正整數,而l代表正整數。 如9·—種包私申請專利範圍第i項之數位時序同步器之接收 裔0 項之數位時序同步器之無 10· 一種包含如申請專利範圍第1 線傳輸/接收單元。 e 11. -射對無線通録財之發錄及触器做數位 同步之方法’其巾鎌歡峨係具有對參考碼之時序誤差 時序 ,包1282684 X. Applying for a patent Fan Park························································································· a channel estimator configured to estimate a start code phase of the received signal; a code generator configured to generate a timing reference code that can be adjusted by an integer increment; and configured to interpolate and correct The timing error is inserted into the feedback circuit, whereby the inter-parallel insertion can be achieved by the integer digital shift and the look-up table of the selected self-quantized segment delay estimation value and the reticle alignment. The time-corrected version of the received signal is generated therefrom. 2. The digital timing synchronization H of claim 1 of the patent scope, wherein the interleaving feedback circuit further comprises: the i-scaled inter-rate inter-interpolator is configured to bring the ship to the ship late or lead in time to shift Received signal; φ ▲ Sequential Wu difference estimated juice is 'can wire ^ the inter-insertion circuit output signal and the timing reference code this scale is more error-free; inter-interpolator controller, can return timing The error estimate is generated by the timing error estimation inversion and the __峨 domain is generated within a predetermined range to generate a segment delay estimate to ride the _Wei; and /, yes, the predetermined I slice is estimated to be correlated with the stored interleaving 21 1282684 The miscellaneous table of the benefit coefficient, the churning observation of the financial segment is closest to the estimated delay of the segment delay estimation. 3. The digital timing synchronizer of claim 2, wherein the interleaving feedback circuit comprises a filter that can detect the delay estimate of the timing error estimate with a delay estimate. Thereby, the interleaver controller can pre-record the peak delay to estimate the delay estimate in the timing material II. 4. The digital timing synchronizer of claim 3, wherein the interleaving path further comprises a sampler that can be returned to the interleaver controller, configured by a fibrillation factor and according to the The base point associated with the ratio of the received signal and the sampling rate of the delay estimate reduces the sampling rate of the received signal. 5. The digital timing synchronizer of claim 2, wherein the interpolator is a minimum mean square error optimized finite impulse response interleaver. 6. The digital timing synchronizer of claim i, wherein the received signal system comprises a plurality of jobs, and the interleaved feedback circuit enters a step _step including a single heart #被出职(四)计开始The code is used to encode the noise power of the tantalum between the base and the base, thereby generating the code generator to develop the start code phase of the reference code. 7. If the digital timing synchronizer of claim 1 is applied, the predetermined range of the delay estimate of the segment is between (_1) A(1). For example, the scope of the patent application scope! The digital timing synchronizer, wherein the received signal is excessively factored by the L factor and the predetermined number of quantized segment adjustment values is a quantization bit determined according to 22 ' I282684 ^ timing adjustment precision t/q of timing adjustment The quasi-team's: τ represents the sampling period 'Q stands for a positive integer, and l stands for a positive integer. For example, the digital timing synchronizer of the i-th article of the patent application scope is the first one of the digital transmission/reception unit of the patented range. e 11. - Shooting the radio recording and the digital device of the contactor. The method of synchronization is based on the timing error timing of the reference code. 估計該被接收訊號之起始碼相位; 產生可藉由整彰:增量調整之時序參考碼;及 時誤差,藉此該間插_____ =里化片段延遲值之韻表之_段延遲估計及其相關預 獨職數來達成,該被接收m之時間修正版本係從其被產Estimating the start code phase of the received signal; generating a timing reference code that can be adjusted by intensification: incremental adjustment; timely error, whereby the interpolated _____ = _ segment delay estimate of the rhyme table of the fragmentation delay value And its related pre-single number is reached, the time-corrected version of the received m is produced from it 、12.如申請專利細第_之方法,其中該間插及修正步驟 進一步包含·· 片段延遲或領先及時移位該被接收訊號,· 基於該被接收訊號之時間修正版本及該時序參考碼間之時 序差來決定時序誤差估計; 以該時序誤差估計反向來產生整數碼移位訊號; 23 Ϊ282684 於敢_域以觀雜_財_係數;及 .清存預疋里化片段延遲估計值侧之間插器係數於查找 表,及 從該查找麵擇最接近刻段延遲估計之量化版延遲估 計值。 如申請專利細第12項之方法,其中該間插步驟進一步 包含濾波_序·估計域生财鱗賴差料反向觀 之延遲估計值,藉此該延遲估計係被管制於該時序誤差細配 · 置相關之預定操作範圍内。 14·如申凊專利細第13項之方法,其中該間插步驟進一步 包痛由過度採樣因子,依據該被接收訊號及該 速率之該比率相關之基點來降低該被接收訊號之該採樣速率。 15·如申請專利細第n Jl之方法,其中該被接收訊號係包 含多路徑,而該間插步驟進一步包含處理該被估計起始碼相位及 估計訊號及雜訊門檻之雜訊功率,藉此產生該碼產生器發展該參 · 考碼之起始碼相位。 16·如申請專利範圍第12項之方法,其中該片段延遲估計之 該預定範圍係介於(4)及⑴之間。 24 1282684 七、指定代表圖: 案指定代表圖為:第(i )圖 1一)本代表®之元件符賴單說明: 10碼追縱器 u 13碼產生器 14 16時序誤差估計器17 19量化器 20 22啟始路徑相位 23 24時序誤差估計訊號 28碼移位指令 &amp; 35間插回授迴路 頻道估計器 12後處理單元 間插器 15下採樣器 迴路濾波器 18間插器控制器 功率量測單元 21被接收訊號 時間修正輸出訊號 26 基點 27片段延遲估計 被量化片段延遲估計 本案右*化學柄,铜示最賴科_徵的化學式·12. The method of claim </ RTI> wherein the interleaving and correcting step further comprises: framing delay or leading to shift the received signal in time, based on the time corrected version of the received signal and the timing reference code The timing difference between the two determines the timing error estimate; the inverse of the timing error is used to generate the integer digital shift signal; 23 Ϊ 282684 in the dare _ domain to observe the _ _ coefficient; and. The side interpolator coefficients are in the lookup table, and the quantized version delay estimate that is closest to the segment delay estimate is selected from the lookup face. The method of claim 12, wherein the interpolating step further comprises a delay estimate of the inverse view of the filter-sequence estimation domain, wherein the delay estimate is controlled by the timing error fine-matching · Within the relevant predetermined operating range. 14. The method of claim 13, wherein the interpolating step further comprises an oversampling factor, wherein the sampling rate of the received signal is reduced according to a base point of the received signal and the ratio of the rate. . 15. The method of claim n, wherein the received signal comprises a multipath, and the interpolating step further comprises processing the estimated start code phase and the estimated signal and the noise threshold of the noise threshold. This produces the code generator to develop the start code phase of the reference code. 16. The method of claim 12, wherein the predetermined range of the segment delay estimate is between (4) and (1). 24 1282684 VII. Designation of Representative Representatives: The representative designation of the case is as follows: (i) Figure 1)) The component of the representative ® is a list of explanations: 10 code tracker u 13 code generator 14 16 timing error estimator 17 19 Quantizer 20 22 Start Path Phase 23 24 Timing Error Estimation Signal 28 Code Shift Command &amp; 35 Interleaved Loop Channel Estimator 12 Post Processing Unit Interleaver 15 Downsampler Loop Filter 18 Interleaver Controller Power measurement unit 21 is received signal time correction output signal 26 base point 27 segment delay estimation quantized segment delay estimation case right * chemical handle, copper shows the most basic chemical formula
TW092127121A 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment TWI282684B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41568202P 2002-10-02 2002-10-02

Publications (2)

Publication Number Publication Date
TW200415897A TW200415897A (en) 2004-08-16
TWI282684B true TWI282684B (en) 2007-06-11

Family

ID=32069898

Family Applications (4)

Application Number Title Priority Date Filing Date
TW093110756A TWI300661B (en) 2002-10-02 2003-09-30 Apparatus for digital timing adjustment of rake receiver and method thereof
TW095135433A TW200733682A (en) 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment
TW098102120A TWI381695B (en) 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment
TW092127121A TWI282684B (en) 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW093110756A TWI300661B (en) 2002-10-02 2003-09-30 Apparatus for digital timing adjustment of rake receiver and method thereof
TW095135433A TW200733682A (en) 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment
TW098102120A TWI381695B (en) 2002-10-02 2003-09-30 Optimum interpolator method and apparatus for digital timing adjustment

Country Status (14)

Country Link
US (1) US7206335B2 (en)
EP (1) EP1552641B1 (en)
JP (1) JP4237143B2 (en)
KR (2) KR100875693B1 (en)
CN (2) CN100452694C (en)
AR (1) AR041468A1 (en)
AU (1) AU2003279085A1 (en)
CA (1) CA2501108A1 (en)
DE (1) DE60317697T2 (en)
ES (1) ES2295656T3 (en)
MX (1) MXPA05003548A (en)
NO (1) NO20052000L (en)
TW (4) TWI300661B (en)
WO (1) WO2004032407A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096132B2 (en) * 2002-10-17 2006-08-22 Qualcomm Incorporated Procedure for estimating a parameter of a local maxima or minima of a function
US6873910B2 (en) 2002-10-22 2005-03-29 Qualcomm Incorporated Procedure for searching for position determination signals using a plurality of search modes
SG121741A1 (en) * 2002-10-30 2006-05-26 Stmicooelectronics Asia Pacifi Method and apparatus for a control signal generating circuit
JP4169352B2 (en) * 2002-11-15 2008-10-22 テレコム・イタリア・エッセ・ピー・アー Precision synchronization method and device for digital telecommunications receiver
US7292619B2 (en) * 2003-03-03 2007-11-06 Mitsubishi Electric Research Laboratories Method and system for acquiring ultra-wide-bandwidth communications signals using sequential block searches
US7194279B2 (en) * 2003-05-23 2007-03-20 Nokia Corporation Adjustment of a phase difference between two signals
KR100547737B1 (en) * 2003-06-10 2006-01-31 삼성전자주식회사 Rake receiver and method in direct sequence code division multiple access mobile communication system
US20050169353A1 (en) * 2004-02-02 2005-08-04 Wei An Post despreading interpolation in CDMA systems
GB0418133D0 (en) 2004-08-13 2004-09-15 Ttp Communications Ltd Sample acquisition timing adjustment
US7222035B1 (en) * 2004-11-17 2007-05-22 Topcon Gps, Llc Method and apparatus for determining changing signal frequency
EP1739910B1 (en) * 2005-07-01 2009-02-25 Sequans Communications Method and system for synchronizing a subscriber communication equipment to a base station of a wireless communication system
JP4179418B2 (en) * 2005-07-13 2008-11-12 京セラ株式会社 Wireless receiver
WO2007116488A1 (en) * 2006-03-31 2007-10-18 Fujitsu Limited Cdma receiver and cdma receiving method
US7599454B2 (en) * 2006-07-24 2009-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for symbol alignment in diversity signal reception
US7382292B1 (en) * 2006-11-10 2008-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient signal interpolation
KR101490342B1 (en) * 2007-11-26 2015-02-05 삼성전자주식회사 Apparatus and method for channel estimation in mobile communication system
US20100060557A1 (en) * 2008-09-10 2010-03-11 Himax Technologies Limited Data de-skew block device and method of de-skewing transmitted data
US9240816B2 (en) 2013-08-09 2016-01-19 Samsung Electronics Co., Ltd. Timing synchronization system and method of super regenerative receiver based on ultra low power communication
CN103973276B (en) * 2014-04-26 2016-09-14 长沙云腾微电子有限公司 A kind of demodulation threshold method for self-calibrating and circuit
KR20160113341A (en) * 2015-03-18 2016-09-29 에스케이하이닉스 주식회사 Phase interpolator circuit, clock data recovery circuit including the same and method for phase interpolation
WO2016209290A1 (en) 2015-06-26 2016-12-29 Olympus Corporation Sampling rate synchronization between transmitters and receivers
KR101811221B1 (en) 2016-02-17 2017-12-21 주식회사 이노와이어리스 method for processing WCDMA signal timing offset for signal analyzing equipment
JP2017166930A (en) * 2016-03-15 2017-09-21 株式会社東芝 Radar device, observation method, and program
KR102440335B1 (en) * 2016-10-28 2022-09-02 삼성에스디에스 주식회사 A method and apparatus for detecting and managing a fault
US20180324013A1 (en) * 2017-05-02 2018-11-08 MACOM Technology Solutions Holding, Inc. Phase interpolation calibration for timing recovery
US10999048B1 (en) * 2019-12-31 2021-05-04 Hughes Network Systems, Llc Superior timing synchronization using high-order tracking loops
CN113452501B (en) * 2021-05-18 2022-06-17 鹏城实验室 Method, device, terminal and storage medium for determining score delay value in time synchronization
CN113872566B (en) * 2021-12-02 2022-02-11 成都星联芯通科技有限公司 Modulation filtering device and method with continuously adjustable bandwidth

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9511551D0 (en) * 1995-06-07 1995-08-02 Discovision Ass Signal processing system
US6633255B2 (en) * 1995-10-09 2003-10-14 Qualcomm Inc. Method for open loop tracking GPS signals
CN1162892A (en) * 1996-02-27 1997-10-22 汤姆森消费电子有限公司 Oscillation network in digital timing recovery system
US6313885B1 (en) * 1998-03-25 2001-11-06 Samsung Electronics Co., Ltd. DTV receiver with baseband equalization filters for QAM signal and for VSB signal which employ common elements
KR100346783B1 (en) 1999-07-19 2002-08-01 한국전자통신연구원 Apparatus of timing recovery using interpolation filter
JP3322246B2 (en) 1999-07-21 2002-09-09 日本電気株式会社 Path search apparatus and method
US6483867B1 (en) * 1999-11-22 2002-11-19 Nokia Mobile Phones Ltd. Tracking loop realization with adaptive filters
WO2002025829A1 (en) * 2000-09-18 2002-03-28 Skybitz, Inc. System and method for fast code phase and carrier frequency acquisition in gps receiver
KR100488102B1 (en) 2000-12-26 2005-05-09 엘지전자 주식회사 Channel Estimate Device Using a Parallel Interference Cancellation

Also Published As

Publication number Publication date
TW200950450A (en) 2009-12-01
EP1552641A1 (en) 2005-07-13
US20040120387A1 (en) 2004-06-24
JP4237143B2 (en) 2009-03-11
TWI381695B (en) 2013-01-01
EP1552641A4 (en) 2006-03-22
KR20050104424A (en) 2005-11-02
NO20052000D0 (en) 2005-04-25
MXPA05003548A (en) 2005-07-01
EP1552641B1 (en) 2007-11-21
CN101494533A (en) 2009-07-29
TW200507568A (en) 2005-02-16
KR20050062587A (en) 2005-06-23
TW200415897A (en) 2004-08-16
TW200733682A (en) 2007-09-01
US7206335B2 (en) 2007-04-17
WO2004032407A1 (en) 2004-04-15
AR041468A1 (en) 2005-05-18
CN1689265A (en) 2005-10-26
ES2295656T3 (en) 2008-04-16
CA2501108A1 (en) 2004-04-15
AU2003279085A1 (en) 2004-04-23
NO20052000L (en) 2005-06-22
KR100875693B1 (en) 2008-12-23
DE60317697D1 (en) 2008-01-03
DE60317697T2 (en) 2008-10-30
JP2006502625A (en) 2006-01-19
CN100452694C (en) 2009-01-14
TWI300661B (en) 2008-09-01

Similar Documents

Publication Publication Date Title
TWI282684B (en) Optimum interpolator method and apparatus for digital timing adjustment
TWI262664B (en) System for direct acquisition of received signals
JP4422337B2 (en) High speed and high sensitivity GPS receiver
TWI247549B (en) Code tracking loop with automatic power normalization
JP2007519936A (en) Method and apparatus for quickly capturing GPS signals
RU2677874C2 (en) Processor for radio receiver
EP3116134B1 (en) A receiver for use in an ultra-wideband communication system
KR20180087810A (en) System and method of tracking and compensating for frequency and timing offsets of modulated signals
JP3462477B2 (en) Correlation detection device and correlation detection method
JP4787349B2 (en) Matched filter circuit and global positioning system signal acquisition and tracking method
CN100420162C (en) Method and device for fine synchronization of a digital telecommunication receiver
JP3816684B2 (en) Spread spectrum receiver
JP2011047947A (en) High speed and high sensitivity gps receiver
JP5587121B2 (en) Matched filter circuit and method for performing matched filtering
JP5001427B2 (en) Efficient calculation of covariance with lookup table
JP3688147B2 (en) Sampling system
JP2004510136A (en) Time-shifted signal generation method
Husted Design and Implementation of Digital Timing Recovery and Carrier Synchronization for High Speed Wireless Communication
Lohan et al. Interpolation-based delay tracking unit for a baseband Rake receiver

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees