TWI278225B - Multiple views of stereoscopic image display scheme - Google Patents
Multiple views of stereoscopic image display scheme Download PDFInfo
- Publication number
- TWI278225B TWI278225B TW92112624A TW92112624A TWI278225B TW I278225 B TWI278225 B TW I278225B TW 92112624 A TW92112624 A TW 92112624A TW 92112624 A TW92112624 A TW 92112624A TW I278225 B TWI278225 B TW I278225B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- stereoscopic image
- view
- display
- stereoscopic
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
1278225 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種裸眼(Autostereoscopic)立體影像顯示處理方法,尤指 一種夕視角立體影像的顯示方法(Multiple Views of Stereoscopic Image Display Scheme),先將此多視角影像進行影像隔離排列⑺⑽1278225 IX. Description of the Invention: [Technical Field] The present invention relates to an autostereoscopic stereoscopic image display processing method, and more particularly to a Multiple Views of Stereoscopic Image Display Scheme. This multi-view image is image-isolated (7)(10)
Arrangement) ’經由顏色辨識條碼(c〇i〇r c〇des),得以告知立體影像合成器 (Synthesizer)將該晝面之分離影像合成一適用於顯示在光桃板(Lenticular Lens)上的交錯式多視角立體影像格式,讓使用者不需配戴立體眼鏡下,可Arrangement) 'A color recognition bar code (c〇i〇rc〇des) is used to tell the stereoscopic image synthesizer to synthesize the separated images of the facet for an interlaced display on the Lenticular Lens. Multi-view stereoscopic image format allows users to wear stereo glasses without
於配備有光柵板(Lenticular Lens)的平面顯示器(Flat Panel Display如LCDFor flat panel displays such as LCDs with Lenticular Lens
Monitor)上觀賞到立體影像畫面。 【先前技術】 人類係因為有兩個眼睛,兩眼可各自觀賞同一景物而以不同的視角所 產生的視差主現於大腦的視覺神經,才會有立體的視覺。而以往在個人電 腦的環境中吾人之所以能戴上立體眼鏡(LCShutterGlasses)後,觀賞以交錯 (Interlaced)掃描方式配合螢光幕垂直同步訊號(VerticalSync)控制做左、^ 眼影像輪流交替切換顯示之立體影像,基本上,乃是將掃描線中之偶數條 置放左(或右)眼影像,而奇數條置放右(或左)眼影像,在輪流交替切換顯示 下,當螢光幕顯示偶數條時,使用者之左眼僅能看到左眼的影像,此時立 體眼鏡會自動配合交錯顯示方式,將右眼遮沒;同理,當螢光幕顯示奇數 條時,右眼僅能看到右眼的影像,因此時立體眼鏡會自動配合交錯顯示方 式,將左眼遮沒。如此將左、右眼影像各自獨立送至左、右眼,並快於人 類視覺暫留的速度,周而復始的切換顯示,吾人即可清楚看見犯立體⑼⑽ 3D)影像了。 以目鈾觀員一般兩個視角(Views)之立體影像時,觀賞者大都皆需戴上 立體眼鏡,方可觀賞立體影像。但是,此種喊立體眼鏡觀賞方式常讓觀 貝者有不舒服感,同時有配戴近視眼鏡者,更是不方便配戴立體眼鏡觀賞 立體影像L就有必要以另—種不需喊立體眼鏡來觀賞立體影像的 方式來取代’而多視角(Multiple Views)立體影像配合光栅板(Lenticular Lens) 的顯示方式是目前最價廉物美的技術之―,常見於文具、禮品、玩具、包 Γ278225 裝、…等印刷商品上;雖然,多視角(Multiple Views)立體影像配合光栅板 (LenticularLens)被大量應用於印刷(Printing)的技術,已有數十年以上的歷 史’已是一項習知的技術;但是,科技日新月異不斷地在進步,其中影像 的顯示技術已逐漸由過去巨大且笨重的陰極射線管(CRT)顯示器被目前 輕、薄的平面顯示器(jqatpanel Display)所取代,其中尤以液晶螢幕顯示器 (LCD Monitor)最具代表性。 因此’吾人所要展現的立體影像勢必也將移轉到液晶螢幕顯示器上。 其所要顯示的就不僅是一般立體靜晝影像,而是多媒體 (Animation,Motion)、靜晝(Still Image)互動式(Interactive)的即時(Real Time) 立體衫像’此時吾人則無法以事前處理好之交錯式(Interleaved或interweaved) 多視角立體影像之壓縮格式(如MPEG1、MPEG2、…),經解壓縮過程再還 原播放,因為以目前之壓縮技術(如、…)皆為破壞性壓縮, 其可以為一般不甚講究精密度與準確度對位(Alignment)的平面影像所接 受’但並不適用於咼精密度與準確度的交錯式(interieavecj或interweaved)多 視角立體影像之壓縮。如果,吾人仍想利用現有的壓縮技術(WMPEGI、 MPEG2、···)來處理交錯式(interieavec^interweaved)多視角立體影像之壓 縮,則吾人勢必要有特殊的技巧與方法才行;另一方面,對於需要即時讲― T^ime)處理的互動式(interactive)立體影像而言,由於多視角立體影像之合 成(尤其疋超咼解析度的多視角立體影像合成)將會耗費電腦相當多的處理 時間,所以有必要將此多視角立體影像之合成工作另外安排給專用的合成 态(Synthesizer)來處理’以提高電腦的工作效率。綜合上述兩大原因:解決 多視角立體影像數位壓縮失真的問題與提高電腦的工作效率,所以吾人才 會提出本發明以為對策。 【發明内容】 本發明之主要目的,在解決上述傳統佩戴立體眼鏡來觀賞立體影像的 缺失,與解決多視角立體影像數位壓縮失真的問題與提高電腦的工作效 率’本發明係湘-種乡姻(Multiple Views)立體f彡像顯示處理方法,讓 觀賞者不需再配戴立體眼鏡,即可觀賞到高效率、高品質無失真的立體影 像晝面。 一、 6 1278225 為達上述之目的,此新方法是利用一多視角(MultipleViews)影像、一 影像格式分離處理(View Arrangement)、一顏色辨識條碼(Color Codes)晝面 (Frame)、及一立體景多像合成器(Synthesizer)所構成;利用一組多視角 (Multiple Views)影像(二個以上),經由各別分離排列處理(View Arrangement) 後組成一個畫面(Frame)影像,這個晝面影像實際上是多視角影像各個縮圖 的排列,並以顏色辨識條碼(ColorCodes)畫面(Frame)做為電腦與立體影 - 像合成器(Synthesizer)的溝通工具,透過不同的顏色辨識條碼晝面組合(各 代表不同的功能要求)’可以告知立體影像合成器(Synthesizer)將各別分離 排列組成的影像晝面合成一立體影像之顯示,同時在於顯示器之視窗架設 或貼合有一光栅板(Lenticular Lens),讓使用者不需配戴立體眼鏡下,可於 平面顯示器上觀賞到立體影像畫面顯示。 · 【實施方式】 兹有關本發明之詳細内容及技術說明,現配合圖式說明如下: 請參閱「第1圖所示」,係本發明之多視角立體影像顯示處理方法 (Multiple Views ofStereoscopic Image Display Scheme)流程示意圖。如圖所 示:本發明之多視角立體影像顯示處理方法,包括有:一多視角(MultipleMonitor) to view the stereoscopic image. [Prior Art] Humans have three-dimensional vision because they have two eyes, and each eye can view the same scene and the parallax generated by different angles of view is mainly present in the visual nerve of the brain. In the past, in the environment of personal computer, we were able to wear stereo glasses (LCShutterGlasses), and watch the interlaced scanning mode with the vertical sync signal (VerticalSync) control to make the left and right eye images alternately switch display. The stereoscopic image basically consists of placing the even-numbered strips in the scan line on the left (or right) eye image, and the odd-numbered strips placing the right (or left) eye image, in turn alternately switching the display, when the fluorescent screen When the even number is displayed, the left eye of the user can only see the image of the left eye. At this time, the stereo glasses will automatically match the interlaced display mode to cover the right eye; similarly, when the fluorescent screen displays an odd number of lines, the right eye Only the image of the right eye can be seen, so the stereo glasses will automatically match the staggered display mode to cover the left eye. In this way, the left and right eye images are sent independently to the left and right eyes, and faster than the speed of the human visual persistence. The switching display shows that the stereoscopic (9) (10) 3D image can be clearly seen. When viewing the stereoscopic images of two views (Views), most of the viewers need to wear stereo glasses to view the stereoscopic images. However, such a way of calling stereo glasses often makes the viewer feel uncomfortable, and at the same time, wearing a pair of glasses, it is inconvenient to wear stereo glasses to view the stereoscopic image L, it is necessary to use another type without need to shout stereo Glasses to view stereoscopic images instead of 'Multiple Views' stereo imagery with Lenticular Lens display is the most cost-effective technology at present, common in stationery, gifts, toys, bag 278225 Printed goods, etc.; although multiple views (Lenticular Lens) are widely used in printing technology, it has been a tradition for more than a decade. Technology; however, technology is constantly evolving, and image display technology has gradually been replaced by the current compact and bulky cathode ray tube (CRT) display by the current light and thin flat panel display (jqatpanel display), especially The LCD monitor is the most representative. Therefore, the stereoscopic image that we want to display will also be transferred to the LCD screen display. What it wants to display is not only the general stereoscopic image, but the animation (Motion) and the Still Image interactive Real Time stereoscopic shirt. Handled interleaved (interleaved or interweaved) multi-view stereo image compression format (such as MPEG1, MPEG2, ...), restored and played back after decompression, because the current compression technology (such as, ...) is destructive compression It can be accepted for planar images with less precision and accuracy alignment, but it is not suitable for the compression of inter-accurate (interieavecj or interweaved) multi-view stereo images with precision and accuracy. If we still want to use the existing compression technology (WMPEGI, MPEG2, ...) to deal with the compression of interlaced (interieavec^interweaved) multi-view stereo images, then we must have special skills and methods; On the other hand, for interactive stereoscopic images that require instant “T^ime” processing, the synthesis of multi-view stereoscopic images (especially multi-view stereoscopic image synthesis with super-resolution) will consume quite a lot of computers. The processing time, so it is necessary to arrange the synthesis work of the multi-view stereo image to a dedicated Synthesizer to process 'to improve the working efficiency of the computer. Combining the above two reasons: solving the problem of digital compression distortion of multi-view stereo image and improving the working efficiency of the computer, so I will propose the invention as a countermeasure. SUMMARY OF THE INVENTION The main object of the present invention is to solve the above-mentioned problems of stereoscopic images by stereoscopic glasses, and to solve the problem of digital compression distortion of multi-view stereo images and improve the working efficiency of the computer. (Multiple Views) Stereoscopic image display processing method allows viewers to view high-efficiency, high-quality, distortion-free stereoscopic images without wearing stereo glasses. I. 6 1278225 For the above purposes, the new method utilizes a multi-view (Multiple Views) image, a View Arrangement, a Color Codes frame, and a stereo A multi-viewer (Synthesizer) consists of a set of multiple view images (two or more), and a separate frame (View Arrangement) to form a frame image. In fact, it is the arrangement of the various thumbnails of the multi-view image, and uses the ColorCodes frame as a communication tool between the computer and the stereoscopic image-synthesizer (Synthesizer) to identify the bar code combination through different colors. (Representing different functional requirements) 'Can tell the stereoscopic synthesizer to synthesize the images of the separate images into a stereoscopic image, and at the same time erect or attach a grating plate to the window of the display (Lenticular Lens) ), allowing the user to view the stereoscopic image on the flat panel display without wearing stereo glasses. [Embodiment] The detailed description and technical description of the present invention will now be described as follows: Please refer to "Fig. 1", which is a multi-view stereoscopic image display processing method of the present invention (Multiple Views of Stereoscopic Image Display) Scheme) Schematic diagram of the process. As shown in the figure, the multi-view stereoscopic image display processing method of the present invention includes: a multi-view (Multiple)
Views)影像1、一影像格式分離處理(viewArrangement)2、一顏色辨識條 碼(Color Codes)晝面(Frame) 3及一立體影像合成器(Synthesizer) 4所構成。 取得多視角(MultipleViews)影像後,將此多視角(MultipleViews)影像進行 ,像格式分離(如第2 — 1〜2 — 3圖所示),接著,將事前規劃好之代表該 _ 多視角影像分離排列之顏色辨識條碼(col〇rC〇des)畫面送出,告知立體影像 合成器(Synthesizer)所要進行的多視角影像是何種排列後,才得以進行立 體影像合成,將分離排列影像畫面合成一立體影像之顯示,同時在於平面 顯不器之視窗架設或貼合有-線# 6,讓制者不需喊立舰鏡下, 、 即可於平面顯示器5上觀賞到立體影像晝面顯示。 ^首先,要達到上述立體影像顯示,首要步驟是取得多視角影像丄,乃 2利用-邻或#以上之影像擷取裝置(如數位相機或是由電腦所模擬之相 機)在同-水平面、依直線(或弧線)路逕,其影像擷取裳置之鏡頭可以 擺設或皆鮮同-物件以獨肖度下所拍攝的多視角影像(繼蛛 7 K78225Views) image 1, image format separation processing (viewArrangement) 2, a color recognition barcode (Color Codes) frame (Frame) 3 and a stereoscopic image synthesizer (Synthesizer) 4. After obtaining multiple views (Multiple Views) images, the multiple views (Multiple Views) images are image-separated (as shown in Figures 2 - 1 to 2 - 3), and then the pre-planned image represents the image. The separated color recognition barcode (col〇rC〇des) image is sent to inform the stereoscopic image synthesizer (Synthesizer) what kind of multi-view image is to be arranged, then the stereo image synthesis is performed, and the separated image is synthesized. The display of the stereoscopic image is at the same time that the window of the flat display device is erected or attached with the line-line #6, so that the manufacturer can view the stereoscopic image on the flat display 5 without having to call the mirror. ^ First, in order to achieve the above-mentioned stereoscopic image display, the first step is to obtain a multi-view image, which is to use the image capturing device (such as a digital camera or a computer simulated by a computer) in the same-horizontal plane. According to the straight (or arc) path, the image of the image capture can be displayed or all the same - the multi-view image taken by the object in a unique way (following the spider 7 K78225
Views); 待’上述步,驟完成後,進行影像格式分離處理2,亦是將上述所拍攝 之多視角影像進行分離處理(View Arrangement,如第2 — i〜2 — 3圖所 (FlatPanel Display)^^(Multiple Views) 之各視角(View)影像縮小後平均排列在同一個晝面裡,其每個影像大小 為:(平面顯示器水平解析度/χ#)χ(平面顯示器垂直解析度斤列恤咖; 例如以平關㈣1G24x768pixels之崎度,可以將_乡視肖影像平均排 列為4仃X2列,因此其每個影像大小為:256x384pixds;同理,可以將9個 (或10個)乡姻影像平均_為3行_(或5行湖),0此其每個影像大小 為:341x256pixels(或204 x384 pixels),且每一分離縮小影像皆為不同角度 所拍攝(即每一個縮小影像為各自獨立); 另待,上述衫像格式分離處理2完成後,接著,將事前規劃好之代表 該多視角影像分離排列之顏色辨識條碼(c〇1〇r c〇des) 3顯示於一獨立晝面 (Frame)送出’當立體影像合成器(Synthesizer)4接收到此顏色辨識條碼 (ColorCodes)3 1(如第3圖所示)即可辨識所送來之多視角影像晝面被分離 成幾個影像,以及排列為何,此時立體影像合成器會根據 此顏色辨識條碼(Color Codes) 3 1解碼後所得知的晝面解析度 (Resolution)、該多視角影像分離排列之行(c〇hmm)、列(R〇w),計算出影 像數目(ViewNumber)與各視角影像尺寸(ViewSize),再依該晝面之解析度 (如第5圖所示)將水平晝面分割為(水平解析度/行)個區塊(B1〇ck),垂直 晝面分割為(垂直解析度/列)個區塊⑼ock),每個區塊⑼〇ck)即對應到該多 視角影像所分離出來的每個影像的像素(Pixel或是Pictlire Element);亦即本 發明之裸眼立體影像的基本組成單位就是這個區塊(Block),而此區塊的基 本組成單位是由各視角影像的像素(pixel)所構成。由於平面顯示器(如液晶 螢幕)之每個像素(Pixel)是由紅(R)、綠(G)、藍⑼三個光元素(Sub-pixel)排 列所組成的(如第6圖所示);同時由於r、g、B三個光元素(Sub-Pixel)間存 在有比例不小的間隙’如果單純的加上光拇板(Lenticuiar Lens),會因為此 黑色間隙(BlackMatrix)而產生嚴重的繞射干擾(Morie )’因此我們可以將光栅板(Lenticular Lens)旋轉或傾斜一個0角度約為 8 Γ278225 9.4623 (因每個Sub-Pixel垂直長度為水平長度的三倍,茲為跨越兩個Views); After the above steps are completed, the image format separation process 2 is performed, and the multi-view images captured as described above are also separated (View Arrangement, such as the second - i~2 - 3 map (FlatPanel Display) ^^(Multiple Views) Views are zoomed out and evenly arranged in the same face. Each image size is: (flat display horizontal resolution / χ#) χ (flat display vertical resolution For example, in the level of 1G24x768pixels, you can arrange the image of the image as 4仃X2 on average, so each image size is 256x384pixds; similarly, you can put 9 (or 10) The average image of the rural image is _ 3 lines _ (or 5 lines of lake), 0 each of which has a size of 341x256 pixels (or 204 x 384 pixels), and each of the separated and reduced images is taken at different angles (ie, each is reduced) The images are independent of each other;; after the above-mentioned shirt image separation processing 2 is completed, then the color identification barcode (c〇1〇rc〇des) 3 which is arranged in advance to represent the multi-view image is displayed in one Independent page (Frame) 'When the stereoscopic image synthesizer 4 receives the color identification barcode (ColorCodes) 3 1 (as shown in Fig. 3), it can recognize that the multi-view image sent is separated into several images and arranged. Why, at this time, the stereoscopic image synthesizer will determine the resolution of the surface after the decoding of the color code barcode (Color Codes) 3 1 , the line of the multi-view image separation (c〇hmm), the column (R 〇w), calculate the number of images (ViewNumber) and the size of each view image (ViewSize), and then divide the horizontal face into (horizontal resolution / line) according to the resolution of the face (as shown in Figure 5) Block (B1〇ck), the vertical plane is divided into (vertical resolution/column) blocks (9) ock), and each block (9) 〇 ck) corresponds to the pixel of each image separated by the multi-view image. (Pixel or Pictlire Element); that is, the basic constituent unit of the naked-eye stereoscopic image of the present invention is the block, and the basic constituent unit of the block is composed of pixels of each view image. Since each pixel (Pixel) of a flat panel display (such as a liquid crystal screen) is composed of red (R), green (G), and blue (9) three sub-pixels (as shown in Fig. 6). At the same time, there is a small gap between the three light elements (Sub-Pixel) of r, g, and B. If the light plate (Lenticuiar Lens) is simply added, it will be seriously caused by this black gap (BlackMatrix). The diffraction interference (Morie )' so we can rotate or tilt the Lenticular Lens to a 0 angle of about 8 Γ 278225 9.4623 (since each Sub-Pixel has a vertical length that is three times the horizontal length,
Sub-Pixel才足以遮掩此黑色間隙(BlackMatrix)7,所以依三角函數關係 tan6» 1/6 ’即1/6=9.4623。,請參考第7圖所示)後,就可以遮掩過 此黑色間隙,而解決此光學干擾的問題。茲為配合光柵板(LemicuiarLens) 方疋轉的角度其區塊(Block)内各視角影像的像素(pixei)也必須做相對地調 整排列以對應光柵片傾斜的肖度,且必須以R、G、时元素伽為Sub-Pixel is enough to cover this black gap (BlackMatrix) 7, so according to the trigonometric relationship tan6» 1/6 ′ is 1/6=9.4623. , please refer to Figure 7), you can cover this black gap and solve the problem of optical interference. In order to match the angle of the grating plate (LemicuiarLens), the pixels (pixei) of each view image in the block must also be relatively adjusted to correspond to the inclination of the grating piece, and must be R, G. Time element
土本排列單位本發明之立體影像合成器(gyntheSiZer)係一種硬體處理器V (Ware Processor)、也可以是電腦軟體模擬器(Software Simulator),其主 要功能為提供解決此以R、G、B光元素(Sub_pixd)為基本排列單位的立體影 像a成方法其合成方法凊參考下列之處理演算式Αΐ8〇ι^^): 將所由分離排騎組成的多影像晝面合成—個立體影像晝面輸出(如第4圖 所示);前述所提之顏色辨識條碼(c〇1〇rC〇des)3 i可為至少一條 二 上之顏色; $ 1278225 演算式(A丨gorithm)說明:____ 每個視角(View)影像,分別存放在晝面所對應的區塊(Block)内 (總共有(Block一X) X (Block」^fc))。 將每個區塊(Block)内存放的視萬View)影像,做光元氣Sut>Pixel)的重新排 放在其所對應的位置(必須配合光栅規格,LCD Dot Pitch、 View個數的不同,而i不同)。 每個Block内存放的每一個View像素點(總共有(a〇ck_4 X (Block_y)點), 會依序被重新Map到Destination不同的小Map Block (大小是(N__x) x (N__y 點))總共有(Block」〇 x Map Block。 N (View個數) 8'9、10、12 N = 8 N = 9 N = :10 N—x (水平Block個數) 4 3 5 N_y (垂直Block個數) 2 3 2 Res一x (水平解析度) 1024、1280、1600,· Res_y (垂直解析度) 768、1024、1200,·· Block—x (每個Block寬度) Res一X DIV N一X Block_y (每個Block高度^ Res_y DIV N_y Block_Start (每個Block的起始位站 Line_Start (每個Block Row的起始位蝴 Source(x, y) (在Block内正要被重新排放的View像素點的位功 Destination(X, Y)(正要被重新排放的View像素點Source(x, y), 它要被重新排放在Destination所在小Map Block的位址) 處理演算式(Processing Algorithm): For (n = 0 to N1) //依序針對每個Block内存放的View影像做處理。 //找出每個Block的起始位址(Block一Start)。 Block—Start = (n DIV N_y) MUL BTock^y MUL Res」c ADD (n MOD N_y) MUL Block_x LJDestination (X,Y) = 〇 For(y=1 to Block__y) // 每個Block,依序一個Block Row —個Block Row的處理。 " 找出每個Block Row的起始位址(Linejtart)。 Line一Start = Block一Start ADD (y SUB 1) MUL Res一xThe stereoscopic image synthesizer (gyntheSiZer) of the present invention is a hardware processor V (Ware Processor), and may also be a computer software simulator (Software Simulator), whose main function is to provide a solution to this, R, G, The B-light element (Sub_pixd) is a stereoscopic image of the basic arrangement unit. The method of synthesizing the method is as follows: 下列8〇ι^^): Combining the multi-images composed of the separated row-riding--a stereo image The facet output (as shown in Fig. 4); the aforementioned color identification bar code (c〇1〇rC〇des) 3 i can be at least one of the two colors; $ 1278225 calculus (A丨gorithm) description: ____ Each view image is stored in the corresponding block (Block) (Block-X) X (Block)^fc). Re-discharge the image stored in each block (Block) as the light element Sut>Pixel) in its corresponding position (must match the grating specifications, LCD Dot Pitch, View number, and i different). Each View pixel stored in each block (a total of (a〇ck_4 X (Block_y) points) will be remapped to a different small Map Block (the size is (N__x) x (N__y point)) Total (Block)〇x Map Block. N (View number) 8'9,10,12 N = 8 N = 9 N = :10 N—x (horizontal block number) 4 3 5 N_y (vertical block Number) 2 3 2 Res-x (horizontal resolution) 1024, 1280, 1600, · Res_y (vertical resolution) 768, 1024, 1200, ·· Block-x (each block width) Res-X DIV N-X Block_y (each block height ^ Res_y DIV N_y Block_Start (starting station Line_Start of each block (starting bit of each block row Source(x, y) (View pixel to be re-discharged within the block) Destination(X, Y) (The View pixel to be re-discharged Source(x, y), which is to be re-discharged in the address of the small Map Block where the Destination is located.) Processing Algorithm: For (n = 0 to N1) // Process the View images stored in each block in order. // Find the starting address of each block (Block Start) Block-Start = (n DIV N_y) MUL BTock^y MUL Res"c ADD (n MOD N_y) MUL Block_x LJDestination (X,Y) = 〇For(y=1 to Block__y) // Each Block , in sequence, a Block Row - Block Row processing. " Find the starting address of each Block Row (Linejtart). Line One Start = Block - Start ADD (y SUB 1) MUL Res - x
10 1^7822510 1^78225
Destination(X,Y) = L_Destination(X,Y) ___ For(x=1 to Block一x) { 一 //每個Block Row,依序一個Pixel —個Pixel的處理。 //找出正要被重新排放的 View像素點(Source(x, y))。 Source(x,y) = Line一Start ADD (X SUB1) //將此點Source(x, y)的R、G、B重新排放到所對應的位置。 //此點的R應被重新放置到Destination所在位址(X1, Y1)的R。 //此點的G應被重新放置到Destination所在位址(X2, 丫2)的G ° //此點的B應被重新放置到Destination所在位址(X3, Y3)的B。 DestinationRGB(X1,Y1,R) = Source(x,y),R DestinationRGB(X2, Y2, G) = Source(x,y). G DestinationRGB(X3, Y3, B) = Source(x,y). B //水平移動Destination所在小M叩Block,橫移到下一個 // 小 Map Block。 Destination(X, Y) = Destination(X, Y) ADD N_x } 一 // 垂直移動 Destination 所在小 Map Block(N_y x N_y 點), //直移到下一列的小Map Block。 L一Destination(X,Y) = L一Destinatlon(X,Y) ADD 一 (ISLy MUL Res一x) 補充說明:_____ DestinationRGB(X, Y,R)為 Destination^ Y)所在點位置的 R Sub -Pixel 的位置。 DestinationRGB(X, Y, G)為 Destination%,Y)所在點位置的 G Sub -Pixel 的位置。 DestinationRGB(X,Υ, B)為 Destination(X,Y)所在點位置的 B Sub -Pixe丨的位置。 DestinationRGB(X,Y)是所指 View 圖像點 Source(x,y),對應 Destination 所在小Map Block的位址。 而 R,G, B 真正所要 Map 放置的位址:DestinationRGB(X1, Y1,R), DestinationRGB(X1, Y1, G),DestinationRGB(X1, Y1, B)則是對應此小 Map Block的位址DestinationRGB(X,Y)再加上一位移(Offset)而此位移 (Offset)就是由Fn(n, Lx, rgb)來決定的。 DestinationRGB(X1, Y1, R) = DestinationRGB(X, Y) + Fn(n, Lx, R) DestinationRGB(X2, Y2, G) = DestinationRGB(X, Y) + Fn(n, U, G)Destination(X,Y) = L_Destination(X,Y) ___ For(x=1 to Block_x) { One //Each Block Row, in sequence one Pixel - one Pixel processing. // Find the View pixel (Source(x, y)) that is being re-discharged. Source(x,y) = Line_Start ADD (X SUB1) //Re-discharge R, G, and B of this point Source(x, y) to the corresponding position. //R of this point should be relocated to R of the address (X1, Y1) where Destination is located. //G at this point should be relocated to G° of the address where the Destination is located (X2, 丫2) // B at this point should be relocated to B of the address (X3, Y3) where Destination is located. DestinationRGB(X1,Y1,R) = Source(x,y),R DestinationRGB(X2, Y2, G) = Source(x,y). G DestinationRGB(X3, Y3, B) = Source(x,y). B // Horizontally move the small M叩Block where the Destination is located, and move to the next // Small Map Block. Destination(X, Y) = Destination(X, Y) ADD N_x } A // Vertically move the small Map Block where the Destination is located (N_y x N_y point), // Move directly to the small Map Block of the next column. L-Destination(X,Y) = L-Destinatlon(X,Y) ADD I(ISLy MUL Res-x) Supplement: _____ DestinationRGB(X, Y,R) is the location of the location ^Y) R Sub - The location of Pixel. DestinationRGB(X, Y, G) is the location of the G Sub -Pixel at the location of Destination%, Y). DestinationRGB(X,Υ,B) is the location of B Sub -Pixe丨 at the point where Destination(X,Y) is located. DestinationRGB(X,Y) is the reference image point Source(x,y), corresponding to the address of the small Map Block where the Destination is located. And R, G, B really want to map the address placed: DestinationRGB (X1, Y1, R), DestinationRGB (X1, Y1, G), DestinationRGB (X1, Y1, B) is the address corresponding to this small Map Block DestinationRGB(X,Y) plus an offset (Offset) is determined by Fn(n, Lx, rgb). DestinationRGB(X1, Y1, R) = DestinationRGB(X, Y) + Fn(n, Lx, R) DestinationRGB(X2, Y2, G) = DestinationRGB(X, Y) + Fn(n, U, G)
11 1278225 其中 Fn(n,Lx,rgb) 函數對絲(Hash Map Table),用來算出一 相對應小Map Block位址的位移(〇ffset)。 參數:π - View個數,n=8、9、10、12此Fn都有不一樣的Map Table Lx = y MOD N_x (不同的 Destination Row(y)會有不同的 Map Value) rgb = R 或 G 或 B ^ N=8 n = 0 〜7 Lx = 0 〜3 Rgb = R, G, B Fn(0, 0, R) = 1 Fn(0, 0, G) = 5 Fn(0, 0, B) = 9 Fn(1,0, R) = 2 + Res一x * 3 Fn(1,0, G) = 6+ Res一x * 3 Fn(1,0, B) = 10+Res_x*3 Fn(2, 0, R) = 2 Fn(2, 0, B)=10 Fn(2, 0, G) = 6 Fn(3,0,R) = 3+ReS-X*3 Fn(3, 0, G) = 7+ Res一x * 3 Fn(3, 0,B)=11+Res—x*3 Fn(4, 0, R) = 3 Fn(4, 0, G) = 7 Fn(4, 0, B) = 11 Fn(5, 0, R) = 4+ Res—x * 3 Fn(5, 0, G) = 8+ Res一x * 3 Fn(5, 〇, B) = 12+ Res一x * 3 Fn(6, 0, R) = 4 Fn(6, 0, G) = 8 Fn(6, 〇, B) = 12 Fn(7, 〇, R) = 4+ Res一x * 3 Fn(7, 〇, G) = 8+ Res一x * 3 Fn(7, 〇, B)= 12+ Res一x*3 立體影像合成器處理演算式(Processing Algorithm) 12 1278225 /由上述可知本發明是將-部或一部以上之影像操取裝置所拍攝之多視 角影像,並將此多視角影像畫面進行分離排列處理(如第2 —丄〜2 — 3圖 所不),待影像分離處理(ViewArrangement)後,即送出一個顏色辨識停碼 (Color Codes)晝面(Frame) 3 (如第3圖所示),在立體影像合成器 (Symhesizer)4接收到此顏色辨識條碼(c〇1〇rC〇des)3工後,即可判斷多視 角影像晝面被分離成幾個影像,及該被分離之影像是如何被排列,然翻 用其R、G、B光元素(Sub-Pixd)立體影像合成方式,將此分離後之畫面合 成-個立體影像,此立體影像即可顯示在平面顯示器5上,再透賴示哭 - 5之視窗上傾斜9·4623。的光栅板和咖咖Lens) 6協助下,讓使用者不^ 配戴立體眼鏡T,可於平面齡ϋ 5上觀賞到立歸像晝面顯示。 或者,在於電腦處理工作效率夠快,足以即時㈣丁㈣作業的叙 φ 下’可以依實際需要省去-影像格式分離處理(ViewArrang_nt)2、一顏 色辨識條碼(ColorCodes)畫面(Frame)3的處理步驟,而將此多視角影像 (MuMple Views)直接送至電腦軟體所模擬之立體影像合成器物她以㈣ 4 ’告知其多視角影像數目(ViewNumber)與晝面水平、垂直顯示解析度 (Resolution) ’即可進行立體影像合成處理,其結果也可於平面顯示器5上, 不需配戴立體眼鏡即可觀賞到立體影像。 上述僅為本發明之較佳實施例而已,並非用來限定本發明實施之範 圍。即凡依本發明申請專利範圍所做的均等變化與修飾,皆為本發明專利 範圍所涵蓋。 ▲ 13 1278225 【圖式簡單說明】 第1圖,係本發明之立體影像顯示處理方法流程示意圖。 第2-1〜2-3圖,係本發明之多視角影像分離排列中三種晝面示意圖。 苐3圖’係本發明之顏色辨識條碼(c〇i〇rCodes)晝面(Frame)示意圖。 第4圖’係本發明之立體影像合成器(Synthesizer)所包含之顏色解碼器(c〇1〇r Decoder)示意圖。 第5圖,係本發明之平面顯示器(FlatPanelDisplay)所包含之區塊(B1〇ck)示意 圖。 第ό圖,係本發明之區塊(Bk)ck)結構示意圖。11 1278225 where Fn(n, Lx, rgb) is a Hash Map Table used to calculate the displacement (〇ffset) of a corresponding small Map Block address. Parameters: π - the number of views, n = 8, 9, 10, 12 This Fn has a different Map Table Lx = y MOD N_x (different Destination Row (y) will have different Map Value) rgb = R or G or B ^ N=8 n = 0 〜7 Lx = 0 〜3 Rgb = R, G, B Fn(0, 0, R) = 1 Fn(0, 0, G) = 5 Fn(0, 0, B) = 9 Fn(1,0, R) = 2 + Res-x * 3 Fn(1,0, G) = 6+ Res-x * 3 Fn(1,0, B) = 10+Res_x*3 Fn(2, 0, R) = 2 Fn(2, 0, B)=10 Fn(2, 0, G) = 6 Fn(3,0,R) = 3+ReS-X*3 Fn(3, 0, G) = 7+ Res-x * 3 Fn(3, 0,B)=11+Res—x*3 Fn(4, 0, R) = 3 Fn(4, 0, G) = 7 Fn( 4, 0, B) = 11 Fn(5, 0, R) = 4+ Res—x * 3 Fn(5, 0, G) = 8+ Res-x * 3 Fn(5, 〇, B) = 12 + Res-x * 3 Fn(6, 0, R) = 4 Fn(6, 0, G) = 8 Fn(6, 〇, B) = 12 Fn(7, 〇, R) = 4+ Res-x * 3 Fn(7, 〇, G) = 8+ Res-x * 3 Fn(7, 〇, B)= 12+ Res-x*3 Stereo Image Synthesizer Processing Algorithm 12 1278225 / by It can be seen that the present invention is a multi-view image taken by a part or more of the image capturing device, and the multi-view image is separated and arranged (for example, the second to the second 3), after the image separation processing (ViewArrangement), send a color identification stop code (Color Codes) face (Frame) 3 (as shown in Figure 3), in the stereo image synthesizer (Symhesizer) 4 After receiving the color identification barcode (c〇1〇rC〇des), it can be judged that the multi-view image is separated into several images, and how the separated images are arranged, and then R is used. , G, B light element (Sub-Pixd) stereo image synthesis method, the separated picture is synthesized into a stereo image, the stereo image can be displayed on the flat display 5, and then through the crying - 5 window Tilt 9·4623. With the help of the grating plate and the coffee café Lens 6, the user can not wear the stereo glasses T, and can view the vertical image on the plane age ϋ 5 . Or, it is that the computer processing work is fast enough, and it is enough for the instant (four) D (four) operation of the φ 下 ' can be omitted according to actual needs - image format separation processing (ViewArrang_nt) 2, a color recognition barcode (ColorCodes) frame (Frame) 3 Processing steps, and directly send the multi-view images (MuMple Views) to the stereoscopic image synthesizer simulated by the computer software. She informs the multi-view image number (ViewNumber) and the horizontal level and vertical display resolution (Resolution) by (4) 4 ' ) 'The stereo image synthesis process can be performed, and the result can also be on the flat display 5, and the stereoscopic image can be viewed without wearing the stereo glasses. The above is only the preferred embodiment of the invention and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention. ▲ 13 1278225 [Simplified description of the drawings] Fig. 1 is a schematic flow chart of the method for processing stereoscopic image display according to the present invention. Figures 2-1 to 2-3 are three schematic views of the multi-view image separation arrangement of the present invention.苐3图' is a schematic diagram of the color identification barcode (c〇i〇rCodes) of the present invention. Fig. 4 is a schematic diagram of a color decoder (c〇1〇r Decoder) included in the stereoscopic image synthesizer of the present invention. Fig. 5 is a block diagram of a block (B1〇ck) included in the flat panel display (FlatPanelDisplay) of the present invention. The figure is a schematic diagram of the structure of the block (Bk) ck of the present invention.
第7圖’係本發明之光栅板(LenticuiarLens)旋轉一個0角度示意圖。 【主要元件符號說明】 ...........多視角(Multiple Views)影像拍攝 2 ......影像格式分離處理(View Arrangement) 3 .....顏色辨識條碼(Color Codes)晝面(Frame) 4 ..........體影像合成器(Synthesizer) 31..........顏色辨識條碼(Color Codes) 5 ........平面顯示器(Flat Panel Display)Fig. 7 is a schematic view showing the rotation of a grating plate (Lenticuiar Lens) of the present invention at a 0 angle. [Main component symbol description] ...........Multiple Views image capture 2 ...Image Arrangement 3 .....Color recognition barcode ( Color Codes) Frames 4 ..........Synthesizer 31..........Color Codes 5 ..... ...Flat Panel Display
6 ......傾斜9.4623。光柵板(Lenticular Lens) .............黑色間隙(Black Matrix) 146 ... tilt 9.4623. Lenticular Lens .............Black Matrix 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92112624A TWI278225B (en) | 2003-05-09 | 2003-05-09 | Multiple views of stereoscopic image display scheme |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92112624A TWI278225B (en) | 2003-05-09 | 2003-05-09 | Multiple views of stereoscopic image display scheme |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200425719A TW200425719A (en) | 2004-11-16 |
TWI278225B true TWI278225B (en) | 2007-04-01 |
Family
ID=38626140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92112624A TWI278225B (en) | 2003-05-09 | 2003-05-09 | Multiple views of stereoscopic image display scheme |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI278225B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI459308B (en) * | 2012-03-12 | 2014-11-01 | Himax Tech Ltd | Stereo matching device and method for determining concave block and convex block |
TWI467514B (en) * | 2011-05-12 | 2015-01-01 | Himax Tech Ltd | 3d image processing system and method |
US8989481B2 (en) | 2012-02-13 | 2015-03-24 | Himax Technologies Limited | Stereo matching device and method for determining concave block and convex block |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI423247B (en) * | 2008-12-26 | 2014-01-11 | Wistron Corp | Projecting system capable of switching programs corresponding to a plurality of frames projected from a multiple view display and method thereof |
TWI392952B (en) * | 2009-09-03 | 2013-04-11 | Nat Univ Tsing Hua | Imaging system with multiple perspective angles and method thereof |
CN102457736A (en) * | 2010-10-25 | 2012-05-16 | 宏碁股份有限公司 | Method for providing instant three-dimensional video and instant three-dimensional video system |
-
2003
- 2003-05-09 TW TW92112624A patent/TWI278225B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI467514B (en) * | 2011-05-12 | 2015-01-01 | Himax Tech Ltd | 3d image processing system and method |
US8989481B2 (en) | 2012-02-13 | 2015-03-24 | Himax Technologies Limited | Stereo matching device and method for determining concave block and convex block |
TWI459308B (en) * | 2012-03-12 | 2014-11-01 | Himax Tech Ltd | Stereo matching device and method for determining concave block and convex block |
Also Published As
Publication number | Publication date |
---|---|
TW200425719A (en) | 2004-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1662808B1 (en) | Barrier device and stereoscopic image display using the same | |
US8059063B2 (en) | Barrier device, autostereoscopic display using the same and driving method thereof | |
US10321118B2 (en) | 3D display device and method | |
KR100261582B1 (en) | 3-dimensional image projection display device | |
JP4827783B2 (en) | Image display device | |
US20100182403A1 (en) | File format for encoded stereoscopic image/video data | |
TWI357987B (en) | A three-dimension image display device and a displ | |
JP6200328B2 (en) | Display device | |
JP2004511824A (en) | Digital light processing 3D projection system and method | |
EP1581012A1 (en) | Three-dimensional video processing method and three-dimensional video display | |
WO2005121867A1 (en) | Polarized stereoscopic display device and method | |
WO2021110036A1 (en) | Multi-view 3d display screen and multi-view 3d display device | |
JP2004264858A (en) | Stereoscopic image display device | |
TW201415862A (en) | Multi-view 3D display and method for generating multi-view 3D image data | |
US20050012814A1 (en) | Method for displaying multiple-view stereoscopic images | |
TWI278225B (en) | Multiple views of stereoscopic image display scheme | |
JP2008107764A (en) | Display device, image processing method, and electronic apparatus | |
US20080094468A1 (en) | Method for displaying stereoscopic image and display system thereof | |
US20120050290A1 (en) | Three-dimensional image display apparatus and display method | |
CN101442683B (en) | Device and method for displaying stereoscopic picture | |
JP2004102526A (en) | Three-dimensional image display device, display processing method, and processing program | |
WO2007029686A1 (en) | 3d image recording/reproducing system | |
US20120081513A1 (en) | Multiple Parallax Image Receiver Apparatus | |
CN100394303C (en) | Multiple visual angle stereoscopic image display and processing method | |
KR102076840B1 (en) | Autostereoscopic image display and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |