TWI279883B - Improved pillar connections for semiconductor chips and method of manufacture - Google Patents
Improved pillar connections for semiconductor chips and method of manufacture Download PDFInfo
- Publication number
- TWI279883B TWI279883B TW91108801A TW91108801A TWI279883B TW I279883 B TWI279883 B TW I279883B TW 91108801 A TW91108801 A TW 91108801A TW 91108801 A TW91108801 A TW 91108801A TW I279883 B TWI279883 B TW I279883B
- Authority
- TW
- Taiwan
- Prior art keywords
- solder
- pillars
- layer
- wafer
- metal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
Landscapes
- Wire Bonding (AREA)
Abstract
Description
Ϊ279883 A7Ϊ279883 A7
五、發明説明(!) 本發明一般係有關一種用於半導體元件之互連接 半導體晶片到一基質之柱狀接點以 且尤其是在於從一 及製造該接點之方法。 樣減少, 故障。 以錫鉛為主之焊料係為用於矽積體電路之覆晶結合 的互連材料之較佳選擇。隨著矽積體電路上之電子元件的 ^寸持續減小,由鉛產生之α粒子放射便可導致顯著的問 題。錯具有三個穩定的同位素,其係形成自然放射衰減鍵 之尾端產物。然而,這些穩定之同位素通常包含一少量之 殘留(X粒子的放射性。隨著矽積體電路中之電子裝置的尺 寸愈來愈小,使得以鉛為主之焊料與元件之間的距離亦同 以致於從焊料產生之α粒子放射能夠使此等元件 一種降低來自於焊料之α粒子放射影響的方法係為提 供一鈍化層,其覆蓋位於矽晶上之電子元件。某些作為該 鈍化層之材料係較其他材料對於電子元件抵抗01粒子的整 體性提供更為有效的保護。另外,來自於該焊料之α粒子 放射係從該焊料中之基本點來源放射,以致於電子元件所 承受之(X粒子放射的強度會隨著該等元件離焊料之距離而 快速降低。以下顯示一表,其提出五種不同的材料作為隔 離電子元件與焊料之媒介物。V. INSTRUCTIONS (!) The present invention generally relates to a method for interconnecting semiconductor wafers to a columnar junction of a semiconductor wafer to a substrate, and in particular, from and to the fabrication of the contacts. Reduced, faulty. Solder based on tin-lead is a preferred choice for interconnects for flip chip bonding of cascading circuits. As the size of the electronic components on the hoarding circuit continues to decrease, the emission of alpha particles produced by lead can cause significant problems. The fault has three stable isotopes that form the product of the tail end of the natural radiation decay bond. However, these stable isotopes usually contain a small amount of residual (X-particle radioactivity. As the size of the electronic device in the slab circuit is getting smaller, the distance between the lead-based solder and the component is the same. Thus, the alpha particle radiation generated from the solder enables such elements to reduce the radiation effects of the alpha particles from the solder by providing a passivation layer that covers the electronic components on the twins. Some serve as the passivation layer. The material provides more effective protection for the electronic component against the integrity of the 01 particle than other materials. In addition, the alpha particle radiation from the solder is radiated from the basic point source in the solder, so that the electronic component is subjected to it ( The intensity of the X-particle radiation is rapidly reduced as the distance of the elements away from the solder. A table is shown below which presents five different materials as a vehicle for isolating the electronic components from the solder.
.1279883 五、發明説明(2 ) 媒介物 (化合物) 空氣 聚硫亞胺 %氧化物 —氧化碎 Si2N4 密度P l克/公分3) 1.161e-03 1.61 1.20 分子量Μ i公克) 39.11 38.0 40.0 60.0 140.0 (eVcm2/Iel5 大氣壓) 20.96 18.91 19.68 27.42 28.18 有效厚度 d(公分) 10.83 0.0084 0.0114 0.0055 0.0105 如上表所顯示,如果空氣係為隔離電子元件與焊料之 唯-媒介物’則為了使該些f子元件不會受料自於焊料 之α粒子放射的顯著影響,隔離該些電子元件與焊料之空 氣媒介物的有效厚度至少應為1().83公分,其對於大多數的 應用而言係無法接受。由上表應注意到,就吸收來自於焊 料之《粒子的最小吸收長度而言,二氧化石夕係為最佳的阻 播層基貝,其次係為聚硫亞胺。其中使用二氧化石夕或其他 固體材料作為鈍化層,僅有部分隔離電子元件與焊料之媒 介物係由該材料所佔據,且由空氣或其他材料所佔據之剩 餘部分在吸收α粒子並非同樣有效率。然而,從該表可注 意到的是,既便使用二氧化矽作為甩於覆蓋位於矽晶上之 電子元件的鈍化層之一化合物,該些電子元件與焊料較佳 係隔開至少0.0055公分或55微米。對於聚硫亞胺鈍化層而 言,該間隔較佳至少為84微米。 4用之互連方法使用以錯為主的焊料,用以將覆晶連 接到基質。除了上述之α粒子放射的問題以外,由於電子 元件之尺寸愈來愈小,使用以鉛為主之焊料凸塊係沒有益 處’因為其難以不利用導致電子短路之橋接在兩相鄰接點 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐〉 1279883.1279883 V. INSTRUCTIONS (2) Vehicle (Compound) Air Polythionimide Oxide - Oxidation Broken Si2N4 Density P lg/cm 3) 1.161e-03 1.61 1.20 Molecular Weight Μ i g) 39.11 38.0 40.0 60.0 140.0 (eVcm2/Iel5 atmospheric pressure) 20.96 18.91 19.68 27.42 28.18 Effective thickness d (cm) 10.83 0.0084 0.0114 0.0055 0.0105 As shown in the above table, if the air is the only medium for isolating electronic components from solder, then in order to make these f subcomponents It is not expected to have a significant effect on the emission of alpha particles from the solder. The effective thickness of the air vehicle that isolates the electronic components from the solder should be at least 1 (.83 cm), which is unacceptable for most applications. . It should be noted from the above table that in terms of absorbing the minimum absorption length of the particles from the solder, the oxidized silica is the best barrier layer, followed by the polythioimide. Where a dioxide dioxide or other solid material is used as the passivation layer, only a portion of the medium separating the electronic component from the solder is occupied by the material, and the remainder occupied by air or other material is not the same in absorbing alpha particles. effectiveness. However, it can be noted from the table that even if cerium oxide is used as a compound for the passivation layer covering the electronic components on the twins, the electronic components are preferably at least 0.0055 cm apart from the solder or 55 microns. For the polythioimine passivation layer, the spacing is preferably at least 84 microns. 4 The interconnect method uses a fault-based solder to connect the flip chip to the substrate. In addition to the above-mentioned problems of alpha particle emission, since the size of electronic components is getting smaller and smaller, the use of lead-based solder bumps has no benefit 'because it is difficult to use bridges that cause electronic shorts to be bridged between two adjacent contacts. Paper scale applies to Chinese National Standard (CNS) Α4 specification (210X297 mm) 1279883
之間達成一細微間距。當藉著電鍍形成焊料凸塊時,且其 中photoresist之厚度不小於60微米,位於ι〇〇微米高之焊料 球的一水平面中之凸塊尺寸約為120微米,且該電鍍之焊料 凸塊係為蘑菇形。因此,如果使用此高度之焊料凸塊的相 鄰接點間之距離降低到丨5〇微米以下(以陣列或周圍之形 式),則容易產生凸塊橋接。因此,需要提供一種改良的互 連系統,以達成較細微的間距,並使凸塊橋接之可能性降 到最低,且其中α粒子放射並不會顯著地影響位於該半導 體晶片上之電子元件的功能。 在富士 通公司(Fujitsu Computer packaging Technologies,Inc·)拉弗(L〇ve)等人所著,標題為「電線互 連技術,一種嶄新且高可靠性之緊密間距互連技術」的文 件中係提出一純銅互連柱。該覆晶係藉著一純銅柱連接到 一基質,取代使用以鉛為主的焊料,該純銅柱之長度約為 45或50微米。儘管此以銅為主的互連也許能夠使相鄰互連 之間達成一較細微的間距,此提出之解決方案仍無法避免 上述α粒子放射的問題。如拉弗(L〇ve)等人文章之第i圖中 所不,其係使用焊料將該銅柱附接到基質。由於該銅柱之 南度係大於50微米,既使使用二氧化矽作為覆蓋位於覆晶 上的電子元件之鈍化層,該等電子元件仍會受到用以將銅 柱附接到基質之焊料所產生的α粒子放射的不利影響。此 外,如熟諳此技蟄之人士所熟知,半導體覆晶與基質之間 的距離通常係充滿-下方充填材料,以便對互連構造提供 支撐與穩^性。通常,該下方充填材料之程序係藉由注入 1279883 ./ A7 ______B7 五、發明説明(4 ) 加以提供,其在半導體晶片與基質之間需要一特定的最小 門距對於大夕數的注入程序而言,該最小間距約為^微 米因此,使用拉弗等人在文章中所提出的互連構造,則 半‘體b曰片與基質之間的間距顯然不足以注入下方充填材 料。拉料人所使用的料顯然限制了該銅柱之可行高 度’使其不超過50微米。 L· 上述之互連系統皆無法完全令人滿意,因此,希望提 供一種改良的互連系統,其中消除了以上說明之困難。 發明概要 ^本發明係基於察覺到使用一細長的柱狀物對於將一 半導體晶片連接到基質係有所助益,其中該柱狀物包含兩 個細長的部分,其中一部份包括一金屬材料(不包括船), 諸如包括銅、回流溫度較高之焊料或金;且另一部份包括 焊料或其他的可濺濕(wettable)材料。包含非鉛金屬材料之 部分係與半導體晶片接觸,且具有不少於5〇微米的長度。 〇 較佳地,該柱狀物之總長度係不少於約55微米。在-更佳 實施例中,該柱狀物之長度係不少於84微米,且該柱狀物 包括銅之部分係不少於約55微米。 -使用本發明之細長柱狀物,則能夠使位於該柱狀物中 之焊料與任何其他一方面用於互連中、且另一方面用於半 導體晶片上之電子元件之焊料間的間距超過55微米或甚至 84微米,以致於將降低來自於半導體晶片上之電子元件的 焊料之α粒子放射所產生的不利影響。如此對於使用二氧 化矽或聚硫亞胺作為鈍化層尤為確實。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -----------------------裝..................tr------------------線. (請先閲讀背面之注意事項再填寫本頁) 五、發明説明(5 ) 在不重視α粒子的案例中,該互連之所有部分能夠由 含鉛之焊料製造細長的柱狀。 在柱狀物之長度超過75微米的情況中,於半導體晶片 與基質之間提供足夠的間距,以作為注入下方充填材料之 用。另外,藉著提供具有足夠長度以及適當橫剖面尺寸之 f狀物將半導體晶#連接縣f,則由於捲曲大為降低了 導入半導體晶片與柱狀物之間的應力,其同樣因為捲曲而 降低了由於剪力導致晶片錯誤的機率。 細長的柱狀物首先可藉著沈積一層作為電鍍用之金 屬所形成,接著在晶片上形成一層感光性材料,且在預定 的區域將違層感光性材料暴露到輻射。移除掉該層暴露到 輕射之部分,以在該層中形成穿透孔,該些孔之部分係以 -含有金屬之材料加以充填’以形成—與該晶片接觸之細 長的柱狀物。該金屬材料係與頂層金屬不同(且較佳不含 釔)4二孔之邙S接著係以含有任何可濺濕金屬之材料加 以充填,以便形成一與底部部分材料接觸之細長的金屬柱 狀物,從而形成一合成柱狀物,其一部份包括該金屬材料, 且其他部分則包括-可濺濕金屬。接著移除作為電錢用之 金屬的感光層與沈積層,以形成該細長的柱狀物。在形成 該等柱狀物以後,該等柱狀物可以或不必在連接到基質之 前加以回流。較佳地,以具有銅、金、非鉛或焊料之感光 性材料層充填該等孔係藉由電鍍加以實行。另外該感光層 之厚度與該等孔之深度較佳使其足以形成具有足夠高度的 柱狀物,諸如以上說明者。 之 部 之 片A fine spacing is achieved between them. When a solder bump is formed by electroplating, and wherein the photoresist has a thickness of not less than 60 μm, the bump size in a horizontal plane of the solder ball of ι μm high is about 120 μm, and the electroplated solder bump is It is shaped like a mushroom. Therefore, if the distance between adjacent points of the solder bump using this height is reduced to less than 〇5 〇 micrometer (in the form of an array or the surrounding), bump bridging is apt to occur. Accordingly, there is a need to provide an improved interconnect system that achieves finer pitches and minimizes the likelihood of bump bridging, and wherein alpha particle radiation does not significantly affect the electronic components located on the semiconductor wafer. Features. In the document entitled "Wire Interconnect Technology, a New and Highly Reliable Close-Pitch Interconnect Technology" by Fujitsu Computer Packaging Technologies, Inc., L〇ve, et al. A pure copper interconnected column. The flip-chip is attached to a substrate by a pure copper pillar instead of a lead-based solder having a length of about 45 or 50 microns. Although this copper-based interconnect may be able to achieve a finer spacing between adjacent interconnects, the proposed solution still fails to avoid the above-mentioned alpha particle emission problems. As in the first diagram of the article by Löve et al., it is to attach the copper pillar to the substrate using solder. Since the southness of the copper pillar is greater than 50 micrometers, even if cerium oxide is used as a passivation layer covering the electronic components on the flip chip, the electronic components are still subjected to solder for attaching the copper pillar to the substrate. The adverse effects of alpha particle emissions produced. Moreover, as is well known to those skilled in the art, the distance between the semiconductor flip chip and the substrate is typically filled with the underfill material to provide support and stability to the interconnect structure. Typically, the underfill material process is provided by injecting 1127883. / A7 ______B7 V. Invention Note (4), which requires a specific minimum gate distance between the semiconductor wafer and the substrate for the large number of implantation processes. That is, the minimum pitch is about ^μm. Therefore, using the interconnect structure proposed by Laffer et al. in the article, the spacing between the half-body b-plate and the substrate is obviously insufficient to inject the underfill material. The material used by the puller clearly limits the possible height of the copper column to 'not exceed 50 microns. L. None of the above described interconnect systems are fully satisfactory, and it is therefore desirable to provide an improved interconnect system that eliminates the difficulties described above. SUMMARY OF THE INVENTION The present invention is based on the recognition that the use of an elongated pillar facilitates the attachment of a semiconductor wafer to a matrix system, wherein the pillar comprises two elongated portions, one of which comprises a metallic material (excluding ships), such as solder or gold that includes copper, a higher reflow temperature; and another portion includes solder or other wettable materials. The portion comprising the non-lead metal material is in contact with the semiconductor wafer and has a length of not less than 5 Å. Preferably, the total length of the column is not less than about 55 microns. In a more preferred embodiment, the length of the pillar is not less than 84 microns and the portion of the pillar comprising copper is not less than about 55 microns. Using the elongated pillars of the present invention, the spacing between the solder located in the pillar and any other solder used in the interconnection and on the other hand for the electronic components on the semiconductor wafer is exceeded 55 microns or even 84 microns, so that the adverse effects of alpha radiation from the solder of the electronic components on the semiconductor wafer will be reduced. This is especially true for the use of ruthenium dioxide or polythioimine as the passivation layer. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) ----------------------- Loading......... .........tr------------------Line. (Please read the notes on the back and fill out this page.) 5. Invention Description (5) In the case where alpha particles are not valued, all parts of the interconnect can be made of lead-like solder to produce elongated columns. In the case where the length of the pillars exceeds 75 microns, a sufficient spacing is provided between the semiconductor wafer and the substrate for injection into the underfill material. In addition, by providing the semiconductor crystal # with a sufficient length and an appropriate cross-sectional dimension, the semiconductor crystal # is connected to the county f, since the curl greatly reduces the stress introduced between the semiconductor wafer and the pillar, which is also lowered by curling. The probability of wafer errors due to shear forces. The elongated pillars can first be formed by depositing a layer of metal for electroplating, then forming a layer of photosensitive material on the wafer, and exposing the layer of photosensitive material to radiation in a predetermined area. The portion of the layer exposed to the light shot is removed to form a through hole in the layer, the portions of the hole being filled with a metal-containing material to form an elongated pillar in contact with the wafer . The metal material is different (and preferably free of ruthenium) from the top metal (4) and then filled with a material containing any splashable metal to form an elongated metal column in contact with the bottom portion of the material. And forming a synthetic pillar, a portion of which comprises the metallic material, and other portions comprising - a splashable metal. The photosensitive layer and the deposited layer of the metal used for the money are then removed to form the elongated pillar. After the formation of the pillars, the pillars may or may not be refluxed prior to attachment to the matrix. Preferably, filling the holes with a layer of photosensitive material having copper, gold, non-lead or solder is carried out by electroplating. Further, the thickness of the photosensitive layer and the depth of the holes are preferably sufficient to form pillars having a sufficient height, such as those described above. Piece of the piece
----------訂....... -線丨 (請先閱讀背面之注意事項再填寫本頁) 1279883 五、發明説明(6 欲力二崎狀物包括金屬材料部分的可靠性 =«盍此等部分之材料,該金屬材料與焊料不同, .^ 、匕專邛义包括銅,如此可藉著在至少 。-柱,物之此等部分的側壁表面上形成一層銅加以達 。銅之乳化物在焊料回流期間亦會降低㈣表面之潤 有料在焊料回流期間控制至少其中-柱狀物之 知*料部分的高度。 本發明之另一翻WJb役匕/» 蜆點係曰在一種用於一半導體晶片 覆晶互連系、统,該系統 Βθ ^ 、、可使用兩個細長的部分··一第一 伤其包/坏料、非錯焊料或一可濺濕材料,包括錄與金- 以及-弟二部分,其包含一材料,該材料之回流溫度較第 一部份為高,㈣二部份與半導體晶片接觸,該第二部分 可以或不必含鉛。 本發明之另一觀點係旨在一種用於一半導體晶片 覆晶互連系統,該系統包含一細長部分,其與半導=晶。 接觸、以及-球形部分。該細長部分包括銅,或是回流溫 度較該球形部分高的-焊料金屬;該球形部分包括一焊料 材料。該細長部分可以或不必含鉛。 圖式之說明 第1Α圖係為使用本發明之細長枝狀物將一覆晶連接 到一基質的橫剖面圖,以顯示本發明; 第1Β圖係為第1Α圖之系統的一部份⑺之分解圖,其更 為詳細顯示細長柱狀物、矽晶片與基質之間的互連· 第2A〜2G圖係為-半導體晶片之一部分以及在各階 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 1279883 A7 _________B7_ 五、發明説明(7 ) (請先閲讀背面之注意事項再填寫本頁) 段與該晶片相關的不同層之橫剖面圖,以說明製造該等附 接到晶片之細長柱狀物以及此等將柱狀物附接到一基質的 程序,顯示本發明之一實施例; 弟3A圖係為一覆晶之立體圖,該覆晶在其一側上具有 細長的柱狀物,以顯示本發明之一實施例; 第3B圖係為第3A圖之覆晶之一部份3B的橫剖面圖,以 顯示本發明之該實施例; 第3C圖係為該覆晶之一部分、以及將覆晶附接到基質 之後並注入下方充填材料之基質的橫剖面圖,以顯示本發 明之一實施例; 第4A圖係為連接到一基質之一覆晶的橫剖面圖,其中 該覆晶與基質皆係加以捲曲,以顯示該晶片中之剪應力; 第4B圖係為第4A圖之覆晶的俯視圖; 第5A與5B圖係為標繪圖,顯示一 2〇爱米晶片之剪應力 分佈’其中該晶片係使用高度為1 〇〇微米、且凸塊直徑為6〇 與100微米(以100/120/1 60/225微米之凸塊間距)的本發明 之細長柱狀物連接到一基質,以顯示本發明; 第6A與6B圖係為標緣圖,顯示類似第5a與5B圖中所 示的半導體晶片中之剪應力,但是細長柱狀物之高度係為 125微米,而不是100微米; 為求說明簡單起見,相同的組件係以相同的數字加以 表示。 較佳實施例之詳細說明 第1A圖係為一以覆晶12為形式之半導體晶片的橫剖 ,1279883 .· A7 __ B7 五、發明説明(8 ) 面圖,該覆晶藉著細長的柱狀物16連接到一基質14,以說 明本發明之一實施例。如第1A圖中所示,晶片12與基質14 係以一下方充填材料18(諸如此技藝所熟知者)加以充填, 以便對於晶片12以及藉著該等細長柱狀物16所形成的互連 構造提供支撐與穩定性。 第1B圖係為第1A圖之該系統的一部份1 b之分解圖,其 更為詳細顯示將該矽晶片之一部分連接到基質的一細長柱 狀物。如第1B圖中所示,柱狀物16包含兩個部分··一上方 細長。卩分16a’其包含南度H1的銅、以及一高度為H2的第 二細長部分,其包含以鉛為主的焊料,該兩部分16a、16b 之間的接合處係在16c。部分16b之底部與其上部相比係加 以放大,且大體上具有一圓錐形,其中焊料部分丨6b之底部 係為如以下說明的回流程序所產生,以便與位於基質14頂 部上的銅接點層22產生實體電子接觸,該部分丨以之上尾端 係附接到位於矽晶片12上的一個銅接點24。以此方式,矽 ^ 晶片12上之電路係透過柱狀物16電子連接到一位於基質14 上的電子接點22。如第1A與1B圖中所示,半導體晶片i 2 與基質14之間係以一下方充填材料丨8加以充填。 如第1B圖中所示,矽晶片12上之電路(未顯示)係與焊 料部分16b相隔含銅部分16a之長度或高度。該矽晶片12面 向基質之表面係塗佈一鈍化層(未顯示),其係由一適當材 料所製造,諸如二氧化矽或聚硫亞胺。因此,如果部分i6a 之長度或高度HI超過上表所示之有效厚度,則晶片12上之 電路將會不顯著受到來自於焊料丨讣的^粒子放射之不利 張尺度適财關緒準((^Α4·(繼297公爱) : - .......................裝----- (請先閲讀背面之注意事項再填寫本頁) 訂丨 :線· 五、發明説明(9) :圖 部 1279883 影響。在較佳實施例中,使用二氧化矽作為鈍化層,該部 分16a之高度H1係不少於55微米,且使用聚硫亞胺作為鈍 化層時該高度更佳係大於84微米。欲容許使用多次注射程 序以注射該下方充填材料18,則位於晶片12與基質14之間 的柱狀物之總高度Η至少係為75微米(諸如約8〇〜1〇〇微米 左右)。為了以下說明之緣故,Η之數值越大便能夠降低矽 晶片以及该晶片12與柱狀物16之間的接點所承受的剪應 力。所以,该柱狀物之總高度Η較佳至少為丨〇〇微米,且較 佳為120微米或更多,諸如125微米。H1與H2之比率較佳約 為3比1。 第2Α〜2GI1係為-半導體晶片以及與其相關之各層 的橫剖面圖,以顯示用以製造該如第1Α、1Β圖所示之互連 細長柱狀物的料、以及將該柱狀物連接到—基質的程 序,以說明本發明。 如第2Α圖中所示,一感光層32係形成在晶片12之上。 欲簡化該圖式’第2A〜2G圖中僅顯示部分之晶片與各層。 該感光層之各個指定區域係暴露到輕射,且暴露到轄射之 該等部分接著係加以移除’以便在其中產生一具有穿透孔 34之圖案的層32,,如第2BS]中所示,其中該等穿透孔一直 到達晶片。部分之穿透孔34係以含銅材料加以充填,諸 如將整個構造放在一銅浴槽之中。一電流係通過該處實行 銅材料之電鑛,以便至少充填各孔34之—部份,如第扣 中所示。如第2C圖中所* ’銅材料—充填各孔“之〜 份。接著將整個構造運送到-含有焊料材料之浴槽,並再 本紙張尺度適用中國國家標準(CNS) A4規格⑵0X297^7----------Book....... -Line 丨 (please read the note on the back and then fill out this page) 1279883 V. Invention Description (6 欲力二崎类 includes metal materials Part of the reliability = «The material of this part, the metal material is different from the solder, . . . , 匕 包括 包括 包括 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , A layer of copper is applied. The copper emulsion is also reduced during the reflow of the solder. (4) The surface of the material is controlled during the solder reflow to control at least the height of the portion of the column. The other side of the invention is WJb. » 蚬 曰 曰 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 用于 用于 用于 用于 用于 用于 用于 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体A wettable material, comprising a gold-and-di-part, comprising a material having a reflow temperature that is higher than the first portion, and (d) two portions being in contact with the semiconductor wafer, the second portion may or may not Lead-containing. Another aspect of the present invention is directed to a semiconductor wafer flip-chip interconnection The system includes an elongated portion that is in contact with the semiconductor, and a spherical portion. The elongated portion includes copper or a solder metal having a higher reflow temperature than the spherical portion; the spherical portion includes a solder material The elongated portion may or may not contain lead. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the use of the elongated dendrites of the present invention to join a flip chip to a substrate to show the present invention; An exploded view of a portion (7) of the system of Figure 1, which shows in more detail the interconnection between the elongated pillars, the germanium wafer and the substrate. The 2A~2G diagram is a part of the semiconductor wafer and in each stage. Paper scale applicable to China National Standard (CNS) A4 specification (210X297 public) 1279883 A7 _________B7_ V. Invention description (7) (Please read the note on the back and fill in this page) Cross section of different layers related to the wafer Figure for illustrating the fabrication of the elongated pillars attached to the wafer and the attachment of the pillars to a substrate, showing an embodiment of the invention; Figure 3A is a flip-chip perspective view The flip chip has an elongated pillar on one side thereof to show an embodiment of the present invention; and FIG. 3B is a cross-sectional view of a portion 3B of the flip chip of FIG. 3A to show the present invention This embodiment; FIG. 3C is a cross-sectional view of a portion of the flip chip, and a substrate after attaching the flip chip to the substrate and implanting the underfill material to show an embodiment of the present invention; FIG. 4A A cross-sectional view of a flip chip attached to a substrate, wherein the flip chip and the substrate are both crimped to show shear stress in the wafer; FIG. 4B is a top view of the flip chip of FIG. 4A; The plot with the 5B plot is a plot showing the shear stress distribution of a 2 〇 Amy wafer where the wafer is used at a height of 1 μm and the bump diameter is 6 〇 and 100 μm (100/120/1 60) The elongated pillar of the present invention having a bump spacing of 225 microns is attached to a substrate to show the present invention; FIGS. 6A and 6B are diagrams showing the semiconductor wafers similar to those shown in FIGS. 5a and 5B. Shear stress in the middle, but the height of the slender column is 125 microns instead of 100 M; for the sake of simplicity of description, the same system components to be expressed by the same numbers. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1A is a cross-sectional view of a semiconductor wafer in the form of a flip chip 12, 1279883. A7 __ B7 5. Inventive Description (8) A plan view of the crystallized by a slender column The article 16 is attached to a substrate 14 to illustrate an embodiment of the present invention. As shown in FIG. 1A, wafer 12 and substrate 14 are filled with an underfill material 18 (such as is well known in the art) for interconnection to wafer 12 and by such elongated pillars 16. Construction provides support and stability. Figure 1B is an exploded view of a portion 1b of the system of Figure 1A, showing in more detail an elongated column connecting one portion of the wafer to the substrate. As shown in Fig. 1B, the pillar 16 comprises two sections. The minute 16a' contains copper of a south degree H1 and a second elongated portion of height H2, which contains lead-based solder, and the joint between the two portions 16a, 16b is at 16c. The bottom of portion 16b is enlarged compared to its upper portion and has a generally conical shape wherein the bottom portion of solder portion 6b is produced by a reflow process as described below for bonding to a copper contact layer on top of substrate 14. 22 produces a physical electronic contact that is attached to a copper contact 24 on the wafer 12 with the upper end. In this manner, the circuitry on wafer 12 is electronically coupled through post 16 to an electronic contact 22 on substrate 14. As shown in Figures 1A and 1B, the semiconductor wafer i 2 and the substrate 14 are filled with a lower filling material 丨8. As shown in Fig. 1B, the circuit (not shown) on the germanium wafer 12 is separated from the solder portion 16b by the length or height of the copper containing portion 16a. The surface of the wafer 12 facing the substrate is coated with a passivation layer (not shown) which is made of a suitable material such as cerium oxide or polythioimide. Therefore, if the length or height HI of the portion i6a exceeds the effective thickness shown in the above table, the circuit on the wafer 12 will not be significantly affected by the unfavorable tensile scale of the particle radiation from the solder crucible ((^Α4) · (following 297 public love) : - .......................----- (Please read the notes on the back and fill out this page ) 丨 线 线 线 线 线 线 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 Preferably, the height is greater than 84 microns when the sulfilimine is used as the passivation layer. To allow for multiple injection procedures to be used to inject the underfill material 18, the total height of the pillars between the wafer 12 and the substrate 14 is at least It is 75 microns (such as about 8 〇 to 1 〇〇 microns). For the sake of the following description, the larger the value of Η, the lower the shear stress of the 矽 wafer and the joint between the wafer 12 and the pillar 16 Therefore, the total height Η of the pillars is preferably at least 丨〇〇 micrometers, and preferably 120 micrometers or more. 125 μm. The ratio of H1 to H2 is preferably about 3 to 1. The second Α 2 GI1 is a cross-sectional view of the semiconductor wafer and the layers associated therewith, for display to produce the image as shown in Figures 1 and 1 The process of interconnecting the elongated pillars and the procedure of attaching the pillars to the substrate to illustrate the invention. As shown in Figure 2, a photosensitive layer 32 is formed over the wafer 12. To simplify this In the drawings, the 2A to 2G drawings only show a portion of the wafer and the layers. Each designated area of the photosensitive layer is exposed to light, and the portions exposed to the ray are then removed to generate a A layer 32 having a pattern of penetrating holes 34, as shown in the second BS, wherein the penetrating holes reach the wafer all the time. Part of the penetrating holes 34 are filled with a copper-containing material, such as placing the entire structure In a copper bath, a current is passed through the electroplating of the copper material to fill at least a portion of each of the holes 34, as shown in the buckle. As shown in Fig. 2C, 'copper material-filling each Hole "~ part. Then transport the entire structure to - contain solder material The bath, and then the paper size applies to the Chinese National Standard (CNS) A4 specifications (2) 0X297^7
----- (請先閲讀背面之注意事項再填窝本頁) .囔- 1279883 五、發明説明 度使用電it,以充填該等孔34之部分,產生第2D圖中所示 的構仏,其中一焊料材料16b’充填該等孔34之部分。接著 移除剩餘的感光層32,,以形成第2£圖之構造。如第托圖 中所不,接著形成兩個細長的柱狀物16,,各柱狀物包含一 銅部分16a與一焊料部分16b,。欲將該等柱狀物連接到基 質,使部分16b,與位於基質14上之銅接點22接觸,如第2F # 目中所示。接著以此技藝中所熟知的方式將含有焊料之部 刀16b加熱,以便使該焊料16b,回流,形成第18與2〇圖中 所示的焊料部分16b與柱狀物16。接著注入一下方充填材料 18,以便充填晶片12與基質14之間的空間。因此,位於 片12之上的接點24係實體與電子地連接,且附接到基質 之上的接點22。所產生之構造係顯示於第2(}圖之中。 欲在該等柱狀物與半導體晶片之間提供一金屬… 點,一下方凸塊金屬化層(典型由一包括鈦(Ti)、鈦鎢(Tiw) 或鉻(Cr)與銅所構成)在上述程序期間作為一黏著層。此層 亦作為傳‘金屬,接觸該等柱狀物之銅部分,用於上述 電鍍程序。在移除感光層32,之後,除了該等柱狀物下方 外,此下方凸塊金屬化層之所有部分係加以移除。為求 化起見,各圖式係將此層省略。 第1A與2E圖中顯示相鄰細長柱狀物16之間的間隙 間距P。使用上述之程序可達成少於100微米的細微間距 幸乂仏地郴接柱狀物之間的間隙或間距係約為到1 微米 左右由於料形成一部份之柱狀物,故不需要將焊料 鍵在基質上的額外程序,且柱狀物與基質之間的連接可 B曰 14 接 之 以簡 或 電 簡----- (Please read the precautions on the back and fill in the nest page) .囔-1279883 V. Inventories Explain the use of electric it to fill the parts of the holes 34 to produce the structure shown in Figure 2D. Thereafter, a solder material 16b' fills a portion of the holes 34. The remaining photosensitive layer 32 is then removed to form the structure of the second map. As shown in the top view, two elongated pillars 16 are formed, each of which includes a copper portion 16a and a solder portion 16b. To connect the pillars to the substrate, the portion 16b is brought into contact with the copper contacts 22 on the substrate 14, as shown in the 2F#. The solder-containing knives 16b are then heated in a manner well known in the art to reflow the solder 16b to form the solder portions 16b and pillars 16 shown in Figures 18 and 2. An underfill material 18 is then implanted to fill the space between the wafer 12 and the substrate 14. Thus, the contacts 24 located above the sheet 12 are physically and electronically connected and attached to the contacts 22 above the substrate. The resulting structure is shown in the 2nd (} diagram. To provide a metal point between the pillars and the semiconductor wafer, a lower bump metallization layer (typically consisting of a titanium (Ti), Titanium tungsten (Tiw) or chromium (Cr) and copper are used as an adhesive layer during the above procedure. This layer also acts as a metal, contacting the copper portion of the pillars for the above plating process. Except for the photosensitive layer 32, all portions of the underlying bump metallization layer are removed except for the underside of the pillars. For the sake of clarification, each pattern is omitted from this layer. 1A and 2E The figure shows the gap spacing P between adjacent elongated pillars 16. Using the above procedure, a fine pitch of less than 100 microns can be achieved. Fortunately, the gap or spacing between the pillars is about 1 Since the micron is formed as a part of the pillar, there is no need for an additional procedure for bonding the solder to the substrate, and the connection between the pillar and the substrate can be connected to the simple or simplified
(請先閲讀背面之注意事項再填寫本頁) 奉 、v"· :線丨 1279883 A7 B7 五、發明説明(11) 單地藉由该柱狀物之焊料部分的回流所形成。另外,透過 此私序不必形成蘑菇狀之焊料凸塊,以致於能夠達成較細 微的間距。該焊料化合物係具有彈性,且錫鉛比可為63/37 或5/95,或為一非鉛焊料。上述電鍍程序中所使用之銅材 料與焊料材料可僅為銅金屬與焊料。 第3 A圖係為一覆晶之立體圖,以顯示本發明之一實施 例,泫晶片之一側上具有細長的柱狀物。第3B圖係為第3 A 圖之該晶片的一部份3B之橫剖面圖,以顯示本發明之該實 施例。第3C圖係為該覆晶之一部分與基質的橫剖面圖,其 中覆晶已經附接到該基質,且注入下方充填材料,以顯示 本發明之一實施例,如箭號100所指示。 本發明之細長柱狀物互連的其他優點係在於:其降低 了捲曲矽晶片以及該等晶片與互連的接點之間所承受的剪 應力。此係顯示於第4A與4B圖之中,第4A圖係為一覆 之杈剖面圖,該覆晶連接到一基質,其中該覆晶與基質 係加以捲曲,以顯示晶片中之剪應力。第4B圖係為第4a 之一俯視圖。如第4 A圖中所示,該矽晶片丨2,與基質! 4, 由於一些原因而捲曲,諸如熱效應。捲曲係計算從中心12&, 到晶片之中心12b,的Y軸位移,如第4A圖中所示。 第5A與5B圖係以標繪圖顯示尺寸為2〇釐米之晶片中 的男應力分佈,其中細長之柱狀物的長度為】〇〇微米,直徑 為60與100微米,且凸塊間距為1〇〇、12〇、16〇、225微米。 在私繪圖之中,間距係以p表示,且直徑係以D表示。如 5A與5B圖中所示,位於晶片邊緣處之尖峰剪應力係較銅 皆 圖 會 第 之(Please read the precautions on the back and then fill out this page) 奉, v"· :线丨1279883 A7 B7 V. Invention Description (11) The single ground is formed by the reflow of the solder portion of the pillar. In addition, it is not necessary to form mushroom-like solder bumps through this private sequence, so that a fine pitch can be achieved. The solder compound is elastic and has a tin to lead ratio of 63/37 or 5/95 or a non-lead solder. The copper material and solder material used in the above plating process may be only copper metal and solder. Figure 3A is a flip-chip perspective view showing an embodiment of the invention having elongated pillars on one side of the wafer. Figure 3B is a cross-sectional view of a portion 3B of the wafer of Figure 3A to illustrate this embodiment of the invention. Figure 3C is a cross-sectional view of a portion of the flip chip and the substrate, wherein the flip chip has been attached to the substrate and the underfill material is injected to show an embodiment of the invention, as indicated by arrow 100. Another advantage of the elongated pillar interconnect of the present invention is that it reduces the shear stress experienced by the crimped wafer and the joints of the wafers and interconnects. This is shown in Figures 4A and 4B, which is a cross-sectional view of the flip-chip attached to a substrate wherein the flip-chip and the substrate are crimped to show the shear stress in the wafer. Figure 4B is a top view of the 4a. As shown in Figure 4A, the wafer 丨 2, with the substrate! 4, curled for some reason, such as thermal effects. The crimping system calculates the Y-axis displacement from the center 12&, to the center 12b of the wafer, as shown in Figure 4A. Figures 5A and 5B show the male stress distribution in a wafer measuring 2 cm in size, wherein the elongated column has a length of 〇〇μm, a diameter of 60 and 100 μm, and a bump pitch of 1 〇〇, 12〇, 16〇, 225 microns. In the private drawing, the spacing is denoted by p and the diameter is denoted by D. As shown in Figures 5A and 5B, the peak shear stress at the edge of the wafer is the same as that of the copper.
(請先閲讀背面之注意事項再填窝本頁) .、訇丨 .嘴| ..1279883 A7 B7 五、發明説明(l2)(Please read the precautions on the back and fill in this page) .,訇丨.Mouth | ..1279883 A7 B7 V. Invention description (l2)
II 強度為低,以致於具有顯示特定幾何外型(或類似幾何外型) 之本發明的細長柱狀物應不會由於剪應力而產生破壞。第 6A與6B圖顯示與第5A及5B圖中所顯示的資料類似,但其 中該柱狀物高度或長度係為120微米,而不是1〇〇微米。比 較第6A與6B以及第5A與5B圖之資料顯示出,若柱狀物愈 長,則在晶片之邊緣以及連接到該晶片之互連接點會承受 較少的剪應力。 第1B圖中所示之一有機或金屬材料層5〇可用來覆蓋 該銅部分16a,如此會降低可靠性之問題。所使用之材料可 為Entek或鈀’且可僅將整個構造浸入一此等材料之浴槽所 形成,其中該材料將僅黏附到銅部分16a。 經發現,在如上述之焊料回流以便將晶片連接到基質 期間,該銅部分16a之側壁表面可能被焊料濺濕。當此情況 發生時,該焊料部分會改變高度,甚至倒塌,以致於使回 流與連接程序更為難以控制。較佳地,使柱狀物1 6之銅部 分16a的側壁表面氧化,從而在該側壁表面上形成一層銅氧 化物’如此降低了部分16a之側壁表面在回流期間被焊料賤 濕的可能性。銅氧化物層可藉著將該等柱狀物與晶片(諸如 第2E圖中所示之組件)放置在一烤箱加熱到約攝氏至12〇 度(諸如攝氏100度)的溫度中,使其暴露到一含氧環境(諸 如空氣)一段約15到60分鐘(諸如30分鐘)的時間所形成。儘 管上述之該等實施例使用銅作為非鉛金屬材料形成該等柱 狀物與半導體晶片接觸的部分,可理解的是其亦能夠使用 銅以外的金屬(諸如金、錫/銀與錫/銅”如此與其他的變化 本紙張尺度適用中國國家標準(CNS) A4規格(21〇><297公釐) 15 (請先閲讀背面之注意事項再填窝本頁) 奉 ’、可| :線丨 1279883 A7 -—____ B7___ 五、發明説明(I3) 係屬於本發明的範缚。 士苐1B圖中所示,部分1仙之底部係由於焊料之回流 程序而擴大,因此’最初該部分16b之形狀可為-細長的柱 狀物。此柱狀物可在將其放置與基質系統接觸之前回流形 成一球狀(在第1B圖中以點線16b,,顯示),接著該球形材料 係回流形成第1B圖中所示的形狀。 其他的變化係為可行,因此,只要部分丨以中之材料之 回流溫度高於部分·,則上述之程序料可行,且能夠有 利地加以使用’因此部分16a可包含銅或是具有此等較高回 流溫度之-焊料材料。其中α粒子放射並不重要,部分… 亦可含敍,部分16b可包含_具有或不具錯之悍料材料。盆 亦可包含-可滅濕材料,包括鎮與金。任何一種此等特性 能夠有利地與上述特徵相結合。 儘管已經參考各種實施例說明本發明,可理解的是能 夠進行變化與修正,而不脫離本發明藉著所附申請專利範 圍以及其相等物所界定的範轉。 .1279883 Α7 Β7 五、發明説明(Μ) 元件標號對照 Ρ···間距 16 c…接合處 D…直徑 16b’…焊料部分 12…覆晶 18…下方充填材料 12’···矽晶片 22…接點 14…基質 24···接點 14’…基質 32…感光層 16…柱狀物 32’…感光層 16 a…上方部分 34···穿透孔 16b···焊料部分 50···有機或金屬材料層 〇 -----------------------裝------------------、玎------------------線 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 17The strength of the II is so low that the elongated pillars of the present invention having a particular geometric appearance (or similar geometrical appearance) should not be destroyed by shear stress. Figures 6A and 6B show similar data as shown in Figures 5A and 5B, but wherein the column height or length is 120 microns instead of 1 〇〇 microns. Comparing the data of Figures 6A and 6B and Figures 5A and 5B shows that if the column is longer, it will experience less shear stress at the edge of the wafer and the interconnecting points connected to the wafer. One of the layers of organic or metallic material 5 shown in Fig. 1B can be used to cover the copper portion 16a, which reduces the reliability problem. The material used may be Entek or palladium' and may be formed by dipping only the entire construction into a bath of such materials, wherein the material will only adhere to the copper portion 16a. It has been found that the sidewall surface of the copper portion 16a may be splashed by the solder during reflow of the solder as described above to connect the wafer to the substrate. When this happens, the solder portion changes height and even collapses, making the return flow and connection procedure more difficult to control. Preferably, the sidewall surface of the copper portion 16a of the pillar 16 is oxidized to form a layer of copper oxide on the sidewall surface. This reduces the possibility that the sidewall surface of the portion 16a is wetted by the solder during reflow. The copper oxide layer can be heated by a temperature such that the pillars and wafers (such as the components shown in FIG. 2E) are heated in an oven to about Celsius to 12 degrees Celsius (such as 100 degrees Celsius). Exposure to an oxygen-containing environment, such as air, is formed for a period of about 15 to 60 minutes, such as 30 minutes. Although the above embodiments use copper as the non-lead metal material to form portions of the pillars in contact with the semiconductor wafer, it is understood that it is also possible to use metals other than copper (such as gold, tin/silver and tin/copper). "This and other changes in this paper scale apply to the Chinese National Standard (CNS) A4 specification (21〇><297 mm) 15 (please read the note on the back and fill the nest page)丨1279883 A7 -_____ B7___ V. Inventive Note (I3) is a stipulation of the present invention. As shown in Figure 1B, the bottom portion of the 1 sen is enlarged due to the solder reflow procedure, so 'the initial part The shape of 16b can be an elongated column. The column can be reflowed to form a spherical shape (shown as dotted line 16b in Figure 1B) before it is placed in contact with the substrate system, followed by the spherical material. It is reflowed to form the shape shown in Fig. 1B. Other variations are possible, so that the above-mentioned program is feasible and can be advantageously used as long as the reflow temperature of the material in part of the crucible is higher than the part. So part 16 a may comprise copper or a solder material having such a higher reflow temperature. The alpha particle emission is not important, and part of it may also be included, and part 16b may contain _ material with or without error. Inclusion-dehumidified material, including town and gold. Any of these characteristics can be advantageously combined with the above features. While the invention has been described with reference to various embodiments, it will be understood that changes and modifications can be made without departing from the invention. The invention is defined by the scope of the appended patent application and its equivalents. .1279883 Α7 Β7 V. Invention description (Μ) Component label control Ρ··· Spacing 16 c... joint D... diameter 16b'...solder part 12... flip chip 18... underfill material 12'···矽 wafer 22...contact 14...matrix 24···contact 14'...matrix 32...photosensitive layer 16...column 32'...photosensitive layer 16 a... Upper part 34···through hole 16b···solder part 50···Organic or metallic material layer〇----------------------- -----------------, 玎------------------ line (please read the notes on the back and fill in P) This paper scale applicable Chinese National Standard (CNS) Α4 size (210X297 mm) 17
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/843,248 US6592019B2 (en) | 2000-04-27 | 2001-04-26 | Pillar connections for semiconductor chips and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI279883B true TWI279883B (en) | 2007-04-21 |
Family
ID=38645529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91108801A TWI279883B (en) | 2001-04-26 | 2002-04-26 | Improved pillar connections for semiconductor chips and method of manufacture |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI279883B (en) |
-
2002
- 2002-04-26 TW TW91108801A patent/TWI279883B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6592019B2 (en) | Pillar connections for semiconductor chips and method of manufacture | |
US6681982B2 (en) | Pillar connections for semiconductor chips and method of manufacture | |
TWI245402B (en) | Rod soldering structure and manufacturing process thereof | |
TWI298531B (en) | Bump structure | |
TWI237859B (en) | Solder bump structure and method for forming a solder bump | |
US5466635A (en) | Process for making an interconnect bump for flip-chip integrated circuit including integral standoff and hourglass shaped solder coating | |
TWI378516B (en) | Bump-on-lead flip chip interconnection | |
TW567591B (en) | Method of connecting a conductive trace to a semiconductor chip | |
TW543163B (en) | Solder balls and columns with stratified underfills on substrate for flip chip joining | |
KR100659527B1 (en) | Semiconductor chip having three dimension type ubm for flip chip bonding and mounting structure thereof | |
US8101866B2 (en) | Packaging substrate with conductive structure | |
TWI288447B (en) | Conductive bump structure for semiconductor device and fabrication method thereof | |
TWI252546B (en) | Bumping process and structure thereof | |
US8766439B2 (en) | Integrated circuit chip with pyramid or cone-shaped conductive pads for flexible C4 connections and a method of forming the integrated circuit chip | |
JP2013534060A (en) | Microelectronic package having double etched flip chip connector or multiple etched flip chip connector and corresponding manufacturing method | |
TWI314772B (en) | Semiconductor device and unit equipped with the same | |
KR20100092428A (en) | Flip chip interconnection with double post | |
US8779300B2 (en) | Packaging substrate with conductive structure | |
JP2006128662A (en) | Semiconductor and its mounting body | |
US20120326299A1 (en) | Semiconductor chip with dual polymer film interconnect structures | |
JP2009218576A (en) | Mcm package | |
TWI336516B (en) | Surface structure of package substrate and method for manufacturing the same | |
JP3015436B2 (en) | Semiconductor device and connection method thereof | |
TWI279883B (en) | Improved pillar connections for semiconductor chips and method of manufacture | |
US20110057307A1 (en) | Semiconductor Chip with Stair Arrangement Bump Structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |