TWI279838B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- TWI279838B TWI279838B TW94114995A TW94114995A TWI279838B TW I279838 B TWI279838 B TW I279838B TW 94114995 A TW94114995 A TW 94114995A TW 94114995 A TW94114995 A TW 94114995A TW I279838 B TWI279838 B TW I279838B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- refractory metal
- metal alloy
- semiconductor device
- nitride
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
I279碰w_〇〇6 95-3-21 九、發明說明: 【發明所屬之技術領域】 ^發明是有關於-種”體元件及其製作方法,且特 別疋有關於包括至少-導電結構中 之半導體元件及其製作方法。 胃 【先前技術】 在半導體技術中,金氧半導體 (metaLide—icondutor,M〇s)電晶體係由閑 源極(窗㈣姐極咖in博三個電__ 半導體係由金屬層、二氧化石夕層與石夕基底等三層材質^ 成的。但是,由於大多數的金屬對於二氧化石夕著力 很差,所以對於二氧化石夕具有較佳附著能力的多晶石^ (polysilicon)便被提出,以取代金屬層。然而,使用 卻有電阻值太高的問題存在。即使多晶石夕經過換雜 阻值還是太高,並不適合用來取代金氧半導體的金屬^电 之後’提出了-種解決方法,就是再多加—層厚度^曰 石夕層相當的金屬魏物於多㈣的表面,_導電性= 的金屬矽化物與多晶矽共同組成導電層。 土 金屬石夕化物具有高雜、具穩定性及低電卩且率,進而 提高了整個元件的驅動電流及操作速度,所以於積體 製程上的應用,已愈來愈普遍。此外,隨著積體電路的制 作技術持續地_小化的方向發展,元件的閘極線寬也= 之縮小,而金屬矽化物如矽化鈦,將產生所謂的窄線寬二 應(露贿-1^‘她6£知〇,即當線寬縮小時,閘極=斤 5 1279嫌 twfl .doc/006 95-3-21 形成㈣化鈦的片電阻⑽eet resistanee),便會_地增 加。因此,·始使用其他㈣補,其中以魏 和矽化鎳(NiSi2)最普遍。 由於石夕化鎳具有低電阻、低製程溫度以及具有較小的 窄線寬效應,因此在65奈米的金氧半場效電晶體(M0SFET)I279 touch w_〇〇6 95-3-21 IX. Description of the invention: [Technical field to which the invention pertains] The invention relates to a "body" element and a method of fabricating the same, and particularly to include at least a conductive structure Semiconductor component and its manufacturing method. Stomach [Prior Art] In semiconductor technology, the metal oxide semiconductor (metaLide-icondutor, M〇s) electro-crystal system consists of idle source (window (four) sisters in the three electric __ The semiconductor system consists of a three-layer material such as a metal layer, a SiO2 layer, and a Shishi base. However, since most metals have a poor effect on the dioxide, they have better adhesion to the sulphur dioxide. Polysilicon (polysilicon) was proposed to replace the metal layer. However, the use of the problem of the resistance value is too high. Even if the polycrystalline stone is too high, it is not suitable for replacing gold. After the metal of the oxygen semiconductor is charged, a solution is proposed, which is to add a layer thickness to the surface of the metal (four) surface, and the metal halide and the polycrystalline germanium together form a conductive layer. Layer Metallic ceramsite has high impurity, stability and low power, and thus improves the driving current and operating speed of the entire component, so the application in the industrial process has become more and more common. The fabrication technology of the body circuit continues to develop in a small direction, the gate width of the component is also reduced, and the metal telluride such as titanium telluride will produce a so-called narrow line width II (exposed bribe -1^' she 6£ know, that is, when the line width is reduced, the gate is 1.5 jins 1 1 twfl.doc/006 95-3-21 The formation of (four) titanium sheet resistance (10) eet resistanee) will increase _. Therefore, Use other (four) supplements, among which Wei and nickel (NiSi2) are the most common. Because of the low resistance, low process temperature and small narrow linewidth effect of Shixihua nickel, the 65 nm gold oxide half field effect Crystal (M0SFET)
1= 务展中’矽化鎳相當的重要。然而,矽化錦的熱穩 疋性物ϋ此目鮮以熱敎性較佳的義合 物來代替矽化鎳。 然而,因為麵具有相當高的化學穩定性,非常難以去 除’因此,通常所選擇的侧液雖然可以將錄翻合金去除, 但卻會對_合金梦化物造成損害。因此,如何去除多餘 的鎳翻合金而又不會對元件其他部分造成損害,即為當前 所需解決的問題。 【發明内容】1= In the exhibition, 'deuterated nickel is quite important. However, the heat-stable substance of phlegm and phlegm is replaced by a enthalpy of heat. However, because the surface has a relatively high chemical stability, it is very difficult to remove. Therefore, generally, the selected side liquid can remove the alloy, but it will cause damage to the alloy. Therefore, how to remove excess nickel alloy without causing damage to other parts of the component is a problem that needs to be solved. [Summary of the Invention]
本發明的目的是提供一種半導體元件的製作方法,其 在進行偏m程前’先在金屬合金魏物層上形成一層保 護層,可以有效地避免金屬合金矽化物層造成損害。 本發明的另一目的是提供一種半導體元件,其中所含 之金屬合金雜物可取代f知半導體元件中所含之金屬石夕 化物。 -本發明的再一目的就是在提供一種半導體元件,豆中 所含之金射化物财㈣阻、低_溫度以及呈有較小 的窄線寬效應。 本發明提tB-種半導體元件,其包括至少—導電結 6 I279§M_6 95-3-21 構,此導電結構包括一含 與一保護層。其中,耐火△ /層、一耐火金屬矽化物層 上,而保護層配置於耐火置於含石夕導電層 係介於3A〜50 A之間,但不包括賴層之厚度 金屬矽化物層的:二的:::元件’上述之耐火 石夕她或魏!自。 4魏#、魏鈦、魏錮、 依照本發明之實施例所述 層的材質為耐火全屬焉 丁宁版701千上述之保痩 氮化I目。 屬威物如氮脸、氮化鎢、氮化鈦、 依=本發明之實施例所述的半導體元件的製作方法, 义之§料電層例如相極、源極或沒極。 本發明另提出-種半導體元件,係將上述之耐火金屬 石夕化物層替換為耐火金屬合金%化物 化物層是由包含有第一财火金屬與第二财火金屬 屬合金層與含矽導電層中之矽反應所形成。 依照本發明之實施例所述的半導體元件,上述之第一 t火孟屬與苐一耐火金屬為分別選自鎳、钻、鈦、錮、在巴 與翻所組成之族群至少其中之一。 依照本發明之實施例所述的半導體元件,上述之第二 耐火金屬於耐火金屬合金層中所佔之比例小於10wt.%。 本發明再提出一種半導體元件的製作方法,首先,提 供一含矽導電層。接著,於含矽導電層上,形成耐火金屬 合金層’其中耐火金屬合金層是由第一耐火金屬與第二耐 127職 doc/006 95-3-21 火金屬所組成。然後,於耐火金屬合金層上形成保護層。 之後,進行加熱製程,使耐火金屬合金層與含石夕導電^中 所含之珍反應,形成财火金屬合金石夕化物層。接下來:以 二^^進行飯刻製程,此钱刻劑可以去除未反應的耐火 至霉5孟層及其上的保護層,而於耐火金屬合金矽化物戶 =::::保護層。其中殘留一部分於耐火金屬= 5夕物之保瞍層之厚度係介於3A〜5〇 A之間,但不包括 卜、本㈣之實補所述的半賴元件的製作方法, 酸St製程例如可以使用侧鹽酸的混输^ 溶液2=ίΓ。減氫⑽合溶㈣經灣獅氣化氫 上述月之實施例所述的半導體元件的製作方法, 3夕v電層例如為閘極、源極或汲極。 上述mr之實施綱述的半導體元件的製作方法, 加熱製程例如為快速加熱回火製程(RTP)。 更可實施例所述的半導體元件的製作方法, (SPM),去除1 ’使用硫酸與過氧化氮的混合溶液 護層。’、欠邊一邛份於耐火金屬合金矽化物層上的保 上述:之實施例所述的半導體元件的製作方法, 區或是導、^例如為金氧半導體之閘極或含石夕之摻雜 本發明因採用耐火金屬合金石夕化物取代過去的对火 8 1279· :wfl .doc/006 95-3-21 金屬矽化物’因此提高了金財化 本=時在对火金屬合金辦層上形成保;J層此二 位於耐火金屬合合爲μ AA / # 物#上的仵又層触於耐火金屬合金石夕化 物層上的保5隻層對於㈣劑具有不同#刻選擇比的特性, 地敎在使賴錄難去除未反應的耐火金屬 合金層日二對耐火金屬合金魏物層造成損害。 為=本=之上述和其他目的、特徵和優點能更明顯SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fabricating a semiconductor device which first forms a protective layer on a metal alloy wafer layer before performing a bias m process, thereby effectively preventing damage to the metal alloy telluride layer. Another object of the present invention is to provide a semiconductor element in which a metal alloy impurity contained therein can be substituted for a metal cerium compound contained in a semiconductor element. Further, another object of the present invention is to provide a semiconductor element in which the gold film contained in the beans has a (4) resistance, a low temperature, and a small narrow line width effect. The present invention provides a semiconductor device comprising at least a conductive junction 6 I279 § M_6 95-3-21, the conductive structure comprising a protective layer and a protective layer. Wherein, the refractory Δ / layer, a refractory metal bismuth layer, and the protective layer is disposed in the refractory layer containing the ferritic conductive layer between 3A and 50 A, but does not include the thickness of the layer of the metal bismuth layer : Two::: Components 'The above-mentioned refractory Shi Xi she or Wei! from. 4 Wei#, Wei Ti, Wei Wei, according to the embodiment of the present invention, the material of the layer is refractory, and all of them are 701 版 701 701. It is a method for fabricating a semiconductor device such as a nitrogen face, a tungsten nitride, a titanium nitride, or a semiconductor according to an embodiment of the present invention, such as a phase electrode, a source or a gate. The present invention further provides a semiconductor device in which the above-mentioned refractory metal lithium layer is replaced by a refractory metal alloy % compound layer which is composed of a first stellite metal and a second stellite metal alloy layer and a ytterbium-containing conductive layer. The ruthenium reaction in the layer is formed. According to the semiconductor device of the embodiment of the present invention, the first temperament and the first refractory metal are at least one selected from the group consisting of nickel, diamond, titanium, tantalum, and bark. According to the semiconductor device of the embodiment of the invention, the ratio of the second refractory metal to the refractory metal alloy layer is less than 10 wt.%. The present invention further proposes a method of fabricating a semiconductor device. First, a germanium-containing conductive layer is provided. Next, a refractory metal alloy layer is formed on the ruthenium-containing conductive layer, wherein the refractory metal alloy layer is composed of the first refractory metal and the second refractory metal. Then, a protective layer is formed on the refractory metal alloy layer. Thereafter, a heating process is performed to react the refractory metal alloy layer with the yttrium contained in the yttrium-containing conductive material to form a ruthenium metal alloy. Next: the rice engraving process is carried out by two ^^, and the money engraving agent can remove the unreacted refractory to the mold layer and the protective layer thereon, and the refractory metal alloy telluride household =:::: protective layer. The thickness of the protective layer of a part of the refractory metal = 5 夕 介于 is between 3A and 5〇A, but does not include the manufacturing method of the semi-laid element described in the actual supplement of Bu (4), the acid St process For example, a mixed solution of side hydrochloric acid 2 = Γ can be used. Hydrogen reduction (10) and dissolving (4) Hydrogenation of hydrogen by the bay lion The method for fabricating the semiconductor device described in the above embodiment is, for example, a gate, a source or a drain. In the method of fabricating the semiconductor device described in the above mr, the heating process is, for example, a rapid heating tempering process (RTP). Further, in the method for producing a semiconductor device according to the embodiment, (SPM), a mixed solution of sulfuric acid and nitrogen peroxide is removed. ', the underside of the refractory metal alloy telluride layer is protected as described above: the method for fabricating the semiconductor device according to the embodiment, the region or the gate, for example, the gate of the MOS or the shi shi Doping the present invention due to the use of refractory metal alloy Shi Xi compound to replace the previous fire on the fire 1 1279 · : wfl .doc / 006 95-3-21 metal telluride 'therefore the increase of the gold fortification = when in the fire metal alloy The layer is formed on the layer; the J layer is located on the refractory metal combined with μ AA / #物#, and the layer of 仵 is layered on the refractory metal alloy, and the 5 layers are different for the (four) agent. The characteristics of the mantle are causing damage to the refractory metal alloy weir layer by making it difficult to remove the unreacted refractory metal alloy layer. The above and other purposes, features and advantages of == this can be more obvious
易t重,下文祕較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 以下係以具有金氧半電晶體的半導體元件為實施例來 ,明,而並非用以限定本發明,本發明之綠亦可應用於 其他含有矽的結構。The following is a detailed description of the preferred embodiment, and the following is a detailed description of the following. [Embodiment] The following is a description of a semiconductor device having a MOS transistor as an embodiment, and is not intended to limit the present invention. The green of the present invention can also be applied to other structures containing ruthenium.
圖1繪不為依照本發明的實施例之半導體元件的剖面 示意圖。請參照圖1,半導體元件10包括石夕基底1〇〇、閑 極102、閘極氧化層1〇4、汲極/源極1〇6、間隙壁、隔 離結構no、耐火金屬矽化物層112與保護層114。上述之 閉極102與汲極/源極106統稱為含矽導電層。苴中,隔離 結構no配置於石夕基底⑽巾,並定義出一絲區(active area),而閘極1〇2、間極氧化層1〇4、汲極/源極ι〇6、間 隙壁108、耐火金屬矽化物層112與保護層114則位於上 述之主動區中。此外,閘極氧化層1〇4配置於矽基底1〇〇 上,閘極102配置於閘極氧化層1〇4上,汲極/源極1〇6配 置於閘極102兩侧的矽基底1〇〇中,間隙壁1〇8配置於閘 9 95-3-21 1279§雜_/006BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view showing a semiconductor device in accordance with an embodiment of the present invention. Referring to FIG. 1, the semiconductor device 10 includes a stone substrate 1, a dummy electrode 102, a gate oxide layer 1〇4, a drain/source 1〇6, a spacer, an isolation structure no, and a refractory metal germanide layer 112. And the protective layer 114. The above-described closed pole 102 and drain/source 106 are collectively referred to as a germanium-containing conductive layer. In the crucible, the isolation structure no is disposed on the Shixia base (10) towel, and defines an active area, and the gate 1〇2, the inter-pole oxide layer 1〇4, the bungee/source pole 〇6, the spacer 108. The refractory metal telluride layer 112 and the protective layer 114 are located in the active region described above. Further, the gate oxide layer 1〇4 is disposed on the germanium substrate 1〇〇, the gate 102 is disposed on the gate oxide layer 1〇4, and the drain/source 1〇6 is disposed on the germanium substrate on both sides of the gate 102. In 1〇〇, the spacer 1〇8 is placed in the gate 9 95-3-21 1279§杂_/006
極102之兩侧上,而耐火金屬矽化物層112配置於閘極1〇2 與汲極/源極106上,保護層114則配置於耐火金屬矽化物 層112上。保護層114的厚度是介於3人〜5〇A之間,但不 包括50A 在一實施例中,耐火金屬矽化物層112的材質例如為 石夕化鎳、矽化鈷、矽化鈦、矽化鉬、矽化鈀或矽化鉑,而 保。隻層114的材質例如為耐火金屬氮化物,如氮化组、氮 化鶴、氮化欽、氮化翻。 在另一實施例中,上述半導體元件1〇中的耐火金屬 矽化物層還可以替換為耐火金屬合金矽化物層。耐火金屬 合金矽化物層是由包含有第一耐火金屬與第二耐火金屬的 耐火金屬合金層與含矽導電層中之矽反應所形成,而第一 耐火金屬與第二耐火金屬例如為分別選自鎳、鈷、鈦、鉬、 鈀與鉑所組成之族群至少其中之一。在一實例中,第一耐 火金屬為鎳,第二耐火金屬為鉑,而第二耐火金屬於耐火 金屬合金層中所佔之比例例如是小於1〇wt%。以耐火金屬 鲁合金石夕化物層來代替耐火金屬石夕化物層,可以增加金屬石夕 化物層的熱穩定性。 固2A至圖2F、纟會不為依照本發明的貫施例之半導體元 件的妓作方法的流程剖面圖。首先,請參照圖2A,提供一 石夕基底200,並在矽基底200上以隔離結構21〇定義出一 主動區(active area)。隔離結構2丨〇例如是以局部區域熱氧 化法所形成之場氧化層或是以淺溝渠隔離法所形成之淺溝 渠隔離結構。接著,在主動區域内形成金氧半電晶體欠此 10 •doc/006 95-3-21 金氧半電晶體包括閘極202、位於閘極2〇2下方的閘極氧On both sides of the pole 102, the refractory metal telluride layer 112 is disposed on the gate 1〇2 and the drain/source 106, and the protective layer 114 is disposed on the refractory metal halide layer 112. The thickness of the protective layer 114 is between 3 and 5 A, but does not include 50 A. In one embodiment, the material of the refractory metal telluride layer 112 is, for example, nickel, cobalt telluride, titanium telluride, molybdenum telluride. , palladium or palladium, while Bao. The material of only layer 114 is, for example, a refractory metal nitride such as a nitrided group, a nitrogenated crane, a nitrided, or a nitrided. In another embodiment, the refractory metal telluride layer in the semiconductor element 1 can be replaced with a refractory metal alloy telluride layer. The refractory metal alloy telluride layer is formed by reacting a refractory metal alloy layer containing the first refractory metal and the second refractory metal with ruthenium in the ruthenium-containing conductive layer, and the first refractory metal and the second refractory metal are respectively selected, for example. At least one of the group consisting of nickel, cobalt, titanium, molybdenum, palladium and platinum. In one example, the first fire resistant metal is nickel and the second refractory metal is platinum, and the proportion of the second refractory metal in the refractory metal alloy layer is, for example, less than 1 〇 wt%. The thermal stability of the metallurgical layer can be increased by replacing the refractory metal lithium layer with a refractory metal Lu alloy layer. The solid 2A to Fig. 2F and Fig. 2F are not process cross-sectional views of the method of fabricating the semiconductor device according to the embodiment of the present invention. First, referring to Fig. 2A, a stone base 200 is provided, and an active area is defined on the base 200 by the isolation structure 21'. The isolation structure 2 is, for example, a field oxide layer formed by a partial area thermal oxidation method or a shallow trench isolation structure formed by a shallow trench isolation method. Next, a gold-oxygen semiconductor is formed in the active region. 10 •doc/006 95-3-21 The gold-oxygen semiconductor includes a gate 202 and a gate oxygen under the gate 2〇2.
化層204以及汲極/源極206,另外,在閘極2〇2的側壁I 形成有一間隙壁208。上述之閘極202與汲極/源極2〇6統 稱為含矽導電層。 βThe layer 204 and the drain/source 206 are formed, and a spacer 208 is formed on the sidewall I of the gate 2〇2. The gate 202 and the drain/source 2〇6 described above are collectively referred to as a germanium-containing conductive layer. β
接著,請參照圖2B,在基底2〇〇上,沈積一層耐火 金屬合金層212,此耐火金屬合金層212是由第一耐火金 屬與第二耐火金屬所組成。其中,第一 火金屬例如是選自鎳、m趣與輯 至少其中之-。在-實射,第—耐火金屬為鎳,第二: 火金屬為鉑,而第二耐火金屬於耐火金屬合金層212中所 佔之比例例如為小於1 〇wt.%。 ^接著,請參照圖2C,在耐火金屬合金層212上形成 保,層213。保護層213的材質例如為耐火金屬氮化物, 如氮化I旦、氮化鶊、氮化鈦、氮化錮。 然後,請參照圖2D,進行一熱回火製程,使耐火金屬Next, referring to Fig. 2B, a refractory metal alloy layer 212 is deposited on the substrate 2, and the refractory metal alloy layer 212 is composed of a first refractory metal and a second refractory metal. Wherein, the first fire metal is, for example, selected from the group consisting of nickel, m and at least. In the actual, the first refractory metal is nickel, the second: the igniting metal is platinum, and the proportion of the second refractory metal in the refractory metal alloy layer 212 is, for example, less than 1 〇 wt.%. Next, referring to Fig. 2C, a protective layer 213 is formed on the refractory metal alloy layer 212. The material of the protective layer 213 is, for example, a refractory metal nitride such as nitrided tantalum nitride, tantalum nitride, titanium nitride or tantalum nitride. Then, referring to Figure 2D, a thermal tempering process is performed to make the refractory metal
合金層212與含料電層中之魏應形成耐火金屬合金石夕 =物層214。其巾,上述之加熱製程例如為快速加熱回火 j程。而在間隙壁208柯鬲離結構21G上的耐火金屬合金 層212則未參與反應。 接著,請參照圖2E,以-1虫刻劑進行一侧製程,利 用侧劑對於位於耐火金屬合金層212上的保護層213與 ^於1火金屬合金魏物層214上的保護層213具有不同 飯刻選擇率的特性,去除未反應的㈤火 其上的保護層犯,而於耐火金屬合切化物層 1 =及 95-3-21 95-3-21The alloy layer 212 and the Wei in the electrical layer should form a refractory metal alloy. For the towel, the above heating process is, for example, rapid heating and tempering. The refractory metal alloy layer 212 on the spacer 208 is not involved in the reaction. Next, referring to FIG. 2E, one side process is performed with a -1 insecticide, and the side layer agent has a protective layer 213 on the refractory metal alloy layer 212 and a protective layer 213 on the fire metal alloy layer 214. Different characteristics of the selection rate of the meal, remove the unreacted (five) fire on the protective layer, and the refractory metal combined layer 1 = and 95-3-21 95-3-21
〜50人之間,但不包括50入。」 劑例如硝酸與鹽酸之混合溶液、 殘留的保護層之厚度係介於3入 A上述I虫刻製程所使用之餘刻 ^液、硫酸與氫氧化氨/過氧化氫 之混合溶液或經過稀釋之氟化氫溶液進行蝕刻。 !Between ~50 people, but does not include 50 in. The agent, for example, a mixed solution of nitric acid and hydrochloric acid, and the thickness of the residual protective layer is a mixture of the remaining liquid used in the above-mentioned I-insulation process, a mixed solution of sulfuric acid and ammonium hydroxide/hydrogen peroxide or diluted. The hydrogen fluoride solution is etched. !
^在-實關中,硝酸與鹽酸之混合溶液中硝酸與 的莫耳混合關可以為1:1〜1:6。在—具體例中,耐火 合金層為鎳鉑合金層,而保護層為氮化鈦,可使用u S • 混合比例之雜與鹽酸,對厚度為150A的氮化鈦保護居 213進行蝕刻,其所需的時間約為24〇秒。 曰 此外,請參照圖2F,在另一實施例中,如有需要,可 以於蝕刻製程之後,去除殘留一部份於耐火金屬合金矽化 物,214上的保護層213。在一實例中,使用硫酸與過氧 化氫之混合溶液,來去除殘留一部份於耐火金屬合金矽化 物層上的保護層。 值得一提的是,本發明亦可應用於其他的矽結構,例 >切導線,其製作方法與上述之具有金氧半電晶體的半 體元件相同,在此不另行敘述。 綜上所述,本發明可採用耐火金屬合金取代過去的耐 火金屬,因此與矽反應形成耐火金屬合金矽化物後,提高 了金屬矽化物的熱穩定性。此外,本發明在耐火金屬合金 矽化物層上形成一層保護層,利用酸性蝕刻液對於位於耐 火金屬合金層上的保護層與位於耐火金屬合金矽化物層上 的保濩層對蝕刻劑具有不同蝕刻選擇率的特性,來去除未 反應的具有高化學穩定性之耐火金屬,可以將未反應的耐 12 1279· :wfl .doc/006 95-3-21 火金屬合金層及其上的保護層完全去除,而留 金屬合金魏物層上的保護層,因此,本發日柯以避免下 方的耐火金屬合金矽化物層遭受損害。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技#者,在不脫離本發明之精神和範 圍内’當可作些許之更動與濶飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 & 【圖式簡單說明】 圖1繪示為依照本發明的實施例之半導體元件的剖面 示意圖。 圖2A至圖2F繪示為依照本發明的實施例之半導體元 件的製作方法的流程剖面圖。 【主要元件符號說明】 10 :半導體元件 1〇〇 ' 200 :矽基底 102、202 :閘極 104、204 ·閘極氧化層 106、206 ··汲極/源極 108 ' 208 :間隙壁 110、210 :隔離結構 112 :耐火金屬矽化物層 114、213 :保護層 200 :矽基底 212 :耐火金屬合金層 1279磁 fl „doc/006 95-3-21 214 :耐火金屬合金矽化物層^ In the real-time, the molar mixture of nitric acid and nitric acid in a mixed solution of nitric acid and hydrochloric acid may be 1:1 to 1:6. In a specific example, the refractory alloy layer is a nickel-platinum alloy layer, and the protective layer is titanium nitride, and the titanium nitride protection 213 having a thickness of 150 A may be etched by using a mixed ratio of hydrochloric acid and hydrochloric acid. The time required is approximately 24 sec. Further, referring to Fig. 2F, in another embodiment, a protective layer 213 remaining on a portion of the refractory metal alloy telluride, 214, may be removed after the etching process, if desired. In one example, a mixed solution of sulfuric acid and hydrogen peroxide is used to remove a portion of the protective layer remaining on the refractory metal alloy telluride layer. It is worth mentioning that the present invention can also be applied to other ruthenium structures, such as > cut wires, which are produced in the same manner as the above-described half-element having MOS transistors, and will not be described herein. In summary, the present invention can replace the past fire-resistant metal with a refractory metal alloy, thereby improving the thermal stability of the metal telluride after reacting with ruthenium to form a refractory metal alloy telluride. In addition, the present invention forms a protective layer on the refractory metal alloy telluride layer, and uses an acidic etching solution to etch differently for the etchant on the protective layer on the refractory metal alloy layer and the enamel layer on the refractory metal alloy telluride layer. Selective rate characteristics to remove unreacted refractory metals with high chemical stability, and the unreacted 12 1279· :wfl .doc/006 95-3-21 fire metal alloy layer and the protective layer thereon can be completely The protective layer on the Wei alloy layer of the metal alloy is removed, and therefore, the hair is prevented from being damaged by the underlying refractory metal alloy telluride layer. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a semiconductor device in accordance with an embodiment of the present invention. 2A through 2F are cross-sectional views showing the flow of a method of fabricating a semiconductor device in accordance with an embodiment of the present invention. [Description of main component symbols] 10: Semiconductor element 1 〇〇 '200 : 矽 substrate 102, 202: gate 104, 204 · gate oxide layer 106, 206 · 汲 pole / source 108 ' 208 : spacer 110, 210: isolation structure 112: refractory metal telluride layer 114, 213: protective layer 200: tantalum substrate 212: refractory metal alloy layer 1279 magnetic fl „doc/006 95-3-21 214: refractory metal alloy telluride layer
1414
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94114995A TWI279838B (en) | 2005-05-10 | 2005-05-10 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94114995A TWI279838B (en) | 2005-05-10 | 2005-05-10 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200639912A TW200639912A (en) | 2006-11-16 |
TWI279838B true TWI279838B (en) | 2007-04-21 |
Family
ID=38645521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94114995A TWI279838B (en) | 2005-05-10 | 2005-05-10 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI279838B (en) |
-
2005
- 2005-05-10 TW TW94114995A patent/TWI279838B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200639912A (en) | 2006-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI378492B (en) | Dual-metal cmos transistors with tunable gate electrode work function and method of making the same | |
TWI321831B (en) | Method for integration of silicide contacts and silicide gate metals | |
TWI307938B (en) | Method and process to make multiple-threshold metal_gates cmos technology | |
TWI288432B (en) | Semiconductor device and method for manufacturing the same | |
TWI248651B (en) | Method for reducing the contact resistance of the connection regions of a semiconductor device | |
US20070052034A1 (en) | Integrated circuit containing polysilicon gate transistors and fully silicidized metal gate transistors | |
TW200541071A (en) | Method of forming silicided gate structure | |
US20070128867A1 (en) | Method for enhanced uni-directional diffusion of metal and subsequent silicide formation | |
TW200810110A (en) | Semiconductor device and manufacturing method thereof | |
TW200824045A (en) | Method for fabricating semiconductor device | |
US7649263B2 (en) | Semiconductor device | |
JP2001015453A (en) | Formation of metal silicide layer | |
TW200845387A (en) | Method for manufacturing semiconductor device and semiconductor device | |
TWI261929B (en) | Switching device for a pixel electrode and methods for fabricating the same | |
TWI297909B (en) | Semiconductor device and method for fabricating the same | |
TWI279838B (en) | Semiconductor device and manufacturing method thereof | |
JP5076557B2 (en) | Manufacturing method of semiconductor device | |
TW200532780A (en) | A metal gate semiconductor device and manufacturing method | |
JP2006319365A (en) | Manufacturing method for semiconductor device | |
TWI241708B (en) | Semiconductor device and manufacturing method thereof | |
TWI332687B (en) | Semiconductor device and manufacturing method thereof | |
US7595264B2 (en) | Fabrication method of semiconductor device | |
TW554513B (en) | Structure of resistance protective oxide and the forming method thereof | |
TWI295110B (en) | Metal oxide semiconductor transistor and method of forming thereof | |
TW466693B (en) | Manufacture method of metal salicide |