TWI279952B - Surface-emitting semiconductor-laser device and method for the production of a surface-emitting semiconductor-laser device - Google Patents

Surface-emitting semiconductor-laser device and method for the production of a surface-emitting semiconductor-laser device Download PDF

Info

Publication number
TWI279952B
TWI279952B TW94132601A TW94132601A TWI279952B TW I279952 B TWI279952 B TW I279952B TW 94132601 A TW94132601 A TW 94132601A TW 94132601 A TW94132601 A TW 94132601A TW I279952 B TWI279952 B TW I279952B
Authority
TW
Taiwan
Prior art keywords
semiconductor laser
laser device
thermally conductive
emitting semiconductor
conductive element
Prior art date
Application number
TW94132601A
Other languages
Chinese (zh)
Other versions
TW200618428A (en
Inventor
Thomas Schwarz
Wolfgang Reill
Ulrich Steegmueller
Stephan Lutgen
Tony Albrecht
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200618428A publication Critical patent/TW200618428A/zh
Application granted granted Critical
Publication of TWI279952B publication Critical patent/TWI279952B/en

Links

Abstract

This invention relates to a surface-emitting semiconductor-laser device with at least one surface-emitting semiconductor laser (21) with a vertical emitter (1) and at least one pump-radiation source (2), which are integrated adjacently monolithically on a common substrate (13). The semiconductor-laser device has additionally a heat-conductive element (18), which is in thermal contact with the semiconductor laser (21) and has a mounting-surface, which is provided to mount on a carrier (27). In addition, a method for the production of such a surface-emitting semiconductor laser device is provided.

Description

1279952 九、發明說明: 【發明所屬之技術領域】 ^ 本發明涉及一種光學泵送之表面發射式半導體雷射裝置 及其製造方法。 - 【先前技術】 . 文件US 5,991,318中描述一種光學泵送之垂直共振器-半 導體雷射,其具有積體化於單石上之表面發射式半導體層結 構。在此種習知的裝置中,光學泵送之輻射(其波長小於所 • 產生的雷射輻射之波長)由邊緣發射式半導體雷射二極體所 提供。邊緣發射式半導體雷射二極體設置在外部,使泵送之 輻射傾斜地由前方入射至表面發射式半導體層結構之放大 區中。此份文件US 5,991,318所揭示的內容收納於此處以作 爲參考。 文件DE 100 267 34 A1描述一種光學泵送之表面發射式 半導體雷射裝置,其具有至少一產生輻射之量子井結構和至 少一泵輻射源。此泵輻射源用來對該量子井結構進行光學泵 ^ 送。泵輻射源具有一種邊緣發射式半導體結構。產生輻射之 量子井結構和邊緣發射式半導體結構以磊晶方式生長在一 ^ 種共同之基板上。文件DE 1 00 267 34 A1所揭示的內容收納 - 於此處以作爲參考。 【發明內容】 本發明的目的是提供一種光學泵送之表面發射式半導體 雷射裝置,其可特別有效地冷卻。此外,本發明另涉及此種 表面發射式半導體雷射裝置之製造方法。 1279952 石方式積體化於一種共同之基板上。各別的半導體層之層厚 度在磊晶生長時可很準確地調整,使邊緣發射式結構可有利 ^ 地來對表面發射式結構準確地定位。因此,泵輻射源較佳是 適合用來以橫向方式對該垂直發射體進行泵送。即,泵輻射 - 源基本上平行於該共同基板之表面而延伸,半導體雷射裝置 * 沈積在共同基板之表面上,且泵輻射垂直於該垂直發射體所 產生的雷射束。 此外,此表面發射式半導體雷射裝置較佳是含有一種導熱 ® 元件。此導熱元件較佳是與表面發射式半導體雷射形成熱學 上的接觸。即,導熱元件較佳是與泵輻射源及該垂直發射體 形成熱學上的接觸。此導熱元件因此允許此表面發射式半導 體雷射裝置操作時所產生的熱被排出。熱較佳是藉由熱導線 而排出。藉由熱導線而排出之意義是:熱傳輸之其它機構最 多只扮演一種次要的角色。 此外,導熱元件較佳是另具有一種安裝面。此安裝面用來 使半導體雷射裝置安裝在一載體上。在表面發射式半導體雷 胃射操作時所產生的熱由導熱元件排出至安裝面且可由該處 發送至載體時特別有利。載體較佳是作爲一種散熱件。該安 '裝面例如可位於該導熱元件之一與半導體雷射相面對的表 • 面上。熱然後由表面發射式半導體雷射裝置較佳是以直接路 徑(即,不需一種値得一提的橫向熱導線)繼續傳送至安裝 面0 依據至少一實施形式而提供一種表面發射式半導體雷射 裝置,其至少一表面發射式半導體雷射具有一垂直發射體和 1279952 _ 至少一泵輻射源,其相鄰地以單石方式積體化於一共同的基 板上。此外,此表面發射式半導體雷射裝置另具有··. 一種導 熱元件,其與半導體雷射形成熱學上的接觸;以及一安裝 面,其用來安裝一種載體。 * 在表面發射式半導體雷射裝置之至少一種實施形式中,該 • 導熱元件具有導電性。即,此導熱元件由導電之材料所形成 或含有一種電性絕緣之材料,但亦可在其表面之至少一些部 份上存在著一種導電材料。例如,電性絕緣的材料可塗佈一 ®層導電材料。 該導熱元件較佳是用來與半導體雷射作電性上的接觸。因 此’該導熱元件之導電性特別高時是有利的,於是此導熱元 件只具有很小的電阻。此導熱元件較佳是與表面發射式半導 體雷射之泵輻射源在電性上相接觸,即,在泵輻射源之n-側之接觸區和導熱元件之間較佳是形成一種導電性的連 接。但在P-側亦可經由導熱元件來與泵輻射源相接觸。 該導熱元件在其安裝面上導電性地與載體相連接時特別 β 有利°以此種方式,則半導體雷射較佳是經由該導熱元件而 與載體在電性上相連接。 - 依據至少一實施形式,該導熱元件較佳是含有以下各種材 - 料中之一種··銅,鑽石,銀,Α1203,Α1Ν,SiC,ΒΝ,銅-鑽石。 例如’若該導熱材料含有一種電性絕緣材料(例如,BN),則 由導電材料所構成的導電軌可施加(例如,按壓)在此絕緣材 料i: ’各導電$九可使半導體雷射與導熱元件之安裝面形成電 性上的接觸。 1279952 在表面發射式半導體雷射裝置之至少一實施形式中,在導 熱元件和半導體雷射之間形成一種耐熱之連接。即,表面發 ^ 射式半導體雷射和導熱元件之連接區可抵擋該表面發射式 半導體雷射操作時所產生的溫度而不會喪失其黏合作用。此 -種連接區之導熱性特別良好時特別有利,此時所產生的熱在 . 連接區中無重大的熱阻塞下可發送至該導熱元件。 此外,該連接區至少在半導體雷射之一部份區域(其中在 泵輻射源和該導熱元件之間形成一種連接區)中具有導電 • 性。 上述之連接區例如是一種焊接連接區。焊劑包含以下各材 料中之至少一種:Au,Sn,In,SnAg,AuSn,Ge,AuGe。良卩, 軟焊劑和硬焊劑都適用。但亦可在導熱元件和半導體雷射之 間形成一種電鑛連接區。即,在導熱元件和半導體雷射之間 可形成一種連接區,其由電鍍沈積過程所造成。 在表面發射式半導體雷射裝置之至少一種實施形式中,此 表面發射式半導體雷射在其遠離基板之表面上與該導熱元 ^ 件相連接。即,此表面發射式半導體雷射例如以倒置 (Up-Side-Down)安裝法之槪念而安裝在導熱元件之表面 ^ 上。例如,此雷射可焊接在導熱元件之表面上。特別有利的 . 是:在操作時在泵輻射源之產生輻射之層中所產生的熱可經 由一特別短的路徑而排出至導熱元件上。活性層至導熱元件 之附近區因此可有利地使表面發射式半導體雷射之冷卻獲 得改良。於是,遠離該導熱元件之基板可更薄或完全去除。 即,基板之厚度例如可藉由硏磨,蝕刻或雷射燒蝕而下降, 1279952 使基板不再存在。 依據表面發射式半導體雷射裝置之至少一實施形式,基板 包含至少一凹□,凹口中包含該導熱元件。藉由此凹口可使 導熱元件特別靠近最大發熱區之位置而定位著。因此須形成 此凹口,使半導體雷射可經由此導熱元件而達成電性上的接 觸。即,基板須去除至一種程度,使導熱元件可直接被接觸 或經由一薄的基板層而與半導體雷射相接觸。在每一種情況 下,導熱元件和半導體雷射較佳是在電性上互相接觸。 例如,該凹口較佳是在基板中進行界定以藉由蝕刻而形 成,但亦可使該凹口以另一方式(例如,以機械方式)而產生。 在表面發射式半導體雷射裝置之至少一實施形式中,該導 熱元件以電鍍方式而沈積在基板的凹口中。導熱元件之大小 和形式是由凹口之大小和形式來預設。此導熱元件較佳是完 全塡滿該凹口。例如,導熱元件基本上是與基板之遠離表面 發射式半導體雷射之此表面相齊平。但亦可使由電鍍沈積之 材料所構成的薄層至少一部份覆蓋該表面。此實施形式的優 點是:此電鍍層在室溫時可沈積在基板的凹口中。可省略一 種連接技術(例如,焊接),這樣在製程中該構件之熱負載即 可大大地下降。例如,可以電鍍方式而沈積的全部金屬都可 用作此導熱元件之材料。此導熱元件含有銀,金及/或銅時 特別有利。 在表面發射式半導體雷射裝置之至少一種實施形式中,泵 輻射源具有至少一已蝕刻的共振器-多角形平面。例如,泵 輻射源之雷射多角形平面較佳是以一金屬來達成反射作 -10- 1279952 . 用。此雷射多角形平面較佳是垂直於泵輻射而延伸,即,垂 直於邊緣發射體之共振器而延伸且較佳是藉由平面來形成。 此外’本發明提供一種表面發射式半導體雷射裝置之製造 方法。 • 在本方法之至少一實施形式中,首先製備一種半導體晶 ^ 圓’其具有多個表面發射式半導體雷射。各個半導體雷射較 佳是各別具有一種垂直發射體和至少一泵輻射源。垂直發射 體和泵輻射源較佳是以單石方式相鄰地整合在一種共同之 •基板上。 在下一步驟中,製備一種導熱晶圓。此導熱晶圓較佳是含 有以下各種材料中至少一種:銅,銅·鑽石,A1203,A1N, SiC,鑽石,BN,金屬。 半導體晶個和導熱晶圓之形式和大小互相配合時特別有 利,即,該導熱晶圓較佳是至少像半導體晶圓一樣大。此二 種晶圓具有相同形式時特別有利且此種形式例如可爲圓形。 在下一步驟中,半導體晶圓和導熱元件互相連接。此表面 ^ 發射式半導體雷射較佳是在其遠離基板之此表面上與該導 熱晶圓相連接。半導體晶圓安裝在導熱晶圓上因此係依據倒 — 置(Up-Si de-Down)安裝法之方式來達成。此導熱晶圓較佳是 * 至少依位置之不同而具有導電性,使半導體雷射可經由導熱 晶圓而達成電性上的接觸。 爲了使垂直發射體例如可由外部之共振器所接近 (Access),則在下一步驟中須在基板中進行一種溝渠蝕刻, 其中各別地使垂直發射體裸露。 -11- 1279952 在下一步驟中進行一種經由半導體晶圓之切割或特別有 利的方式是進行一種切割式蝕刻。此種切割較佳是垂直於基 ^ 板經由泵輻射源而延伸,以形成邊緣發射式泵輻射源之多角 形平面。多角形平面較佳是垂直於泵輻射源之共振器且成平 - 坦狀。就泵輻射源之較佳之效率而言,隨後使多角形平面具 * 有反射性時是有利的,此時例如須將一種反射性良好之金屬 加入至該隔離溝渠中。 在下一步驟中,由半導體晶圓和導熱晶圓所構成之複合物 • 沿著切割線而被劃分,以形成多個表面發射式半導體雷射裝 置。 特別有利的是上述之劃分首先各別地在一方向中進行,以 形成多個具有串聯之表面發射式半導體雷射裝置之條片,其 可周時在一種燒入(Burn-In)操作中受到驅動。 依據本方法之至少一實施形式,表面發射式半導體雷射在 與導熱晶圓相連接之前即可被劃分。以此種方式可使各別之 表面發射式半導體雷射在安裝在通常很昂貴之導熱元件上 ® 之前對其功能上的優異性進行測試。 共振器溝渠鈾刻和泵輻射源-多角形平面例如藉由蝕刻和 '鏡面化來進行時之製造過程可在表面發射式半導體雷射安 • 裝在導熱晶圓上之前或之後進行。各個表面發射式半導體雷 射可藉由線接觸而互相連接,使本實施形式中可達成一種共 同之燒入-操作。 依據表面發射式半導體雷射裝置之製造方法之至少一實 施形式,首先製備一基板,其上以單石方式相鄰地整合著多 -12- 1279952 _ 個表面發射式半導體雷射,其分別具有一種垂直發射體和至 少一泵輻射源。 在下一步驟中,每一個半導體雷射在基板之面對半導體雷 射之此側上藉由蝕刻過程而產生至少一凹口。此凹口較佳是 延伸至基板中之一深度處且在橫向中具有一種寬度,使半導 體雷射之全部之泵輻射源都可容易地被接觸。另一方式是每 一泵輻射源亦可另外形成至少一凹口,經由此凹口可容易地 對泵輻射源達成電性上的接觸。 I 在下一步驟中,一種導熱材料以電鑛方式沈積在基板之凹 口中。此導熱材料之特徵較佳是導熱性和導電性都很好,以 便可藉此導熱材料使半導體雷射達成導熱—和導電之連接。 在下一步驟中,由半導體雷射和導熱元件所形成的配置劃 分成多個表面發射式半導體雷射裝置,其分別具有半導體雷 射裝置和至少一導熱元件。 在本方法之至少一實施形式中,省略共振器溝渠蝕刻是有 利的,此乃因垂直發射體可經由表面發射式半導體雷射之遠 I 離基板之表面而進行發射。泵輻射源之多角形平面可藉由蝕 刻和隨後之鏡面化而產生。但泵輻射源之多角形平面之製造 例如亦可藉由此配置的裂痕之折斷以及隨後使各別之表面 發射式半導體雷射裝置之多角形平面之鏡面化來達成。各表 面發射式半導體雷射裝置之至少一些部份之共同的燒入-操 作如上所述亦是可能的。 此處所述的表面發射式半導體雷射裝置以下將依據圖式 和各實施例來詳述。 1279952 【實施方式】 各實施例和圖式中相同或作用相同之組件分別設有相同 ^ 的參考符號。所示的各組件和各組件之間的大小比例未依比 例繪製。反之,各圖式之一些細節爲了更清楚之故以放大的 • 方式顯示出。 . 第1圖所示之表面發射式半導體雷射包含一垂直發射體1 和一泵輻射源2。 垂直發射體1具有一中央波導3和一設置在中央波導3內 馨 部之產生輸射之量子井結構(其具有多個量子層5)。一^鏡面 6在垂直方向中配置在中央波導之後。此鏡面較佳是以佈拉 格(Bragg)鏡面構成,其具有多個折射率不同之交替配置之 層。面對此鏡面在遠離基板1 3之此側上一種射出層7施加 在中央波導3上,由垂直發射體所產生的輻射8經由射出層 7而發出。 鏡面6能以一種外部鏡面(未顯示)來形成該垂直發射體用 之外部雷射共振器。此種裝置亦稱爲 VECSL (Vertical • External Cavity Surface Emitting Laser)。另一方式是亦可 依據 VCSEL(Vertical Cavity Surface Emitting Laser)之形式 ‘而在射出層7和中央波導3之間配置一種部份透光之發射鏡 * 面(較佳是一種佈拉格鏡面)以形成內部共振器。 此外,在外部共振器中配置一種非線性的光學元件(例 如,非線性之晶體)以進行頻率轉換。此種方式對頻率轉換, 特別是頻率倍增,例如,對量子井結構所產生的輻射8之頻 率加倍,而言是有利的。同樣,表面發射式半導體雷射之此 -14- 1279952 種形式亦可考慮用於其它非線性的轉換中,例如,頻率和 (sum)之產生,頻率差之產生,次(sub)諧波之產生,Raman· ^ 雜散或四波混合等等,其中由垂直發射體所產生的輻射場可 選擇地與一例如由外部所產生的輻射場在非線性的光學元 - 件中相疊加。 . 橫向配置之二個泵輻射源2分別包括一活性層和一泵波 導9 (其具有一種中軸1 0),泵輻射1 1在泵波導9中受到導 引。如第1圖所示,泵輻射1 1較佳是具有一種近似高斯 Φ (Gauss)形式的外形。此外,設有一種緩衝層4,以使泵波導 在垂直方向中定位在一種對該中央波導而言是適當的高度 中〇 量子層5配置在距中軸1 0 —預設的距離中。 泵雷射和垂直發射體較佳是以單石方式積體而成,即,以 磊晶方式生長在一種共同之基板13上。在製成之後此基板 13被薄化或完全去除。另一方式是鏡面6施加在中央波導3 之上側。然後在面對此鏡面之此側上經由基板1 3而發出輻 ® 射。較佳是在垂直發射體1之區域中有一種鈾刻溝渠存在於 基板13中,以便可發出輻射。 ‘ 此外,多於二個(例如,四個或六個)之泵輻射源2亦可以 ^ 光學方式對垂直發射體1進行泵送。泵輻射源2可以十字形 或星形方式配置在垂直發射體1之周圍。 在操作時由泵輻射源2所產生的泵輻射在橫向中射入量 子井結構中且在量子層5中被吸收以及因此而激發此輻射8 之發出(此稱爲光學泵)。在垂直發射體形成雷射時,量子井 -15- 1279952 結構作爲光學泵送之活性介質,其中雷射輻射藉由已激發的 輻射而產生或放大。 ’ 中央波導3之寬度A在本實施例中大於泵輻射波導之寬度 B且須依據此寬度B來調整,使垂直發射體1之量子井結構 - 均勻地且較佳是大面積地受到泵送。詳言之,這在第1圖所 • 示的實施例中是藉由泵輻射之輻射擴大以及量子層5設置 成與泵波導9之中央軸1 0相隔開來達成。 輻射之擴大是與泵波導9轉換成寬很多的中央波導3之後 ® 泵輻射場1 1之繞射有關。中央波導中的模式之數目須夠 大,因此幾乎可假設此泵輻射可在中央波導中自由地傳送。 泵輻射之外形可在高斯透鏡之範圍中測得。 第2圖是此處所述之表面發射式半導體雷射之第二實施 例之切面圖。 此處顯示一種在單一磊晶步驟中生長的晶圓雷射,其中該 泵輻射1 1 (由泵波導9之中軸1 2可看到)向上射入至表面發 射式半導體雷射之量子井結構5(其例如含有多個量子井) W 中。由於泵波導9之折射率之跳躍現象,則可達成上述射入 至量子井結構5中之現象。泵輻射源2例如是一種光學耦合 ^ 之邊緣發射體。泵輻射2之雷射多角形平面較佳是藉由刻劃 一 且沿著基板1 3之晶體軸而折斷以及隨後設有高反射率(R > 90%)之鏡面而製成。另一方式是多角形平面可藉由蝕刻和隨 後之鏡面化而形成。 由於形成高反射率之鏡面,則最多只有泵輻射1 1之一小 部份由橫向之共振器發出。藉由共振器內部之表面發射式雷 -16- 1279952 射1,則經由泵輻射在量子井結構5中之吸收作用可形成一 種有效率之光學泵機構。 ” 本實施例之優點是製程技術上特別簡易。在嘉晶步驟之後 在泵雷射2之區域中藉由蝕刻停止層所界定的選擇性蝕刻 • 而在波導中進行蝕刻且隨後施加一種透明之導電性P-接觸 區14a(其例如可含有氧化鋅)和一種p-接觸金屬層14b,其 較佳是亦可作爲泵光11用之金屬反射體。 第3圖是此處所述之表面發射式半導體雷射裝置之第一 # 實施例之切面圖。 半導體雷射2 1 (其例如已顯示在第1,2圖中)此處是以晶 圓形式施加在導熱晶圓1 8上,此導熱晶圓在此配置劃分之 後形成一導熱元件。例如,此二個晶圓藉由焊接層1 7而在 機械上互相連接。此外,半導體雷射之泵輻射源9經由焊接 層1 7而在電性上與導熱晶圓1 8相接觸。 導熱晶圓1 8較佳是具有導電性,使栗幅射源9可經由導 熱晶圓1 8而達成電性上的接觸。導熱晶圓1 8因此含有一種 ® 導電材料或至少一部份塗佈一種導電層。晶圓1 8以及導熱 材料用之可能的導電材料是銅,銅-鑽石化合物材料,鑽石, 銀 A12 〇 3,A1N,S i C,. B N或追些材料的組合。焊接層1 7較 - 佳是含有以下材料中之至少一種或這些材料的組合:In,Sn SnAg,Ag,Au,AuSn,AuGe。 爲了可接近一外部共振器(未顯示)用之垂直發射體,則須 形成一種共振器溝渠鈾刻區丨6,由此可使垂直發射體丨之 輻射8發出。 -17- 1279952 在沿著半導體雷射和導熱晶圓1 8所構成的複合物之線24 而進行劃分時,須經由基板1 3和泵輻射源9而形成分割切 面或分割蝕刻區1 7。泵輻射源9在雷射操作時較佳是在分 割面1 5上反射。此分割面1 5較佳是垂直於泵輻射源9之共 振器且以平面來形成。此分割面1 5因此形成該泵輻射源9 . 之雷射多角形平面。 右各分割切面或分割触刻區首先只形成在一*方向中,則各 個半導體雷射裝置可同時進行一種燒入-操作。 B 此外,共振器溝渠蝕刻區1 9和各分割面1 5之鏡面亦可在 該複合物分割成多個表面發射式半導♦體雷射裝置(其分別具 有一半導體雷射和一導熱元件)之後才形成。 第4圖顯示此處所述之表面發射式半導體雷射裝置之第 二實施例之切面圖 相對於先前之實施例而言,此處之半導體雷射2 1不是在 晶圓複合物中施加在導熱晶圓1 8上而是各別藉由晶粒-鍵結 方法以便在各別之半導體雷射2 1之間形成一種間距20。此 I 種方法之優點是:已就功能上完成檢測的半導體雷射2 1施 加在導熱晶圓18上且因此在半導體雷射裝置製造時可使次 級品之數目下降。爲了進行一種燒入,則半導體雷射2 1可 在晶圓1 8上與線接觸區互相連接。 溝渠蝕刻區1 9可在上述之連接之前或之後形成。”泵雷射 多角形平面在分割面1 5上產生”之過程可在安裝於導熱晶圓 18上之前或之後進行。半導體雷射裝置之一種共同的燒入 過程可藉由半導體雷射裝置經由線接觸區而互相連接時來 -18- 1279952 進行。 第5圖是此處所述之表面發射式半導體雷射裝置之第三 * 實施例之切面圖。半導體雷射21此處是黏合在分割箔19 上,此分割箔1 9藉由金屬層1 8來強化。金屬層1 8例如包 - 含金且厚度介於2 0和3 0微米之間。此分割箔1 9例如由一 . 種黏合箔所設定。 第6圖是此處所述之表面發射式半導體雷射裝置之第四 實施例之切面圖。 % 在基板13中由遠離表面發射式半導體雷射21之此側之方 向而蝕刻出多個凹口,凹口中以電鍍方式沈積多個層,這些 層形成該導熱元件1 8。導熱元件1 8較佳是含有金,銀或銅。 垂直發射體1和泵輻射源9位於此構件之上側。共振器溝渠 蝕刻區因此可不需要。分割面1 5可藉由蝕刻或刻劃和折斷 而產生。然後,對各分割面進行塗層以形成各共振器鏡面。 其它優點是:電鍍式之沈積過程可在室溫中進行。例如,可 沈積各電鍍層成導熱性很高之銀層,其熱膨脹係數不可依據 ^ 基板材料(例如,GaAs)來調整。若不使用電鍍沈積過程,則 亦可使用一種焊接過程使各層安裝在導熱元件上,這在一般 " 之10〇GC之焊接溫度時會在大約7微米厚之已薄化的半導體 - 雷射21(其邊長大約是1毫米χΐ毫米,變化値可由〇.〇5至5 毫米)中造成很大的熱應力。 第7圖是此處所述之表面發射式半導體雷射裝置34之一 實施例在載體上之切面圖,其具有半導體雷射21和導熱元 件18,導熱元件18安裝在載體27上。載體27例如是一種 -19- 1279952 具有二維可復原之結構之平面基板。表面發射式半導體雷射 裝置34例如可藉由連接技術(例如,焊接)而安裝在載體27 上。載體可包含其它組件,例如,光學組件(31,32,33)或 溫度測量電阻23。例如,以下的結構適用於具有金屬24, 非金屬25,金屬26此種構造之載體:直接鍵結之銅(DBC), Cu-AIN-Cxx,Cu-A1203-Cu,Cu-Si-Cu。爲了達成電性上的連 接’表面發射式半導體雷射裝置3 4可藉由連結線2 2而與載 體27相連接。 因此,載體之特徵較佳是具有特別好的導熱性,使導熱元 件1 8之熱可經由安裝面2 8而特別良好地由載體2 7所吸收。 第8圖是此處所述之表面發射式半導體雷射裝置之另一 實施例在載體2 7上之切面圖,載體2 7具有小的三明治構 造。例如,載體可含有以下各材料中之一種或多種:Al,Cu, CuW,Ag,SiC,AI2O3,A1N,BN,SiC。 若載體27包含非導電性-或導電性不良之材料,則此載體 27例如可具有一種薄膜·或厚膜金屬層3〇。在金屬載體27 上例如可施加一電路板2 9或一種近似電路板之配置2 9。所 不的配置另具有一種光學棱鏡構造(OPA,Optical Prism1279952 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optically pumped surface-emitting semiconductor laser device and a method of fabricating the same. - [Prior Art] An optically pumped vertical resonator-semiconductor laser having a surface-emitting semiconductor layer structure integrated on a monolith is described in the document US Pat. No. 5,991,318. In such conventional devices, the optically pumped radiation, which has a wavelength less than the wavelength of the laser radiation produced, is provided by an edge-emitting semiconductor laser diode. The edge-emitting semiconductor laser diode is disposed externally so that the pumped radiation is obliquely incident from the front into the amplification region of the surface-emitting semiconductor layer structure. The disclosure of this document, U.S. Patent No. 5,991,318, is incorporated herein by reference. The document DE 100 267 34 A1 describes an optically pumped surface-emitting semiconductor laser device having at least one quantum well structure for generating radiation and at least one pump radiation source. This pump radiation source is used to optically pump the quantum well structure. The pump radiation source has an edge emitting semiconductor structure. The quantum well structure and the edge-emitting semiconductor structure that generate radiation are epitaxially grown on a common substrate. The content of the document disclosed in the document DE 1 00 267 34 A1 is hereby incorporated by reference. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optically pumped surface emitting semiconductor laser device that is particularly effectively cooled. Furthermore, the present invention further relates to a method of fabricating such a surface-emitting semiconductor laser device. 1279952 Stone means integrated on a common substrate. The layer thickness of the individual semiconductor layers can be adjusted very accurately during epitaxial growth, so that the edge-emitting structure can advantageously position the surface-emitting structure accurately. Therefore, the pump radiation source is preferably adapted to pump the vertical emitter in a lateral manner. That is, the pump radiation source extends substantially parallel to the surface of the common substrate, the semiconductor laser device * is deposited on the surface of the common substrate, and the pump radiation is perpendicular to the laser beam generated by the vertical emitter. Furthermore, the surface emitting semiconductor laser device preferably comprises a thermally conductive ® component. The thermally conductive element preferably forms a thermal contact with the surface emitting semiconductor laser. That is, the thermally conductive element preferably forms a thermal contact with the pump radiation source and the vertical emitter. This thermally conductive element thus allows the heat generated by the operation of this surface emitting semiconductor laser device to be expelled. The heat is preferably discharged by means of a hot wire. The meaning of being discharged by hot wires is that other mechanisms of heat transfer play only a secondary role. Furthermore, the thermally conductive element preferably has a mounting surface. This mounting surface is used to mount the semiconductor laser device on a carrier. It is particularly advantageous when the heat generated during surface-emitting semiconductor thunder-sparing operation is discharged by the thermally conductive element to the mounting surface and from there to the carrier. The carrier is preferably used as a heat sink. The mounting surface can for example be located on a surface of one of the thermally conductive elements facing the semiconductor laser. The heat is then preferably transmitted by the surface-emitting semiconductor laser device in a direct path (ie, without the need for a transverse heat conductor) to the mounting surface. According to at least one embodiment, a surface-emitting semiconductor lightning is provided. The radiation device has at least one surface-emitting semiconductor laser having a vertical emitter and 1279952_at least one pump radiation source, which are adjacently stacked in a single stone manner on a common substrate. Further, the surface-emitting semiconductor laser device further has a heat-conducting element which forms a thermal contact with the semiconductor laser; and a mounting surface for mounting a carrier. * In at least one embodiment of the surface-emitting semiconductor laser device, the heat-conducting element is electrically conductive. That is, the thermally conductive element is formed of a conductive material or contains an electrically insulating material, but a conductive material may also be present on at least some portions of its surface. For example, an electrically insulating material can be coated with a layer of electrically conductive material. The thermally conductive element is preferably used to make electrical contact with a semiconductor laser. Therefore, it is advantageous when the conductivity of the thermally conductive element is particularly high, so that the thermally conductive element has only a small electrical resistance. Preferably, the thermally conductive element is in electrical contact with the pump source of the surface emitting semiconductor laser, i.e., preferably forming an electrical conductivity between the contact region on the n-side of the pump radiation source and the thermally conductive element. connection. However, the P-side can also be in contact with the pump radiation source via a thermally conductive element. In particular, the thermally conductive element is electrically conductively connected to the carrier on its mounting surface. In this manner, the semiconductor laser is preferably electrically connected to the carrier via the thermally conductive element. - According to at least one embodiment, the thermally conductive element preferably comprises one of the following materials: copper, diamond, silver, iridium 1203, Α1Ν, SiC, yttrium, copper-diamond. For example, if the thermally conductive material contains an electrically insulating material (for example, BN), a conductive rail composed of a conductive material can be applied (eg, pressed) to the insulating material i: 'each conductive $9 can make a semiconductor laser Electrical contact is made with the mounting surface of the thermally conductive element. 1279952 In at least one embodiment of a surface-emitting semiconductor laser device, a heat-resistant connection is formed between the heat-conducting element and the semiconductor laser. That is, the junction area of the surface-emitting semiconductor laser and the thermally conductive element can withstand the temperature generated by the surface-emitting semiconductor laser operation without losing its adhesion. It is particularly advantageous when the thermal conductivity of the connection zone is particularly good, in which case the heat generated can be sent to the thermally conductive element without significant thermal blockage in the connection zone. Furthermore, the connection region is electrically conductive at least in a portion of the semiconductor laser where a connection region is formed between the pump radiation source and the thermally conductive element. The connection zone described above is, for example, a solder joint zone. The flux contains at least one of the following materials: Au, Sn, In, SnAg, AuSn, Ge, AuGe. Good, soft solder and hard solder are suitable. However, an electrical ore connection zone can also be formed between the thermally conductive element and the semiconductor laser. That is, a junction region can be formed between the thermally conductive element and the semiconductor laser, which is caused by the electroplating deposition process. In at least one embodiment of the surface-emitting semiconductor laser device, the surface-emitting semiconductor laser is connected to the thermally conductive element on its surface remote from the substrate. That is, the surface-emitting semiconductor laser is mounted on the surface of the heat-conducting element, for example, in an up-Side-Down mounting method. For example, the laser can be soldered to the surface of the thermally conductive element. It is particularly advantageous if the heat generated in the radiation-generating layer of the pump radiation source during operation can be discharged to the heat-conducting element via a particularly short path. The vicinity of the active layer to the thermally conductive element can thus advantageously improve the cooling of the surface emitting semiconductor laser. Thus, the substrate remote from the thermally conductive element can be thinner or completely removed. That is, the thickness of the substrate can be lowered, for example, by honing, etching, or laser ablation, and 1279952 causes the substrate to no longer exist. In accordance with at least one embodiment of the surface-emitting semiconductor laser device, the substrate comprises at least one recess comprising the thermally conductive element. By this recess, the thermally conductive element can be positioned particularly close to the location of the largest heat generating zone. This recess must therefore be formed so that the semiconductor laser can be electrically contacted via the thermally conductive element. That is, the substrate must be removed to such an extent that the thermally conductive element can be directly contacted or contacted with the semiconductor laser via a thin substrate layer. In each case, the thermally conductive element and the semiconductor laser are preferably electrically in contact with each other. For example, the recess is preferably defined in the substrate to be formed by etching, but the recess can also be created in another manner (e.g., mechanically). In at least one embodiment of the surface-emitting semiconductor laser device, the heat-conducting element is deposited in a recess in the substrate by electroplating. The size and form of the thermally conductive element is predetermined by the size and form of the recess. Preferably, the thermally conductive element completely fills the recess. For example, the thermally conductive element is substantially flush with the surface of the substrate that is remote from the surface emitting semiconductor laser. However, it is also possible for at least a portion of the thin layer of material deposited by electroplating to cover the surface. The advantage of this embodiment is that the electroplated layer can be deposited in the recesses of the substrate at room temperature. A joining technique (e. g., welding) can be omitted so that the thermal load of the component can be greatly reduced during the process. For example, all of the metal that can be deposited by electroplating can be used as the material of the thermally conductive element. This thermally conductive element is particularly advantageous when it contains silver, gold and/or copper. In at least one embodiment of the surface-emitting semiconductor laser device, the pump radiation source has at least one etched resonator-polygon plane. For example, the laser polygon plane of the pump radiation source is preferably a metal to achieve reflection -10- 1279952. Preferably, the plane of the laser polygon extends perpendicular to the pump radiation, i.e., extends perpendicular to the resonator of the edge emitter and is preferably formed by a plane. Further, the present invention provides a method of manufacturing a surface-emitting semiconductor laser device. • In at least one embodiment of the method, a semiconductor crystal circle is first prepared having a plurality of surface-emitting semiconductor lasers. Preferably, each of the semiconductor lasers has a vertical emitter and at least one pump source. The vertical emitter and pump radiation source are preferably integrated adjacent to each other on a common substrate in a single stone manner. In the next step, a thermally conductive wafer is prepared. The thermally conductive wafer preferably comprises at least one of the following materials: copper, copper, diamond, A1203, A1N, SiC, diamond, BN, metal. It is particularly advantageous when the semiconductor crystal and the thermally conductive wafer are mated and sized, i.e., the thermally conductive wafer is preferably at least as large as the semiconductor wafer. It is particularly advantageous when the two wafers have the same form and this form can be, for example, circular. In the next step, the semiconductor wafer and the thermally conductive elements are interconnected. The surface ^-emitting semiconductor laser is preferably connected to the heat-conducting wafer on the surface away from the substrate. The semiconductor wafer is mounted on a thermally conductive wafer and is therefore implemented in an Up-Si de-Down installation. Preferably, the thermally conductive wafer is electrically conductive, at least depending on the location, such that the semiconductor laser can be electrically contacted via the thermally conductive wafer. In order for the vertical emitter to be accessible, for example, by an external resonator, a trench etch must be performed in the substrate in the next step, wherein the vertical emitters are individually exposed. -11- 1279952 A method of cutting through a semiconductor wafer in the next step or particularly advantageous is to perform a cut etch. Preferably, such cutting extends perpendicular to the substrate via a pump radiation source to form a polygonal plane of the edge-emitting pump radiation source. The polygonal plane is preferably a resonator perpendicular to the pump radiation source and is flat-tank. In terms of the preferred efficiency of the pump radiation source, it is advantageous to subsequently make the polygonal plane reflective, in which case, for example, a highly reflective metal must be added to the isolation trench. In the next step, the composite consisting of the semiconductor wafer and the thermally conductive wafer is divided along the dicing line to form a plurality of surface-emitting semiconductor laser devices. It is particularly advantageous if the above-described division is first carried out separately in one direction to form a plurality of strips of surface-emitting semiconductor laser devices having a series connection, which can be used in a Burn-In operation. Driven. According to at least one embodiment of the method, the surface-emitting semiconductor laser can be divided before being connected to the thermally conductive wafer. In this way, individual surface-emitting semiconductor lasers can be tested for their functional superiority before being mounted on a generally expensive thermally conductive element. Resonator Ditch Uranium Engraving and Pump Radiation Source - The polygonal planar fabrication process, for example by etching and 'mirrorization, can be performed before or after the surface-emitting semiconductor laser is mounted on the thermally conductive wafer. Each surface-emitting semiconductor laser can be interconnected by wire contact, so that a common burn-in operation can be achieved in this embodiment. According to at least one embodiment of the method for fabricating a surface-emitting semiconductor laser device, a substrate is first prepared on which a plurality of 12-12279952 surface-emitting semiconductor lasers are respectively adjacently integrated in a single stone manner, each having A vertical emitter and at least one pump radiation source. In the next step, each of the semiconductor lasers produces at least one notch on the side of the substrate facing the semiconductor laser by an etching process. Preferably, the recess extends to a depth in the substrate and has a width in the lateral direction so that all of the pump radiation source of the semiconductor laser can be easily contacted. Alternatively, each pump radiation source may additionally form at least one recess through which electrical contact to the pump radiation source is readily achieved. I In the next step, a thermally conductive material is deposited in the recess of the substrate in an electromineral manner. The thermally conductive material is preferably characterized by excellent thermal conductivity and electrical conductivity such that the thermally conductive material provides the semiconductor laser with a thermally conductive-conductive connection. In the next step, the configuration formed by the semiconductor laser and the thermally conductive element is divided into a plurality of surface emitting semiconductor laser devices each having a semiconductor laser device and at least one thermally conductive element. In at least one embodiment of the method, it is advantageous to omit the resonator trench etch because the vertical emitter can be emitted away from the surface of the substrate via the surface emitting semiconductor laser. The polygonal plane of the pump radiation source can be created by etching and subsequent mirroring. However, the fabrication of the polygonal plane of the pump radiation source can be achieved, for example, by the breakage of the cracks thus configured and the subsequent mirroring of the polygonal planes of the respective surface-emitting semiconductor laser devices. The common burn-in operation of at least some portions of each surface emitting semiconductor laser device is also possible as described above. The surface-emitting semiconductor laser device described herein will be described in detail below with reference to the drawings and embodiments. 1279952 [Embodiment] The same or identical components in the respective embodiments and the drawings are respectively provided with the same reference numerals. The size ratios between the various components and components shown are not drawn to scale. Conversely, some of the details of the various figures are shown in an enlarged manner for clarity. The surface-emitting semiconductor laser shown in Fig. 1 comprises a vertical emitter 1 and a pump source 2. The vertical emitter 1 has a central waveguide 3 and a quantum well structure (which has a plurality of quantum layers 5) which is disposed in the inner portion of the central waveguide 3. A mirror surface 6 is disposed behind the center waveguide in the vertical direction. Preferably, the mirror is constructed of a Bragg mirror having a plurality of alternating layers of different refractive indices. On the side of the mirror surface on the side remote from the substrate 13, an exit layer 7 is applied to the central waveguide 3, and the radiation 8 generated by the vertical emitter is emitted via the exit layer 7. The mirror 6 can form an external laser resonator for the vertical emitter with an external mirror (not shown). This type of device is also known as VECSL (Vertical • External Cavity Surface Emitting Laser). In another aspect, a partially transparent transmitting mirror surface (preferably a Bragg mirror surface) may be disposed between the emitting layer 7 and the central waveguide 3 according to the form of a VCSEL (Vertical Cavity Surface Emitting Laser). To form an internal resonator. Further, a nonlinear optical element (e.g., a nonlinear crystal) is disposed in the external resonator for frequency conversion. This approach is advantageous for frequency conversion, especially frequency multiplication, e.g., doubling the frequency of the radiation 8 produced by the quantum well structure. Similarly, the 14-1279952 forms of surface-emitting semiconductor lasers can also be considered for other nonlinear transformations, such as frequency and sum generation, frequency difference generation, and sub-harmonic Generated, Raman·^ spur or four-wave mixing, etc., wherein the radiation field produced by the vertical emitter is optionally superimposed in a nonlinear optical element with a radiation field, for example produced by the outside. The two pump radiation sources 2 arranged laterally comprise an active layer and a pump waveguide 9 (having a central axis 10), respectively, and the pump radiation 11 is guided in the pump waveguide 9. As shown in Fig. 1, the pump radiation 1 1 preferably has an outer shape of approximately Gauss Φ (Gauss). Further, a buffer layer 4 is provided to position the pump waveguide in the vertical direction at a height suitable for the center waveguide. The quantum layer 5 is disposed at a predetermined distance from the center axis 10 -. The pump laser and the vertical emitter are preferably formed in a single stone manner, i.e., epitaxially grown on a common substrate 13. This substrate 13 is thinned or completely removed after being formed. Another way is that the mirror surface 6 is applied on the upper side of the center waveguide 3. The radiation is then emitted via the substrate 13 on the side of the mirror. Preferably, an uranium engraved trench is present in the substrate 13 in the region of the vertical emitter 1 so as to emit radiation. ‘In addition, more than two (for example, four or six) pump radiation sources 2 can also optically pump the vertical emitter 1 . The pump radiation source 2 can be arranged around the vertical emitter 1 in a cruciform or star-shaped manner. The pump radiation generated by the pump radiation source 2 during operation is incident into the quantum well structure in the transverse direction and is absorbed in the quantum layer 5 and thus excites the emission of this radiation 8 (this is referred to as an optical pump). When a vertical emitter is formed into a laser, the quantum well -15-1279952 structure acts as an optically pumped active medium in which the laser radiation is generated or amplified by the excited radiation. The width A of the central waveguide 3 is larger than the width B of the pump radiation waveguide in this embodiment and must be adjusted according to this width B so that the quantum well structure of the vertical emitter 1 is pumped uniformly and preferably over a large area. . In particular, this is achieved in the embodiment illustrated in Figure 1 by the radiation amplification of the pump radiation and the placement of the quantum layer 5 to the central axis 10 of the pump waveguide 9. The expansion of the radiation is related to the diffraction of the pump radiation field 11 after the pump waveguide 9 is converted into a much wider central waveguide 3. The number of modes in the central waveguide must be large enough, so it is almost assumed that this pump radiation can be freely transmitted in the central waveguide. The shape of the pump radiation can be measured in the range of the Gauss lens. Fig. 2 is a cross-sectional view showing a second embodiment of the surface-emitting semiconductor laser described herein. Shown here is a wafer laser grown in a single epitaxial step, wherein the pump radiation 1 1 (visible from the axis 12 of the pump waveguide 9) is directed upward into the quantum well structure of the surface emitting semiconductor laser 5 (which for example contains multiple quantum wells) W. Due to the jump phenomenon of the refractive index of the pump waveguide 9, the above-described phenomenon of injecting into the quantum well structure 5 can be achieved. The pump radiation source 2 is, for example, an edge emitter of optical coupling. The laser polygonal plane of the pump radiation 2 is preferably formed by scribing and breaking along the crystal axis of the substrate 13 and subsequently providing a mirror having a high reflectance (R > 90%). Alternatively, the polygonal plane can be formed by etching and subsequent mirroring. Due to the formation of a mirror with a high reflectivity, at most only a small portion of the pump radiation 1 1 is emitted by the lateral resonator. By the surface-emitting thunder -16-1279952 of the inside of the resonator, the absorption in the quantum well structure 5 via pump radiation can form an efficient optical pump mechanism. The advantage of this embodiment is that the process technology is particularly simple. After the Jiajing step, in the region of the pump laser 2, etching is performed in the waveguide by selective etching defined by the etch stop layer and then a transparent layer is applied. The conductive P-contact region 14a (which may, for example, may contain zinc oxide) and a p-contact metal layer 14b are preferably used as the metal reflector for the pump light 11. Figure 3 is the surface described herein. A cross-sectional view of a first embodiment of an emissive semiconductor laser device. A semiconductor laser 2 1 (which is shown, for example, in FIGS. 1 and 2) is here applied as a wafer on a thermally conductive wafer 18, The thermally conductive wafer is formed into a thermally conductive element after the division of the configuration. For example, the two wafers are mechanically interconnected by a solder layer 17. Further, the pump source 9 of the semiconductor laser passes through the solder layer 17 Electrically contacting the thermally conductive wafer 18. The thermally conductive wafer 18 is preferably electrically conductive so that the pumping source 9 can be electrically contacted via the thermally conductive wafer 18. Thermally conductive wafer 1 8 therefore contains a ® conductive material or at least partially coated Conductive layer. The possible conductive materials for wafers 18 and thermal materials are copper, copper-diamond compound materials, diamonds, silver A12 〇3, A1N, S i C, BN or a combination of materials. 1 7 - preferably contains at least one of the following materials or a combination of these materials: In, Sn SnAg, Ag, Au, AuSn, AuGe. In order to be able to access a vertical emitter for an external resonator (not shown), A resonator trench uranium region 丨6 is formed, whereby the radiation 8 of the vertical emitter is emitted. -17- 1279952 A line 24 of composites formed along the semiconductor laser and thermally conductive wafer 18 When dividing, a split or split etched region 17 must be formed via the substrate 13 and the pump radiation source 9. The pump radiation source 9 is preferably reflected on the splitting surface 15 during laser operation. Preferably, it is perpendicular to the resonator of the pump radiation source 9 and is formed in a plane. This splitting surface 15 thus forms a laser polygonal plane of the pump radiation source 9. The right splitting section or the splitting touched area is first formed only In a * direction, each semiconductor laser device can be the same Further, a burn-in operation is performed. B. Further, the resonator trench etched region 19 and the mirror surface of each of the split faces 15 may be divided into a plurality of surface-emitting semi-guided body laser devices (each having a A semiconductor laser and a thermally conductive element are formed afterwards. Figure 4 shows a cross-sectional view of a second embodiment of a surface-emitting semiconductor laser device as described herein with respect to the prior embodiment, where the semiconductor The radiation 2 1 is not applied to the thermally conductive wafer 18 in the wafer composite but is separately formed by a die-bonding method to form a pitch 20 between the respective semiconductor lasers 2 1 . The advantage of the method is that the semiconductor laser 21, which has been functionally completed, has been applied to the thermally conductive wafer 18 and thus the number of secondary products can be reduced when the semiconductor laser device is manufactured. In order to perform a burn-in, the semiconductor laser 2 1 can be interconnected with the line contact regions on the wafer 18. The trench etched regions 19 may be formed before or after the above connections. The process of "pumping the laser polygon plane on the split plane 15" can be performed before or after mounting on the thermally conductive wafer 18. A common burn-in process for semiconductor laser devices can be performed by interconnecting semiconductor laser devices via line contact regions -18-1279952. Figure 5 is a cross-sectional view showing a third embodiment of the surface-emitting semiconductor laser device described herein. The semiconductor laser 21 is here bonded to the split foil 19, which is reinforced by the metal layer 18. The metal layer 18 is, for example, packaged - containing gold and having a thickness between 20 and 30 microns. This split foil 1 9 is set, for example, by a type of adhesive foil. Figure 6 is a cross-sectional view showing a fourth embodiment of the surface-emitting semiconductor laser device described herein. A plurality of recesses are etched in the substrate 13 in a direction away from the side of the surface-emitting semiconductor laser 21, and a plurality of layers are deposited by electroplating in the recesses, the layers forming the thermally conductive element 18. The thermally conductive element 18 preferably contains gold, silver or copper. The vertical emitter 1 and the pump radiation source 9 are located on the upper side of this member. The resonator trench etched area is therefore not required. The split face 15 can be produced by etching or scribing and breaking. Then, each of the divided faces is coated to form each resonator mirror. Other advantages are that the electroplating deposition process can be carried out at room temperature. For example, each of the plating layers may be deposited as a silver layer having a high thermal conductivity, and the coefficient of thermal expansion may not be adjusted according to the substrate material (for example, GaAs). If an electroplating deposition process is not used, a soldering process can also be used to mount the layers on the thermally conductive element, which is about 7 microns thick and thinned semiconductor-laser at a typical 10 〇 GC soldering temperature. 21 (its side length is about 1 mm χΐ mm, and the change 値 can be caused by 〇. 〇 5 to 5 mm). Figure 7 is a cross-sectional view of one embodiment of a surface-emitting semiconductor laser device 34 described herein having a semiconductor laser 21 and a thermally conductive element 18 with a thermally conductive element 18 mounted thereon. The carrier 27 is, for example, a -19- 1279952 planar substrate having a two-dimensional recoverable structure. The surface emitting semiconductor laser device 34 can be mounted on the carrier 27, for example, by a joining technique (e.g., soldering). The carrier may contain other components, such as optical components (31, 32, 33) or temperature measuring resistors 23. For example, the following structure is applicable to a carrier having a structure of such a metal 24, a non-metal 25, and a metal 26: directly bonded copper (DBC), Cu-AIN-Cxx, Cu-A1203-Cu, Cu-Si-Cu. In order to achieve an electrical connection, the surface-emitting semiconductor laser device 34 can be connected to the carrier 27 by a bonding wire 22. Accordingly, the carrier is preferably characterized by a particularly good thermal conductivity such that the heat of the thermally conductive element 18 is particularly well absorbed by the carrier 27 via the mounting surface 28. Figure 8 is a cross-sectional view of another embodiment of the surface-emitting semiconductor laser device described herein on a carrier 27 having a small sandwich construction. For example, the support may contain one or more of the following materials: Al, Cu, CuW, Ag, SiC, AI2O3, A1N, BN, SiC. If the carrier 27 comprises a non-conductive or poorly conductive material, the carrier 27 can have, for example, a film or a thick film metal layer 3〇. For example, a circuit board 29 or an arrangement 29 of a similar circuit board can be applied to the metal carrier 27. The other configuration has an optical prism structure (OPA, Optical Prism).

Assembly)。此構造例如可包含一種棱鏡或輻射劃分器3i, 一種頻率轉換用之非線性之材料3 2以及一種共振器鏡面 33 〇 本發明不限於上述各實施例中所作的描述。因此,此處所 述的導熱元件不限於用在半導體雷射中而是其它光電半導 體組件(例如,發光二極體或光二極體)亦可安裝在此處已描 -20- 1279952 述之導熱元件上。本發明包含各特徵的每一新的特徵及每— 種組合,特別是包含各申請專利範圍中各特徵的每一種組 ^ 合’當此特徵或此組合本身未明顯地顯示在各申請專利範圍 中或各實施例中時亦同。 . 本專利申i靑案主張德國專利申請案1020〇4〇45949.5-11之 - 優先權,其已揭示的內容收容於此處以作爲參考。 【圖式簡單說明】 第1圖此處所述之表面發射式半導體雷射之第一實施例之 • 切面圖。 第2圖此處所述之表面發射式半導體雷射之第二實施例之 切面圖。 弟3圖此處所述之表面發射式半導體雷射裝置之第一實施 例之切面圖。 第4圖此處所述之表面發射式半導體雷射裝置之第二實施 例之切面圖。 第5圖此處所述之表面發射式半導體雷射裝置之第三實施 • 伋!1之切面圖。 第6圖此處所述之表面發射式半導體雷射裝置之第四實施 • 例之切面圖。 - 第7圖此處所述之表面發射式半導體雷射裝置之一實施例 在載體上之切面圖。 第8圖此處所述之表面發射式半導體雷射裝置之另一實施 例在載體上之切面圖。 【主要元件符號說明】 -21 - 1279952 1 2 3 4 5 6 7 垂直發射體 泵輻射源 中央波導 緩衝層 量子層 鏡面 射出層 8 輻射 _ 9 泵波導 10 中軸 11 泵輻射 13 基板 14a 14bAssembly). This configuration may, for example, comprise a prism or radiation divider 3i, a non-linear material 32 for frequency conversion and a resonator mirror 33. The invention is not limited to the description made in the above embodiments. Therefore, the thermally conductive elements described herein are not limited to being used in semiconductor lasers but other optoelectronic semiconductor components (eg, light emitting diodes or photodiodes) may also be mounted as described herein in -20-1279952. On the component. The present invention includes each new feature and each combination of features, and in particular, each of the various features in the scope of the various claims. The feature or the combination itself is not explicitly shown in the scope of the claims. The same applies to the middle or the embodiments. This patent claims the priority of the German Patent Application No. 1020, the disclosure of which is incorporated herein by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a first embodiment of a surface-emitting semiconductor laser described herein. Fig. 2 is a cross-sectional view showing a second embodiment of the surface-emitting semiconductor laser described herein. Figure 3 is a cross-sectional view showing a first embodiment of a surface-emitting semiconductor laser device as described herein. Fig. 4 is a cross-sectional view showing a second embodiment of the surface-emitting semiconductor laser device described herein. Figure 5 is a third embodiment of a surface-emitting semiconductor laser device as described herein. Fig. 6 is a cross-sectional view showing a fourth embodiment of the surface-emitting semiconductor laser device described herein. - Figure 7 shows an embodiment of a surface-emitting semiconductor laser device as described herein on a carrier. Fig. 8 is a cross-sectional view showing another embodiment of the surface-emitting semiconductor laser device described herein on a carrier. [Main component symbol description] -21 - 1279952 1 2 3 4 5 6 7 Vertical emitter Pump source Central waveguide Buffer layer Quantum layer Mirror surface Ejection layer 8 Radiation _ 9 Pump waveguide 10 Center axis 11 Pump radiation 13 Substrate 14a 14b

P -接觸區 P-接觸金屬層 分割面 共振溝渠蝕刻區 焊接層 18 導熱晶圓 19 共振器溝渠蝕刻區 20 間距 21 半導體雷射 22 連結線 23 溫度測量電阻 24, 26 金屬 -22 1279952 25 非 27 載 28 安 29 配 30 厚 3 1,32,33 光 34 半 金屬 ΜΑ 體 裝面 置 膜金屬層 學組件 導體雷射裝置P - Contact region P - Contact metal layer Split surface Resonant trench etch region Solder layer 18 Thermally conductive wafer 19 Resonator trench etched region 20 Spacing 21 Semiconductor laser 22 Connecting wire 23 Temperature measuring resistor 24, 26 Metal-22 1279952 25 Non 27 Load 28 An 29 with 30 Thick 3 1,32,33 Light 34 Semi-metal ΜΑ Body Mounting Membrane Metal Layered Component Conductor Laser Device

-23-twenty three

Claims (1)

12799521279952 jO KJ-.· 第94 132601「表面發射式半導體雷射裝置及其製造方法」專 利案 (2006年1 〇月修正) 十、申請專利範圍: 1.一種表面發射式半導體雷射裝置,包括: -至少一表面發射式半導體雷射(21),其具有一垂直發射 體(1)和至少一泵輻射源(2),其相鄰地以單石方式積體 化於一種共同的基板(1 3 )上,以及 -一導熱元件(18),其是與半導體雷射(21)形成熱接觸且 具有一安裝面(2 8),此安裝面(2 8)安裝在載體(2 7)上,基 板(13)具有至少一凹口,此凹〇包含該導熱元件(18)。 2 ·如申請專利範圍第1項之半導體雷射裝置,其中該導熱元 件(1 8 )具有導電性。 -3 .如申請專利範圍第1或2項之半導體雷射裝置,其中該導 熱元件(1 8)適合用來與半導體雷射(21)在電性上相接觸。 4·如申g靑專利軺圍弟1項之半導體雷射裝置,其中該導熱元 件(1 8)包含以下各種材料中之至少一種:銅,鑽石,銀, Al2〇3,A1N,SiC,BN,銅·鑽石。 5 ·如申請專利範圍第1項之半導體雷射裝置,其中該導熱元 件(1 8)和半導體雷射(21)之間形成一種耐熱黏合區。 6 ·如申請專利範圍第1項之半導體雷射裝置,其中該凹口在 基板(1 3 )中已被蝕刻完成。 7 .如申請專利範圍第1項之半導體雷射裝置,其中該導熱元 件(18)以電鑛方式沈積在凹口中。 1279952 8·如申請專利範圍第丨項之半導體雷射裝置,其中該泵韓射 源(2)具有至少一已蝕刻完成之共振器多角形平面(1 5)。 9. 一種表面發射式半導體雷射裝置之製造方法,其包含以τ 各步驟: / -製備多個表面發射式半導體雷射(21),其分別具有一垂 - 直發射體(1)和至少一泵輻射源(2 ),其以單石方式相鄰 地積體化於一種共同之基板(13)上; -藉由蝕刻過程在基板(13)之面對此半導體雷射之此側上 # 在每一個半導體雷射(21)中製成至少一凹□; -在各凹口中以電鍍方式沈積一種導熱材料(丨8); -對此配置進行劃分。jO KJ-.· 94 94601 "Surface-emitting semiconductor laser device and its manufacturing method" patent case (revised in January 1st, 2006) X. Patent application scope: 1. A surface-emitting semiconductor laser device, including: At least one surface-emitting semiconductor laser (21) having a vertical emitter (1) and at least one pump radiation source (2) adjacent to each other in a singular manner on a common substrate (1) 3) upper, and - a thermally conductive element (18) which is in thermal contact with the semiconductor laser (21) and has a mounting surface (28) mounted on the carrier (27) The substrate (13) has at least one recess containing the thermally conductive element (18). 2. The semiconductor laser device of claim 1, wherein the heat conducting element (18) is electrically conductive. The semiconductor laser device of claim 1 or 2, wherein the heat conducting element (18) is adapted to be in electrical contact with the semiconductor laser (21). 4. The semiconductor laser device of claim 1, wherein the thermally conductive element (18) comprises at least one of the following materials: copper, diamond, silver, Al2〇3, A1N, SiC, BN , copper · diamonds. 5. The semiconductor laser device of claim 1, wherein the heat conductive element (18) and the semiconductor laser (21) form a heat resistant bonding region. 6. The semiconductor laser device of claim 1, wherein the recess is etched in the substrate (13). 7. The semiconductor laser device of claim 1, wherein the heat conducting element (18) is deposited in the recess in an electric ore manner. 1279952. The semiconductor laser device of claim 3, wherein the pump source (2) has at least one etched resonator polygon plane (15). A method of fabricating a surface-emitting semiconductor laser device comprising the steps of: τ: preparing a plurality of surface-emitting semiconductor lasers (21) each having a vertical-straight emitter (1) and at least a pump radiation source (2) which is adjacently integrated on a common substrate (13) in a monolithic manner; - on the side of the semiconductor laser on the side of the substrate (13) by an etching process# At least one recess is formed in each semiconductor laser (21); - a thermally conductive material (丨8) is deposited in each recess by electroplating; - this configuration is divided. -2--2-
TW94132601A 2004-09-22 2005-09-21 Surface-emitting semiconductor-laser device and method for the production of a surface-emitting semiconductor-laser device TWI279952B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10404594 2004-09-22

Publications (2)

Publication Number Publication Date
TW200618428A TW200618428A (en) 2006-06-01
TWI279952B true TWI279952B (en) 2007-04-21

Family

ID=38645549

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94132601A TWI279952B (en) 2004-09-22 2005-09-21 Surface-emitting semiconductor-laser device and method for the production of a surface-emitting semiconductor-laser device

Country Status (1)

Country Link
TW (1) TWI279952B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119817A1 (en) * 2015-11-17 2017-05-18 Osram Opto Semiconductors Gmbh Semiconductor device

Also Published As

Publication number Publication date
TW200618428A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7817695B2 (en) Lateral optically pumped surface-emitting semiconductor laser on a heat sink
KR100688317B1 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
TWI379432B (en) Semiconductor light emitting element and a fabrication method thereof
US20100124246A1 (en) Method for production of a plurality of semicoductor chips, and a semiconductor component
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
JP2021518666A (en) Manufacturing method of optoelectronic parts and optoelectronic parts
JP2007027716A (en) Package for laser diode device, laser diode device and method for manufacturing laser diode device
US8518814B2 (en) Methods of fabrication of high-density laser diode stacks
JP2011119521A (en) Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
JPWO2016148020A1 (en) Semiconductor laser and semiconductor laser light source module
JP2009064961A (en) Semiconductor laser device and manufacturing method therefor
KR20080063382A (en) Optoelectronic semiconductor chip and method for producing it
KR101517277B1 (en) Multi-beam semiconductor laser apparatus
JP5517465B2 (en) Manufacturing method of semiconductor laser
TWI279952B (en) Surface-emitting semiconductor-laser device and method for the production of a surface-emitting semiconductor-laser device
JP2015153862A (en) Surface emission laser array and laser device
JP2005505914A (en) Power pack laser diode assembly
JP6231101B2 (en) Method for manufacturing semiconductor laser device and semiconductor laser device
US8811448B2 (en) Optoelectronic component
JP2013179210A (en) Array type semiconductor laser device and manufacturing method thereof
JP6024657B2 (en) Semiconductor laser element
JPH10200213A (en) Gallium nitride semiconductor laser
JP6265306B1 (en) Light emitting device
JP2023536007A (en) Back-pumped semiconductor film laser
JP2021163921A (en) Method for manufacturing quantum cascade laser element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees