TWI281780B - Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated - Google Patents

Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated Download PDF

Info

Publication number
TWI281780B
TWI281780B TW94134556A TW94134556A TWI281780B TW I281780 B TWI281780 B TW I281780B TW 94134556 A TW94134556 A TW 94134556A TW 94134556 A TW94134556 A TW 94134556A TW I281780 B TWI281780 B TW I281780B
Authority
TW
Taiwan
Prior art keywords
voltage
coupled
voltage output
inverter
filter
Prior art date
Application number
TW94134556A
Other languages
Chinese (zh)
Other versions
TW200715706A (en
Inventor
Chua-Chin Wang
Chien-Chih Hung
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW94134556A priority Critical patent/TWI281780B/en
Publication of TW200715706A publication Critical patent/TW200715706A/en
Application granted granted Critical
Publication of TWI281780B publication Critical patent/TWI281780B/en

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Abstract

This invention is related to a transconductance amplifier with tail current control and an anti-aliasing filter (AAF) with temperature-compensated. The anti-aliasing filter utilizes a temperature-compensated circuitry to provide a bias voltage to an active LC ladder filter so as to neutralize tail current drifting caused by the temperature variation. Besides, a regulator with cascode bandgap circuitry is utilized to supply a stable voltage to suppress the variations of power and temperature. Therefore, the 3 dB bandwidth of the anti-aliasing filter can be stable even on various temperature.

Description

1281780 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種運算轉導放大器及抗失真濾波器,詳 言之’係關於一種具尾電流控制之運算轉導放大器及具溫 度補償之抗失真濾波器。 【先前技術】1281780 IX. Description of the Invention: [Technical Field] The present invention relates to an operational transconductance amplifier and an anti-aliasing filter, and more particularly to an operational transconductance amplifier with tail current control and temperature-resistant compensation Distortion filter. [Prior Art]

參考圖1,一般濾波器基本架構係採取被動式的LC元件 組成,圖1所示為一個六階被動式電感-電容階梯式濾波 器。然而由於電感元件往往十分巨大,不利於成本降低。 隨著電路積體化技術的提升,近來的設計是以主動式的電 路來替換被動式的RLC元件,其中,主動式的電路包含了: 運算放大器或運算轉導放大器。 參考圖2所示,該習知之運算轉導放大器主要是採取先前 % [1](B. Nauta "A CMOS Transconductance-C Filter Technique forReferring to Figure 1, the general filter basic architecture is composed of passive LC components. Figure 1 shows a sixth-order passive inductor-capacitor step filter. However, since the inductance components are often very large, it is not conducive to cost reduction. With the advancement of circuit integration technology, recent designs have replaced passive RLC components with active circuits. Active circuits include: operational amplifiers or operational transconductance amplifiers. Referring to FIG. 2, the conventional operational transconductance amplifier mainly adopts the previous % [1] (B. Nauta " A CMOS Transconductance-C Filter Technique for

Veiy High Frequencies," IEEE J. Solid-State Circuits, v〇l. 275 no. 2, pp 142-153, Feb· 1992.)所設計的電路牟媸。柏H甘 」电峪木構。但疋其電晶體係與電 非常容易受到雜訊與溫度改 源搞合’即與接地電位耗合, 變之干擾,可靠度不高。 另外’濾波器的特性是建立在上述被動元件的數值上, 所以被動兀件的穩定性主宰了整個濾波器的特性。一般所 設計的m内含頻率校準電路,不僅在設計層次上會複 雜很多,對於溫度飄移的抵抗性不佳,而且不 益,如先前技術[2](陳永泰,”適 古Veiy High Frequencies, " IEEE J. Solid-State Circuits, v〇l. 275 no. 2, pp 142-153, Feb. 1992.) Circuit design. Cypress H Gan" electric rafter. However, its electro-crystalline system and electricity are very susceptible to noise and temperature change. That is, it is compatible with the ground potential, and it becomes interference, and the reliability is not high. In addition, the characteristics of the filter are based on the values of the passive components described above, so the stability of the passive components dominates the characteristics of the entire filter. Generally designed m contains the frequency calibration circuit, which is not only complicated at the design level, but also has poor resistance to temperature drift, and it is not beneficial, such as the prior art [2] (Chen Yongtai, "Equation

週用於冋Q值連績時間Gm-C 濾波器之新型Q值校準電路,”國也中丨士與+ 1¾立中山大學電機工程學系 104891.doc 1281780 碩士班碩士論文,2 〇 〇 9〉βj丄 w直4 [3](中華民國專利公告 路")。—或轉㈣㈣波11之頻率調整迴 _ 自動化Q值調整電路來調整電路特性(如先 财技術⑴)。但是,明顯地,在電路設計的複雜 高的。 & w田 之運算轉導放 因此,實有必要提供一種創新且富進步性 大时及抗失真濾波器,以解決上述問題。 【發明内容】 本魯明之-目的在於提供—種具尾電流控制之運算轉導 放大器,…··至少六個反相器及至少六個尾電:電晶 體。/、個反相器分別麵接至一第一電慶輸入端、一第二電 壓輸入^、-第—電壓輸出端及—第二電壓輸出端。六個 尾電流電晶體分別_接至相對應之該等反相器與接地端 一間,該等尾電流電晶體係由一參考電壓控制。 本發明具尾電流控制之轉導放大器,由於在該等反相器 力曾口上尾電流電日日日體,以控制尾電流(taUeujTent),使得該轉 、-大器之偏壓電流文限制,且不受溫度的飄移影響,而 不會產生劇烈的影響。 、j發明之另一目的在於提供一種具溫度補償之抗失真濾 八匕括·一主動式電感-電容階梯式濾波器、一溫度 、南]貝電路及-穩壓器。該主動式電感_電容階梯式濾波器包 對稱主動式電感、至少一電容及至少一主動式電 阻,5亥主動式電感_電容階梯式濾波器用以將輸入訊號濾除 假像頻率(image Frequenc幻。該溫度補償電路用以提供一 104891.4 1281780 參考電壓至該主動式電感-電容階梯式濾波器,以穩定該主 動式電感-電容階梯式濾波器之3 dB頻寬。該穩壓器用以提 供一穩定之電源至該動式電感-電容階梯式濾波器及該溫 度補償電路。 本發明之抗失真濾波器係利用該溫度補償電路,以穩定 因溫度飄移所造成偏壓電流的改變,降低因溫度飄移對電 路造成的影響,進而達到穩定濾、波器、的偏壓電流,使得本Zhou is used for the new Q-value calibration circuit of Gm-C filter for Q-value continuous-time. "National Gentleman and +13⁄4 Lishan University, Department of Electrical Engineering 104891.doc 1281780 Master's thesis, 2 〇〇9 〉βj丄w straight 4 [3] (Republic of China patent announcement road "). - or turn (four) (four) wave 11 frequency adjustment back _ automated Q value adjustment circuit to adjust circuit characteristics (such as the first financial technology (1)). However, obviously Ground, in the circuit design is complex and high. & w field operation transduction, therefore, it is necessary to provide an innovative and progressive large time and anti-aliasing filter to solve the above problems. Mingzhi - the purpose is to provide an operational transconductance amplifier with tail current control, ... at least six inverters and at least six taillights: a transistor. /, an inverter is respectively connected to a first electric a second input terminal, a second voltage input terminal, a first voltage output terminal, and a second voltage output terminal. The six tail current transistors are respectively connected to the corresponding inverters and the ground terminal. The tail current electro-crystal system is controlled by a reference voltage. The transconductance amplifier with the tail current control is controlled by the current of the inverter on the front end of the inverter, to control the tail current (taUeujTent), so that the bias current of the converter and the amplifier is limited. It is not affected by the drift of temperature, and does not have a drastic effect. Another object of the invention is to provide a temperature-compensated anti-aliasing filter, an active inductor-capacitor step filter, a temperature , the south] shell circuit and the voltage regulator. The active inductor _ capacitor stepped filter package symmetrical active inductor, at least one capacitor and at least one active resistor, 5 hp active inductor _ capacitor step filter for The input signal filters the artifact frequency (image Frequenc). The temperature compensation circuit provides a 104891.4 1281780 reference voltage to the active inductor-capacitor step filter to stabilize the active inductor-capacitor step filter. dB bandwidth. The voltage regulator is used to provide a stable power supply to the dynamic inductor-capacitor step filter and the temperature compensation circuit. The anti-aliasing filter of the present invention utilizes the Compensation circuit to stabilize the bias current changes due to the temperature drift caused, to reduce the effects of temperature drift caused by the circuit, thus achieving a stable filter, filter, bias current, so that this

發明之抗失真濾波器之3犯頻寬即使在不同工作溫度下仍 維持穩定。 【實施方式】 參考圖3’其顯示本發明具溫度補償之抗失真濾波器之方 塊示意圖。本發明具溫度補償之抗失真較㈣包括:一 主動式電感-電容階梯式濾波器31、一溫度補償電路32及一 穩壓器33。該主動式電感_電容階梯式濾波器31可參考圖工 之六階電感-電容階梯式濾'波器電路(6th_〇rder Active ladder filter)’本發明之該主動式電感電容階梯式濾波器 3 1係將圖1電路中之習知被動式電感及被動式電阻’替換成 主動式電感及主動式電阻。因此,該主動式電感-電容階梯 式濾波器3 1包含至少一對稱主動式電感、至少一電容及至 少一主動式電阻,魅動式電感_電容階梯式纽器用以將 輸入訊號濾除假像頻率(Image Frequency)。 參考圖4,其顯示主動式電感之等效電路示意圖。該對稱 主動式電感40包括至少四個對稱式轉導放大器·、術、 4 0 3及4 0 4及至少'一輪Φ雷女p » 勒出電合CL ’该等對稱式轉導放大器係 104891.doc 1281780 乂兩個為一單元’例如對稱式轉導放大器術及4〇2為一單 元。該單元内之二對稱式轉導放大ϋ其輸人端與輸出端相 互摩禺合在一起。該輸出電容Cl係耦合連接至該單元之輸出 端。 我們可以透過求取電路的轉換函數來觀察其特性(參考rThe 3rd bandwidth of the inventive anti-aliasing filter remains stable even at different operating temperatures. [Embodiment] Referring to Fig. 3', there is shown a block diagram of a temperature-compensated anti-aliasing filter of the present invention. The anti-distortion (4) with temperature compensation of the present invention comprises: an active inductor-capacitor step filter 31, a temperature compensation circuit 32 and a voltage regulator 33. The active inductor-capacitor step filter 31 can refer to the sixth-order inductor-capacitor step ladder filter circuit (6th_〇rder Active ladder filter). The active inductor-capacitor step filter of the present invention 3 1 replaces the conventional passive inductor and passive resistor in the circuit of Figure 1 with an active inductor and an active resistor. Therefore, the active inductor-capacitor stepped filter 31 includes at least one symmetric active inductor, at least one capacitor, and at least one active resistor, and the enchanting inductor-capacitor ladder is used to filter the input signal by the artifact. Frequency (Image Frequency). Referring to Figure 4, an equivalent circuit diagram of the active inductor is shown. The symmetrical active inductor 40 includes at least four symmetrical transconductance amplifiers, operative, 4 0 3 and 4 0 4 and at least 'one round Φ lei female p » pull out electric CL 'the symmetrical transconductance amplifiers 104891 .doc 1281780 乂 Two are a unit 'for example symmetrical transconductance amplifier and 4 〇 2 for one unit. The two symmetrical transconductance amplifications in the unit are coupled to each other at the input end and the output end. The output capacitor C1 is coupled to the output of the unit. We can observe the characteristics of the circuit by looking up the conversion function (see r

Schaumann, and Μ. Ε. Van Valkenburg, design of AnalogSchaumann, and Μ. Ε. Van Valkenburg, design of Analog

Filters^ Published by Oxford tt · · ^ y xiord University Press, Inc? 2001·)。在vL節點上,传用古a 1文用見西何夫定理(Kirchhoffs rules ) 進一步分析如下: -sCLVL .gmdvi +gnid.y2 = ^ y =燃d(V2-V〇Filters^ Published by Oxford tt · · ^ y xiord University Press, Inc? 2001·). On the vL node, the ancient a 1 text is used to see the Kirchhoffs rules for further analysis as follows: -sCLVL .gmdvi +gnid.y2 = ^ y = burning d (V2-V〇

sCL 可以推得 1丨及12 : 、T — gm/dv,) cP 丄2 -----,sCL can be pushed 1丨 and 12 : , T — gm/dv,) cP 丄 2 -----,

SCTSCT

CT 所以,可以得解效的電紐如右式所示:l 、參考圖5,其顯示主動式電阻之等效電路示意圖。該主動 式電阻50包括一對稱式轉導放大器,該對稱式轉導放大器 5〇: 一輸入正端耦合至-輸出負端,且其-輸入負端耦合 正:。我們亦可以透過求取電路的轉換函數來觀 察其特性。等效電阻尺為·· R==Z = —^一- 1 +蜆 1 gmd.V-^7。 因此’該主動式電感值及主動式電阻值都是由啊所決 疋,故购的穩定性&間接影響到該主動 影響到整”㈣操作穩定性。尤„波㈣^值是建進立而 在該等主動元件的數值上,所以該等主動元件的穩=主立 宰了整個濾波器的特性。 104891.doc 1281780 參考圖6所示,其顯示本發明具尾電流控制之運算轉導放 大器示意圖。本發明具尾電流控制之運算轉導放大器可應 用於上述圖4或圖5之對稱式轉導放大器401、402、403、 404、50。本發明具尾電流控制之運算轉導放大器60包括: 至少六個反相器61、62、63、64、65、66及至少六個尾電 流電晶體 NM601、NM602、NM603、NM604、NM605、 NM606。六個反相器分別耦接至一第一電壓輸入端VI+、 一第二電壓輸入端VI---第一電壓輸出端VOUT —及一第 二電壓輸出端VOUT+。 詳言之,一第一反相器6 1係耦接至該第一電壓輸入端VI +及該第一電壓輸出端VOUT—。一第二反相器62係耦接至 該第二電壓輸入端VI —及該第二電壓輸出端VOUT +。一第 三反相器63係耦接至該第一電壓輸出端VOUT —及該第二 電壓輸出端V0UT +。一第四反相器64係耦接至該第二電壓 輸出端V0UT+,且該第四反相器64之輸入及輸出耦合在一 起。一第五反相器65係耦接至該第一電壓輸出端VOUT —及 該第二電壓輸出端V0UT+。一第六反相器66係耦接至該第 一電壓輪出端VOUT—,且該第六反相器66之輸入及輸出耦 合在一起。 六個尾電流電晶體NM601、NM602、NM603、NM604、 NM605、NM606分別耦接至相對應之該等反相器與接地端 間。例如第一尾電流電晶體NM60 1係耦接至該第一反相器 61與接地端間、第二尾電流電晶體NM602係耦接至該第二 反相器62與接地端間、第三尾電流電晶體NM603係耦接至 104891.doc -10- 1281780 該第三反相器63與接地端間、第四尾電流電晶體麵叫系 耦接至該第四反相器64與接地端間、第五尾電流電晶體 NM605係耦接至該第五反相器“與接地端間及第六尾電流 電晶體NM606係輕接至該第六反相器66與接地端間。該等 -—尾電流電晶冑係為_電晶體,該等N型電晶體之閘極係由 一參考電壓(vbias)控制。 在本發明具尾電流控制之轉導放大器60中,由於在該等 φ 反相器加上尾電流電晶體,以控制尾電流(tail current),使 口亥轉導放大器之偏壓電流受限制,且不受溫度的飄移而 不會產生劇烈的影響。另外,本發明之轉導放大器係以電 流鏡限制偏壓電流的方式來穩定其gmd值。 再參考圖3,為了使本發明之抗失真濾波器對於電源電壓 (VDD)飄移的影響降到最低,故於電源部分加上該穩壓器 33,以提供一穩定的28 v電源至該溫度補償電路^以及該 主動式電感-電容階梯式濾波器3 i。 | 參考圖7,其顯示本發明之穩壓器電路示意圖。該穩壓器 匕括 $ 接式帶差電路 701(cas code bandgap circuitry)、 一運异放大器702(〇peration amplifier)及一組串聯電阻 R701及R7〇2。該疊接式帶差電路7〇1之輸出電壓經由該運 异放大器702與該串聯電阻R7〇1&R7〇2分壓後提供該穩定 之電源。該疊接式帶差電路701係以圖8所示之電路予以實 ^。5亥®接式帶差電路70 1產生一穩定的直流位準約為1.2 伏特’再經過該運算放大器7〇2和串聯電阻以7〇1及尺7〇2分 壓,以輸出2·8伏特之穩定電壓。 104891 .doc -11 - 1281780 參考圖9,其顯示本發明之溫度補償電路示意圖。該溫度 補償電路32用以提供該參考電壓(Vbias)至該主動式電感-電 容階梯式濾、波器31 ’以穩定該主動式電感·電容階梯式遽波 器3 1之3 dB頻寬。該溫度補償電路32包括一帶差電路、一 映射電流鏡(current mirror)及一 M〇s汲_閘連接二極體 (MOS D-G-connected di〇de)NM9〇3。該帶差電路係經該映 射電流鏡以產生一電流,該電流具有正溫度係數之特性, 且該電流係流入該MOS汲•閘連接二極體NM9〇3。又,該 MOS汲-閘連接二極體nM903具有負溫度係數之特性,因 此,該MOS汲-閘連接二極體]^厘9〇3兩端的電壓差具有對溫 度不敏感之特性,該電壓差為該參考電壓(Vb&)。 。亥芩考電壓(Vbias)用以控制圖6中之該等尾電流電晶體之 問極。利用言玄參考電塵(Vbias)可以在溫度飄移時,使得偏壓 電流趨於穩定,使得圖4之主動式電相及圖5之主動式電 阻50的等效阻抗不因此產生劇烈的飄移,故可以有效穩定 本發明抗失錢波器3G之頻寬’使得本發明之抗失真遽波 ϋ之3 dB頻寬即使在不同工作溫度下仍維持穩定。 參考圖iG,其顯示本發明之抗失錢波器在台灣積體電 路公司(TSMC)之2Ρ4Μ 〇·35 um CM〇s製程下佈局後所作的 杈擬結果’在溫度飄移的情況下,截止頻率在8·5ΜΗζ時, 所模擬的製程角糾_er)’可以得知最高的頻飄數值為: 〇·264 MHz,所以最大偏移量為 ±〇264MHz/85Mh^士s η%,、袁 小於習知技術之偏移量。 圖1 1顯示在溫度飄移、雷泝鲴较 ,、,也丨 调秒电/康飄移,以及製程飄移的影響 104891 .doc 1281780 下’所做的佈局後模擬結果。 惟上述實施例僅為說明本發明之原理及其功 兮、^明。因此,習於此技術之人士可在不違背本發明之 精神對上述實施例進行修改及變化。本發明 如後述之申請專利範圍所列。 圍應 【圖式簡單說明】 圖1係習知六階被動式電感-電容階梯式濾波器 意圖; < 冤路不 圖2係習知對稱式運算轉導放大器之電路示意圖; 圖3係本發明具溫度補償之抗失真濾波器之方塊示意圖 圖4係本發明之對稱主動式電感之電路示意圖; 圖5係本發明之主動式電阻之電路示意圖,· 圖6係本發明具尾電流控制之運算轉導放 意圖; 電路: 圖7係本發明之穩壓器之電路示意圖; 圖8係本發明之穩㈣之疊接式帶差電路之電路示意圖 圖9係本發明之溫度補償電路之電路示意圖; ;及 響應圖。 圖1〇係F3dB=8.5 MHz,各個角落的模擬示意圖 圖11係Fwb U MHz,各個角落在佈局後的頻率 【主要元件符號說明】 30 本發明 31 主動式 32 溫度補 33 穩壓器 具溫度補償之抗失真濾波器 電感-電容階梯式濾波器 償電路 104891.doc 1281780 40 對稱主動式電感 50 主動式電阻 60 具尾電流控制之運算轉導放大器CT, so the power can be obtained as shown in the right: l, refer to Figure 5, which shows the equivalent circuit schematic of the active resistor. The active resistor 50 includes a symmetrical transconductance amplifier, 5 〇: an input positive terminal coupled to the -output negative terminal, and its - input negative terminal coupled with positive:. We can also observe the characteristics of the circuit by looking up the conversion function of the circuit. The equivalent resistance ruler is ··· R==Z = —^—1 +蚬 1 gmd.V-^7. Therefore, 'the active inductance value and the active resistance value are determined by ah, the stability of the purchase & indirectly affects the active influence to the whole" (four) operational stability. Especially the wave (four) ^ value is built into Standing on the values of the active components, the stability of the active components dominates the characteristics of the entire filter. 104891.doc 1281780 Referring to Figure 6, there is shown a schematic diagram of an operational transconductance amplifier with tail current control of the present invention. The operational transconductance amplifier with tail current control of the present invention can be applied to the symmetric transduction amplifiers 401, 402, 403, 404, 50 of Fig. 4 or Fig. 5 described above. The operational transconductance amplifier 60 with tail current control of the present invention comprises: at least six inverters 61, 62, 63, 64, 65, 66 and at least six tail current transistors NM601, NM602, NM603, NM604, NM605, NM606 . The six inverters are respectively coupled to a first voltage input terminal VI+, a second voltage input terminal VI---the first voltage output terminal VOUT-, and a second voltage output terminal VOUT+. In detail, a first inverter 61 is coupled to the first voltage input terminal VI + and the first voltage output terminal VOUT. A second inverter 62 is coupled to the second voltage input terminal VI and the second voltage output terminal VOUT+. A third inverter 63 is coupled to the first voltage output terminal VOUT - and the second voltage output terminal VOUTT. A fourth inverter 64 is coupled to the second voltage output terminal VOUTE, and the input and output of the fourth inverter 64 are coupled together. A fifth inverter 65 is coupled to the first voltage output terminal VOUT - and the second voltage output terminal VOUTE. A sixth inverter 66 is coupled to the first voltage wheel terminal VOUT-, and the input and output of the sixth inverter 66 are coupled together. The six tail current transistors NM601, NM602, NM603, NM604, NM605, and NM606 are respectively coupled between the corresponding inverters and the ground. For example, the first tail current transistor NM60 1 is coupled between the first inverter 61 and the ground, the second tail current transistor NM602 is coupled between the second inverter 62 and the ground, and the third The tail current transistor NM603 is coupled to 104891.doc -10- 1281780. The third inverter 63 is connected to the ground, and the fourth tail current transistor is coupled to the fourth inverter 64 and the ground. The fifth and fourth tail current transistors NM605 are coupled to the fifth inverter "between the ground and the sixth tail current transistor NM606, and are connected between the sixth inverter 66 and the ground." - the tail current transistor is a transistor, and the gates of the N transistors are controlled by a reference voltage (vbias). In the transduction amplifier 60 of the present invention having tail current control, The φ inverter plus the tail current transistor is used to control the tail current, so that the bias current of the mouth-turning amplifier is limited, and is not affected by the drift of the temperature without a drastic effect. The transconductance amplifier stabilizes the gmd value by limiting the bias current by the current mirror. 3. In order to minimize the influence of the anti-aliasing filter of the present invention on the power supply voltage (VDD) drift, the voltage regulator 33 is added to the power supply portion to provide a stable 28 V power supply to the temperature compensation circuit. And the active inductor-capacitor step filter 3 i. Referring to Figure 7, there is shown a schematic diagram of the voltage regulator circuit of the present invention. The voltage regulator includes a cas code bandgap circuitry 701, An operation amplifier 702 and a set of series resistors R701 and R7 〇 2. The output voltage of the spliced band difference circuit 〇1 is connected to the series resistor R7〇1&R7 via the The stable power supply is provided after the partial pressure of 2. The spliced differential circuit 701 is implemented by the circuit shown in Fig. 8. The 5 hai tong differential circuit 70 1 generates a stable DC level of about 1.2. Volt' is then divided by the operational amplifier 7〇2 and the series resistor at 7〇1 and 7〇2 to output a stable voltage of 2·8 volts. 104891 .doc -11 - 1281780 Referring to Figure 9, the present invention is shown A schematic diagram of a temperature compensation circuit. The temperature compensation circuit 32 is provided The reference voltage (Vbias) to the active inductor-capacitor step filter, the filter 31' stabilizes the 3 dB bandwidth of the active inductor/capacitor step chopper 31. The temperature compensation circuit 32 includes a band difference circuit. a current mirror and a MOS DG-connected diode N3. The difference circuit is configured to generate a current through the current mirror. The current has a positive temperature coefficient characteristic, and the current flows into the MOS gate-connected diode NM9〇3. Moreover, the MOS 汲-gate connection diode nM903 has a negative temperature coefficient characteristic, and therefore, the voltage difference across the MOS 汲-gate connection diode has a temperature-insensitive characteristic, the voltage The difference is the reference voltage (Vb &). . The Vbias voltage is used to control the polarity of the tail current transistors in Figure 6. Utilizing the reference dust (Vbias), the bias current can be stabilized when the temperature drifts, so that the equivalent impedance of the active electrical phase of FIG. 4 and the active resistor 50 of FIG. 5 does not cause a sharp drift. Therefore, the bandwidth of the anti-depletion wave device 3G of the present invention can be effectively stabilized so that the 3 dB bandwidth of the anti-aliasing ripple of the present invention remains stable even at different operating temperatures. Referring to Figure iG, the simulation results of the anti-depletion wave device of the present invention are laid out under the process of 2 Ρ 4 Μ 35 um CM 〇s of Taiwan Integrated Circuits Corporation (TSMC), in the case of temperature drift, the cutoff When the frequency is 8·5ΜΗζ, the simulated process angle correction _er)' can be found that the highest frequency drift value is: 〇·264 MHz, so the maximum offset is ±〇264MHz/85Mh^士s η%, Yuan is smaller than the offset of the prior art. Figure 1 shows the post-layout simulation results for temperature drift, thunderback, and 调 秒 电 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / However, the above embodiments are merely illustrative of the principles of the present invention and its advantages and advantages. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The present invention is as set forth in the scope of the patent application described later. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional sixth-order passive inductor-capacitor stepped filter; < 冤路不图2 is a circuit diagram of a conventional symmetric operational transconductance amplifier; FIG. 3 is a schematic diagram of the present invention; FIG. 4 is a schematic circuit diagram of a symmetric active inductor of the present invention; FIG. 5 is a schematic diagram of a circuit of an active resistor of the present invention, and FIG. 6 is an operation of the tail current control of the present invention. FIG. 7 is a schematic circuit diagram of a voltage regulator of the present invention; FIG. 8 is a schematic diagram of a circuit of the temperature compensation circuit of the present invention. FIG. ; ; and response map. Fig. 1 is F3dB=8.5 MHz, the simulation diagram of each corner Fig. 11 is Fwb U MHz, the frequency of each corner after layout [main component symbol description] 30 invention 31 active 32 temperature compensation 33 voltage regulator temperature compensation Anti-aliasing filter inductor-capacitor stepped filter compensation circuit 104891.doc 1281780 40 Symmetrical active inductor 50 Active resistor 60 Operational transconductance amplifier with tail current control

61 62 63 64 65 66 40卜 402 、 403 、 404 701 702 NM601 NM602 NM603 NM604 NM605 NM606 第一反相器 第二反相器 第三反相器 第四反相器 第五反相器 第六反相器 對稱式轉導放大器 疊接式帶差電路 運算放大器 第一尾電流電晶體 第二尾電流電晶體 第三尾電流電晶體 第四尾電流電晶體 第五尾電流電晶體 第六尾電流電晶體 104891.doc -14-61 62 63 64 65 66 40 Bu 402 , 403 , 404 701 702 NM601 NM602 NM603 NM604 NM605 NM606 First Inverter Second Inverter Third Inverter Fourth Inverter Fifth Inverter Sixth Inverting Symmetrical transconductance amplifier stacked differential circuit operational amplifier first tail current transistor second tail current transistor third tail current transistor fourth tail current transistor fifth tail current transistor sixth tail current transistor 104891.doc -14-

Claims (1)

1281780 十、申請專利範圍·· h 一種具尾電流控制之運算轉導放大器,包括·· 至少六個反相器,分別耦接至一第一電壓輸入端、一 第一電壓輸入端、一第一電壓輸出端及一第二電壓輸出 端;及 至 >,、個尾電流電晶體,分別耦接至相對應之該等反 相為與接地端間,每一尾電流電晶體係由一參考電壓控 制。 2.如請求们之運算轉導放大器,其中一第一反相器仙接 至該第一電壓輸入端及該第一電壓輸出端、一第二反相 器係耦接至该第二電壓輸入端及該第二電壓輸出端、一 第一反相器係耦接至該第一電壓輸出端及該第二電壓輸 出鳊、一第四反相器係耦接至該第二電壓輸出端、一第 五反相裔係耦接至該第一電壓輸出端及該第二電壓輸出 端、一第六反相器係耦接至該第一電壓輸出端。 3·如請求項1之運算轉導放大器,其中該等尾電流電晶體係 為N型電晶體,該等N型電晶體之閘極係由該參考電壓控 制。 4 · 種具溫度補償之抗失真濾波器,包括: 主動式電感-電容階梯式濾波器,包含至少一對稱主 動式電感、至少一電容及至少一主動式電阻,該主動式 電感-電容階梯式濾波器用以將輸入訊號濾除假像頻率 (Image Frequency); 一溫度補償電路,用以提供一參考電壓至該主動式電 104891.doc 1281780 感-電谷階梯式濾、波器,以鞾定兮 ,, 釔疋该主動式電感電容階梯式 濾波器之3 dB頻寬; \ 一穩壓器,用以提供一藉仝 t疋之電源至該動式電感·電容 階梯式濾波器及該溫度補償電路。 5. 如請求項4之抗失真渡波器,其中該對稱主動式電感 至少四個對稱式轉導放大器及至少-輸出電容,該等對 稱式轉導放大器係以兩個為—單元,該單元内之二對稱 式轉導放大器之輸人端與輪出端叙合在—起,該輸出電 容係柄合連接至該單元之輸出端。 6. 如請求項4之抗失真遽波器,其中該主動式電阻包括—對 稱式轉導放大器,該對稱式轉導放大器之—輸入正端輕 合至:輸出負端’且其一輸入負端轉合至一輸出正端。 7’如明求項5或6之抗失真濾、波器,其中該對稱式轉導放大 器包括: 至少六個反相器,分別耦接至一第一電壓輪入端、一 第二電壓輸人端、-第—電壓輸出端及一第二電壓輸出 端;及 至少六個尾電流電晶體,分別耦接至相對應之該等反 相器與接地端間,每一尾電流電晶體係由該參考電壓控 制。 I 8·如請求項7之抗失真漶波器,其中一第一反相器係耦接至 該第一電壓輸入端及該第一電壓輸出端、一第二反相器 係耦接至該第二電壓輸入端及該第二電壓輸出端、一第 三反相器係耦接至該第一電壓輸出端及該第二電壓輸出 104891.doc 1281780 而、一第四反相器係耦接至該第二電壓輸出端、一第五 反相器係耦接至該第一電壓輸出端及該第二電壓輸出 端、一第六反相器係耦接至該第一電壓輸出端。 月长項7之抗失真濾波器,其中該等尾電流電晶體係為 N型電晶體,該等N型電晶體之閘極係由該參考電壓控制。 1〇·如請求項4之抗失真濾波器,其中該溫度補償電路包括一 贡差電路、一映射電流鏡(current mirror)及一 MOS汲-閘 連接一極體(M〇S D-G-connected diode),該帶差電路係經 該映射電流鏡以產生一電流,該電流具有正溫度係數之 特('生σ亥電〃IL係流入该MOS汲-閘連接二極體,該M〇s沒 -閘連接二極體具有負溫度係數之特性,俾使該旭〇8汲_ 閘連接二極體兩端的電壓差具有對溫度不敏感之特性, 該電壓差為該參考電壓。 11.如請求項4之抗失真濾波器,其中該穩壓器包括一運算放 大器(Operation amplifier)、—疊接式帶差電路(casc〇de bandgap circuitry)及一組串聯電阻,該疊接式帶差電路之 輸出電壓經由该運异放大器與該串聯電阻分壓後提供該 穩定之電源。 104891.doc1281780 X. Patent Application Range·· h An operational transconductance amplifier with tail current control, comprising: · at least six inverters respectively coupled to a first voltage input terminal, a first voltage input terminal, and a first a voltage output end and a second voltage output end; and to >, a tail current transistor, respectively coupled to the corresponding inversion between the ground and the ground, each tail current electro-crystal system by a reference Voltage control. 2. The operational transconductance amplifier of the request, wherein a first inverter is coupled to the first voltage input terminal and the first voltage output terminal, and a second inverter is coupled to the second voltage input a second voltage output terminal, a first inverter coupled to the first voltage output terminal, and the second voltage output port and a fourth inverter coupled to the second voltage output terminal, A fifth inversion is coupled to the first voltage output and the second voltage output, and a sixth inverter is coupled to the first voltage output. 3. The operational transconductance amplifier of claim 1, wherein the tail current electro-emissive system is an N-type transistor, and the gates of the N-type transistors are controlled by the reference voltage. 4) A temperature compensated anti-aliasing filter, comprising: an active inductor-capacitor stepped filter comprising at least one symmetric active inductor, at least one capacitor and at least one active resistor, the active inductor-capacitor stepped The filter is used for filtering the input signal to remove the image frequency (Image Frequency); a temperature compensation circuit for providing a reference voltage to the active electric 104891.doc 1281780 sensing-electric valley stepping filter and wave filter to determine兮,, 3 the 3 dB bandwidth of the active inductor-capacitor step filter; a voltage regulator for providing a power supply to the dynamic inductor/capacitor step filter and the temperature Compensation circuit. 5. The anti-aliasing waver of claim 4, wherein the symmetric active inductor has at least four symmetric transconductance amplifiers and at least an output capacitor, and the symmetric transduction amplifiers are in two units, the unit The input end of the symmetrical transconductance amplifier is combined with the wheel end, and the output capacitor is coupled to the output end of the unit. 6. The anti-aliasing chopper of claim 4, wherein the active resistor comprises a symmetrical transconductance amplifier, the input positive terminal of the symmetrical transconductance amplifier is lightly coupled to: an output negative terminal 'and an input negative The end turns to an output positive end. 7' The anti-aliasing filter and wave device of claim 5 or 6, wherein the symmetric transduction amplifier comprises: at least six inverters respectively coupled to a first voltage wheel terminal and a second voltage input a human terminal, a first voltage output terminal and a second voltage output terminal; and at least six tail current transistors respectively coupled between the corresponding inverter and the ground terminal, each tail current electro-crystal system Controlled by this reference voltage. The anti-aliasing chopper of claim 7, wherein a first inverter is coupled to the first voltage input terminal and the first voltage output terminal, and a second inverter is coupled to the The second voltage input terminal and the second voltage output terminal are coupled to the first voltage output terminal and the second voltage output 104891.doc 1281780, and a fourth inverter is coupled To the second voltage output terminal, a fifth inverter is coupled to the first voltage output terminal and the second voltage output terminal, and a sixth inverter is coupled to the first voltage output terminal. The anti-aliasing filter of the month length item 7, wherein the tail current electro-crystal system is an N-type transistor, and the gates of the N-type transistors are controlled by the reference voltage. 1) The anti-aliasing filter of claim 4, wherein the temperature compensation circuit comprises a tributary circuit, a current mirror, and a MOS 汲-gate connected body (M〇S DG-connected diode The band difference circuit is configured to generate a current through the current mirror, and the current has a positive temperature coefficient (the σ 亥 〃 〃 IL system flows into the MOS 汲-gate connection diode, the M 〇 s - The gate connection diode has a negative temperature coefficient, so that the voltage difference across the junction of the 〇 〇 8 汲 具有 has a temperature-insensitive characteristic, and the voltage difference is the reference voltage. The anti-aliasing filter of item 4, wherein the voltage regulator comprises an operational amplifier, a stacked band difference circuit (casc〇de bandgap circuitry) and a set of series resistors, the stacked differential band circuit The output voltage is divided by the alien amplifier and the series resistor to provide the stable power supply. 104891.doc
TW94134556A 2005-10-03 2005-10-03 Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated TWI281780B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94134556A TWI281780B (en) 2005-10-03 2005-10-03 Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94134556A TWI281780B (en) 2005-10-03 2005-10-03 Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated

Publications (2)

Publication Number Publication Date
TW200715706A TW200715706A (en) 2007-04-16
TWI281780B true TWI281780B (en) 2007-05-21

Family

ID=38751652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94134556A TWI281780B (en) 2005-10-03 2005-10-03 Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated

Country Status (1)

Country Link
TW (1) TWI281780B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026709B2 (en) 2007-12-05 2011-09-27 Industrial Technology Research Institute Voltage generating apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437406B (en) 2010-10-25 2014-05-11 Novatek Microelectronics Corp Low noise current buffer circuit and i-v converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026709B2 (en) 2007-12-05 2011-09-27 Industrial Technology Research Institute Voltage generating apparatus

Also Published As

Publication number Publication date
TW200715706A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
Sutula et al. Variable-mirror amplifier: A new family of process-independent class-AB single-stage OTAs for low-power SC circuits
US8072262B1 (en) Low input bias current chopping switch circuit and method
JP4871590B2 (en) Integrator and filter circuit using transconductor
JPH11194839A (en) Generation of low-noise symmetrical reference voltage subjected to temperature compensation
Laoudias et al. 1.5-V complex filters using current mirrors
Padilla-Cantoya Capacitor multiplier with wide dynamic range and large multiplication factor for filter applications
Lo et al. 1V CMOS G m-C Filters: Design and Applications
CN107294497B (en) Conversion circuit, heartbeat current signal conversion device and method and heartbeat detection system
Yesil et al. Electronically controllable bandpass filters with high quality factor and reduced capacitor value: An additional approach
Güneş et al. Design of a high performance mutually coupled circuit
Moreno et al. Bulk-tuned Gm–C filter using current cancellation
Chen Current‐mode dual‐output ICCII‐based tunable universal biquadratic filter with low‐input and high‐output impedances
TWI281780B (en) Transconductance amplifier with tail current control and anti-aliasing filter with temperature-compensated
Matsumoto et al. Design of a symmetry-type floating impedance scaling circuits for a fully differential filter
Satansup et al. Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors
Chaichana et al. Current-mode MISO filter using CCCDTAs and grounded capacitors
TWI598718B (en) Voltage regulator with noise cancellation
Kumari et al. New CMOS realization of high performance Voltage Differencing Inverting Buffered Amplifier and its filter application
US8279000B2 (en) Radio-frequency amplifier
US8633760B2 (en) Op-R, a solid state filter
JP4768186B2 (en) Phase compensated impedance converter
JP2005528836A (en) Amplifier circuit, gyrator circuit, filter device and method for amplifying a signal
JPH09191227A (en) Voltage smoothing circuit device
JP2007505585A (en) Improvements in and related to transconductor circuits
MATSUMOTO et al. A symmetrical floating impedance scaling circuit with improved low-frequency characteristics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees