TWI281249B - NAND-type non-volatile memory - Google Patents

NAND-type non-volatile memory Download PDF

Info

Publication number
TWI281249B
TWI281249B TW94105614A TW94105614A TWI281249B TW I281249 B TWI281249 B TW I281249B TW 94105614 A TW94105614 A TW 94105614A TW 94105614 A TW94105614 A TW 94105614A TW I281249 B TWI281249 B TW I281249B
Authority
TW
Taiwan
Prior art keywords
volatile memory
data storage
substrate
memory
bit line
Prior art date
Application number
TW94105614A
Other languages
Chinese (zh)
Other versions
TW200631167A (en
Inventor
Chien-Hung Chen
Nai-Chen Peng
Kuang-Pi Lee
Tzu-Ping Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW94105614A priority Critical patent/TWI281249B/en
Publication of TW200631167A publication Critical patent/TW200631167A/en
Application granted granted Critical
Publication of TWI281249B publication Critical patent/TWI281249B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A non-volatile memory includes a substrate, a plurality of data storage elements positioned on the substrate, a plurality of control gates positioned on the data storage elements, an insulating layer covering surfaces and sidewalls of the plurality of control gates, and a bit line positioned on the insulating layer to cross the plurality of control gates.

Description

1281249 九、發明說明: 【發明所屬之技術領域】 本發明係概括關於一種非揮發性記憶體,尤指一種 NAND型非揮發性記憶體。 【先前技術】 快閃記憶體為一種非揮發性記憶體,能在切斷電源後繼 續保存記憶體内的資料,又能快速地進行重複讀取與資料 程式化、抹除等操作,因此已成為目前最常被使用也是發 展最迅速的記憶體產品之一。快閃記憶體依據其架構不同 可分為NOR型快閃記憶|及NAND型快閃記憶體二種, 其中NOR型快閃記憶體的記憶單元的汲極為並聯,所以讀 取速度較快,適合用在以程式轉換為主的程式碼快閃記憶 體(code flash),而NAND型快閃記憶體的相鄰二記憶單元 的汲極與源極為串聯,所以在單位面積中可容納更多的記 憶單元,使記憶單元的密度較高,適合用在以存取資料為 主的資料快閃記憶體(data flash)。而無論是NOR型快閃記 憶體或NAND型快閃記憶體,其記憶單元均具有類似MOS 電晶體架構,可以提供小尺寸、高讀取速度及高密度等優 1281249 請參考第1圖,第1圖為習知一快閃記憶體的剖面示意 圖。如第1圖所示,快閃記憶體10包含有一基底12,一 P 型井14形成於基底12表面,複數個N型摻雜區域16形成 於P型井14表面,以及複數個由氧化層18、浮動閘極20、 氧化層22、控制閘極24等材料層組成的堆疊結構設於基 底12表面。 其中每一 N型摻雜區域16係用來定義一埋藏式汲極/源 極(BD/BS),兩相鄰N型摻雜區域16之間則定義為每一記 憶單元之通道區域L。在製程上,N型摻雜區域16的製作 是在完成氧化層18、浮動閘極20、氧化層22、控制間極 24等堆疊結構之圖案定義後再利用一摻雜製程於P型井14 表面植入N型離子,接著再進行一熱製程活化擴散這些N 型離子,以定義出N型摻雜區域16以及通道區域L的輪 廓。於進行上述熱製程時,由於植入P趣井14的N型離 子產生水平擴散,使得通道區域L的長度被縮短。因此, 為了使通道長度符合元件電性需求,習知技術中較常見的 方式是增加控制閘極24等堆疊結構之線寬,使兩相鄰N 型摻雜區域16間的距離增加,以預留熱擴散的空間。儘管 如此,增加兩相鄰N型摻雜區域16間的距離將導致記憶單 元之特徵尺寸隨之增加,因此如何在通道長度以及熱預算 間折衝,以兼顧元件電性需求及避免犧牲快閃記憶單元的 特徵尺寸,仍是習知技術必須克服的困難之一。 1281249 【發明内容】 因此,本發明之目的即在提供一種非揮發性記憶體,< 以完全避免習知技術因熱預算造成記憶單元之尺寸限 問題。 寻 在本發明之較佳實施例中,該非揮發性記憶體包含一美 底’複數個資料儲存元件設於基底上方,複數個控制广 設於資料儲存元件上方,—絕緣層於複數個控制= 表面以及側壁上,以及—位元線跨越於複數個控制門f $ 方並且設於絕緣層上。 1極上1281249 IX. Description of the Invention: [Technical Field] The present invention relates generally to a non-volatile memory, and more particularly to a NAND-type non-volatile memory. [Prior Art] Flash memory is a non-volatile memory that can continue to save data in the memory after the power is turned off, and can quickly perform repeated reading and data stylization and erasing operations. It is one of the most frequently used and fastest growing memory products. According to its architecture, flash memory can be divided into NOR flash memory and NAND flash memory. The memory of NOR flash memory is extremely parallel, so the reading speed is fast. It is used in program code-based code flash, and the NAND-type flash memory has two poles connected in series with the source, so it can accommodate more in unit area. The memory unit makes the density of the memory unit high, and is suitable for data flash which is mainly based on accessing data. Whether it is NOR flash memory or NAND flash memory, its memory cells have a similar MOS transistor structure, which can provide small size, high read speed and high density, etc. 1281249 Please refer to Figure 1, page 1 is a schematic cross-sectional view of a conventional flash memory. As shown in FIG. 1, the flash memory 10 includes a substrate 12, a P-type well 14 is formed on the surface of the substrate 12, a plurality of N-type doped regions 16 are formed on the surface of the P-type well 14, and a plurality of oxide layers are formed. 18. A stacked structure of a material layer such as a floating gate 20, an oxide layer 22, and a control gate 24 is disposed on the surface of the substrate 12. Each of the N-type doped regions 16 is used to define a buried drain/source (BD/BS), and between two adjacent N-type doped regions 16 is defined as the channel region L of each of the memory cells. In the process, the N-type doping region 16 is formed by using a doping process in the P-type well 14 after completing the pattern definition of the stacked structure such as the oxide layer 18, the floating gate 20, the oxide layer 22, and the control interlayer 24. The surface is implanted with N-type ions, followed by a thermal process to activate and diffuse these N-type ions to define the contour of the N-doped region 16 and the channel region L. During the above thermal process, the length of the channel region L is shortened due to the horizontal diffusion of the N-type ions implanted in the P well 14 . Therefore, in order to make the channel length conform to the component electrical requirements, a more common way in the prior art is to increase the line width of the stack structure such as the control gate 24, so that the distance between the two adjacent N-type doping regions 16 is increased to Leave space for heat to spread. Nevertheless, increasing the distance between two adjacent N-doped regions 16 will result in an increase in the feature size of the memory cell, so how to break between the channel length and the thermal budget to balance the component electrical requirements and avoid sacrificing flash memory. The feature size of the unit is still one of the difficulties that conventional techniques must overcome. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a non-volatile memory, <<>> to completely avoid the problem of the size limit of memory cells due to thermal budgets in the prior art. In a preferred embodiment of the present invention, the non-volatile memory comprises a bottom portion of a plurality of data storage elements disposed above the substrate, a plurality of controls being disposed over the data storage element, and the insulating layer is in a plurality of controls = The surface and the sidewalls, and the bit line, span across a plurality of control gates f $ and are disposed on the insulating layer. 1 pole

由於本發明非揮發性記憶體將位元線形成於抑I 上方來取代習知之埋藏式汲極,因此不需要利間極 熱處理等方法來製作埋藏式汲極,進而可以避免^雜以及 成通道長度不足賴慮,也可以避免雜解=擴散造 元之尺寸限制。此外’依據提供於位元線上之電汊、迟憶單 本發明位元線除了可以錢為記憶單元之不同 以作為記憶單元間之隔離結構,因此本發明’更η 化層或淺溝隔離等結構來作為相鄰位^線間之=作場氧 再者,本發明可以進一步應用於氮化物記憶單^結構。 SONOS尊雙位元記憶單元,以提供脱之更高^’例如 元陣列。 。"度記憶澤 1281249 【實施方式】 "月參考第2圖,第2圖為本發明一非揮發性記憶體的陣 列不意圖。如第2圖所示,非揮發性記憶體30包含有複數 條字凡線’例如WL0〜WL31,以及複數條位元線,例如 BL0〜BL20 ’跨越於複數條字元線上方,且其中每一條位元 線與每一條字元線均係垂直相交並於其垂直相交區域定義 一兄憶單元,例如記憶單元A。在本發明之較佳實施例中, • /、用同一位元線之記憶單元串列約可包含16〜32個記憶單 元。 清再參考第3圖,第3圖為第2圖所示之非揮發性記憶 版/〇切線33’所示之剖面示意圖。如第3圖所示,非揮發性 心體30包含有一基底· 32,一氧化層34設於基底32表 面,複數個貧料儲存元件36a、36b v 36c設於氧化層34表 鲁面,一氧化層38設於資料儲存元件36a、36b、36c上方, 以及複數個控制閘極40a、40b、40c設於氧化層38上方。 此外,非揮發性記憶體3〇另包含一絕緣層义覆蓋於控制 閘極40a、40b、40c表面及侧壁上,以及一位元線44跨越 於控制閘極40a、40b、40c上方並設於絕緣層42表面。 在本發明之較佳實施例中,基底32可以為一 p型矽基 底 N型井或一 P型井。資料儲存元件36a、36b、36c 可以為摻雜多晶料成之浮動_,以於各記憶單元中儲 1281249 存位元資料或者,貢料儲存元件恤、施、*也可 以為-氮化層,以於各記憶單元中儲存—位元或二位元資 料。在本&月之其他實施例中,資料儲存元件施、撕、 36c也可以仙可儲存電子之其他材料形成,並利用絕緣 層42作為資料儲存元件36a、36b、與位元線44間之 隔離。 # 此外,控制閘極40a、4仙、4〇c係分別由複數條平行之 字元線定義而成,位元線44係為跨越於定義控制閘極 40a、40b、40c等複數條平行字元線上方之一位元線,且控 制閘極40a、40b、40c及位元線44均可選自摻雜多晶石夕或 其他半導體材料/導體材料,以用來控制各記憶單元之操 作。至於絕緣層42則可為石夕氧層或氮石夕層,以作為位元線 44與其他元件間之隔離,例如作為位元線44與控制閘極 40a、40b、40c間之隔離,或者視實際需求作為位元線抖 _ 與資料儲存元件36a、36b、36c間或與基底32表面間之隔 離。在製程上’絕緣層42可以為單一或複合沉積層,也可 以包含一頂保護層以及一側壁子結構。 請再參考弟4圖’弟4圖為弟2圖所示之非揮發性記憶 體沿切線44’所示之剖面示意圖。如第4圖所示,非揮發性 記憶體30包含有氧化層34、資料儲存元件36、氧化層38、 控制閘極40、絕緣層42等材料層依序堆疊於基底%上方, 1281249 以及複數條位元線44a、44b、44c設於絕緣層42表面。其 中位元線44a、44b、44c為複數條平行之位元線,且位元 線44a、44b、44c分別與其下方之控制閘極4〇、資料儲存 元件36定義出複數個相鄰接之記憶單元。 本發明非揮發性記憶體之操作說明請參考下列三種實 施例。在第5圖與第6圖所示之第一實施例中,非揮發性 吕己憶體30利用福樂諾漢穿隧(F〇wier_Nordheim tunneling) 機制咸帶對帶穿隧熱洞注入(band-to-band tunneling induced hot-hole injection,BTBTHH)機制來進行裎式化 (program),以將電子自被選取之記憶單元中移除,至於非 揮發性記憶體3 0之抹除操作則可以利用福樂諾〉莫穿隧機 制將電子注入被選取之記憶單元中。 舉例來說,如第5爵中箭號46所示方向,當欲將電子 自被選取之資料儲存元件36b中移除時,其操作方式係於 資料儲存元件36b上方之控制閘極40b施加一負電壓 Vwl,建議介於_5乂〜-15V,較佳為-6V,並且於資料儲存元 件36b上方之位元線44及共用位元線44之其他控制閘極 (例如控制閘極40a、40c)分別施加一正電壓VBL、Vpass,建 議介於+5V〜+10V,較佳為+6V。當於位元線44上提供正 電壓時,位元線44下方之基底32表面會形成一反轉層45, 以用來傳導位元線電壓至記憶單元之源極/汲極。在本發明 1281249 +之4較佳實施例中’反轉層45可施加-正電壓V 10.5V〜+5V,使被選取記憶單元之閘極仙間::,約為 •5V,以滿足褐樂諾漢穿隧機制之操作。其差達判約 ,視為共用同—位元線之記憶單Μ列之傳^線44 我出被選取之記憶單元之汲極端電壓。湘施=、,並定 之控制閘極40b與其汲極端間之壓差則使得電、破選取 號46所示方向自被選取之資料儲存元件36b^r以依箭 ,更好的操作效率,當應用於雙位以己憶單除。為了 憶單元可以於基底32表面選擇性地形成—埋藏:’各記 域’甩來定義一埋藏式波極/源極於 雜區 供少許正電壓,例如…5V,較隹為+4=^域提 閘極40b與其汲極端間之壓差。 ^阿控制 如第6圖中箭號48所示方向,當欲將電子4 、 之貝枓儲存兀件36b中時,其操作方式係於資料儲存元件 36b上方之控制閘極働施加一正電壓v机,建議介於 谓〜出V ’較佳為+ 1W ’並且使資料儲存元件地上方 之位元線44及制位元線44之其他控制閘極接地。兑中 施加於被選取之控制閘極獅之高電愿使得基底32表㈣ 成-反轉層45 ’而電子可以依箭號48所示方向注入被選 取之資料儲存元件36b中。 12 1281249 如第7圖與第8圖所示之第二實施例,非揮發性記憶 體30利用帶對帶穿隧熱電子注入機制來進行程式化,以將 電子注入被選取之記憶單元中,至於非揮發性記憶體30之 抹除操作則可以利用福樂諾漢穿隧機制將電子自被選取之 記憶單元中移除。舉例來說,如第7圖中箭號50所示方向, 當欲將電子注入被選取之資料儲存元件36b時,其操作方 式係於資料儲存元件36b上方之控制閘極40b施加一正電 壓VWL,建議介於+5V〜+15V,較佳為+6V,並且於資料儲 存元件36b上方之位元線44及共用位元線44之其他控制 閘極(例如控制閘極40a、40c)分別施加一負電壓VBL、Since the non-volatile memory of the present invention forms a bit line above the I to replace the conventional buried bungee, it is not necessary to use a method such as a heat treatment to make a buried bungee, thereby avoiding miscellaneous and forming channels. If the length is not enough, it can also avoid the size limitation of the miscellaneous solution. In addition, according to the power supply provided on the bit line, the bit line of the present invention can be used as the isolation structure between the memory cells except for the memory unit, so the present invention is more η layer or shallow trench isolation. The structure is used as the field oxygen between the adjacent bits, and the present invention can be further applied to the nitride memory structure. SONOS respects the two-bit memory unit to provide a higher level of '', for example, a meta-array. . "度记忆泽1281249 [Embodiment] "Monthly reference to Fig. 2, Fig. 2 is an array of non-volatile memory of the present invention. As shown in FIG. 2, the non-volatile memory 30 includes a plurality of lines of words 'for example, WL0 WL WL31, and a plurality of bit lines, for example, BL0 〜 BL20 ' spanning over a plurality of word lines, and each of them A bit line and each word line intersect perpendicularly and define a brother cell, such as memory cell A, in its perpendicular intersection. In a preferred embodiment of the invention, • /, a memory cell string of the same bit line may comprise from about 16 to 32 memory cells. Referring again to Fig. 3, Fig. 3 is a schematic cross-sectional view showing the non-volatile memory/cutting line 33' shown in Fig. 2. As shown in FIG. 3, the non-volatile core body 30 includes a substrate 32, an oxide layer 34 is disposed on the surface of the substrate 32, and a plurality of lean storage elements 36a, 36b v 36c are disposed on the surface of the oxide layer 34. The oxide layer 38 is disposed over the data storage elements 36a, 36b, 36c, and a plurality of control gates 40a, 40b, 40c are disposed over the oxide layer 38. In addition, the non-volatile memory 3 includes an insulating layer covering the surface and sidewalls of the control gates 40a, 40b, 40c, and a bit line 44 is disposed above the control gates 40a, 40b, 40c. On the surface of the insulating layer 42. In a preferred embodiment of the invention, substrate 32 can be a p-type 底 base N-well or a P-well. The data storage elements 36a, 36b, 36c may be floated with doped polycrystalline material to store 1281249 storage element data in each memory unit, or the tributary storage component shirt, application, or * may also be a nitride layer In order to store - bit or binary data in each memory unit. In other embodiments of this & month, the data storage component can be formed, teared, 36c can also be formed from other materials that can store electrons, and the insulating layer 42 can be used as the data storage component 36a, 36b and the bit line 44. isolation. # Further, the control gates 40a, 4仙, 4〇c are respectively defined by a plurality of parallel word lines, and the bit line 44 is a plurality of parallel words spanning the definition control gates 40a, 40b, 40c. One bit line above the line, and the control gates 40a, 40b, 40c and the bit line 44 may be selected from doped polysilicon or other semiconductor material/conductor material for controlling the operation of each memory unit. . As for the insulating layer 42, it may be a rock oxide layer or a nitrogen layer to isolate the bit line 44 from other components, for example, as a separation between the bit line 44 and the control gates 40a, 40b, 40c, or Depending on the actual demand, the bit line _ is isolated from the data storage elements 36a, 36b, 36c or from the surface of the substrate 32. In the process, the insulating layer 42 may be a single or composite deposited layer, and may also include a top protective layer and a sidewall substructure. Please refer to the cross-sectional view of the non-volatile memory shown in the second diagram of the brother 4, which is shown by the tangential line 44'. As shown in FIG. 4, the non-volatile memory 30 includes a material layer such as an oxide layer 34, a data storage element 36, an oxide layer 38, a control gate 40, and an insulating layer 42 stacked in sequence above the substrate %, 1281249 and plural The strip lines 44a, 44b, 44c are provided on the surface of the insulating layer 42. The bit lines 44a, 44b, and 44c are a plurality of parallel bit lines, and the bit lines 44a, 44b, and 44c respectively define a plurality of adjacent memories with the control gates 4 and the data storage elements 36 below. unit. Please refer to the following three examples for the operation of the non-volatile memory of the present invention. In the first embodiment shown in Figs. 5 and 6, the non-volatile Luijimen body 30 is injected into the tunnel tunneling hot hole using the F〇wier_Nordheim tunneling mechanism. -to-band tunneling induced hot-hole injection (BTBTHH) mechanism for performing a program to remove electrons from selected memory cells, as well as non-volatile memory 3 erase operations Electron is injected into the selected memory cell using the Fullerox mechanism. For example, when the electrons are to be removed from the selected data storage element 36b in the direction indicated by the fifth arrow, the operation mode is applied to the control gate 40b above the data storage element 36b. The negative voltage Vwl is preferably between _5 乂 -15 volts, preferably -6 volts, and the bit line 44 above the data storage element 36b and other control gates of the common bit line 44 (eg, the control gate 40a, 40c) Applying a positive voltage VBL, Vpass, respectively, is recommended to be between +5V and +10V, preferably +6V. When a positive voltage is applied across bit line 44, an inversion layer 45 is formed on the surface of substrate 32 below bit line 44 for conducting the bit line voltage to the source/drain of the memory cell. In the preferred embodiment of the invention 1281249 + 4, the 'inversion layer 45 can apply a positive voltage V 10.5V to +5V, so that the gates of the selected memory cells are::, about 5.5V, to satisfy the brown The operation of Lenohan tunneling mechanism. The difference is up to the contract, and it is considered to be the same as the memory line of the memory line of the same-bit line. I am out of the extreme voltage of the selected memory unit. Xiang Shi =,, and determine the pressure difference between the gate 40b and its 汲 extremes, so that the direction of electricity, broken selection 46 from the selected data storage component 36b ^ r to arrow, better operational efficiency, when Applied to double digits to remove by single recall. In order to make it possible for the cell to be selectively formed on the surface of the substrate 32 - buried: 'each field' to define a buried wave / source in the miscellaneous region for a little positive voltage, such as ... 5V, which is more than +4 = ^ The pressure difference between the field gate 40b and its 汲 extreme. ^A control is in the direction indicated by arrow 48 in Fig. 6, when the electronic 4, the beak is stored in the element 36b, the operation mode is based on the control gate above the data storage element 36b, applying a positive voltage For the v machine, it is recommended to say that the V~ is preferably +1W' and the bit line 44 above the data storage element and the other control gates of the bit line 44 are grounded. The high voltage applied to the selected gate lion is intended to cause the substrate 32 to be in-reverse layer 45' and electrons can be injected into the selected data storage element 36b in the direction indicated by arrow 48. 12 1281249 As shown in the second embodiment of FIGS. 7 and 8, the non-volatile memory 30 is programmed by a band-to-band tunneling hot electron injection mechanism to inject electrons into the selected memory cell. As for the erasing operation of the non-volatile memory 30, the Fullerhan tunneling mechanism can be used to remove electrons from the selected memory unit. For example, in the direction indicated by arrow 50 in FIG. 7, when electrons are to be injected into the selected data storage element 36b, the operation mode is such that a positive voltage VWL is applied to the control gate 40b above the data storage element 36b. It is suggested that it is between +5V and +15V, preferably +6V, and is applied to the bit line 44 above the data storage element 36b and the other control gates of the common bit line 44 (for example, the control gates 40a, 40c). a negative voltage VBL,

Vpass,建議介於-5V〜-10V,較佳為-6V々當於位元線44上 提供負電壓時,位元線44下方之基扈32表面會形成一反 轉層45,以用來傳導位元線電壓至記憶單元之源極/汲極。 在本發明之較佳實施例中,反轉層45可施加一負電壓 VBLi,約為-4.5V〜-5V,使被選取記憶單元之閘極-汲極間 壓差達到約10.5V。其中位元線44可以視為共用同一位元 線之記憶單元串列之傳輸閘,並定義出被選取之記憶單元 之汲極端電壓。利用施加於被選取之控制閘極40b與其汲 極端間之壓差則使得電子可以依箭號50所示方向注入被 選取之資料儲存元件36b中。為了達到更好的操作效率, 當應用於雙位元記憶單元時,各記憶單元可以於基底32表 面選擇性地形成一埋藏式摻雜區域,用來定義一埋藏式汲 極/源極,並於埋藏式摻雜區域提供少許負電壓,例如 1281249 -IV〜-5V ’較佳為-4.5V,以提高控制閘極4〇b與其汲極端 間之壓差。 如第8圖中箭號52所示方向,當欲將電子自被選取之 貢料儲存元件36b中移除時,其操作方式係於資料儲存元 件36b上方之控制閘極4〇b施加一負電壓vWL,建議介於 -5V〜-15V,較佳為_6V,並且於基底32提供一正電壓,建 鲁邊介於+5V〜+10V ’較佳為+6V。其中施加於被選取之控制 閘極40b與基底32間之壓差使得基底32表面形成一反轉 層45 ’而電子可以依箭號52所示方向自被選取之資料儲 存元件36b中被移除。 *. ; * ....Vpass, it is recommended to be between -5V and -10V, preferably -6V. When a negative voltage is applied to the bit line 44, an inversion layer 45 is formed on the surface of the base 32 below the bit line 44 for use. Conduct the bit line voltage to the source/drain of the memory cell. In a preferred embodiment of the invention, the inversion layer 45 can apply a negative voltage VBLi of about -4.5V to -5V to bring the gate-drain voltage difference of the selected memory cell to about 10.5V. The bit line 44 can be regarded as a transmission gate of a memory cell string sharing the same bit line, and defines the 汲 extreme voltage of the selected memory cell. The electrons can be injected into the selected data storage element 36b in the direction indicated by arrow 50 using the differential pressure applied between the selected control gate 40b and its drain. In order to achieve better operational efficiency, when applied to a dual-bit memory cell, each memory cell can selectively form a buried doped region on the surface of the substrate 32 to define a buried drain/source, and A small negative voltage is provided in the buried doped region, for example, 1281249 - IV~-5V' is preferably -4.5V to increase the voltage difference between the control gate 4〇b and its drain terminal. In the direction indicated by arrow 52 in Fig. 8, when the electrons are to be removed from the selected tributary storage element 36b, the mode of operation is applied to the control gate 4b above the data storage element 36b. The voltage vWL is preferably between -5V and -15V, preferably _6V, and provides a positive voltage on the substrate 32, and the lub is between +5V and +10V', preferably +6V. The difference in pressure applied between the selected control gate 40b and the substrate 32 causes the surface of the substrate 32 to form an inversion layer 45' and the electrons can be removed from the selected data storage element 36b in the direction indicated by arrow 52. . *. ; * ....

如第9圖與第10圖所示之第三實施例,非揮發性記憶 體30利用福樂諾漢穿随機制來進行程式化,以將電子注入 被選取之記憶單元中,至於非揮發性記憶體3〇之抹除操作 ⑩則可以利用福樂諾漢穿隧機制將電子自被選取之記憶單元 中移除。舉例来說,如第9圖中箭號54所示方向,當欲將 電子注入被選取之資料儲存元件36b時,其操作方式係於 資料儲存元件36b上方之控制閘極4〇b施加一高電壓 Vwl,建議介於+10V〜+15V,較佳為+.15V,於資料儲存元 件36b上方之位元線44及共用位元線44之其他控制閘極 (例如控制閘極40a、40c)分別施加一較低電壓vBL、VAs shown in the third embodiment shown in FIGS. 9 and 10, the non-volatile memory 30 is programmed using the Fullerton random wear system to inject electrons into the selected memory cell as to non-volatile. The memory 3 erase operation 10 can use the Fullerhan tunneling mechanism to remove electrons from the selected memory cells. For example, in the direction indicated by arrow 54 in Fig. 9, when electrons are to be injected into the selected data storage element 36b, the operation mode is applied to the control gate 4b above the data storage element 36b. The voltage Vwl is preferably between +10V and +15V, preferably +.15V, the bit line 44 above the data storage element 36b and other control gates of the common bit line 44 (eg, control gates 40a, 40c) Apply a lower voltage vBL, V respectively

Pass, 建議介於+5V〜+8V,較佳為+8V,並且使基底32接地。卷 畐 14 1281249 於位元線44上提供正^>獻士 面奋# 士 一 口 、屯守,位元線44下方之基底32表 之^45’ μ來傳導心線電壓至記憶單元 =::t本發明之較佳實施…^ = 被魏記憶單元之閘極_&極間壓差達到約 15V,以滿足福樂諾漢穿 β ^ ^ 属牙随铋制之操作。施加於被選取之控 ϋ間 電壓將使得電子依箭號朗示方向注入被 遥取之資料储存元件36b中。 如第10圖中前被56所示方向,當欲將電子自被選取 之資料儲存元件祕中移除時,其操作方式係於謝 το件36b上方之控制閘極4%施加—負電壓V脱,建議介 於-10V〜-別,較佳為七v,並且使基底32接地。施加於 被選取之控制閘極働之負電壓聽得基底32表面形成一 反轉層45 *电子依前?虎56所示方向自被選取之資料儲 存元件36b中移除。 值得注意的是,本發明非揮發性記憶體可利用位元線 來作為記憶單元_齡結構。舉例來說,於操作位元線 44上的記憶單元時’可以在位元線44兩侧之位元線上提 供- ον的電壓值,以利用這些位域來隔離位元線44或 被選取之記憶單元’目此本發明可以省略製作場氧化層或 淺溝隔離等結構來作為相鄰位元線間之隔離結構。在實際 應用上,本發明可以使各條位元線均連接至不同的驅動電 15 1281249 路,再利用個別的驅動電路來控制供應至各位 =,或者本㈣也可喊單數行Wm: 數行位元線之供應電壓的切換: 構=π需求並且同時崎好的隔離結 端與源極端可以互換,使沒極端 掉Γ 電壓互換,即可以滿足雙位元記憶單元之Pass, it is recommended to be between +5V and +8V, preferably +8V, and ground the substrate 32. Volume 14 1281249 provides a positive ^>献士面奋#, a sputum, and a base 45 below the bit line 44, which is 45° μ, to conduct the core voltage to the memory unit =:: The preferred implementation of the present invention is as follows: ^ = the gate voltage of the Wei memory cell _ & the interelectrode pressure difference reaches about 15V, in order to meet the operation of the Fleurnohan wearing the β ^ ^ tooth. Applying to the selected control voltage will cause electrons to be injected into the remotely accessed data storage component 36b in the direction of the arrow. As shown in Fig. 10, in the direction indicated by 56, when the electrons are to be removed from the selected data storage component, the operation mode is 4% of the control gate applied above the thank-you 36b - negative voltage V It is recommended to be between -10 V and -, preferably seven v, and the substrate 32 is grounded. The negative voltage applied to the selected control gate 听 hears that the surface of the substrate 32 forms an inversion layer 45. The electrons are removed from the selected data storage element 36b in the direction indicated by the tiger 56. It should be noted that the non-volatile memory of the present invention can utilize bit lines as a memory cell-age structure. For example, when operating a memory cell on bit line 44, a voltage value of -ον may be provided on a bit line on both sides of bit line 44 to isolate bit line 44 or be selected using these bit fields. Memory Cell 'The present invention can omit the fabrication of a field oxide layer or a shallow trench isolation structure as an isolation structure between adjacent bit lines. In practical applications, the present invention can connect each bit line to a different driving circuit 15 1281249, and then use an individual driving circuit to control the supply to each bit =, or this (4) can also call a single line Wm: several lines The switching of the supply voltage of the bit line: the structure = π demand and at the same time, the isolated junction and the source terminal are interchangeable, so that the voltage swap is not extremely eliminated, so as to satisfy the double-bit memory unit.

請參考第11圖,锋V 發性記憶體的剖面㈠1圖為本發明另—實施例之一非揮 ^ 30 ° # 11 ® 藏式汲極6G設於換設於基底32表面,以及複數個埋 34 . t # 58 * ® ° 30 ^ ^ 閘極存元件施〜施、氧化層38、控制Please refer to FIG. 11 , the cross section of the front V memory (1) 1 is a non-volatile 30 ° # 11 ® Tibetan bungee 6G provided on the surface of the substrate 32, and a plurality of Buried 34 . t # 58 * ® ° 30 ^ ^ Gate storage element application ~ oxide layer 38, control

44 42 ^ .X 為p型摻雜區Μ^或—N型井,埋藏歧極60可以 式沒極60且有相二型播雜區域’且推雜井58與埋藏 -輔助位元線,於^導電型式。埋藏纽極⑼可以視為 利於調整記憶單化/郷6G上提供適鼓電壓值可有 之工作電壓可以有效^向之電場,使施加於控制閉極上 16 1281249 請參考第[2圖,第12圖為本發明操作一非揮發性記憶 體之參數建議值。如第12圖所示,非揮發性記憶體於一被 選取記憶單元(假設為N型通道記憶單元)上進行程式化之 操作方法為: 於該被選取記憶單元之位元線提供一正電壓 (VBL,seieeted=+6V),並使其他位元線接地(VBLunseieeted=〇v); 於该被選取記憶單元之字元線(控制閘極)提供一負電壓 # (Vwl—_6V) ’並於其他字元線提供一正電壓(Vpass=+6V); 於該被選取位元線下方之反轉層提供一正電壓44 42 ^ .X is a p-type doped region Μ^ or -N-type well, and the buried dipole 60 can be a immersed 60 and has a phase-type hybrid region' and pushes the well 58 and the buried-auxiliary bit line. In the ^ conductivity type. The buried neopolar (9) can be regarded as facilitating the adjustment of memory simplification/郷6G to provide a suitable drum voltage value. The working voltage can be effectively applied to the control pole. 16 1281249 Please refer to [2, 12th The figure is a suggested value of the parameters of the non-volatile memory operating in the present invention. As shown in Fig. 12, the non-volatile memory is programmed on a selected memory cell (assumed to be an N-channel memory cell) by: providing a positive voltage to the bit line of the selected memory cell (VBL, seieeted = +6V), and ground the other bit lines (VBLunseieeted = 〇 v); provide a negative voltage # (Vwl - _6V) ' in the word line (control gate) of the selected memory cell Providing a positive voltage (Vpass=+6V) to other word lines; providing a positive voltage to the inversion layer below the selected bit line

(VSL=0V,Vwel尸0V) 〇 使該被縣記憶單元之伽端及下絲底均接地(VSL=0V, Vwel corpse 0V) 〇 Ground the gamma and bottom of the memory unit of the county

相車乂於習知少,μ?日日一 aThe car is less than the familiar, μ?

供了一種NAND型 於字元線上方,因 微影以及蝕刻方式 1281249 來定義尺寸,以使字元線以及位元線均能滿足最小設計尺 寸,達到4F2記憶單元尺寸之高密度要求。此外,本發明 於被選取之記憶單元上進行程式化操作時,可以使設於被 選取記憶單元兩側之其他位元線接地,以利用這些接地之 位元線來形成隔離結構,因此本發明不需製作場氧化層或 淺溝隔離等結構來作為相鄰位元線間之隔離結構。此外, 本發明非揮發性記憶體結構可以應用於氮化物記憶體,以 提供2F2之更高密度記憶單元陣列。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 利範圍所做之均等變化與修飾,皆應屬本發明專利之涵蓋 範圍。 【圖式簡單說明】 ❿ 第1圖為習知一快閃記憶體的剖面示意圖。 第2圖為本發明一非揮發性記憶體的陣列示意圖。 第3圖為第2圖所示之非揮發性記憶體沿切線33’所示之剖 面示意圖。 第4圖為第2圖所示之非揮發性記憶體沿切線44’所示之剖 面示意圖。 第5圖與第6圖為本發明第一實施例之裎式化/抹除一非揮 發性記憶體的操作示意圖。 18 1281249 第7圖與第8圖為本發明第二實施例之程式化/抹除一非揮 發性記憶體的操作示意圖。 第9圖與第10圖為本發明第三實施例之程式化/抹除一非 揮發性記憶體的操作示意圖。 第11圖為本發明另一實施例之一非揮發性記憶體的剖面 示意圖。 第12圖為本發明操作一非揮發性記憶體之參數建議值。 【主要元件符號說明】 10 快閃記憶體 12、32 基底 14 P型并 16 N型摻雜區域 18、22、34、38 氧化層 20 浮動閘極 24、40、40a、40b、40c 控制閘極 30 非揮發性記憶體 36、36a、36b、36c 資料儲存元件 42 絕緣層 44 〜44a > 44b、44c 位元線 45 反轉層 46 、 48 、 50 、 52 、 54 、 56 電子移動方向 19 1281249 58 摻雜井 60 埋藏式汲極 A 記憶單元 BLO〜BL20 位元線 L 通道區域 vpass、Vwl、VbL、VBL,i、 電壓值 ^BL,selected Λ ^BL,unselected ^BL,i,selected ' ^BL,i,unselected VsL ' VwELL WLO 〜WL31 字元線A NAND type is provided above the word line, and the size is defined by the lithography and etching method 1281249, so that the word line and the bit line can satisfy the minimum design size, and the high density requirement of the 4F2 memory cell size is achieved. In addition, when the present invention performs a program operation on the selected memory unit, the other bit lines disposed on both sides of the selected memory unit can be grounded to form the isolation structure by using the grounded bit lines, and thus the present invention It is not necessary to fabricate a structure such as a field oxide layer or a shallow trench isolation as an isolation structure between adjacent bit lines. In addition, the non-volatile memory structure of the present invention can be applied to nitride memory to provide a higher density memory cell array of 2F2. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the patentable scope of the present invention should be covered by the present invention. [Simple description of the drawing] ❿ Figure 1 is a schematic cross-sectional view of a conventional flash memory. Figure 2 is a schematic diagram of an array of non-volatile memory of the present invention. Fig. 3 is a schematic cross-sectional view showing the non-volatile memory shown in Fig. 2 along the tangential line 33'. Fig. 4 is a schematic cross-sectional view showing the non-volatile memory shown in Fig. 2 taken along a tangential line 44'. Fig. 5 and Fig. 6 are views showing the operation of the simplification/erasing of a non-volatile memory according to the first embodiment of the present invention. 18 1281249 Figures 7 and 8 are schematic diagrams showing the operation of stylizing/erasing a non-volatile memory in accordance with a second embodiment of the present invention. Fig. 9 and Fig. 10 are diagrams showing the operation of stiling/erasing a non-volatile memory in accordance with a third embodiment of the present invention. Figure 11 is a cross-sectional view showing a non-volatile memory of another embodiment of the present invention. Figure 12 is a suggested value of a parameter for operating a non-volatile memory of the present invention. [Main component symbol description] 10 Flash memory 12, 32 Substrate 14 P type and 16 N type doped regions 18, 22, 34, 38 Oxide layer 20 Floating gates 24, 40, 40a, 40b, 40c Control gate 30 non-volatile memory 36, 36a, 36b, 36c data storage element 42 insulating layer 44 ~ 44a > 44b, 44c bit line 45 inversion layer 46, 48, 50, 52, 54, 56 electron moving direction 19 1281249 58 doping well 60 buried bungee A memory cell BLO~BL20 bit line L channel area vpass, Vwl, VbL, VBL, i, voltage value ^BL, selected Λ ^BL, unselected ^BL,i,selected ' ^ BL, i, unselected VsL 'VwELL WLO ~ WL31 word line

2020

Claims (1)

1281249 十、申請專利範圍: 1. 一種非揮發性記憶體,其包含: 一基底; 複數個資料儲存元件設於該基底上方,其中各該資料儲 存元件係用來儲存至少一位元資料; 複數個控制閘極設於該複數個資料儲存元件上方,以用 Φ 來控制該複數個資料儲存元件之操作; 一絕緣層覆蓋於該複數個控制閘極表面以及側壁上; 以及 一位元線跨越於該複數個控制閘極上方並且設於該絕 緣層上。 2. 如申請專利範圍第1項之非揮發性記憶體,其中各該資 料儲存元件包含一浮動閘極。 3·如申請專利範圍第1項之非揮發性記億體,其中各該資 料儲存元件包含一氮化層。 4. 如申請專利範圍第3項之非揮發性記憶體,其中各該資 料儲存元件可儲存二位元資料。 5. 如申請專利範圍第1項之非揮發性記憶體,其另包含至 1281249 少一埋藏式摻雜區域設於鄰近各該資料儲存元件之該基底 表面。 6.如申請專利範圍第5項之非揮發性記憶體,其中該基底 另包含至少一摻雜井,該埋藏式摻雜區城係設置於該摻雜 井中,且該摻雜井與該埋藏式摻雜區域具有相反的導電型 式。 7. 如申請專利範圍第1項之非揮發性記憶體,其中該位元 線以及該複數個控制閘極均係由摻雜多晶矽所形成。 8. 如申請專利範圍第1項之非揮發性記憶體,其中該絕緣 層覆蓋於該複數個資料儲存元件侧壁上。 9. 一種非揮發性記憶體,其包含: 一基底; 複數條字元線設於該基底上方;以及 複數條位元線跨越於該複數條字元線上方,且其中每一 條位元線與每一條字元線均係垂直相交並於其垂直相交區 域定義一記憶單元。 10. 如申請專利範圍第9項之非揮發性記憶體,其中該記 憶單元包含一資料儲存元件。 22 1281249 11. 如申請專利範圍第10項之非揮發性記憶體,其中該資 料儲存元件包含一浮動閘極。 12. 如申請專利範圍第10項之非揮發性記憶體,其中該資 料儲存元件包含一氮化層。 13. 如申請專利範圍第12項之非揮發性記憶體,其中該資 料儲存元件可儲存二位元資料。 14. 如申請專利範圍第9項之非揮發性記憶體,其中該記 憶單元包含至少一埋藏式摻雜區域設於該基底表面。 15. 如申請專利範圍第14項之非揮發性記憶體,其中該基 底另包含至少一摻雜井,該埋藏式摻雜區域係設置於該摻 雜井中,且該摻雜井與該埋藏式摻雜區域具有相反的導電 • 型式。 16. 如申請專利範圍第9項之非揮發性記憶體,其中該複 數條字元線係用來定義複數個控制閘極。 17. 如申請專利範圍第9項之非揮發性記憶體,其另包含 至少一絕緣層設於該複數條字元線之表面以及侧壁上。 23 1281249 18. 如申請專利範圍第9項之非揮發性記憶體,其中該複 數條位元線包含一被選取記憶單元之源極/汲極。 19. 如申請專利範圍第9項之非揮發性記憶體,其中該複 數條位元線包含一被選取記憶單元周圍之隔離結構。 20. 如申請專利範圍第9項之非揮發性記憶體,其中該複 數條位元線以及該複數條字元線包含摻雜多晶矽。 十一、圖式: 241281249 X. Patent Application Range: 1. A non-volatile memory comprising: a substrate; a plurality of data storage components disposed above the substrate, wherein each of the data storage components is configured to store at least one meta-data; a control gate is disposed above the plurality of data storage elements to control the operation of the plurality of data storage elements by using Φ; an insulating layer covering the plurality of control gate surfaces and sidewalls; and a bit line crossing And above the plurality of control gates and disposed on the insulating layer. 2. The non-volatile memory of claim 1, wherein each of the data storage elements comprises a floating gate. 3. A non-volatile body of claim 1, wherein each of the material storage elements comprises a nitride layer. 4. For non-volatile memory as claimed in item 3 of the patent scope, each of the material storage elements may store two-dimensional data. 5. The non-volatile memory of claim 1 of the patent application, further comprising a buried doped region disposed on the surface of the substrate adjacent to each of the data storage elements. 6. The non-volatile memory of claim 5, wherein the substrate further comprises at least one doping well, the buried doped region is disposed in the doping well, and the doping well and the buried The doped regions have opposite conductivity patterns. 7. The non-volatile memory of claim 1, wherein the bit line and the plurality of control gates are formed of doped polysilicon. 8. The non-volatile memory of claim 1, wherein the insulating layer covers the sidewalls of the plurality of data storage elements. 9. A non-volatile memory, comprising: a substrate; a plurality of word lines disposed above the substrate; and a plurality of bit lines spanning the plurality of word lines, and wherein each of the bit lines Each word line intersects perpendicularly and defines a memory cell in its perpendicular intersection. 10. The non-volatile memory of claim 9, wherein the memory unit comprises a data storage component. 22 1281249 11. The non-volatile memory of claim 10, wherein the data storage element comprises a floating gate. 12. The non-volatile memory of claim 10, wherein the material storage element comprises a nitride layer. 13. The non-volatile memory of claim 12, wherein the data storage component stores bi-digit data. 14. The non-volatile memory of claim 9, wherein the memory cell comprises at least one buried doped region disposed on the surface of the substrate. 15. The non-volatile memory of claim 14, wherein the substrate further comprises at least one doping well, the buried doped region is disposed in the doping well, and the doping well and the buried type The doped regions have opposite conductivity types. 16. The non-volatile memory of claim 9 wherein the plurality of character lines are used to define a plurality of control gates. 17. The non-volatile memory of claim 9, further comprising at least one insulating layer disposed on a surface and a sidewall of the plurality of word lines. 23 1281249 18. The non-volatile memory of claim 9, wherein the plurality of bit lines comprise a source/drain of a selected memory cell. 19. The non-volatile memory of claim 9, wherein the plurality of bit lines comprise an isolation structure around the selected memory cell. 20. The non-volatile memory of claim 9, wherein the plurality of bit lines and the plurality of word lines comprise doped polysilicon. XI. Schema: 24
TW94105614A 2005-02-24 2005-02-24 NAND-type non-volatile memory TWI281249B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94105614A TWI281249B (en) 2005-02-24 2005-02-24 NAND-type non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94105614A TWI281249B (en) 2005-02-24 2005-02-24 NAND-type non-volatile memory

Publications (2)

Publication Number Publication Date
TW200631167A TW200631167A (en) 2006-09-01
TWI281249B true TWI281249B (en) 2007-05-11

Family

ID=38741670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94105614A TWI281249B (en) 2005-02-24 2005-02-24 NAND-type non-volatile memory

Country Status (1)

Country Link
TW (1) TWI281249B (en)

Also Published As

Publication number Publication date
TW200631167A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
US7382654B2 (en) Trapping storage flash memory cell structure with inversion source and drain regions
US7492636B2 (en) Methods for conducting double-side-biasing operations of NAND memory arrays
JP4562602B2 (en) Memory cell and related operation method
US20040070020A1 (en) Nonvolatile semiconductor memory device and method for operating the same
JP2002026149A (en) Nonvolatile semiconductor storage device and its operating method
JP2005347755A (en) Method of operating memory device and memory device
US7268385B2 (en) Semiconductor memory device
JP2004221554A (en) Nonvolatile semiconductor memory device
JP2008004913A (en) Operating method of non-volatile memory device
KR100598107B1 (en) Non-volatile memory devices and methods for forming the same
JP2007511076A (en) Technology for programming flash memory using gate junction leakage current
JP2003046002A (en) Non-volatile semiconductor memory and operation method
US10950614B2 (en) Single poly non-volatile memory device, method of manufacturing the same and single poly non-volatile memory device array
US7652320B2 (en) Non-volatile memory device having improved band-to-band tunneling induced hot electron injection efficiency and manufacturing method thereof
KR20060128567A (en) Nand type flash memory array and operating method of the same
US6801456B1 (en) Method for programming, erasing and reading a flash memory cell
JP2005216471A (en) Nonvolatile memory cell array having common drain line and method of operating the same
JP2004214365A (en) Nonvolatile semiconductor memory device and its operating method
KR20100030452A (en) Nand flash memory of using common p-well and method of operating the same
US20060268607A1 (en) Operation method of non-volatile memory structure
US7911852B2 (en) Nonvolatile semiconductor memory device and operation method thereof
US7561470B2 (en) Double-side-bias methods of programming and erasing a virtual ground array memory
US7511329B2 (en) NAND-type non-volatile memory
TWI281249B (en) NAND-type non-volatile memory
US20060226467A1 (en) P-channel charge trapping memory device with sub-gate