1282184 1 * 九、發明說明: 【發明所屬之技術領域】 本專利申請案主張德國專利申請案1 02004047680.2和 1 0200405 03 7 1.0之優先權,其已揭示的內容收納於此處以作 任、 本發明涉及一種依據申請專利範圍第1項前言所述之光 電組件,申請專利範圍第1 2項前言所述之光電組件之製造 方法以及申請專利範圍第25項所述之照明裝置。 • 上述形式之光電組件(例如,發光二極體(LED))通常具有 二個相面對的接觸面,其中第一接觸面通常安裝在導電性 之載體上,例如,安裝在晶片外殼之一種設有金屬層之區 域上。 半導體晶片之相面對的第二接觸面通常較不易達成電性 上的接觸,此乃因其通常未與載體之預設的第二連接區相 鄰接。第二接觸區傳統上是以一種連結線來形成。爲了在 連結線和待接觸的晶片表面之間形成一種導電之連接,則 φ 晶片表面的區域須設有一種金屬層(所謂連結墊)。但此種金 屬層之缺點是:其在光學上是不透光的且因此會吸收晶片 _______ ______一______—- 中所產生白&光之一部份。但使連結墊之面積下降在技術上 -.——,———" 壙 只在某種限度上是可能的且會使製造琴辱增高。 '【先前技術】 爲了使光電組件之發出幅射所用的表面之一部份之遮暗 問題減低’則由J P 0 9 2 8 3 8 0 1 A中已知以一種由銦錫氧化物 (ITO)所構成的導電性透明層以無線方式來與一種配置在半 導體晶片表面上的電極相接觸。半導體晶片之側面因此藉 1282184 i 、 由Si〇2所構成的絕緣層而與導電性的透明層在電性上相隔 離。 由W0 9 8/1 2757中已知將一種光電半導體晶片(其以傳統 方式而與連結線相接觸)埋置在一澆注物質中,此澆注物質 包含電致發光-轉換材料,以使半導體晶片所發出的輻射之 至少一部份轉換成較長的波長。以此種方式例如能以半導 體晶片(其發出藍光或紫外光)來產生一混合彩色光或白光。 【發明內容】 / 1/ 本發明的目的是提供一種能以無線方式m _改良式光/ _______________________________—.··· —μ, _ - 電組件,其中半導體晶片可受到保護而不受環境所影響, 否則有可能使已發出的輻射之波長被轉變,且本發明的光 電組件之製造費用較少。此外,本發明提供上述光電組件 --:-...................—··.................…* 之一種有利的製造方法。 上述目的藉由申請專利範圍第1項之光電組件,第1 2項 之製造方法以及第25項之照明裝置來達成。本發明有利的 其它形式描述在申專利範圍各附屬項中。 本發明的光電組件可在主輻射方向中發出輻射,此光電組 件包括:——種半導體晶片,其具有一第一主面,一第一接 觸面以及一與第一主面相面對的第二主面(其具有第二接觸 面);以及一種載體,其具有二個電性絕緣的連接區,其中 半導體晶片以第一主面固定在載體上且第一接觸面是與第 一連接區導電性地相連接。半導體晶片和載體設有一種電 性絕緣之透明之包封層。因此,主輻射方向中所發出的輻 射經由該包封層而發出。此外,一種導電層由第二接觸面 經由該包封層之一部份區域而延伸至載體之第二電性連接 1282184 I · 區’其使第二接觸面與第二連接區導電性地相連接。 本發明之光電組件中該電性絕緣之包封層可有利地滿足 多種功能。由於此包封層是電性絕緣體,則其在施加上述 的導電層時可防止短路的發生。短路的情況發生於:半導 體晶片之pn-接面藉由導電層施加至半導體晶片之側面上 而短路或載體之二個連接區經由該導電層而互相連接。此 外’該包封層可保護該半導體晶片使不受環境所影響,特 別是不受污染且不受濕氣所影響。 由於由光電組件而在主輻射方向中所發出的輻射經由該 包封層而發出,則該包封層亦可有利地包含一種電致發光-轉換材料,以便例如以一種發出紫外線或藍光之半導體晶 片來產生白光。適當的電致發光-轉換材料(例如, YAG:Ce(Y3Ah〇12:Ce3 + ))由W〇98/12757中已爲人所知,其內 容收納於此處以作爲參考。就電致發光轉換之效率而言, 當該包封層直接鄰接於半導體晶片之發出輻射用的表面時 特別有利。 上述之光電組件較佳是包含一種發出輻射之由III-V-化 合物半導體材料(特別是氮化物化合物半導體材料)所構成 的半導體晶片。 該包封層例如是一種塑料層,其較佳是含有一種矽樹脂 層,此乃因矽樹脂之特徵是長久的輻射耐久性,特別是對 紫外光時更是如此。 該包封層特別良好的情況下是一種玻璃層。由玻璃所構成 的包封層所具有的優點是:玻璃所具有的熱膨脹係數對該 半導體晶片之適應性(adaptation)通常較塑料者更優良。因 1282184 此’與溫度有關的機械應力(其會造成包封層之裂痕或甚至 使包封層剝離)可有利地下降。同樣,導電層亦不會由於與 溫度有關的應力而由包封層剝離。此外,玻璃之另一特徵 是與塑料相較時吸濕性較小。又,包封層由玻璃構成時對 紫外射線之持久性較長。 半導體晶片之第一主面同時是第一接觸面,且半導體晶片 | 在此接觸面上固定在載體之第一連接區上。例如,半導體 晶片之第一接觸面可以是基板之後側,其較佳是設有一種 Φ 金屬層,且其至載體之第一連接區之電性連接是以焊接或 導電性之黏合材料來達成。 但亦可使第一和第二接觸面位於半導體晶片之第二主面 上且此二個接觸面以互相絕緣之導電層而分別與載體之二 個連接區之一相連接。這在半導體晶片含有一種隔離用之 基板(例如,藍寶石基板)時是有利的。例如,以氮化物化合 物半導體爲主之半導體晶片中通常使用隔離用之藍寶石基 板。 0 例如,導電層是一種已結構化的金屬層。此金屬層較佳是 被結構化成只覆蓋半導體晶片之第二主面之一小部份,以 防止此光電組件所發出的輻射在金屬層中被吸收。金屬層 ' 之結構化例如可藉由微影術來進行。 、上述之導電層可透過所發出的輻射時特別有利。這特別是 在使製造費用減少時是有利的,此乃因該一可透過輻射的 層不必由該隔離用之層之發出輻射的區域中去除,且因此 不必進行結構化。該導電層例如可包含一種透明之導電氧 化物(TCO),特別是銦錫氧化物(ιτ〇)。 1282184 當期望此光電組件有一種無電位之表面時,則可優先在導 電層上施加一種隔離用之覆蓋層(例如,光阻層)。 本發明的光電組件可在主輻射方向中發出輻射,此光電組 件包括:一種半導體晶片,其具有一第一主面,一第一接 觸面以及一與第一主面相面對的第二主面(其具有第二接觸 面);以及一種載體,其具有二個電性絕緣的連接區。在本 發明光電組件之製造方法中,半導體晶片以第一主面安裝 在載體上,然後,一種隔離用之透明之包封層施加在半導 Φ 體晶片和載體上,該包封層中產生第一凹口使半導體晶片 之第二接觸面之至少一部份裸露,且亦在包封層中產生第 二凹口使載體之第二連接區之至少一部份裸露。然後,施 加一種導電層以便在半導體晶片之第二接觸面和載體之第 二連接區之間形成一種導電性之連接。 該包封層較佳是一種塑料層。這例如可藉由塑料箔之疊 層,聚合物溶液之壓印或飛濺等方法施加而成。 在本發明之方法的一特別有利之另一形式中,首先在半導 φ 體晶片上和載體上施加一種先質(precursor)層,這例如藉由 溶膠凝膠(Sol-Gel)法,懸浮液之蒸鍍法或旋塗法 (spin-coating)來達成。然後,藉由第一溫度處理法使該先質 ^ 層之有機成份去除。這樣所形成之層然後以第二溫度法來 、變成更緊密,以產生一種玻璃層形式之包封層。 較佳是在此包封層中製成第一和第二凹口,使包封層在此 區域中可藉由雷射束而被剝蝕。 可有利地以一種PVD-方法(例如,濺鍍法)來施加上述之 導電層且然後藉由電鍍沈積來強化。 1282184 i * 另一方式是亦可藉由壓印法(特別是絲網印I 該導電層。此外,此導電層亦可藉由飛濺法或 生。 本發明的光電組件可特別有利地用於照明裝f 用在高功率的照明裝置(例如,汽車頭燈)中。依 施形式,此光電組件或照明裝置具有多個半導 別是此光電組件可用在機動車之頭燈中或作爲 源,例如,可用在影像-及/或視頻-投影中。 B 照明裝置可有利地具有至少一光學元件。較佳 學元件配屬於此光電組件之每一個半導體晶片 件用來形成輻射錐體,其具有一種儘可能高的 儘可能小的發散性。 較佳是一光學元件共用地配屬於多個半導體^ 具有的優點是在與”一適當的光學元件配屬於 晶片”之情況相比較時安裝較簡單。此外,半導 成至少二組,其中每一組分別配置一特定的光 Φ 然’亦可將一特定的光學元件配屬於每一半導 可使此組件或照明裝置具有唯一的半導體晶片 學元件配屬於該唯一的半導體晶片。 光學元件較佳是以非成像用之光學集中器 成’其在與一般使用的集中器比較時是用來使 方向中通過。藉由使用至少一種上述之光學元 源所發出的光之發散性可有利地以有效之方式 當光學集中器之光輸入端定位在儘可能靠近 附近時特別有利,這以已設定的無線式接觸方 Μ法)來施加 旋塗法來產 匱中,特別是 據適當的實 體晶片。特 投影用之光 :是至少一光 。此光學元 輻射強度和 區片。這樣所 每一半導體 :體晶片劃分 學元件。當 體晶片。亦 ,唯一的光 之形式來形 輻射在相反 件,則由光 而下降。 半導體晶片 式來進行時 -10- 1282184 特別是可良好地達成,此乃因這在與有線之接觸方式來比 較時能以特別小的高度來形成。適當的方式是立體角(光在 此位體角中由此光學元件中發出)藉由光學元件儘可能地靠 近半導體晶片而縮小,在半導體晶片處該輻射錐體之橫切 面仍然很小。這在一種儘可能大的輻射強度應投影在一種 儘可能小的面積上時特別是需要的,就像其在車頭燈或投 影裝置之應用中之情況一樣。 幾何光學中一種重要的持續値是光導値(Etendne),其是光 $ 源之面積和其發出輻射時的立體角之乘積。此光導値描述 任意強度之光錐體之範圍。此外,此光導値之保持所造成 的結果是:吾人不能再集中半導體晶片之漫射式輻射源之 光(即,光不能轉向至範圍較小的一個面上)且不能容忍各種 損耗。因此,光束以儘可能小的橫切面入射至光學元件時 是有利的。這藉由已設定的接觸方式而能以特別有利的方 式來達成。 在一特別適當的實施形式中,光藉由光學元件而良好地對 準,即,光之發散性大大地縮小,使其由光學元件中在一 # 種輻射錐體中以一種開口角度而發出,此開口角度小於或 等於25度,較佳是小於或等於20度,特別好的情況是小於 或等於1 5度。 光學集中器較佳是一種CPC-,CEC-或CHC-形式之光學集 中器,此處及以下所指的集中器之反射側壁之至少一部份 及/或至少儘可能廣泛地具有組合式拋物面集中器 (Compound Parabolic Concentrator,CPC),組合式橢圓形集 中器(Compound Elliptic Concentrator, CEC)及 / 或組合式雙 曲面集中器(Compound Hyperbolic Concentrator,CHC)。 1282184 光學元件之反射面之一部份或全部以自由形式之面來形 成時特別有利,以便最佳化地設定一種所期望的發射特 性。在其基本形式中,此光學元件較佳是近似於CPC,CEC 或 CHC。 另一方式是此集中器可有利地具有側壁,其使輻射輸入側 與輻射輸出側相連接且須形成此側壁,使此側壁上直接延 伸之連接線在輻射輸入側和輻射輸出側之間以直線形式而 延伸。 φ 該光學元件可有利地以一種介電質集中器的形式而形成 且具有一種整體形式之基體,基體具有一種適當折射率之 介電質材料,使射入光學元件中的光可藉由該整體之側邊 之界面上的全反射而反射至環境介質中。藉由全反射之使 用,則可廣泛地防止光在其反射時被吸收。 光學元件之輻射輸出端可有利地具有透鏡形式之拱形界 面。這樣可使光之發散性更小。 適當的方式是使相鄰之半導體晶片之一部份或所有相鄰 I 之半導體晶片以儘可能小的間距而配置著。此間距較佳是 小於或等於3 00微米,特別是小於或等於1〇〇微米且大於或 等於0微米。上述之措施對達成一種儘可能高的輻射密度 而言是有利的。同時,在緊密配置的半導體晶片中其藉由 連結線所達成之電性接觸是不利的。反之,上述所設定之 無線式之接觸方式對狹窄配置之晶片之電性上的接觸特別 有利。 本發明以下將依據第1至8圖中之實施例來詳述。 【實施方式】 -12- 1282184 相同或作或相同的元件在各圖式中設有相同的參考符號。 本發明第1圖所示的光電組件包含一載體1 〇 ’其上施加 二個接觸金屬層,其形成第一連接區7和第二連接區8。半 導體晶片1以第一主面2(其在本實施例中同時是第一接觸 面4)安裝在第一連接區7上。半導體晶片丨安裝在第一連 接區7上時例如是藉由焊接或黏合來達成。在半導體晶片1 之第二主面5(其與第一主面2相面對)上此半導體晶片1具 有第二接觸面6。 φ 半導體晶片1和載體1 〇設有一種包封層3。此包封層3 較佳是一種塑料層,其特別是可爲矽樹脂層,此乃因矽樹 脂層之特徵是一特別良好的耐輻射性。此包封層3特別優 良的情況下是一*種玻璃層。 第二接觸面6和第二連接區8藉由導電層14 (其經由該包 封層3之一部份區域而延伸)而互相連接。導電層14例如包 含一種金屬或一種導電性之透明氧化物(TCO),例如,銦錫 氧化物(ΙΤ0),Ζη〇:Α1 或 SnO:Sb。 φ 爲了達成一種無電位之表面,則可優先在導電層14上例 如施加一種光阻層。在透明之絕緣覆蓋層1 5之情況下,此 覆蓋層1 5可有利地不必被結構化且因此可整面施加在此光 學組件上。各連接區7,8之部份區域1 6,1 7由該包封層3 和覆蓋層1 5中裸露出來,使得在已裸露之部份區丨6,} 7 中可施加電性終端以便可對此光電組件供應電流。 半導體晶片1可藉由該包封層3而受到保護使不受環境所 影響,特別是不受污染物或濕氣所影響。此包封層3另外 可用作導電層1 4之絕緣載體,其可防止半導體晶片1之側 -13- 1282184 面-及/或該載體之二個連接面7或8之側面發生短路。 此外,由半導體晶片1在主輻射方向1 3中所發出之輻射 亦可經由該包封層3而由光電組件中發出。這樣所具有的 優點是:一種電致發光-轉換材料可附加至該包封層3,藉 此可使所發出的輻射之至少一部份之波長偏移至較大的波 長。特別是能以此種方式而產生白光,其中由藍色-或紫外 線光譜區中發光之半導體晶片1所產生的輻射之一部份會 轉換至互補之黃色光譜區。於此,較佳是使用一種具有輻 φ 射產生用之活性區之半導體晶片1,此活性區含有氮化物化 合物半導體材料,例如,GaN,AlGaN,InGaN或InGaAIN。 本發明之方法之一實施例以下將依據第2A至2F圖所示 的各步驟來說明。 第2 A圖顯示一載體1 〇,其上形成二個電性絕緣之連接區 7,8,其例如藉由施加金屬層且進行結構化而形成。 在第2B圖所示的步驟中,半導體晶片1具有第一主面2 和第二主面5,此半導體晶片1以第一接觸面4(其在本實施 φ 例中即爲半導體晶片1之第二主面5)安裝在載體10之第一 連接區7上。半導體晶片1安裝在載體1 0上例如是藉由焊 接或導電性黏合劑來達成。第二主面5上此半導體晶片1 ~ 具有第二接觸面6,其例如由一接觸層或接觸層序列所形 ’ 成,此接觸層施加在第二主面5上且例如藉由微影術而被 結構化。 第2C圖中顯示一中間步驟,其中在半導體晶片1和設有 各連接區7,8之載體1 〇上施加一種包封層3。較佳是藉由 聚合物溶劑之飛濺或旋塗法來施加該包封層3。此外,亦可 -14- 1282184 使用壓印法(特別是絲網印刷法)來施加此包封層3。 在第2D圖所示的步驟中,藉由第一凹口 π而使第二接觸 面6之一部份區域裸露,且藉由第二凹口 12而使第二連接 區8之一部份區域裸露,第一凹口 π和第二凹口 12產生於 該包封層3中。各凹口 1 1,1 2較佳是以雷射加工法來產生。 有利的方式是亦可使第一連接區7之部份區域1 6和第二連 接區8之部份區域1 7裸露,以便可施加電性終端至此光電 組件之載體1 0上。 φ 在第2E圖所示的第二中間步驟中,事先藉由凹口 π而裸 露之第二接觸面6經由導電層14而與第二連接區8之事先 藉由凹口 1 2而裸露之區域導電性地相連接。 導電層1 4例如是一種金屬層,例如,施加此金屬層時, 首先可在該包封層3之整面上施加一種較薄之金屬層(其大 約1 00奈米厚)。這例如可藉由蒸鍍或濺鍍來達成。然後, 在此金屬層上施加一種光阻層(未顯示),此時藉由光學技術 而在一區域中產生凹口,此凹口中該導電層14使第二接觸 φ 面6與第二連接區8相連接。 在光阻層之凹口之區域中,事先已施加的金屬層藉由電鍍 沈積來強化,這能有利地以下述方式來達成:此金屬層在 '電鍍強化區中之厚度較事先已在整面上施加的金屬層的厚 度大很多。例如,金屬層在電鍍強化區中之厚度可達數個 微米。然後,去除光阻層且進行一種蝕刻過程,藉此使金 屬層在未以電鍍強化的區域中完全去除。反之,在電鍍強 化區中此金屬層由於厚度較大而只有一部份被去除,使此 金屬層在此區中仍保留著以作爲導電層14。 -15- 1282184 另一方式是亦可將該導電層1 4直接以結構化的形式施加 在該包封層3上。這例如可以壓印法(特別是絲網印刷法) 來達成。 當施加一種可透過已發出的輻射之導電層1 4時,有和J白勺 是此時導電層1 4不須進行結構化。特別是透明之導電氧化 物(TCO),較佳是銦錫氧化物(ITO)或導電之塑料層,適合用 作導電性透明層。此導電性透明層較佳是藉由蒸鍍,壓印, 飛濺或旋塗法施加而成。 φ 在第2F圖所示的步驟中施加電性絕緣之覆蓋層丨5,其較 佳是一種塑料層(例如,光阻層)。此絕緣的覆蓋層1 5特別 是覆蓋該導電層14,以產生一種無電位之表面。 施加此包封層3時(即,先前在第2C圖中昕示之步驟)的 另一種方式以下將依據第3 A,3 B,3 C圖來說明。 因此’在半導體晶片1和載體10上首先施加一^種先質層 9,其包含有機-和無機成份。 施加此先質層時例如可藉由溶膠凝膠(Sol-Gel)法,懸浮液 I 之蒸鍍,濺鍍,飛或旋塗法(s p i η - c 〇 a t i n g)來達成。 在溫度1(較佳是大約200°C至400°C)時在一種中性N2-大氣中或小的〇2-分壓下藉由溫度處理4小時至8小時,使 ^ 先質層9之有機成份(例如,第3 B圖中以箭頭1 8所示者) 被去除。 以上述方式所形成之層然後如第3 C圖所示以一種燒結過 程而被緊密化,以產生該包封層3。此燒結過程藉由下一溫 度處理時在溫度T2(較佳是大約300°C至500°C)中進行大約 4小時至8小時。依據玻璃層之形式,此燒結過程較佳是在 -16- 1282184: 還原用-或氧化用之大氣中進行。 第3A,3B,3C圖中所示之步驟亦能以類似的方式用來製 造一由玻璃所構成之覆蓋層1 5。在此種情況下,這些步驟 較佳是在第一次中進行,以產生一種由玻璃所構成的包封 層3,且在施加該導電層1 4之後重複進行,以沈積一種由 玻璃所構成的覆蓋層1 5。 藉由多次重複地施加電性絕緣層和導電層,則亦可實現多 層式的電路。這特別是對含有多個半導體晶片之LED-模組 0 是有利的。 在第4至8圖中顯示一種具有至少一光電組件之照明裝 置,光電組件具備至少一光學元件19,其中一光學元件配 屬於此光電組件之每一個半導體晶片1。 在第6圖所示的光源2中,半導體晶片上配置多個光學元 件1 9,其例如以單件方式而形成。反之,第4圖所示的光 電組件具有唯一的光學元件。此光學元件19以CPC-形式而 形成。 先電組件之每一個半導體晶片1例如設有唯一的光學兀 件1 9。光學元件之面對此半導體晶片之輻射輸入端具有一 輻射輸入口,其邊長例如小於半導體晶片之相對應之水平 邊長之1 · 5倍,較佳是小於1 · 2 5倍。若此種小的輻射輸入 端配置成儘可能靠近半導體晶片,則由半導體晶片所發出 的輻射之發散性可以有效的方式下降且產生一種高亮度的 輻射錐體。 若配置唯一的狹窄之光學元件丨9以取代每一個半導體晶 片,則此光學元件19亦可用於多個半導體晶片1中,第5 -17- 1282184 圖所示的組件之光學元件1 9即屬此種情況。此光學元件1 9 例如亦可用於6個半導體晶片1中。 爲了達成一種儘可能高的效率,則半導體晶片丨應儘可能 互相靠近而配置著。相鄰之半導體晶片1之至少一部份相 互之間例如具有一種小於50微米之間距。特別有利的是各 個半導體晶片之間基本上無間距存在著。 除了 CPC-形式的集中器以外,光學元件19例如具有側 壁’其以直線方式由輻射輸入端延伸至輻射輸出端。此種 # 光學元件1 9之一種例子顯示在第6圖中。此種光學元件1 9 中,輻射輸出端較佳是設有一種球形-或非球形之透鏡或此 輻射輸出端以此種透鏡形式而向外形成拱形。 非球形之拱形在與球形之拱形相比較時之優點是:非球形 之拱形例如隨著至光學元件1 9之光軸之距離逐漸增加而變 小。因此,可考慮以下的情況:輻射錐體(其發散性由於光 學元件1 9而變小)不是點形的光輻射源而是一種具有某種 範圍之輻射源。 鲁 在與CPC-形式的光學元件比較時,上述之光學元件(其具 有一種由輻射輸入端以直線方式延伸至輻射輸出端的反射 壁)所具有的優點是:在同時使光學元件1 9之構造高度大大 地下降時,輻射錐體的發散性可明顯地下降。其它優點是: 其直條形之側面可較簡單地藉由濺鍍法(例如,濺鍍澆注或 潑鍍壓製)來製成,拱形的側面(例如,C p c -形式的集中器中 者)則較不易形成。 上述之光學元件較佳是一種介電質集中器,其基體是由介 電質材料所構成。但另一方式是亦可使用另一種集中器, -18- 1282184 其基體界定了一種具有反射式內壁之中空區。 當光學元件1 9以介電質集中器之形式而形成時,則通常 另需要一種固定元件,以使光學元件1 9定位在半導體晶片 上或相對於半導體晶片而定位。 第4至6圖所示的光學元件具有支件120,其在光學元件 1 9之輻射輸出端之附近中由介電質基體向外延伸且在側面 上由介電質基體凸出以及在至此基體一距離處而在輻射輸 入端之方向中延伸。 0 各支件1 20例如可包含圓柱式之元件,其上設置光學元件 且因此可相對於半導體晶片1而定位。 除了上述形式之支件1 20之外,光學元件1 9亦可藉由各 別的支持元件而安裝著且予以定位。例如,其可插入各別 的框架中。 弟4 ’ 6圖中所不的各組件是光學模組,其具有一種模組 載體2 0。模組載體中形成導電軌和對立插頭2 5,藉此可使 此模組藉由相對應的插頭而在電性上相連接。 第7圖所示的組件中,光學元件丨9直接施加在絕緣用的 _覆蓋層15上,使光學元件19之輻射輸入端鄰接於覆蓋層 15上。此覆蓋層15作爲光學元件用之耦合材料。另一方式 是此耦合材料亦能以另一種層的形式施加在半導體晶片1 上。此處之親合材料例如是指一種介電質材料,其可透過 半導體晶片1所發出的輻射且具有一種與半導體晶片丨之 半導體材料之折射率相等之折射率,使半導體晶片丨和光 學元件19之間之界面上之斯涅爾(FresnelHt耗和全反射大 大地下降。 斯涅爾(Fresnel)損耗是一種由於界面(其上會發生折射率 -19- 1282184 > ^ 跳躍現象)上之反射所造成的損耗,一種典型之例子是空氣 和介電質材料之間所發生的折射率跳躍,其例如發生於電 磁輸射進入光學元件或由光學元件出來日寺。 半導體晶片1因此可藉由耦合材料而以光學方式稱合至 光學元件1 9之介電質基體上。此耦合材料例如是一種可透 過輻射的溶膠,其折射率依據光學元件丨9之介電質體之折 射率來調整或依據半導體晶片1之半導體材料之折射率來 調整或位於此二種材料之折射率之間。除了溶膠之外,亦 Φ 可使用環氧樹脂或光阻形式的材料。 牵禺合材料之折射率較佳是介於光學元件1 9之介電質體之 折射率和半導體晶片1之半導體材料之折射率之間。重要 的是:折射率需較1大很多。例如,可使用一種折射率大 於1·3(較佳是大於1.4)之耦合材料作爲耦合介質。此處例如 可使用矽樹脂。但亦可使用其它材料例如,可使用液體作 爲耦合介質。例如,水之折射率大於1 · 3,因此可用作耦合 劑。 • 第8圖所示的實施例中,半導體晶片1和光學元件1 9之 間存在著一種間隙5 (例如’一種氣隙)。另一方式是亦可在 間隙5中塡入其它氣體且亦可將間隙5中抽成真空。間隙 之作用是使半導體晶片1所發出之輻射之高發散的成份由 於在界面上的反射而使進入光學元件1 9中的數量少於一種 低發散的成份。這對產生高數量之準直式輻射錐體以及在 各種應用中是有利的,其中高發散之成份會造成干擾。此 種例子可在投影應用中發現。 在第7圖所示之實施例中,光學元件之輻射輸入端至半導 -20- 1282184 體晶片1之距離小於100微米(例如,只有60微米)。第8 圖所示的實施例中’光學元件之輻射輸入端至半導體晶片i 之距離例如是180微米。 本發明不限於各實施例中所作的描述。反之,本發明包含 每一新的特徵和各特徵的每一種組合,特別是包含各申請 專利範圍中各特徵的每一種組合,當此特徵或此組合本身 未明顯地顯示在各申請專利範圍中或各實施例中時亦同。 【圖式簡單說明】 第1圖本發明之光電組件之第一實施例之橫切面。 第2圖本發明依據各中間步驟所形成的方法之第一實 施例之圖解。 第3圖本發明之方法的第二實施例中已施加包封層及/ 或覆蓋層之另一種形式的圖解。 第4圖照明裝置之第一實施例之透視圖。 第5圖照明裝置之第二實施例之透視圖。 第6圖照明裝置之第三實施例之透視圖。 第7圖照明裝置之第四實施例之一部份之切面圖。 第8圖照明裝置之第五實施例之一部份之切面圖。 【主要元件符號說明】 1 半導體晶片 2 第一主面 3 包封層 4 第一接觸面 5 第二主面 6 第二接觸面 -21- 1282184 j * 7 8 9 10 11 12 13 141282184 1 * IX. Description of the Invention: [Technical Fields of the Invention] This patent application claims the priority of the German Patent Application No. 1,200, 404, 768, s, and 1, 00, 405, 037, and 7, the disclosure of which is hereby incorporated by reference. The invention relates to a photovoltaic module according to the preamble of the first application of the patent application, a method for manufacturing a photovoltaic module according to the first aspect of the patent application, and a lighting device according to claim 25. • Optoelectronic components of the above type (eg, light-emitting diodes (LEDs)) typically have two opposing contact faces, wherein the first contact faces are typically mounted on a conductive carrier, for example, a type of wafer housing On the area with the metal layer. The facing second contact faces of the semiconductor wafer are generally less susceptible to electrical contact because they are typically not adjacent to the predetermined second connection region of the carrier. The second contact zone is conventionally formed by a connecting line. In order to form an electrically conductive connection between the bonding wire and the surface of the wafer to be contacted, the area of the surface of the φ wafer must be provided with a metal layer (so-called bonding pad). The disadvantage of such a metal layer is that it is optically opaque and therefore absorbs a portion of the white & light produced in the wafer _______ _____________. But the area of the bond pad is technically reduced -. -, - - " 圹 only possible to some extent and will increase the manufacturing humiliation. '[Prior Art] In order to reduce the obscuration problem of a part of the surface used for the emission of the photovoltaic module, it is known from JP 0 9 2 8 3 8 0 1 A to be an indium tin oxide (ITO). The conductive transparent layer is formed in a wireless manner in contact with an electrode disposed on the surface of the semiconductor wafer. The side of the semiconductor wafer is thus electrically isolated from the conductive transparent layer by an insulating layer of 1282184 i made of Si 〇 2 . It is known from WO 9 8/1 2757 to embed an optoelectronic semiconductor wafer (which is in conventional contact with a bonding line) in a potting compound comprising an electroluminescent conversion material for the semiconductor wafer At least a portion of the emitted radiation is converted to a longer wavelength. In this way, for example, a mixed color light or white light can be produced in a semiconductor wafer which emits blue light or ultraviolet light. SUMMARY OF THE INVENTION / 1 / The object of the present invention is to provide a wirelessly-modified optical / _______________________________-----μ, _ - electrical components in which the semiconductor wafer can be protected from the environment Otherwise, it is possible to cause the wavelength of the emitted radiation to be converted, and the photovoltaic module of the present invention is less expensive to manufacture. Further, the present invention provides the above-mentioned photovoltaic module--:-........................................... ....* An advantageous manufacturing method. The above object is achieved by the photovoltaic module of claim 1, the manufacturing method of item 12, and the lighting device of item 25. Other forms of advantageous aspects of the invention are described in the various dependent claims. The optoelectronic component of the present invention can emit radiation in a main radiation direction, the optoelectronic component comprising: a semiconductor wafer having a first major surface, a first contact surface and a second surface facing the first main surface a main surface (having a second contact surface); and a carrier having two electrically insulating connection regions, wherein the semiconductor wafer is fixed on the carrier with the first main surface and the first contact surface is electrically conductive with the first connection region Sexually connected. The semiconductor wafer and carrier are provided with an electrically insulating, transparent encapsulating layer. Therefore, the radiation emitted in the main radiation direction is emitted via the encapsulation layer. In addition, a conductive layer extends from the second contact surface to a second electrical connection of the carrier via a partial region of the encapsulation layer, and the second contact surface and the second connection region are electrically conductively disposed. connection. The electrically insulating encapsulating layer of the photovoltaic module of the present invention advantageously satisfies a variety of functions. Since the encapsulating layer is an electrical insulator, it prevents the occurrence of a short circuit when the above-mentioned conductive layer is applied. The short circuit occurs when the pn-junction of the semiconductor wafer is applied to the side of the semiconductor wafer by the conductive layer and the short connection or the two connection regions of the carrier are connected to each other via the conductive layer. In addition, the encapsulation layer protects the semiconductor wafer from the environment, particularly from contamination and from moisture. Since the radiation emitted by the optoelectronic component in the main radiation direction is emitted via the encapsulation layer, the encapsulation layer can also advantageously comprise an electroluminescent conversion material, for example in the form of a semiconductor emitting ultraviolet or blue light. The wafer produces white light. Suitable electroluminescent-converting materials (e.g., YAG:Ce(Y3Ah〇12:Ce3 + )) are known from the WO 98/12757, the contents of which are incorporated herein by reference. In terms of the efficiency of electroluminescence conversion, it is particularly advantageous when the encapsulation layer is directly adjacent to the surface of the semiconductor wafer from which radiation is emitted. The above photovoltaic module preferably comprises a semiconductor wafer composed of a III-V-compound semiconductor material (particularly a nitride compound semiconductor material) which emits radiation. The encapsulating layer is, for example, a plastic layer which preferably contains a layer of tantalum resin because the resin is characterized by long-lasting radiation durability, especially for ultraviolet light. The envelope layer is particularly good in the case of a glass layer. The encapsulating layer composed of glass has the advantage that the thermal expansion coefficient of the glass is generally superior to that of the plastic wafer for the adaptation of the semiconductor wafer. This may be advantageously reduced by the temperature-dependent mechanical stress of 1282184 which causes cracking of the encapsulating layer or even peeling of the encapsulating layer. Also, the conductive layer is not peeled off by the encapsulation layer due to temperature-dependent stress. In addition, another feature of glass is that it is less hygroscopic when compared to plastic. Further, when the encapsulating layer is made of glass, the durability to ultraviolet rays is long. The first main surface of the semiconductor wafer is simultaneously the first contact surface, and the semiconductor wafer is mounted on the first connection region of the carrier. For example, the first contact surface of the semiconductor wafer may be the back side of the substrate, which is preferably provided with a Φ metal layer, and the electrical connection to the first connection region of the carrier is achieved by soldering or conductive bonding material. . Alternatively, however, the first and second contact faces are located on the second major face of the semiconductor wafer and the two contact faces are respectively connected to one of the two connection regions of the carrier by mutually insulated conductive layers. This is advantageous when the semiconductor wafer contains a substrate for isolation (e.g., a sapphire substrate). For example, a sapphire substrate for isolation is generally used in a semiconductor wafer mainly composed of a nitride compound semiconductor. 0 For example, the conductive layer is a structured metal layer. Preferably, the metal layer is structured to cover only a small portion of the second major surface of the semiconductor wafer to prevent radiation emitted by the optoelectronic component from being absorbed in the metal layer. The structuring of the metal layer ' can be performed, for example, by lithography. The above conductive layer is particularly advantageous when it transmits the emitted radiation. This is advantageous in particular in reducing the manufacturing costs, since the radiation-transmissive layer does not have to be removed from the radiation-emitting region of the layer for isolation and therefore does not have to be structured. The electrically conductive layer may, for example, comprise a transparent conductive oxide (TCO), in particular indium tin oxide (ITO). 1282184 When it is desired that the optoelectronic component has a potential-free surface, a barrier layer for isolation (e.g., a photoresist layer) may be preferentially applied to the conductive layer. The optoelectronic component of the present invention emits radiation in a main radiation direction, the optoelectronic component comprising: a semiconductor wafer having a first major surface, a first contact surface and a second major surface facing the first major surface (having a second contact surface); and a carrier having two electrically insulating connection regions. In the manufacturing method of the photovoltaic module of the present invention, the semiconductor wafer is mounted on the carrier with the first main surface, and then a transparent encapsulating layer for isolation is applied to the semiconductor wafer and the carrier, and the encapsulation layer is produced. The first recess exposes at least a portion of the second contact surface of the semiconductor wafer and also creates a second recess in the encapsulation layer to expose at least a portion of the second connection region of the carrier. A conductive layer is then applied to form a conductive connection between the second contact surface of the semiconductor wafer and the second connection region of the carrier. The encapsulation layer is preferably a plastic layer. This can be applied, for example, by lamination of a plastic foil, embossing or splashing of a polymer solution. In a particularly advantageous form of the method of the invention, a precursor layer is first applied to the semiconducting φ body wafer and to the carrier, such as by a Sol-Gel method. This is achieved by vapor deposition of a liquid or spin-coating. Then, the organic component of the precursor layer is removed by a first temperature treatment. The layer thus formed is then brought closer to the second temperature method to produce an encapsulating layer in the form of a glass layer. Preferably, the first and second recesses are formed in the encapsulating layer such that the encapsulating layer can be ablated by the laser beam in this region. The conductive layer described above can advantageously be applied in a PVD-method (e.g., sputtering) and then strengthened by electroplating deposition. 1282184 i * Alternatively, the conductive layer can also be printed by imprinting (especially by screen printing. Further, the conductive layer can also be spattered or produced. The photovoltaic module of the invention can be used particularly advantageously. The lighting device f is used in a high-power lighting device (for example, a car headlight). According to the form, the photovoltaic module or the lighting device has a plurality of semi-conductors, and the optoelectronic component can be used in a headlight of a motor vehicle or as a source. For example, it can be used in image- and/or video-projection. B The illumination device can advantageously have at least one optical component. The preferred component is associated with each of the semiconductor wafer components of the photovoltaic component for forming a radiation cone. Having a divergence that is as high as possible as small as possible. Preferably, an optical component is commonly associated with a plurality of semiconductors. The advantage is that the mounting is compared when compared to the case where "a suitable optical component is associated with a wafer" In addition, the semi-conductance is at least two groups, each of which is configured with a specific light Φ. However, a specific optical component can also be assigned to each semi-conductor to enable the component or illuminating device. There is a unique semiconductor wafer technology component associated with the unique semiconductor wafer. The optical component is preferably a non-imaging optical concentrator that is used to pass in the direction when compared to a commonly used concentrator. The divergence of light emitted by at least one of the above-described optical element sources can advantageously be advantageously used in an efficient manner when the optical input end of the optical concentrator is positioned as close as possible to the vicinity, which is set by the wireless contact method. Method) to apply spin coating to the calving, especially according to the appropriate physical wafer. Special projection light: is at least one light. This optical element radiates intensity and patch. Each of these semiconductors: bulk wafer demarcation components. When the body is wafer. Also, the only form of light that radiates in the opposite direction is then reduced by light. When the semiconductor wafer is used, -10- 1282184 is particularly well achieved because it can be formed at a particularly small height when compared with the wired contact method. Suitably the solid angle (light emitted from the optical element in the body angle) is reduced by the optical element as close as possible to the semiconductor wafer, the cross section of the radiation cone being still small at the semiconductor wafer. This is especially desirable when a radiant intensity as large as possible should be projected onto an area as small as possible, as it is in the application of a headlight or projection device. An important continuous enthalpy in geometric optics is the light guide entanglement (Etendne), which is the product of the area of the light source and the solid angle at which it emits radiation. This light guide describes the range of light cones of any intensity. In addition, the result of the retention of the light guide is that we can no longer concentrate the light of the diffused radiation source of the semiconductor wafer (i.e., the light cannot be diverted to a smaller surface) and cannot tolerate various losses. Therefore, it is advantageous when the light beam is incident on the optical element with as small a cross-section as possible. This can be achieved in a particularly advantageous manner by means of the established contact method. In a particularly suitable embodiment, the light is well aligned by the optical element, ie the divergence of the light is greatly reduced, such that it is emitted by an opening angle in one of the radiation cones of the optical element. The opening angle is less than or equal to 25 degrees, preferably less than or equal to 20 degrees, and particularly preferably less than or equal to 15 degrees. Preferably, the optical concentrator is a CPC-, CEC- or CHC-form optical concentrator, at least a portion of the reflective sidewalls of the concentrator referred to herein and hereinafter and/or at least as broadly as possible having a combined paraboloid Compound Parabolic Concentrator (CPC), Compound Elliptic Concentrator (CEC) and/or Compound Hyperbolic Concentrator (CHC). 1282184 It is particularly advantageous when one or all of the reflective surfaces of the optical elements are formed in a free form to optimally set a desired emission characteristic. In its basic form, the optical element is preferably approximated to CPC, CEC or CHC. Alternatively, the concentrator can advantageously have a side wall that connects the radiation input side to the radiant output side and must form the side wall such that the connecting line extending directly on the side wall is between the radiation input side and the radiant output side Extends in a straight line. φ The optical element may advantageously be formed in the form of a dielectric concentrator and having a matrix of a unitary form having a dielectric material of a suitable refractive index such that light incident into the optical element is Total reflection on the interface of the entire side is reflected into the environmental medium. By the use of total reflection, it is widely prevented that light is absorbed when it is reflected. The radiant output of the optical element may advantageously have an arched interface in the form of a lens. This makes the light divergence smaller. A suitable way is to have one or all of the adjacent semiconductor wafers of adjacent semiconductor wafers arranged at as small a spacing as possible. Preferably, the spacing is less than or equal to 300 microns, particularly less than or equal to 1 micron and greater than or equal to 0 microns. The above measures are advantageous for achieving a radiation density as high as possible. At the same time, the electrical contact achieved by the bonding wires in a closely arranged semiconductor wafer is disadvantageous. Conversely, the above-described wireless contact mode is particularly advantageous for electrical contact of a narrowly disposed wafer. The invention will be described in detail below in accordance with the examples in Figures 1 to 8. [Embodiment] -12- 1282184 The same or the same elements are provided with the same reference symbols in the respective drawings. The photovoltaic module shown in Fig. 1 of the present invention comprises a carrier 1 〇 ' on which two contact metal layers are applied, which form a first connection region 7 and a second connection region 8. The semiconductor wafer 1 is mounted on the first connection region 7 with a first main face 2, which in this embodiment is also a first contact face 4 at the same time. When the semiconductor wafer cassette is mounted on the first connection region 7, it is achieved, for example, by soldering or bonding. The semiconductor wafer 1 has a second contact surface 6 on the second main face 5 of the semiconductor wafer 1 which faces the first main face 2. The φ semiconductor wafer 1 and the carrier 1 are provided with an encapsulation layer 3. The encapsulating layer 3 is preferably a plastic layer, which may in particular be a resin layer, since the eucalyptus layer is characterized by a particularly good radiation resistance. In the case where the encapsulating layer 3 is particularly excellent, it is a type of glass layer. The second contact surface 6 and the second connection region 8 are connected to each other by a conductive layer 14 which extends through a partial region of the encapsulation layer 3. The conductive layer 14 contains, for example, a metal or a conductive transparent oxide (TCO), for example, indium tin oxide (ΙΤ0), Ζη〇: Α1 or SnO:Sb. In order to achieve a potential-free surface, a photoresist layer can be preferentially applied to the conductive layer 14, for example. In the case of a transparent insulating cover 15 , this cover layer 15 can advantageously not have to be structured and thus can be applied over its entire surface to this optical component. A portion of the region 1, 16 of each of the connection regions 7, 8 is exposed by the encapsulation layer 3 and the cover layer 15, so that an electrical terminal can be applied in the exposed portion 丨6,} Current can be supplied to this optoelectronic component. The semiconductor wafer 1 can be protected from the environment by the encapsulation layer 3, in particular from contaminants or moisture. This encapsulation layer 3 can additionally be used as an insulating carrier for the electrically conductive layer 14 to prevent shorting of the sides of the semiconductor wafer 1 - 13 - 1282184 - and / or the sides of the two connection faces 7 or 8 of the carrier. Furthermore, the radiation emitted by the semiconductor wafer 1 in the main radiation direction 13 can also be emitted from the optoelectronic component via the encapsulation layer 3. This has the advantage that an electroluminescent-converting material can be attached to the encapsulation layer 3, whereby the wavelength of at least a portion of the emitted radiation can be shifted to a greater wavelength. In particular, white light can be produced in such a manner that a portion of the radiation generated by the semiconductor wafer 1 illuminated in the blue- or ultraviolet spectral region is converted to a complementary yellow spectral region. Here, it is preferred to use a semiconductor wafer 1 having an active region for generating radiation, the active region containing a nitride compound semiconductor material such as GaN, AlGaN, InGaN or InGaAIN. An embodiment of the method of the present invention will be described below in accordance with the steps shown in Figs. 2A to 2F. Fig. 2A shows a carrier 1 〇 on which two electrically insulating connection regions 7, 8 are formed, which are formed, for example, by applying a metal layer and structuring. In the step shown in FIG. 2B, the semiconductor wafer 1 has a first main surface 2 and a second main surface 5, and the semiconductor wafer 1 has a first contact surface 4 (which is the semiconductor wafer 1 in the embodiment φ) The second main face 5) is mounted on the first connection zone 7 of the carrier 10. Mounting of the semiconductor wafer 1 on the carrier 10 is achieved, for example, by soldering or a conductive adhesive. The semiconductor wafer 1 has a second contact surface 6 which is formed, for example, by a contact layer or a sequence of contact layers, which is applied to the second main surface 5 and is, for example, by lithography It is structured and structured. An intermediate step is shown in Fig. 2C in which an encapsulation layer 3 is applied to the semiconductor wafer 1 and the carrier 1 which is provided with the respective connection regions 7, 8. Preferably, the encapsulating layer 3 is applied by splashing or spin coating of a polymer solvent. Alternatively, the encapsulation layer 3 can be applied using an imprint method (especially a screen printing method) of -14-1282184. In the step shown in FIG. 2D, a portion of the second contact surface 6 is exposed by the first recess π, and a portion of the second connection region 8 is made by the second recess 12 The area is bare, and the first notch π and the second notch 12 are generated in the encapsulation layer 3. Each of the notches 1 1,1 2 is preferably produced by a laser processing method. Advantageously, a partial region 16 of the first connection region 7 and a partial region 17 of the second connection region 8 can also be exposed so that an electrical terminal can be applied to the carrier 10 of the photovoltaic module. φ In the second intermediate step shown in FIG. 2E, the second contact surface 6 exposed by the recess π in advance is exposed to the second connection region 8 via the recess 1 2 via the conductive layer 14 The regions are electrically connected to each other. The conductive layer 14 is, for example, a metal layer. For example, when the metal layer is applied, a thin metal layer (which is about 100 nm thick) can be applied to the entire surface of the encapsulation layer 3. This can be achieved, for example, by evaporation or sputtering. Then, a photoresist layer (not shown) is applied over the metal layer, and a recess is formed in an area by optical techniques, wherein the conductive layer 14 connects the second contact φ plane 6 to the second connection. Zone 8 is connected. In the region of the recess of the photoresist layer, the previously applied metal layer is reinforced by electroplating, which can advantageously be achieved in that the thickness of the metal layer in the 'electroplating strengthening zone is earlier than The thickness of the metal layer applied on the surface is much larger. For example, the thickness of the metal layer in the plated strengthening zone can be up to several microns. Then, the photoresist layer is removed and an etching process is performed, whereby the metal layer is completely removed in the region not reinforced by electroplating. On the contrary, in the electroplating strengthening zone, the metal layer is only partially removed due to the large thickness, so that the metal layer remains as the conductive layer 14 in this region. -15- 1282184 Alternatively, the conductive layer 14 can also be applied directly to the encapsulation layer 3 in a structured form. This can be achieved, for example, by embossing (especially screen printing). When a conductive layer 14 that is permeable to emitted radiation is applied, it is J and J that the conductive layer 14 does not need to be structured. In particular, a transparent conductive oxide (TCO), preferably indium tin oxide (ITO) or a conductive plastic layer, is suitable for use as a conductive transparent layer. The conductive transparent layer is preferably applied by evaporation, embossing, splashing or spin coating. φ An electrically insulating cover layer 5 is applied in the step shown in Fig. 2F, which is preferably a plastic layer (e.g., a photoresist layer). This insulating cover layer 15 in particular covers the conductive layer 14 to create a potential-free surface. Another way of applying this encapsulation layer 3 (i.e., the steps previously illustrated in Figure 2C) will be described below in accordance with Figures 3A, 3B, 3C. Therefore, a precursor layer 9, which contains an organic-and inorganic component, is first applied to the semiconductor wafer 1 and the carrier 10. The application of the precursor layer can be achieved, for example, by a Sol-Gel method, evaporation of the suspension I, sputtering, flying or spin coating (s p i η - c 〇 a t i n g). At a temperature of 1 (preferably about 200 ° C to 400 ° C) in a neutral N 2 atmosphere or a small 〇 2 partial pressure by temperature treatment for 4 hours to 8 hours, so that the precursor layer 9 The organic component (for example, as indicated by arrow 18 in Figure 3B) is removed. The layer formed in the above manner is then compacted in a sintering process as shown in Fig. 3C to produce the encapsulating layer 3. This sintering process is carried out at a temperature T2 (preferably about 300 ° C to 500 ° C) for about 4 hours to 8 hours by the next temperature treatment. Depending on the form of the glass layer, the sintering process is preferably carried out in the atmosphere of -16 - 1282184: reduction or oxidation. The steps shown in Figures 3A, 3B, and 3C can also be used in a similar manner to produce a cover layer 15 of glass. In this case, these steps are preferably carried out in the first step to produce an encapsulating layer 3 composed of glass, which is repeated after the application of the conductive layer 14 to deposit a glass. Cover layer 1 5. By applying the electrically insulating layer and the conductive layer a plurality of times repeatedly, a multi-layer circuit can also be realized. This is especially advantageous for LED-module 0 containing a plurality of semiconductor wafers. In Figures 4 to 8, an illumination device having at least one optoelectronic component is provided, the optoelectronic component being provided with at least one optical component 19, one of which is associated with each of the semiconductor wafers 1 of the optoelectronic component. In the light source 2 shown in Fig. 6, a plurality of optical elements 192 are disposed on a semiconductor wafer, which are formed, for example, in a single piece. On the contrary, the photo-electric component shown in Fig. 4 has a unique optical component. This optical element 19 is formed in a CPC-form. Each of the semiconductor wafers 1 of the pre-electrical components is provided with, for example, a unique optical member 19. The face of the optical element has a radiation input port for the radiation input end of the semiconductor wafer, the side length of which is, for example, less than 1.5 times the corresponding horizontal side length of the semiconductor wafer, preferably less than 1.25 times. If such a small radiation input is arranged as close as possible to the semiconductor wafer, the divergence of the radiation emitted by the semiconductor wafer can be reduced in an efficient manner and produce a high brightness radiation cone. If a single narrow optical component 丨9 is provided to replace each semiconductor wafer, the optical component 19 can also be used in a plurality of semiconductor wafers 1, and the optical components of the components shown in Figures 5-17 to 1282184 are This is the case. This optical element 1 9 can also be used, for example, in six semiconductor wafers 1. In order to achieve the highest possible efficiency, the semiconductor wafers should be placed as close as possible to each other. At least a portion of adjacent semiconductor wafers 1 have, for example, a distance of less than 50 microns between each other. It is particularly advantageous that substantially no spacing exists between the individual semiconductor wafers. In addition to the CPC-form concentrator, the optical element 19 has, for example, a side wall 'which extends in a straight line from the radiation input end to the radiation output end. An example of such an #optical component 199 is shown in Figure 6. In such an optical element 19, the radiation output end is preferably provided with a spherical or non-spherical lens or the radiation output end is arched outwardly in the form of such a lens. An advantage of the non-spherical arch shape when compared to the spherical arch shape is that the non-spherical arch shape becomes smaller, for example, as the distance from the optical axis of the optical element 19 gradually increases. Therefore, the following case can be considered: the radiation cone (which has a divergence due to the optical element 19) is not a point-shaped source of optical radiation but a source of radiation having a certain range. When compared to a CPC-form optical component, the optical component described above having a reflective wall extending linearly from the radiation input end to the radiation output end has the advantage of simultaneously configuring the optical component 19 When the height is greatly reduced, the divergence of the radiation cone can be significantly reduced. Other advantages are: the side of the straight strip can be made relatively simply by sputtering (for example, sputtering or pouring), the side of the arch (for example, the concentrator in the form of C pc - ) is less likely to form. The optical element described above is preferably a dielectric concentrator whose substrate is composed of a dielectric material. Alternatively, another concentrator can be used, -18-1282184 whose base defines a hollow zone with a reflective inner wall. When the optical element 19 is formed in the form of a dielectric concentrator, a fixed element is typically additionally required to position the optical element 19 on or relative to the semiconductor wafer. The optical element shown in Figures 4 to 6 has a support 120 which extends outwardly from the dielectric substrate in the vicinity of the radiation output end of the optical element 19 and protrudes from the dielectric substrate on the side and up to this point The substrate extends at a distance and in the direction of the radiation input. 0 Each of the supports 1 20 may, for example, comprise a cylindrical element on which an optical element is placed and thus positionable relative to the semiconductor wafer 1. In addition to the support member 20 of the above type, the optical element 19 can also be mounted and positioned by separate support members. For example, it can be inserted into separate frames. The components that are not shown in the figure 4' are optical modules having a module carrier 20. A conductor rail and a counter plug 25 are formed in the module carrier, whereby the module can be electrically connected by a corresponding plug. In the assembly shown in Fig. 7, the optical element 丨 9 is directly applied to the insulating cover layer 15 so that the radiation input end of the optical element 19 abuts on the cover layer 15. This cover layer 15 serves as a coupling material for the optical element. Alternatively, the coupling material can also be applied to the semiconductor wafer 1 in the form of another layer. The affinity material herein refers to, for example, a dielectric material that transmits radiation emitted from the semiconductor wafer 1 and has a refractive index equal to that of the semiconductor material of the semiconductor wafer, such that the semiconductor wafer and the optical component The Snellel at the interface between 19 (FresnelHt consumption and total reflection are greatly reduced. Fresnel loss is due to the interface (which will have a refractive index of -19 - 1282184 > ^ jump phenomenon) A typical example of the loss caused by reflection is the refractive index jump that occurs between the air and the dielectric material, which occurs, for example, when electromagnetic radiation enters the optical element or is emitted by the optical element. The semiconductor wafer 1 can therefore be borrowed. Optically coupled to the dielectric substrate of the optical element 19. The coupling material is, for example, a radiation permeable sol having a refractive index that depends on the refractive index of the dielectric body of the optical element 丨9. Adjusting or adjusting according to the refractive index of the semiconductor material of the semiconductor wafer 1 or between the refractive indices of the two materials. In addition to the sol, it is also Φ A material in the form of an epoxy resin or a photoresist. The refractive index of the conjugated material is preferably between the refractive index of the dielectric body of the optical element 19 and the refractive index of the semiconductor material of the semiconductor wafer 1. Yes, the refractive index needs to be much larger than 1. For example, a coupling material having a refractive index greater than 1.3 (preferably greater than 1.4) can be used as the coupling medium. Here, for example, a ruthenium resin can be used, but other materials such as other materials can also be used. A liquid can be used as the coupling medium. For example, the refractive index of water is greater than 1.3, and thus can be used as a coupling agent. • In the embodiment shown in Fig. 8, there is a kind between the semiconductor wafer 1 and the optical element 19 The gap 5 (for example, 'an air gap). Alternatively, other gases may be blown into the gap 5 and the gap 5 may be evacuated. The function of the gap is to make the radiation emitted by the semiconductor wafer 1 high. The composition is less than a low divergence component due to reflections at the interface. This is advantageous for producing a high number of collimated radiation cones and for various applications, where high incidence The components can cause interference. Such an example can be found in projection applications. In the embodiment shown in Figure 7, the distance from the radiation input of the optical element to the semi-conductive-20-1282184 bulk wafer 1 is less than 100 microns (eg Only 60 microns. In the embodiment shown in Fig. 8, the distance from the radiation input end of the optical element to the semiconductor wafer i is, for example, 180 μm. The invention is not limited to the description made in the respective embodiments. Conversely, the invention includes Each of the new features and each combination of features, and in particular each combination of features in each of the claims, is not explicitly shown in the scope of each application or in the embodiments. The same applies to the first embodiment of the photovoltaic module of the present invention. Figure 2 is a diagram of a first embodiment of the method formed by the intermediate steps of the present invention. Figure 3 is an illustration of another form of encapsulation layer and/or cover layer applied in a second embodiment of the method of the present invention. Figure 4 is a perspective view of a first embodiment of a lighting device. Figure 5 is a perspective view of a second embodiment of the illumination device. Figure 6 is a perspective view of a third embodiment of the lighting device. Figure 7 is a cross-sectional view of a portion of a fourth embodiment of the illumination device. Figure 8 is a cross-sectional view of a portion of a fifth embodiment of the illumination device. [Description of main component symbols] 1 Semiconductor wafer 2 First main surface 3 Encapsulation layer 4 First contact surface 5 Second main surface 6 Second contact surface -21- 1282184 j * 7 8 9 10 11 12 13 14
15 16 17 18 19 20 25 120 第一連接區 第二連接區 先質層 載體 第一凹口 第二凹口 主輻射方向 導電層 絕緣之覆蓋層 第一連接區之裸露之部份區域 第二連接區之裸露之部份區域 箭頭 光學元件 模組載體 對立插頭 支件15 16 17 18 19 20 25 120 First connection zone Second connection zone Precursor carrier First notch Second notch Main radiation direction Conductive layer Insulation overlay First exposed area of the first connection area Second connection Part of the bare area of the arrow optical component module carrier opposite plug support
-22--twenty two-