TWI277983B - Semiconductor memory device performing auto refresh in the self refresh mode - Google Patents

Semiconductor memory device performing auto refresh in the self refresh mode Download PDF

Info

Publication number
TWI277983B
TWI277983B TW94124644A TW94124644A TWI277983B TW I277983 B TWI277983 B TW I277983B TW 94124644 A TW94124644 A TW 94124644A TW 94124644 A TW94124644 A TW 94124644A TW I277983 B TWI277983 B TW I277983B
Authority
TW
Taiwan
Prior art keywords
memory
refresh
self
column
address
Prior art date
Application number
TW94124644A
Other languages
Chinese (zh)
Other versions
TW200615971A (en
Inventor
Taek-Seon Park
Jung-Bae Lee
Yun-Sang Lee
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/169,241 external-priority patent/US7164615B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200615971A publication Critical patent/TW200615971A/en
Application granted granted Critical
Publication of TWI277983B publication Critical patent/TWI277983B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40611External triggering or timing of internal or partially internal refresh operations, e.g. auto-refresh or CAS-before-RAS triggered refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

Method and apparatus for use with multi-bank synchronous dynamic random access memory (SDRAM) circuits, modules, and memory systems are disclosed. In one described embodiment, an SDRAM circuit receives a bank address to be used in an auto-refresh operation, and performs the auto-refresh operation on the specified bank and for a current refresh row. The device is allowed to enter a self-refresh mode before auto-refresh operations have been completed for all banks and the current refresh row. The memory device completes refresh operations for the current refresh row before proceeding to perform self-refresh operations for new rows. Other embodiments are described and claimed.

Description

I2779S35Pifd〇c 九、發明說明: 本申請案主張於2004年7月21號提出申請之韓 利申請案第2004-56967號的優先權,該專利申請案揭* 之内容系完整結合於本說明書中。 月一 ^路 【發明所屬之技術領域】 本發明是錢_態_麵讀(dy_ie access memory,DRAM)半導體元件與系統,且 關於在執行每—記料(per>_bank)自動操作= 中轉換為自我刷新模式的方法與裝置。 〃、 【先前技術】 fRAM元件是眾所皆知的,其一般應用於需要讀出/ 憶體的t這统中。DRAM元件之所以如此命 ^為母個吕己憶早凡(mem〇rycell)中的資料必須萨 由頃出此育料進行週期性的刷新,否則儲存的被^ 壞。目前同步DRAM元件(syneh麵US DRAM,、^皮I2779S35Pifd〇c IX. INSTRUCTIONS: This application claims the priority of the Korean Patent Application No. 2004-56967 filed on Jul. 21, 2004, the content of . BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dy_ie access memory (DRAM) semiconductor component and system, and relates to performing a per-record (per >_bank) automatic operation = conversion Method and apparatus for self-refresh mode.先前, [Prior Art] fRAM components are well known, and are generally applied to t which requires read/recall. The reason why the DRAM component is so life is that the data in the mother's memory, mem〇rycell, must be refreshed periodically, otherwise the storage is broken. Synchronous DRAM components (syneh surface US DRAM,

記心器而啟動時’自動刷新模式就刷新DRAM ^ I; ( internal refresh&quot;r〇 ^ ^ ( f〇W } ° ^ ^ ^ ^ tf 續的自動__增加以進行連 這樣,只要dram㉝到達陣瓶㈣如其頂端。 而产定的曰旦ΐ 列的全部列在以保持資料穩定為目的 活^制==間内刷新完畢,DRAM記憶控制器即可靈 / ' :达自動刷新指令到DRAM元件。 午夕SDRAM 70件包含多個記憶庫,高階列位址位元 Ι27798#5ρ^ ^提供到SDRAM’时料確”個赌縣接受此操 作的操作也被提供到SDRAM。這些元件巾的—部分使一 自動刷新指令被提御卜記憶庫㈣上,紐在此記憶庫 =址所1定的記憶庫中執行關於當前刷新列的自動刷新操 作,同時在未選取的記憶庫中可執行資料存取操作。這種 元:牛f本說明書中稱為每一記憶庫刷新(_- :=,舰)SDRAM元件。本申請的發明者已提出與 =申Μ相關的美國專利中請案第胸5,169號,其揭露了 斤穎的PBR SDRAM結構和操作方法 合於本說明書中。 'wrm “ 許多SDRAM元件又結合一種“自我刷新,,模式。在自 我刷新模式中,SDRAM元件一般呈低 SDRAM ,^«(awakened) 新模式中,要求SDRAM元件根據内部時序 自身的刷新㈣’這^以保留儲存於記憶元件中的資 【發明内容】 無論是否全部的記憶庫都已完成當前 S:1RSDRAM元件可確信是受益於二 ^ =在自動刷新迴圈中的任何時刻轉換為自我刷新模 i U在:盈處包括降低記憶控制器的元件特殊要 為自的靈活性、以及允許在非臨界時間轉換 本發明的-方面,揭露了一種多元記憶庫(mu她响 127798&quot;35_。。 記憶元件的操作方法。此 以及對此外部二 列庫uemorycella卿bank)的當前列(」讀早几陣 :自々新操作。此元件藉由進入自η:二: 模式= 列庫之當前列的自動刷新操作(如有ϊί)王二::元陣 列刷新操作的記憶庫中刷新當前列, 由刷新全部記憶庫的t j 4者猎 前這些記憶庫中有—個或幾在;=我刷新模式之 書介紹了幾個完#仃疋自動刷新。本說明 本發刷新操作的實施例。 儕元件自枯.f 揭露了一種同步記憶元件。此記 新位址發生二址記憶單元陣列庫;-刷 庫;以及記,i庫位當前刷新列給全部記憶單元陣列 址給刷新操作,並扣:?接收一外部提供的記憶庫位 的記憶單辑列庫 ^物作應㈣記憶庫位址所對應 都已完成刷縣之當前刷新列 中自我刷新新列。在自我刷新模式 自我刷新電=====記憶單元陣列庫上,此 當前刷新列的前完成全部記憶單元陣列庫之 殊實施例的功能,:此。此自我刷新電路還可做到更多特 這些功能將在以下做詳細描述。 127798¾5^0° 本說明書所揭露的其他方面還包括記憶控制器、記憶 柄組、以及具有本說明書所揭露之記憶元件的記憶系統。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易1ϊ,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】When the heartbeat is started, the 'automatic refresh mode refreshes the DRAM ^ I; (internal refresh&quot;r〇^ ^ ( f〇W } ° ^ ^ ^ ^ tf continued automatic __ increase to do this, as long as the dram33 arrives The bottle (4) is at its top. All of the listed 曰 ΐ 列 列 列 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 70 pieces of SDRAM in the midnight SDRAM contain multiple memory banks, and the high-order column address bits Ι27798#5ρ^ ^ are provided to the SDRAM's. The operation of the gambling county to accept this operation is also provided to the SDRAM. Part of an auto-refresh command is provided on the memory bank (4), and the button performs an auto-refresh operation on the currently refreshed column in the memory of the memory bank, and the executable data is stored in the unselected memory bank. Access operation. This element: cow f is referred to in this specification as each memory bank refresh (_-:=, ship) SDRAM component. The inventor of the present application has proposed a US patent related to the application Chest 5,169, which reveals the structure of PBR SDRAM and The method of operation is in this specification. 'wrm“ Many SDRAM components incorporate a “self-refresh, mode. In self-refresh mode, SDRAM components are generally low SDRAM, ^«(awakened) new mode, requiring SDRAM components based on Refreshing the internal timing itself (4) 'This is to retain the resources stored in the memory element. [Inventive content] Whether or not all the memory banks have completed the current S: 1RSDRAM component can be sure to benefit from the two ^ = in the automatic refresh loop Any time to convert to self-refresh mode i U: in the surplus includes a component that reduces the memory controller's special flexibility, and allows the conversion of the invention in non-critical time, exposing a multi-memory memory (mu She rings 127798&quot;35_. The operation method of the memory component. This and the current column of this external two-column library uemorycella clear bank) read a few arrays: self-new operation. This component is accessed by η: two: Mode = automatic refresh operation of the current column of the column library (if there is ϊί) Wang 2:: The memory of the meta array refresh operation refreshes the current column, refreshing the tj 4 of all memory banks There are one or several of these memory banks before hunting; = my refresh mode book introduces several finishes. #仃疋Automatic refresh. This example illustrates the embodiment of the refresh operation. 侪The component reveals a synchronization. Memory element. This new address generates a two-address memory cell array library; - a flash library; and a note that the i-bank bit is currently refreshed to all memory cell array addresses for refresh operation, and deducts: receives an externally provided memory bank The memory of the bit list is stored in the library. (4) The memory address corresponds to the self-refreshing new column in the current refresh column of the brush county. In the self-refresh mode self-refresh mode ===== memory cell array library, this current refresh column before the completion of all the functions of the memory cell array library, this: This self-refresh circuit can do more. These features are described in detail below. 1277983⁄45^0° Other aspects disclosed herein also include a memory controller, a memory handle set, and a memory system having the memory elements disclosed herein. The above and other objects, features, and advantages of the present invention will become more apparent from the <RTIgt; [Embodiment]

立W圖以方塊圖形式繪示了一種SDRAM元件100。記 ^單元陣歹丨】10包括多個記憶單元陣列庫10-1到l〇-n,其 中η可以是大於丨的任意數位,且通常是2的次方 jpower)。每個記憶庫包括多個記憶單元mC,每個記憶 單元MC連接到多條位元線(bit line) BL之-與多條字元 j (word lme) WL之-的唯一結合點,如熟悉此技藝者 、登歹〗,址解碼裔電路U根據所提供的列位址訊號 radda = 之—用於記憶操作。每條主字元線藉由一控 心i圖巾未顯示)連接到多條字元線(WL)。列位 個列電路12包括多個列位址解碼1112]到ΐ2·η,每 10- ^^碼器用來啟動相應的記憶單元陣列冑1(Μ到 定ΐ個=1兀線。多元記憶庫選擇訊#bbai到ban用來確 位址解碼器回應列位址訊號radda。 線,=址Γ器電路14根據行位址訊號⑽選擇位元 個行位,器二二 1277983释 10-n中的位元線。 要產生新的刷新行位址時,刷新位址發生器28接收計 數訊號cnt。刷新位址發生器28提供當前刷新行位址 RADD給選擇器30。 位址閂鎖器(latch) 32接收多個外部位址訊號ADD 和多個外部記憶庫位址訊號BA。自動刷新指令訊號 AREF、啟動(active,ACT)訊號、寫入(WR)訊號以及 讀取(RD)訊號決定了 ADD與BA的含義。在啟動指令The vertical W diagram depicts an SDRAM component 100 in the form of a block diagram. The memory cell array 10 includes a plurality of memory cell array banks 10-1 to l〇-n, where η can be any digit greater than 丨, and is usually a power of 2 jpower). Each memory bank includes a plurality of memory cells mC, each of which is connected to a unique combination of a plurality of bit lines BL and a plurality of characters j (word lme) WL, such as familiarity The artist, the 歹 歹, the address decoding circuit U is based on the provided column address signal radda = - for memory operations. Each of the main character lines is connected to a plurality of word lines (WL) by a control unit (not shown). The column array circuit 12 includes a plurality of column address decodings 1112] to ΐ2·η, and each 10-processor is used to activate the corresponding memory cell array 胄1. The selection message #bbai to ban is used to confirm the address decoder response column address signal radda. The line, = address buffer circuit 14 selects the bit row position according to the row address signal (10), and the device 22277983 releases 10-n. The bit line generator 28 receives the count signal cnt. The refresh address generator 28 provides the current refresh line address RADD to the selector 30. The address latch ( The latch 32 receives a plurality of external address signals ADD and a plurality of external memory address signals BA. The automatic refresh command signals AREF, active (ACT) signals, write (WR) signals, and read (RD) signals are determined. The meaning of ADD and BA. At the start command

有效期間,ADD訊號被閂鎖並作為一列位址訊號radd提 供給選擇器30,BA訊號被閂鎖並作為一記憶庫位址訊號During the valid period, the ADD signal is latched and supplied to the selector 30 as a column of address signals radd, and the BA signal is latched and used as a memory address signal.

ibal提供給第一開關34。在讀或寫指令有效期間,ADD 訊號(也可能是BA訊號)被閃鎖並作為行位址訊號福 提供給行位址解碼器電路14。在自動刷新指令有效期間, 記憶庫位;bl:訊號BA被閃鎖並作為記憶庫位㉛訊號福提 供給第一開關34。 ▲指令解碼器20接收外部指令訊號c〇M並產生各種控 ^訊號,,包括ACT、職和RD、AREF以及阳(斷電訊 =則祕收到—自動刷新指令和—斷電指令時,指 ^。碼為2〇宣稱PD訊號到自我刷新控制訊號發生器22 哭22 1牛進自我自^刷新板式知’自我刷新控制訊號發生 口口 22旦稱一自我刷新控制訊 訊號PD冑效時元件進入自我刷斩^也就疋5兄,當斷電 給若干M f m w我㈣式。SREF訊號被提供 干㈣⑽⑻,包括第—開關34、時脈發生器(d〇ck I2779835_〇c generator) 24、選擇器3〇以及第二開關4〇。 脈私d工1 乍於自我刷新模式且_訊號有效時,時 中? sdt生一刷新時脈訊號SCLK。在SCLK迴圈 ㈣以預定的重複順序對記憶庫HM到1〇 進行連續定址,觸發記麟位址發^ 26 二 新記憶庫位址訊號iba2。 自我刷 第-開關34接收iba卜iba2訊號和自我The ibal is supplied to the first switch 34. While the read or write command is active, the ADD signal (and possibly the BA signal) is flash locked and provided to the row address decoder circuit 14 as a row address signal. During the period when the auto refresh command is valid, the memory bit is located; bl: the signal BA is flash locked and supplied to the first switch 34 as the memory location 31 signal. ▲ The instruction decoder 20 receives the external command signal c〇M and generates various control signals, including ACT, job and RD, AREF, and yang (disconnected telecommunication = then received - automatic refresh command and - power off command, Refers to ^. The code is 2〇 declares the PD signal to the self-refresh control signal generator 22 cry 22 1 cattle into the self ^ refresh the plate knows 'self-refresh control signal generation mouth 22 dens a self-refresh control signal PD when effective The component enters the self-brushing ^^ is also 5 brothers, when the power is turned off to some M fmw I (four). The SREF signal is provided dry (four) (10) (8), including the first switch 34, clock generator (d〇ck I2779835_〇c generator) 24. Selector 3〇 and the second switch 4〇. When the pulse is in self-refresh mode and the _ signal is valid, the time is sdt to generate a refresh pulse signal SCLK. In SCLK loop (4) with a predetermined repetition The sequence contiguously addresses the memory bank HM to 1〇, triggering the logging address to generate the new memory location signal iba2. The self-brushing-switch 34 receives the iba iba2 signal and self.

麵、。當漏訊號未被宣稱時,Μ訊號經過第」^ 34成為記憶庫位址訊號iba。# 8腳被宣稱時,如 過第一開關34成為記憶庫位址訊號iba。 、、’ 口 、,記憶庫位址解碼器36把記憶庫位址iba解碼以根據訊 唬群bal-ban產生適當的記憶庫選擇訊號。 選擇器30決定了是當前刷新位址訊號還是地 址閂鎖輸出地址訊號radd作為列位址訊號radda傳遞到列 位址解碼器電路12。當AREF或SREF訊號被宣稱時,自 動刷新指令訊號AREF和自我刷新控制訊號SREF被提供 到選擇器30作為選擇訊號,使RADD訊號被選擇為位址 訊號radda傳遞到列解碼器12,否則rad(HK號被選擇為位 址訊號radda傳遞到列解碼器12。 根據自動刷新指令訊號AREF或自我刷新控制訊號 SREF,第二開關40分別傳遞記憶庫選擇訊號bal-ban,使 之成為緩衝記憶庫選擇訊號bbal-bban。當AREF或SREF 被宣稱時,第二開關40把每個記憶庫選擇訊號複製到其對 應的緩衝記憶庫選擇訊號線上。 T2779835Pifd〇c 計數控制訊號發生器38接收緩衝記憶庫選擇訊號線 bbal bban。當剞刷新列的各缓衝記憶庫選擇訊號被宣稱 後,計數控制訊號發生器38宣稱一計數訊號cnt給刷新位 址發生裔28,向刷新位址發生器28發出訊號以使當前刷 新列更新為新一列。如本實施例一種可選結構中所述,計 數訊號cnt也可提供給時脈發生器24。 當寫入訊號WR有效時,資料輸入緩衝器16接收來 自外部貧料匯流排的資料訊號DIN,並提供資料訊號din • 到記憶陣列10。當讀出訊號RD有效時,資料輸出緩衝器 18接收來自記憶陣列1〇的資料訊號d〇ut,並提供資料訊 號DOUT到外部資料匯流排。 圖1B繪示了另一種結構的sdram元件100,。除了 用專用外部刷新訊號EREF代替解碼指令AREF來決定何 時執行自動刷新操作以外,SDRAM元件1〇〇,類似於 SDRAM元件1〇〇。假定AREF與EREF作用相似,下面的 圖示進一步繪示SDRAM元件1〇〇與1〇〇,的操作。 _ 圖2繪示了計數控制訊號發生器38的一實施例。計數 控制訊號發生器38包括閂鎖電路LA1到LAn,每個閂鎖 電路接收一對應的緩衝記憶庫位址訊號bbal 到bban ,每 個緩衝記憶庫位址訊號提供一輸入訊號到一 η輸入n〇R 閘NOIU。NOR閘N0R1提供輸出訊號cnt到發生器,此 輸出訊號cnt又作為重設訊號(reset signai)回饋到各閂鎖 電路。 每個閂鎖電路包括··兩個η通道MOSFET電晶體N1 12 12779胳_。。 與N2;以及-閃鎖ϋ L,其由兩個反相g (inverter) n 與Π輸入端對輸出端相連而構成。電晶體奶用作一絕緣 電晶體,當緩衝記憶庫位址被宣稱時把閃鎖器[連接到緩 衝記憶庫位址訊號上。當緩衝記憶庫位址被宣稱時,施加 於閃鎖器L的狀態為閃鎖電路的輸出為低。當全部緩衝記 憶庫位址訊號均被宣稱後,輸入到N〇R1間的訊號都為 低’且N0R1閘宣稱cnt訊號。 在每個閃鎖電路中,電晶體犯以下拉(pull_d〇wn) 籲結構連接到閃鎖器L的輸入端,cnt作為閉訊號提供到 N2。這樣,當cnt訊號被宣稱時,其施加於閃鎖器l的狀 態為問鎖電路的輸出為高’重設計數控制訊號發生器% 並使cnt訊號停止作用(deassert)。 圖3包含一時序圖,其緣示了具有圖2所示之計數控 制訊號發生器的SDRAM元件1〇〇和1〇〇,的操作,假定 四元庫記憶陣列的記憶庫地址為〇〇、〇1、1〇和u。在時 間間隔T1中,記憶元件工作於普通模式,並回應自動刷 新指令和啟動模式指令(圖中未顯示)。刷新位址發生器 已產生一數值為0…0111的當前刷新列地址RADD。在τι 期間’發出第-自動刷新指令,所提供的記憶庫位址ba 為〇〇 ’被位址閃鎖S 32閃鎖作為内部記憶庫位址此卜 由於SREF為低,故ibal訊號被傳遞到記憶庫地址解碼器 36,此記憶庫地址解碼器36對數值〇〇解碼,並宣稱記憶 庫位址選擇訊號bal。AREF的宣稱啟動第二開關4〇,使 計數控制訊號發生器38閃鎖bbal訊號。AREF的宣稱也 13 12779835Pi£d〇c 使選擇器30傳遞當前刷新列位址〇...〇1 …結果,記憶庫ΠΜ中的〇...〇111列被刷新。解馬- •V产=在T1期間,發出第二自動刷新指令,所提供的 =庫位址BA為01。藉由相㈣回應,計數控制訊號發 生附請a2,且記憶庫呢中軌刻列被刷新。 田弟二AREF訊號被宣稱時,發出一斷電指令,使 輯高狀1 ° 彳訊號發生器22識 5 = =^24°此時時間間隔T1結束,時間間隔 隹Λ 4 憶元扣胁自我顯料。請注意, Ϊ 10 時,四個記憶庫中只有兩個(記憶庫… 矛 2)凡成萄前刷新列的刷新。 曰守脈發生24葬由甚吐楚—cot 址發生器26以回應S9RPF H K脈衝給記憶庫位 數值為〇〇的第—二憶庫位址發生器產生 高,故A# Α己隐庫位址1^2。由於SREF現在為 解碼器36 ^遞到記憶庫地址解碼器、36,此記憶庫地址 bah °S°REF的宣f值啟〇〇解碼並宣稱記憶庫位址選擇訊號 生哭38”円二冉欠動第二開關4〇,這使計數控制訊號發 到列地址 選擇器30傳遞當前刷新列位址〇.·.0111 ==,12°結果,記憶庫_中的〇..遍列 也3,廷―次是在自我刷新模式中進行刷新。 生哭移3r^BmCLK的宣稱使記憶庫位址發 值為〇1的記憶庫位址。藉由相似的回應,計數 I27798^35Pifdoc 控制訊號發生器38試圖再次閂鎖bba2,且記憶庫1〇-2中 的〇···〇111列被再次刷新。 第三SCLK的宣稱使記憶庫位址發生器26移到數值 為10的記憶庫位址。藉由相似的回應,計數控制訊號發生 器38閂鎖bba3,且記憶庫10-3中的0…0111列最終被刷 新。 、第四SCLK的宣稱使記憶庫位址發生器26移到數值 ,11的記憶庫位址。藉由相似的回應,計數控制訊號發生 器38閂鎖bba4,以及記憶庫1〇_4中的〇···〇111列最終 刷新。 知注意,第四SCLK被宣稱後,全部記憶庫的當前刷 祈列〇...oiii最終被刷新,且計數控制訊號發生器38中的 四個閃鎖電路也關住其相應的記憶庫健選擇訊號。這 =計數控制訊號發生器38宣稱cnt,重設其自身並使刷新 址發生器28移到下一刷新列位址RADD (數值surface,. When the leak signal is not claimed, the signal passes through the first ^^ 34 to become the memory address signal iba. When #8 is declared, the first switch 34 becomes the memory address signal iba. The memory port address decoder 386 decodes the memory address iba to generate an appropriate memory selection signal based on the packet group bal-ban. The selector 30 determines whether the current refresh address signal or the address latch output address signal radd is passed to the column address decoder circuit 12 as the column address signal radda. When the AREF or SREF signal is asserted, the auto-refresh command signal AREF and the self-refresh control signal SREF are supplied to the selector 30 as a selection signal, so that the RADD signal is selected as the address signal radda to be passed to the column decoder 12, otherwise rad( The HK number is selected as the address signal radda is passed to the column decoder 12. According to the auto refresh command signal AREF or the self refresh control signal SREF, the second switch 40 respectively transfers the memory selection signal bal-ban to make it a buffer memory selection. Signal bbal-bban. When AREF or SREF is asserted, second switch 40 copies each bank select signal to its corresponding buffer memory select signal line. T2779835Pifd〇c Count control signal generator 38 receives buffer memory selection The signal line bbal bban. When the buffer memory selection signals of the refresh column are declared, the count control signal generator 38 declares a count signal cnt to refresh the address generation 28, and sends a signal to the refresh address generator 28 to Update the current refresh column to a new column. As described in an optional structure of this embodiment, the count signal cnt can also be provided to the clock. When the write signal WR is valid, the data input buffer 16 receives the data signal DIN from the external lean bus and provides the data signal din to the memory array 10. When the read signal RD is valid, the data output buffer The device 18 receives the data signal d〇ut from the memory array 1 and provides the data signal DOUT to the external data bus. Figure 1B illustrates another structure of the sdram component 100, except that the dedicated external refresh signal EREF is used instead of the decoding command. AREF determines when to perform an auto-refresh operation, SDRAM component 1〇〇, similar to SDRAM component 1〇〇. Assuming that AREF acts similarly to EREF, the following diagram further illustrates the operation of SDRAM components 1〇〇 and 1〇〇. Figure 2 illustrates an embodiment of a count control signal generator 38. The count control signal generator 38 includes latch circuits LA1 through LAn, each latch circuit receiving a corresponding buffer memory address signal bbal to bban Each buffer memory address signal provides an input signal to an n input n〇R gate NOIU. The NOR gate N0R1 provides an output signal cnt to the generator, and the output signal cnt As a reset signai, it is fed back to each latch circuit. Each latch circuit includes two n-channel MOSFET transistors N1 12 12779 and N2; and - flash lock ϋ L, which consists of two An inverting g (inverter) n is formed by connecting the input terminal to the output terminal. The transistor milk is used as an insulating transistor, and the flash locker is connected to the buffer memory address when the buffer memory address is claimed. On the signal. When the buffer memory address is asserted, the state applied to the flash locker L is that the output of the flash lock circuit is low. When all buffer memory address signals are asserted, the signal input to N〇R1 is low and the N0R1 gate declares the cnt signal. In each flash lock circuit, the transistor is connected to the input of the flash lock L by a pull-down connection, and cnt is provided as a closed signal to N2. Thus, when the cnt signal is asserted, it is applied to the flash locker 1 in such a way that the output of the lock circuit is high and the number of control signals generator % is deactivated and the cnt signal is deasserted. 3 includes a timing diagram showing the operation of the SDRAM elements 1 and 1 having the count control signal generator shown in FIG. 2, assuming that the memory address of the quaternary bank memory array is 〇〇, 〇 1, 1 〇 and u. In the time interval T1, the memory element operates in the normal mode and responds to the automatic refresh command and the start mode command (not shown). The refresh address generator has generated a current refresh column address, RADD, with a value of 0...0111. During the period τι, 'issue the first-auto-refresh command, the provided memory address ba is 〇〇' is flashed by the address flash lock S 32 as the internal memory address. Since the SREF is low, the ibal signal is transmitted. To the memory address decoder 36, the bank address decoder 36 decodes the value 〇〇 and declares the memory address selection signal bal. The AREF asserts that the second switch 4 is activated to cause the count control signal generator 38 to flash the bBL signal. AREF's claim also 13 12779835Pi£d〇c causes selector 30 to pass the current refresh column address 〇...〇1 ... the result, the memory bank 〇 ... 〇 111 column is refreshed. Solution - • V production = During T1, the second automatic refresh command is issued, and the supplied library address BA is 01. By phase (4) response, the count control signal is generated with a2, and the memory track is refreshed. When Tian Di's AREF signal was declared, a power-off command was issued to make the high-level 1 ° signal generator 22 recognize 5 = =^24° at this time interval T1, the time interval 隹Λ 4 Obvious material. Note that when Ϊ 10, only two of the four banks (memory... Spear 2) refresh the refresh column before the precipitation.曰 曰 发生 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 1^2. Since SREF is now passed to the memory address decoder 36 for the decoder 36^, the memory address of the memory address bah °S°REF is decoded and declares that the memory address selection signal is crying 38" The second switch 4 is under-actuated, which causes the count control signal to be sent to the column address selector 30 to pass the current refresh column address 〇.·.0111 ==, 12° result, 〇 in the memory _. The first-time is refreshed in the self-refresh mode. The declaration of the 3h^BmCLK is made to make the memory address address the memory address of 〇1. By similar response, the count I27798^35Pifdoc control signal occurs. The device 38 attempts to latch bba2 again, and the 〇···〇111 column in the memory bank 1〇-2 is refreshed again. The assertion of the third SCLK causes the memory address generator 26 to move to a memory location of value 10. By a similar response, the count control signal generator 38 latches bba3, and the 0...0111 columns in the memory bank 10-3 are finally refreshed. The fourth SCLK assertion moves the memory address generator 26 to Value, memory location of 11. With a similar response, the count control signal generator 38 latches bba4 And the 〇···〇111 column in the memory bank 1〇_4 is finally refreshed. It is noted that after the fourth SCLK is declared, the current brushing of all the memory banks o...oiii is finally refreshed, and the counting control The four flash lock circuits in the signal generator 38 also close their respective memory key selection signals. This = the count control signal generator 38 declares cnt, resets itself and moves the refresh address generator 28 to the next refresh. Column address RADD (value

产座1000)。新的時間間隔T3開始,在T3期間中全部記 ^庫中的新行位元址在自我_模式下被刷新。 當前—,_‘ 還有,Ϊ上看,ΐ糟糕的情況是當接收到—斷電指令時 ^讀、庫之當前列尚待_。根據記憶 祷’可以使此剩餘的記憶庫接近其持續時間(2 I2779^35Pifdoc time)的末端。圖4與圖5繪示了採用這種時序方 一實施例的結構。 Μ 圖4繪示了另-自我刷新時脈發生器24,,盆包括一 自動刷新參考時脈(dGekrefe_e) 5G…自我刷Production base 1000). The new time interval T3 begins, and during the T3 period, all the new row bit addresses in the library are refreshed in the self_mode. The current —, _ ‘ and, Ϊ 看 ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ According to Memory Prayer, this remaining memory can be brought close to the end of its duration (2 I2779^35Pifdoc time). 4 and 5 illustrate the structure of an embodiment employing such a timing. Μ Figure 4 depicts another self-refreshing clock generator 24 that includes an auto-refresh reference clock (dGekrefe_e) 5G... self-brushing

參考52、一 NOR閉N0R2、以及一反相器13。參考=脈 50和52接收自我刷新控制訊號SREF和計數訊號cnt。合 SREF被宣稱時,自動刷新參考時脈%啟動,隨後益效 第-時間訊號cm被宣稱。自動刷新參考時脈5〇啟&amp; 生一時脈訊號碰。自我刷新參考時脈52停止作用,直到 二==第Γ次被同時宣稱,然後啟動直到赃F =作用。自我刷新參考時脈52啟動後產生—時脈訊號 訊號哭:aclk和scik訊號,並提供-輸出 号卢iuc。“ /目裔13的輸出訊號是自我刷新時脈訊 唬SCLK。廷樣,在操作中,缝 脈衝將產生正時脈脈_SCLK訊號上。的樣 圖5繪示了作為範 此實施例具有另一 士 只時序圖, 結束時斷電訊號(PD^Tf發生謂°在T1期間 這-點上,自動皮?稱之前’圖5與圖3相同。在 時脈脈衝,開始四個^日樣5〇啟動,並產生四個連續的 在剛要進人自我刷铜^刷新操作。這四個自我刷新操作 位址ojm進彳^t作之前連續對四個記憶庫之當前列 隔(τι)期間的此位址即自動刷新操作的時間間 田則列地址。這四個記憶庫刷新完之後, 16 1277988» 計數控制訊號發 生器28和自戒產生—計數訊號cnt以刷新位址發 動刷新時脈參考脈發生器24。為了回應cnt脈衝,自 動。狹彳I自#仔止作用,而自我刷新時脈參考52啟 後開始=:新時:^ 列新時脈發生器24’提供的靈活性在於〇...0111 始對下一然後以標準刷新速度開 c , .執仃9通自我刷新操作。比較圖3與圖 2= !新师X U的較完成,喊面的自我 刷新迴圈則以較慢的速度t2進行。 的==與6B分別以方塊圖形式纟f示了依據第二實施例 的simAM元件細與·,。在許多方面,SDRAM元件 200與綱,類似於SDRAM元件⑽與1〇〇,。服am 疋件200與200,中與SDRAM元件1〇〇與ι〇〇,相比未做 更改的方面將不再重複描述。 圖1A中的幾個兀件記憶庫位址發生器26和第一 開關34一不包括在圖6A與6B中。據此,内部記憶庫 位址訊號ibal是唯-輸W記轉絲解糾%的訊號。 圖6A中包括設定電路(set circuit) 6〇代替記憶庫位 址發生器’此設定電路藉由自我刷新時脈訊號SCLK來驅 動。設定電路60具有-輸出料接到各記憶庫選擇訊號 bal到ban。當SCLK發出脈衝時,設定電路6〇宣稱各呓 憶庫選擇訊號’從而使全部記憶庫的#前刷新列立即被刷 新。 I2779835Pifd〇c 開關40把全部的記憶庫選擇訊號傳遞到計數控制訊 號發生器38,使cnt在每個自我刷新迴圈中被宣稱。 圖7緣示了設定電路60的一種可能結構,其包括一延 遲裝置DLC、一 NOR閘NOR3、以及η個p通道電晶體 Pl-Pn。NOR3的一輸入端和延遲裝置Dlc的輸入端接收 到SCLK。延遲裝置DLC的輸出--SCLK延遲後的形 式 被提供到N0R3的另一輸入端。延遲裝置DLC的延Reference 52, a NOR closed NOR2, and an inverter 13. Reference = pulses 50 and 52 receive the self-refresh control signal SREF and the count signal cnt. When the SREF is declared, the reference clock is automatically refreshed, and then the benefit time-time signal cm is declared. Automatically refresh the reference clock 5 〇 &&amp; generate a clock signal touch. The self-refresh reference clock 52 ceases to function until two == the third time is simultaneously declared, and then starts until 赃F = action. The self-refresh reference clock 52 is generated after the start-up clock signal. The signal is crying: aclk and scik signals, and provide-output number Luu. "The output signal of /Mesh 13 is the self-refresh clock signal SCLK. In the operation, the slit pulse will generate the timing pulse _SCLK signal. Figure 5 shows that this embodiment has The other is only the timing diagram, at the end of the power-off signal (PD^Tf occurs in the period of T1 during the period - this point, the automatic skin? before the 'Figure 5 is the same as Figure 3. In the clock pulse, start four ^ days The sample 5 starts, and produces four consecutive refreshing operations in the self-brushing copper ^ refreshing operation. The four self-refreshing operation addresses ojm are continuously connected to the current column of the four memory banks (τι This address during the period of the automatic refresh operation is the address of the field queue. After the four memories are refreshed, the 16 1277988» count control signal generator 28 and the self-cancellation-counting signal cnt are refreshed when the address is refreshed. Pulse reference pulse generator 24. In response to the cnt pulse, automatic. Narrow I from #仔止止, and self-refresh clock reference 52 start and start =: New: ^ column new clock generator 24' provides flexibility Sex is 〇...0111 Starts next and then starts c at standard refresh rate. Execute the 9-way self-refresh operation. Compare Figure 3 with Figure 2 = ! The completion of the new division XU, the self-refresh loop of the shouting face is performed at a slower speed t2. The == and 6B are in block diagram form respectively. f shows the simAM component according to the second embodiment. In many respects, the SDRAM device 200 is similar to the SDRAM device (10) and 1 〇〇, the am am 200 200 and 200, and the SDRAM device 1 〇〇 and ι〇〇 will not be repeatedly described in terms of no change. Several pieces of memory memory address generator 26 and first switch 34 in Fig. 1A are not included in Figs. 6A and 6B. According to this, the internal memory address signal ibal is a signal of the only-transmission W-return wire correction. Figure 6A includes a set circuit 6 〇 instead of the memory address generator 'this setting circuit by self The refresh clock signal SCLK is driven to drive. The setting circuit 60 has - the output material is connected to each of the memory bank selection signals bal to ban. When the SCLK is pulsed, the setting circuit 6 〇 declares each memory bank selection signal 'to make all the memory banks The #前刷 column is immediately refreshed. I2779835Pifd〇c switch 40 puts all the memory The selection signal is passed to the count control signal generator 38 to cause cnt to be asserted in each self-refresh loop. Figure 7 illustrates one possible configuration of the setting circuit 60, including a delay device DLC, a NOR gate NOR3, and η p-channel transistors P1-Pn. An input of NOR3 and an input of the delay device Dlc receive SCLK. The output of the delay device DLC, the SCLK delayed form, is supplied to the other input of NOR3. DLC extension

遲時間設定為小於SCLK的正脈衝時間。這使得正SCLK • 脈衝在原始脈衝仍然有效的時候出現在DLC的輸出端。結 果NOR3輸出端的節點b上產生延長的負脈衝。 節點b連接到每個p通道電晶體ρι到pn的閘極 (g^te)。每個p通道電晶體耦接於一正電源電壓與記憶 j選擇訊號線bal到ban中的一條對應線之間。這樣,當 你驅動印點b為低時,各P通道電晶體被啟動,使每 己^庫選擇訊號線連接到正電源電壓上。 時序^ 8包含一作為範例的SDRAM元件200與200,的 • (PDj护與上述之時序範例相同的是,當發出斷電指令 新列的t己憶庫他1和1〇-2完成列位址為〇···0111之刷 SRHF聍,,新操作。當自我刷新控制訊號發生器22啟動 藉由同時言1脈發生器24發出SCLK脈衝。設定電路60 出回應。;稱二己憶庫選擇訊號bal、ba2、ba3和ba4以做 址為〇···=,侍四個記憶庫1〇_1、1〇_2、10_3和1〇_4的位 自動刷新操列破同時刷新,其中列位址〇…0111是在 J間被選中。開關4〇把四個記憶庫選擇訊號 18 127798¾5^00 作為緩衝記憶庫選擇訊號bbal-bba4全部傳遞到計數控制 訊號發生器38。計數控制訊號發生器38在cnt上產生—正 脈衝,重設其自身並使刷新位址發生器28移向數值為 〇··· 1000的新一列地址RADD。自我刷新迴圈T2,、T3,、 Τ4等均立即刷新四個記憶庫,其中Τ2,對進入自我刷新 模式時正進行自動刷新的全部記憶庫的列進行同時刷新。 圖9Α與9Β分別介紹了解碼刷新指令sdram 300和 外部刷新訊號SDRAM 300,的第三實施例。以圖9A為範 馨例,用設定電路60,代替圖7中的相似設定電路6〇,圖 1=所示之SDRAM得到提高。使用如圖4所示之自我刷新 時脈,生器24’,提供時脈訊號aclk與sdk作為輪出訊 號。時脈訊號adk被提供到設定電路6〇,,而時脈訊號 sclk被提供到記憶庫位址發生器26。The late time is set to be less than the positive pulse time of SCLK. This causes the positive SCLK • pulse to appear at the output of the DLC while the original pulse is still active. As a result, an extended negative pulse is generated on node b at the NOR3 output. Node b is connected to the gate (g^te) of each p-channel transistor ρι to pn. Each p-channel transistor is coupled between a positive supply voltage and a corresponding line in the memory j selection signal line bal to ban. Thus, when you drive the print b to be low, each P-channel transistor is activated, causing each of the bank select signal lines to be connected to the positive supply voltage. The timing ^8 includes an example of the SDRAM components 200 and 200, (the PDj guard is the same as the timing example described above, when the power-off instruction is issued, the new column of the memory list 1 and 1〇-2 completes the column position. The address is 〇···0111 brush SRHF聍, new operation. When the self-refresh control signal generator 22 is activated, the SCLK pulse is issued by the simultaneous pulse generator 24. The setting circuit 60 responds. Select the signals bal, ba2, ba3, and ba4 to make the address 〇···=, and the four memory banks 1〇_1, 1〇_2, 10_3, and 1〇_4 are automatically refreshed and refreshed. The column address 〇...0111 is selected between J. The switch 4 传递 transmits the four memory bank selection signals 18 1277983⁄45^00 as the buffer memory selection signal bbal-bba4 to the count control signal generator 38. The signal generator 38 generates a positive pulse on the cnt, resets itself and moves the refresh address generator 28 to a new column address RADD having a value of 〇··· 1000. Self-refresh loops T2, T3, Τ4 The four memory banks are refreshed immediately, and Τ2 is being self-refreshed when entering the self-refresh mode. The refreshed columns of all the memories are simultaneously refreshed. The third embodiment of the decoding refresh command sdram 300 and the external refresh signal SDRAM 300 is introduced in Fig. 9 and Fig. 9, respectively, and the setting circuit 60 is replaced by Fig. 9A. The similar setting circuit 6A in Fig. 7 is improved by the SDRAM shown in Fig. 1. Using the self-refresh clock as shown in Fig. 4, the processor 24' provides the clock signals aclk and sdk as the round-trip signals. The pulse signal apk is supplied to the setting circuit 6A, and the clock signal sclk is supplied to the memory address address generator 26.

士圖1〇包含一繪示SDRAM元件300與300,之操作的 日守序圖。與上述之時序範__是,當發出斷電指令時 記憶庫10-1和10.2完成列位址為〇···〇1η之刷新列的自 φ 動刷新操作。當自我刷新控制訊號發生器22啟動SREF %犄脈叙生裔24在acik上產生一正脈衝。與圖8中相 同的是,此正脈衝使得設定電路6〇,宣稱全部的記憶庫選 擇訊號。這使得四個記憶庫HM、10-2、10-3和1〇_4中地 址為0…0111的列在時間間隔丁2,顧被同時刷新。開關 40把四個圮憶庫選擇訊號作為緩衝記憶庫選擇訊號 M3al-bba4全部傳遞到計數控制訊號發生器38。計數控制 訊號發生H 38產生—正脈衝給計數訊號_,在時間間隔 19 I2779835pi«〇c Τ3 /月間重设其自身並使刷新位址發生器28移到數值為 〇··· 1000的新一列位址RADD。 cnt上的正脈衝也使得時脈發生器24,停止產生狀化 且開始產生sclk。接下來的四個sclk脈衝後,記憶庫位址 發生器26逐個指向記憶庫位址00、01、10和11,使得記 憶庫位址解碼器36依次宣稱記憶庫選擇訊號bal、ba2、 ba3和ba4。這樣在時間間隔T3期間的四個sdk脈衝後, 四個記憶庫1(M、1G_2、10_3和10_4中數值為〇·.·1〇〇〇的 • 即將被刷新的列位址RADD被依次刷新。每個記憶庫被刷 新後,計數控制訊號發生器38進行計數,並在時間間隔 Τ3結束時宣稱cnt,以移動列位址並啟動新刷新列的記憶 庫位址發生器迴圈。 圖11 %示了圖9A與9B所示之設定電路和計數控制 訊號發生器的排列。計數控制訊號發生器38,,的佈局類似 於圖2所示之計數控制訊號發生器38。閂鎖器LAl-LAn 的輸出訊號(標記為Sl-Sn)被輸出到NOR1,同時也輸 ▲ 出到設定電路60,,。Figure 1 includes a daily sequence diagram showing the operation of SDRAM components 300 and 300. The timing sequence __ is that, when the power-off command is issued, the memories 10-1 and 10.2 complete the self-φ refresh operation of the refresh column of the column address 〇···〇1η. When the self-refresh control signal generator 22 activates SREF, the syllabus 24 generates a positive pulse on the acik. As in Fig. 8, this positive pulse causes the setting circuit 6 to declare all of the bank selection signals. This causes the four memories HM, 10-2, 10-3, and 1〇_4 to have addresses 0...0111 at the time interval of 2, which are simultaneously refreshed. The switch 40 passes all of the four memory selection signals as the buffer memory selection signal M3al-bba4 to the count control signal generator 38. Counting control signal generation H 38 is generated - positive pulse is given to counting signal _, resetting itself at time interval 19 I2779835pi «〇c Τ3 / month and moving refresh address generator 28 to a new column with value 〇··· 1000 Address RADD. The positive pulse on cnt also causes clock generator 24 to stop generating and begin to generate sclk. After the next four sclk pulses, the memory address generator 26 points to the memory addresses 00, 01, 10, and 11, one by one, such that the memory address decoder 36 sequentially declares the memory selection signals bal, ba2, ba3, and Ba4. Thus, after four sdk pulses during the time interval T3, the four memory banks 1 (the values of M, 1G_2, 10_3, and 10_4 are 〇···1〇〇〇). The column address RADD to be refreshed is sequentially refreshed. After each bank is refreshed, the count control signal generator 38 counts and asserts cnt at the end of the time interval Τ3 to move the column address and initiate the memory address generator loop of the new refresh column. % shows the arrangement of the setting circuit and the count control signal generator shown in Figures 9A and 9B. The layout of the count control signal generator 38, is similar to the count control signal generator 38 shown in Figure 2. Latch LAl- The output signal of LAn (labeled as Sl-Sn) is output to NOR1, and is also output to the setting circuit 60, .

5史疋電路60”接收訊號aclk,其分別驅動η個NAND 問ΝΑ-1到ΝΑ-η的一輸入端。NAND閘ΝΑ_1到ΝΑ-η的 另一輸入端分別藉由來自計數控制訊號發生器38”的訊 號S1到Sn進行驅動。NAND閘ΝΑ_1到ΝΑ-η的輸出訊 號分別驅動ρ通道電晶體Ρ1到Ρη的閘極。與圖7相同的 是’ Ρ通道電晶體Ρ1到Ρη連接到記憶庫選擇訊號線bal 到 ban 〇 I277988^d〇c ㈣rt,SDRAM元件300與300’使用計數控制訊 二:^定電路,時之操作的時序圖。當發出 、士 =:時’關器LA1與LA2被設定(為低輸出), =因為在時間間隔T1期間兩個先前的自動刷新指令指 庫位元元元址〇〇和〇1。問鎖器七(圖中未顯示) u _之⑷未被設定’故具有高輸出。 、、·口果,虽aclk被宣稱時,NA_3(圖中未顯示)和na_4(例 汝圖U所示之NA-n)被驅動為低,啟動電晶體p3 (圖中 •未?示)和P4 (例如圖u所示之pn)。故如圖12所示, 記憶庫選擇訊號ba3和ba4發出脈衝,並在時間間隔丁2, 期間對5£&gt;憶庫1G-3和HM而不是對記憶庫1(M和1〇_2執 行刷新操作。這樣就完成了 RADDG...G111 _新操作, 使得計數控制訊號發生器38”宣稱伽。伽的宣稱使操作 被轉移到記憶庫位址發生器進行普通的自我刷新操作,如 上所述。 圖13A與13B分別繪示了解碼刷新指令SDRAM 4〇〇 •和外部刷新訊號SDRAM 400,的第四實施例。舉例來說, SDRAM 400與SDRAM丨〇〇之間的主要差別在於第一開關 34’和時脈發生器24”的操作。這些差別參考圖μ所示 之時序圖做了最佳解釋。 ’、 與上述的時序圖相同的是,在所介紹的範例中當自動 刷新指令已發送到記憶庫位址00、01和當前刷新列^發出 斷電指令。但是不同於圖3的是,SREF被自我刷新^制 訊號發生器宣稱不會使第一開關34,選擇内部記憶庫位 21 1277980填如 = iba2相反’第一開關34’繼續選擇來自位址閂鎖器% ,内部記憶庫位址ibal。而且,時脈發生器24,,並非在自 我刷新模式剛啟動時就開始發出SCLK脈衝。 在圖13A/13B所不之實施例中,即使已進入自我刷新 二:Zfe控制讀要完成當前列的刷新操作。在時間間 二22期間自我刷新模式啟動時sdram元件働繼續回 jREF指令。故,記憶㈣时自我麟模式中發送新 ^刷新指令的同時提供剩餘的記憶庫位址〇〇和⑴給 虽别列,這使得記憶庫10_3與1〇_4中數值為〇 〇ιιι的 列位址RADD被刷新。 、、則入=日Γ間間隔T22結束時’計數控制訊號發生器38偵 t的記憶庫都已完成當前刷新列的定址,並發出計數5 history circuit 60" receives signal aclk, which drives n NAND ΝΑ1 to ΝΑ-η input respectively. The other input of NAND gate _1 to ΝΑ-η is respectively controlled by the counting control signal generator The 38" signal S1 to Sn are driven. The output signals of NAND gates _1 to ΝΑ-η drive the gates of the ρ-channel transistors Ρ1 to Ρn, respectively. The same as Figure 7 is that 'Ρ channel transistor Ρ1 to Ρη is connected to the memory bank selection signal line bal to ban 277I277988^d〇c (four) rt, SDRAM components 300 and 300' use counting control two: ^ fixed circuit, when Timing diagram of the operation. When the quotation is issued, the gates LA1 and LA2 are set (low output), because two previous auto-refresh instructions during the time interval T1 refer to the location meta-addresses 〇 and 〇1. Ask the locker seven (not shown) u _ (4) is not set' so it has a high output. , , · 口 果 果 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , And P4 (for example, pn shown in Figure u). Therefore, as shown in FIG. 12, the memory selection signals ba3 and ba4 emit pulses, and during the time interval D1, during the period of 5, the memory is 1G-3 and HM instead of the memory 1 (M and 1〇_2). The refresh operation is performed. This completes the RADDG...G111_new operation, causing the count control signal generator 38 to declare the gamma gamma claim that the operation is transferred to the memory address generator for normal self-refresh operation, as above 13A and 13B respectively illustrate a fourth embodiment of a decode refresh instruction SDRAM 4 and an external refresh signal SDRAM 400. For example, the main difference between SDRAM 400 and SDRAM is that The operation of a switch 34' and clock generator 24". These differences are best explained with reference to the timing diagram shown in Figure μ. ', as with the timing diagram above, when the example is automatically refreshed The instruction has been sent to the memory address 00, 01 and the current refresh column ^ to issue a power down command. However, unlike Figure 3, the SREF is self-refreshed and the signal generator declares that the first switch 34 will not be made, selecting internal memory. Location 21 1277980 fills in = iba2 Inversely, the 'first switch 34' continues to select from the address latch %, the internal memory address ibal. Moreover, the clock generator 24, does not start to issue the SCLK pulse when the self-refresh mode is just started. Figure 13A In the embodiment of /13B, even if it has entered self-refresh two: Zfe control reads to complete the refresh operation of the current column. During the time interval 22, the sdram component continues to return to the jREF instruction when the self-refresh mode is started. Therefore, the memory (4) When the new ^ refresh command is sent in the self-learn mode, the remaining memory address 〇〇 and (1) are given to the other columns, which makes the column address RADD of the memory 10_3 and 1〇_4 whose value is 〇〇ιιι is Refresh, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2S 24”, D乓大,啟動(結合SREF)時脈發生器 〇士人開關34從選擇内部記憶庫位址ibal切換 =SREF)到選擇内部記憶庫位址_ 使 ㈣憶元件進入普通的自我刷新模式。 轉換使 序圖圖Γ日msDR施元件400和棚,的另一合法時 必跟蹤尚去、隹圖71’進入自我刷新操作時記憶控制器不 反,、隹進仃^蘭新的記憶庫之舰或特徵。相 令給每個新隐控制器發出-項自動刷新指 已6庫。如果在此迴圈結束之前由於全部記憶庫 餘==㈣定址而導致當前列向前移動,那麼任何剩 餘的自動刷新迴圈都可忽略掉。 ⑸ 22 127798¾5^ 上述實施例中所描述的記憶元件是為使用記憶系統中 的記憶控制器而描述的。記憶控制器可結合於一處理器 中,或者可以是一單獨的積體電路作為記憶體與處理器之 間的介面。圖16-19中繪示了幾個有代表性的記憶系統。 圖16繪示了 一種記憶系統5〇〇,其包括一記憶控制器 600和一記憶元件1 〇〇。根據圖示,記憶控制器6〇〇提供指 令COM、記憶庫位址BA、以及列/行位址ADD到記憶元 件100匯流排上。對於寫入指令,記憶控制器刪提供寫 藝入資料Din到記憶元件100的資料匯流排上。對於讀出指 令,^憶控制器600接收來自於記憶元件1〇〇之資料匯流 排的讀出資料Dout。當記憶元件⑽卫作於普通模式時, 記憶控制器要提供每-記憶庫刷新(服)自動刷新指令 到記憶元件100。但是控制器_可以不考慮舰迴圈的 狀態而使記憶元件1GG進崎電狀態,如上所述。當然, 記憶元件1GG也可如上所述用例如記憶树細或=〇〇、代 替:進人斷電狀態後’衫成當前刷新列的pBR迴圈,記 •憶元件100也可用記憶元件姻代替,一控制器_提供 附加的自動刷新指令。 s、、日不於圖16中的是單個的記憶元件,但許多記憶系統 =由個或夕個a己憶模組結合而成。圖17綠示了一種記憶 系、、充550,其使用控制器6〇〇和一記憶模組作為記 憶=件100 (或者例如上述之2〇〇、3〇〇、或4〇〇),其中 A憶模組100_m由若干相同類型的記憶元件跡工到⑽^ 結合而成。功能類似於圖16,模組1〇〇_m上的緩衝器 23 I2779835pifdoc (buffer)和/或跟蹤器(trace)把 c〇M、BA、以及 ADD 訊號分配到每個記憶元件1004到1〇〇_n中。 圖16與17綠示了使用解碼自動刷新指令的記憶系 統。圖18與19繪示了使用由記憶控制器_,提供的外 部自動刷新訊號EREF卩啟動自動刷新操作的類比記憶系 統500’和550’。記憶系統5〇〇,和55〇,使用上述之 記憶元件(例如,記憶元件1〇〇’ 、200,、300,、以及 400’ )的外部自動刷新形式。2S 24”, D pong large, start (in combination with SREF) clock generator gentleman switch 34 from selecting internal memory address ibal switch = SREF) to select internal memory address _ to make (four) recall component into ordinary self Refresh mode. The conversion makes the sequence diagram map the day msDR application component 400 and the shed, another legal time must be tracked, the image 71' enters the self-refresh operation, the memory controller is not reversed, and the 仃^兰新The ship or feature of the memory bank. The order is automatically issued to each new hidden controller. The item is automatically refreshed to indicate that the current library has moved forward, because the current column is moved forward because all memory banks are == (four) addressed before the end of the loop. Then any remaining auto-refresh loops can be ignored. (5) 22 1277983⁄45^ The memory elements described in the above embodiments are described for use with a memory controller in a memory system. The memory controller can be combined in a processor. Or a separate integrated circuit can be used as the interface between the memory and the processor. Several representative memory systems are illustrated in Figures 16-19. Figure 16 depicts a memory system 5 It includes a memory The controller 600 and a memory component 1 根据. According to the illustration, the memory controller 6 provides the instruction COM, the memory address BA, and the column/row address ADD to the memory element 100 bus. For the write command The memory controller deletes the data stream Din to the data bus of the memory element 100. For the read command, the controller 600 receives the read data Dout from the data bus of the memory element 1 When the memory element (10) is in the normal mode, the memory controller provides a per-memory refresh (service) auto-refresh command to the memory element 100. However, the controller_ can make the memory element 1GG into the state without considering the state of the ship's loop. The electrical state is as described above. Of course, the memory element 1GG can also be replaced by, for example, a memory tree thin or = 〇〇 as described above: after entering the power-off state, the shirt becomes the pBR loop of the current refresh column, and the memory component is recorded. 100 can also be replaced by a memory element, a controller _ provides an additional auto-refresh command. s, day is not a single memory component in Figure 16, but many memory systems = by a eve or a memory module Combined Fig. 17 shows a memory system, charging 550, which uses the controller 6〇〇 and a memory module as the memory=piece 100 (or, for example, 2〇〇, 3〇〇, or 4〇〇 above). The memory module 100_m is composed of several memory elements of the same type to (10)^. The function is similar to that of Figure 16, the buffer 23 I2779835pifdoc (buffer) and/or tracker on the module 1〇〇_m ( Trace) assigns c〇M, BA, and ADD signals to each memory element 1004 to 1〇〇_n. Figures 16 and 17 illustrate a memory system using a decode auto-refresh command. Figures 18 and 19 illustrate The analog memory systems 500' and 550' that initiate the auto-refresh operation are initiated using the external auto-refresh signal EREF provided by the memory controller_. The memory system 5〇〇, and 55〇, use the external auto-refresh form of the above-described memory elements (e.g., memory elements 1〇〇', 200, 300, and 400').

熟悉此技藝者都知道,還可以設想許多其他的元件社 構排列’謂有許多設計參量尚未論述。例如,上述實施 例的各種特徵可與以其他方式排_實施例相結合。大多 數情形下’繪示於圖巾的特殊€路僅作為示範,其他 =可實現相同或相似的功能。在不脫離本發明之精神和 辄圍内’可對本發明之實施例做些許更動與潤飾,因此 發明之保護範圍當視後附之申請專利範圍所界定者為準。 上述貫施例可作為範例。雖然敍述中#幾處使 — =二個”、“另—、或‘‘―些”實施例的字眼,但這並不 思味者母:人使用都針_一實施例, 特徵僅應祕JM目實施例。 者此 雖然本發明已以較佳實施例揭露如 限定本發明,任何熟習此㈣者,在不脫縣以 内:當可作些許之更動與潤飾,因此本:明之 耗圍S視後附之申請專利範圍所界定者為準。 ’、4 【圖式簡單說明】 24 127798B5Pifd〇c 圖u,IB分別以方塊圖形式繪示了依據第一實施例 之同步動·⑮、隨機存取記憶(SDRAM)聽的解碼自動 和外部自動刷新訊號形式。 圖2繪不了用於圖认與1B所示之SDRAM元件的 數控制訊號發生器。 圖包含一時序圖,其繪示了圖1A與1B所示之 SDRAM元件從自動刷新到自我刷新的轉換。 圖4包含用於圖认與1B所示之元件的另一 自我刷新時脈發生器的方塊圖。 圖包含另一時序圖,其繪示了圖1A與1β所示 SDRAM疋件從自動刷新到自我刷新的轉換。 分別以方塊圖形式―了依據第二實施例 夺1二a 機存取記憶(SDRAM)元件的解碼自動刷新 和外。卩自動刷新訊號形式。 圖7鈿不了一種用於圖6八與犯所示之SDRAM 的設定電路。 疋件 ΓλΛ包含一時序圖,其綠示了圖6A與6B所示之 70件從自動刷新到自我刷新的轉換。 之同^^犯分取方塊圖形式繪示了依據第三實施例 白2思機存取記憶(SDRAM)元件的解碼自動刷新 和外部自動刷新訊號形式。 W新 包含一時序圖,其綠示圖了 9A與9B所示之 M 70件從自動刷新到自我刷新的轉換。 圖11繪不了計數控制訊號發生器與設定電路的另— 25 f.doc I27798»p*: 種結構’其用’ 9A/9B f路以構成依據第 列的同步動態隨機存取記憶(SDRAM)元件。、 ㈣一時序圖,其1會示了使用圖11所示之計數 自設定電路使SD議元件從自動刷新到 圖13A與13B分別以方塊圖形式繪示了 例之同步動態P賴存取纖(SDRA ^ 新和外部自_新喊形式。 件的解碼自細 sdrH含—日_ ’其_ 了圖13A與別所示之 SDRAM兀件從自動刷新到自我刷新的轉換。 圖15包含另一時序圖,苴-之_M元件從_新到自:新 新二依據本發明-軸 新指實施例的咖^ 固μα 件之記赌_記憶系統。 $ : I W依據本發明—實闕的使射卜部自動刷 新訊號的記憶系統。 1θ ^ 19、、會不了依據本發明—實施例的使用外部自動刷 新訊號和記憶模組的記憶系統。 【主要元件符號說明】 100、100’ 、200、9rm, ^ (SDRAMS) 〇 、姻:解碼刷新指令SDRAM元件 26 I27798735Pifdoc 300’ 、400’ :外部刷新訊號SDRAM元件 500、550、500’ 550’ :類比記憶系統 600、600’ :記憶控制器 100_m、100’ -m :記憶模組 100-1、…、100-n,100’ -1、…、100,·η :記憶元件 10 :記憶單元陣列 10-1、…、10·η :記憶單元陣列庫 WL :字元線 BL ·位兀線 MC :記憶單元 12 :列位址解碼器電路 12_1、…、12-η :列地址解碼器 14 :行位址解碼器電路 14-1、…、14-η :列地址解碼器 16 :資料輸入緩衝器 18 :資料輸出缓衝器 20 :指令解碼器 22 :自我刷新控制訊號發生器 24、24’ 、24” :時脈發生器 26、26’ :記憶庫位址發生器 28 :刷新位址發生器 30 :選擇器 32 :地址閂鎖器 34、34, 、40 :開關 27 I27798Tj5pif.doc 36 · δ己憶庫地址解碼器 38、38 :計數控制訊號發生器 50 :自動刷新時脈參考 52 :自我刷新時脈參考 60 ' 60 、60” :設定電路 WR、 radd、 cadd、 din、DIN、dout、DOUT、COM、ACT、RD AREF/EREF、PD、SREF、SCLK、iba、ibal、iba2 RADD、radda、ADD、BA、bbal 〜bban、bal 〜ban cnt、aclk、sclk :訊號 N1、N2 : n通道MOSF1ET電晶體 II、12、13 :反相器 LA1、…、LAn ·閃鎖電路 NOR1、NOR2、NOR3 : NOR 閘 L :閂鎖器 a、b :節點 、T22、 Ή、T2、T3、U、t2、ΤΓ 、T2’ 、T3’ 、T4’ T23 :時間間隔 PI、…、Pn : p通道電晶體 DLC:延遲裝置 SI、S2、…、Sn :訊號 NA-1、NA-2、···、ΝΑ·η : NAND 閘 28Those skilled in the art will recognize that many other component architectures are also contemplated. There are many design parameters that have not been discussed. For example, the various features of the above-described embodiments can be combined with other embodiments. In most cases, the special roads shown in the towel are for demonstration purposes only, and other = can achieve the same or similar functions. The present invention may be modified and modified without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. The above embodiments can be exemplified. Although in the narrative, the words "#", "two", "other", or "some" are used in this example, but this is not a matter of thinking: the person uses the needle _ an embodiment, the feature is only secret The present invention has been disclosed in the preferred embodiments as defined by the preferred embodiments. Anyone who is familiar with this (four) is not in the county: when some changes and retouching can be made, therefore: It is subject to the definition of the patent application scope attached to the following. ', 4 [Simple description of the drawing] 24 127798B5Pifd〇c Figure u, IB shows the synchronous motion according to the first embodiment in a block diagram, respectively, random The automatic decoding and external auto-refresh signal form of the access memory (SDRAM) listening. Figure 2 illustrates the digital control signal generator for the SDRAM component shown in Figure 1B. The figure contains a timing diagram, which shows the figure. The SDRAM elements shown in 1A and 1B are switched from auto-refresh to self-refresh. Figure 4 contains a block diagram of another self-refreshing clock generator for the elements shown in Figure 1B. The figure contains another timing diagram, It shows the SDRAM components shown in Figure 1A and 1β from the automatic New self-refresh conversion. In the form of a block diagram, the decoding of the SDRAM component is automatically refreshed and externally according to the second embodiment. The auto-refresh signal form is shown in Fig. 7. Figure 6 shows the setting circuit of the SDRAM shown in Figure 6. The device ΓλΛ contains a timing diagram, which shows the conversion of 70 pieces from auto-refresh to self-refresh as shown in Figures 6A and 6B. The block diagram shows the decoding auto-refresh and external auto-refresh signals in accordance with the third embodiment of the SDRAM device. The W new includes a timing diagram, and the green diagrams are 9A and 9B. The display of M 70 from automatic refresh to self-refresh conversion. Figure 11 can not draw the count control signal generator and set circuit another 25 f.doc I27798»p*: kind of structure 'use it' 9A/9B f way A synchronous dynamic random access memory (SDRAM) component according to the first column is constructed. (4) A timing chart, wherein 1 shows that the SD self-setting circuit is automatically refreshed to the FIGS. 13A and 13B using the counting self-setting circuit shown in FIG. In the block diagram form the same example Dynamic Pray access fiber (SDRA ^ new and external self_new shouting form. Decoding of parts from fine sdrH containing - day_' its_ Figure 13A and other SDRAM components from automatic refresh to self-refresh conversion Figure 15 contains another timing diagram, the _M component from _new to self: new two according to the present invention - the new axis of the embodiment of the gambling _ _ memory system. $ : IW basis The present invention - a memory system that automatically refreshes the signal by the imaging section. 1θ ^ 19, can not rely on the memory system of the external automatic refresh signal and memory module according to the present invention. [Description of main component symbols] 100, 100', 200, 9rm, ^ (SDRAMS) 〇, marriage: decoding refresh command SDRAM component 26 I27798735Pifdoc 300', 400': external refresh signal SDRAM component 500, 550, 500' 550': Analog memory system 600, 600': memory controller 100_m, 100'-m: memory module 100-1, ..., 100-n, 100'-1, ..., 100, η: memory element 10: memory cell array 10-1, ..., 10·n: memory cell array library WL: word line BL · bit line MC: memory unit 12: column address decoder circuit 12_1, ..., 12-n: column address decoder 14: Row address decoder circuit 14-1, ..., 14-n: column address decoder 16: data input buffer 18: data output buffer 20: command decoder 22: self-refresh control signal generator 24, 24' 24": clock generator 26, 26': memory address generator 28: refresh address generator 30: selector 32: address latch 34, 34, 40: switch 27 I27798Tj5pif.doc 36 Delta memory address decoder 38, 38: count control signal generator 50: automatic refresh clock reference 52: Self-refreshing clock reference 60 '60, 60": setting circuit WR, radd, cadd, din, DIN, dout, DOUT, COM, ACT, RD AREF/EREF, PD, SREF, SCLK, iba, ibal, iba2 RADD, radda, ADD, BA, bbal ~ bban, bal ~ ban cnt, aclk, sclk: signal N1, N2: n channel MOSF1ET transistor II, 12, 13: inverter LA1, ..., LAn · flash lock circuit NOR1 , NOR2, NOR3: NOR gate L: latches a, b: node, T22, Ή, T2, T3, U, t2, ΤΓ, T2', T3', T4' T23: time interval PI, ..., Pn: P-channel transistor DLC: delay device SI, S2, ..., Sn: signal NA-1, NA-2, ···, ΝΑ·η: NAND gate 28

Claims (1)

127798^5Pifd〇c 十、申請專利範圍: 有多憶元件具 接收-外部刷=憶的操作方法包括: =外部刷新記憶庫位址對應的記憶單 當刖列執彳了-自動卿操作; 平幻犀之 進入自我刷新模式以回應斷電指令;以及 在自我刷新模式中當前列初次更新為新 〜 方法’其中完成全部記憶操作 ,己憶庫之當前列的刷新操作。 早歹〗庫亚執仃母個 3. 如申請專利範圍第2項所述之 =更包括在自我刷新模式中依次通;;=广操: 列庫期間當_初錢新為新—列 。卩4早4 速度大於自我模式巾#制初=刷新操作的 用的刷新速度。 灵新為新一列之後使 4. 如中請專利範圍第i項所 方法’其巾絲全部記料元陣 讀的操作 操作的過程包括啟動全部 =—的自動刷新 刷新操作。 _庫之當前列的同時 5·如申請專利範圍第4項 方法’更包括在自我刷新模式中當前 29 I27798^pif.d〇〇 :行記憶單元陣列庫中的新當前 方法6:申中=3=5項所述之同步記憶元件的操作 刷新操作:二自;刷新操作的過程包括梅^ ^ °己饫庫位址訊號給每個記憶庫。 *法:中=;,4項所述之同步繼 刷新操作Γ新操作的過程包括在每個自我 • 8如”_~ ;^雜址職給每個記憶庫。 之後,對新模式中當前列初次更新為新一列 操作。〜70列庫的後面各列執行連續的自我刷新 方法9 項所述之同步記憶元件的操作 操作的過:=]和全部記憶單元陣列庫的自動刷新 撬下接nmr _式後在不麟自我騎模式的情況 庫之^列都執行完—次刷新操作;2各⑽早疋陣列 行自我:二::模式中當前列初次更新為新一列之後執 作方之同步記憶元件的操 記憶r:數專,=== 申^利_第9摘述之同步記,以件的操 12779紛印㈣c 作方法,其中進入自我刷新模 記憶庫位址之數量等於尚未勃&quot;欠到的附加外部刷新 單元陣列庫之數量。 執仃當别列之刷新操作的記憶 12.如申請專利範圍第丨 作方法,其中在自我刷新模式中^同步記憶元件的操 之前對當前列和全部記憶單元初人更新為新-列 過程包括:對尚未執行當前列 執二自動刷新操作的 陣列庫的當前列啟動同時刷新操作。雜的全部記憶單元 13·—種同步記憶元件的 有多個記憶單元陣列庫,朗步辦元件 =步記憶元件具 接收一外部刷新記憶庫位址;〜_乍方法包括: 當前列執^ ㈣憶單元陣列庫之 ,入自我刷新模式以回應斷電指令; 在自我刷新模式中’依^ 對母=憶庫的當前列執行刷新操作 莫式”前列初次更新為新-列。 有多個記憶單元陳「凡件的㈣方法’該同步記憶元件具 步:憶元件的操作方法包括: 當前列執記憶庫位址對應岐憶單元陣列庫之 進入Z 、自動刷新操作; 在自我刷新模式以回應斷電指令; 、斤模式中,對全部圮憶單元陣列庫的當前列 31 12779S^S^pif-doc 啟動同時刷新操作;以及 =二刷新模式中當前列初次更新為新斗 有多個記操作方法’鋼步記憶元件具 接f-外部憶元件的操作方法包括: 當前列執二刷::操庫:;址對應的記憶單元陣列庫之 自我刷新模式以回應斷電指令; 啟動同時刷新操作; h後在自我刷新模式巾當㈣初:欠更新為新一 同日#1=模式中,對全部記憶單㈣列庫的當前列 及 列;以 新操作 ::亥些記憶單元陣列庫的後面各列依次執行 自我刷 有多===糊謝&amp;,_記憶元件具 接收;=4=憶元件的操作方法包括: 當前二址對應的記憶單元陣列庫之 ,入自我刷新模式以回應斷電指令; 接收附,自模式中,在不脫離自我刷新模式的情況下 庫位址,直到各記憶單元= J ^已執仃元一次刷新操作; %後在自我觸模式中當前列初次更新為新_列;以 32 I2779^35Pifd〇c 及 二為二:列之後執行自我刷新操作。 有多個記憶單元'陣歹;::的操作方法’該同步記憶元件且 接f-外:::::憶元件的操作方法包括; 後在自我刷新模式中當前列初次:新為::列 新一列之後執行自我刷新 當前丄:二?動新::庫:址對應的記憶單元陣列庫之 王。元陣列庫中的當前列啟c操作的 及 ,•以 操作。 記憶元件具 種同步記憶it件的操作方法,該同步 有多=憶單辑料,步記“ 接收一外部刷新請求; 勺知作方法包括: 以回應該外部庫的U列執行~自動刷新操作 進入自我刷新模式以回應斷電指令; 在自我刷新模式中,在不脫離 的外部刷新請求,並執行相St式的情況下 直到各記解轉列庫之#制彳^自_新操作, 及隨後在自我刷新模式中當前列初 33 12779835Pifd〇c 在當前列更新為新一列之後執行自我刷新操作。 19·一種記憶控制器的操作方法,該記憶控制器的操作 方法包括: 按照對η個記憶單元陣列庫進行定址的順序,發送自 動刷新記憶庫位址給由此η個記憶庫構成的記憶單元,然 後再對這η個記憶庫進行定址,使得該記憶單元能夠在對 記憶庫之一的另一列進行刷新之前根據自動刷新記憶庫位 址的順序依次刷新這η個記憶庫中的當前列; 發出一斷電指令到記憶單元;以及 在不啟動記憶單元的情況下,發送附加的自動刷新記 憶庫位址給記憶單元,使該記憶單元能夠在自我刷新操作 開始之前完成當前列的刷新操作。 2(λ如申請專利範圍第19項所述之記憶控制器的操作 方法,其中在斷電指令之後發出的附加自動刷新記憶庫位 址的數量等於η。 21. 如申請專利範圍第19項所述之記憶控制器的操作 方法,其中在斷電指令之後發出的附加自動刷新記憶庫位 址之數量等於尚未執行當前列刷新操作的記憶單元陣列庫 之數量。 22. —種記憶系統,包括: 至少一個記憶單元,其具有η個記憶庫和一個可定址 記憶庫自動刷新操作,該記憶單元包括自動刷新電路,其 對每個被定址的記憶庫之刷新列進行定址以執行自動刷新 操作,直到η個記憶庫在至少一次自動刷新操作中均已完 34 12779835Pifd〇c ==!單元中的電路使每個尚未被定址的記憶庫 中的刷新列在進人自我刷新模式時完成刷新操作;以及 址嘗:其宣稱啟動指令並提供外部刷新記憶庫位 t立ΙΪΓ !1的n次連續自動刷新操作中提供η個記憶 的-連 _ 23.如申請專利範圍第22項所述之 使t制益啟動该記憶單元的自動刷新操作。 人自第23項所述之_統,其中進 動刷新摔作回應該外部刷新訊號線上的自 庫均已=當;列 指令,2項所述之_、統,更包括 制‘ί送適 元執賴令 6·種同步^丨思元件,包括·· Μ 固獨立的可定址記憶單元陣列庫· 當前術 =位元址發生器,叫定全部記憶單元陣列庫的 35 1277984¾¾ d〇c 刷新二庫=止==以接收—外部提供的記憶庫位址給 應的記憶單元陣列庫; 用清應於i己憶庫位址對 杂前^撕城雜料_,當各記料元_庫中的 田·,斤列均已完成刷新操作1 發生器以產生新_新列;以及給刷新位址 記情皁自ίΓΙ電路,在自_稍式__作應用於 前刷新列更新為新一列之前完成全部 L、早70陣解之當前顯列_新操作。 中自圍第26項所述之同步記憶元件,其 刷新其在自我刷新模式中產生自我 新記1=^外部提供的記憶庫位址或自我刷 中圍第27項所述之同步記憶元件,其 中以弟-開關在自我·模式帽擇自我綱記憶庫位 i\V 〇 29·如申明專利氣圍第28項所述之同步記憶元件,其 中在,自^刷新模式時更新當前刷新列之前,該記憶庫 =址么生☆依*產生—自我麟記憶庫位址記憶 陣列庫。 3〇·如申明專利範圍帛Μ項所述之同步記憶元件,其 36 12779835^^ ㈣發生器===:列之前,該記憶庫 尚未執行當前列定址的址给刷新操作申 包括28項所述之同步記憶元件,更 元陣列庫以執行第=ΐ刷新模式時選擇全部記憶單 包括28項所述之_憶元件,更 尚未執行者前在進入自我刷新模式時選擇刷新操作中 新列疋址的全部記憶單元陣列庫以執行第= =如申請專利範圍第27項所述之同步記 在自我刷新模式中當前刷新 =/、 開關選擇自我刷新記憶庫位^更新為新—列時,該第一 中該利範圍第33項所述之同步記憶元件,其 之前,該士己产j我刷新輪式中選擇自我刷新記憶庫位址 新操作Γ 牛繼續接收外部提供的記憶庫位址用於刷 中該rtf專利㈣第34項所狀_⑽元件,其 作,直至人2接收外部提供的記憶庫位址用於刷新操 前列定址的全部之H刷新操作中尚未執行當 止。 〜70車列庫凡成刷新操作的定址為 中進請專利麵第34項所狀同步記'm 自我刷新模式之後該記憶元件接收η個外部提供的 37 記憶庫位址用於刷新操作。 37·如申請專利範圍第 中該第-開關起作用以=之同步記憶元件’其 出。 應、骑仏、庫位址計數器的輪 38·如申請專利範圍第 我刷新時脈電路更包括— 、,之同步記憶元件,自 =义中提供1新;脈自我 中該自我刷新時脈發生器=項記憶元件,其 侧’以及—自我麟時 4 刷新模式中該自動刷專树脈發生 二生-’ “在自我 動刷新時脈發生器以第—紗^ ^時啟動’該自 我刷新時脈發生器以第二速;生;脈訊號’該自 我刷新時脈發生器具有—輸出級(。輪出時脈訊號,該自 時脈發生器與該自我刷新時 心虎進行或(OR)賴操作。 U輸出%脈 中自元件,其 刷擇全部記憶單元陣列庫用“ ^ &amp;如申請專利範圍第35項所述之同步記憶元件,其 38 127798¾^ iloi疋電路包括··一延遲電路,以延遲自我刷新時脈;一 及一 ^以接收自我刷新時脈和延遲的自我刷新時脈·以 線全較鮮㈣解㈣憶庫位址 中自申請專利範圍第26項所述之同步扯分放甘 我刷新電路包括一設定 ^兀件,其 的全部記憶單元=,新#作中尚未執行當椒^ 39127798^5Pifd〇c X. Patent application scope: There are many memory components with receiving-external brush=remembering operation methods including: = external refresh memory memory address corresponding to the memory list when the queue is executed - automatic operation; The magic rhyme enters the self-refresh mode in response to the power-off command; and in the self-refresh mode, the current column is first updated to the new ~ method 'where all memory operations are completed, and the current column refresh operation of the library is recalled. Early 歹 库 库 库 库 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.卩 4 early 4 speed is greater than the self-mode towel # system initial = refresh operation refresh speed. After Lingxin is a new column, the process of the operation of the method is as follows: The process of reading the entire frame of the method of the method of the invention is to start the automatic refresh operation of all =-. _ The current column of the library is at the same time as the fourth method of the patent application scope. 'It is included in the self-refresh mode. Currently 29 I27798^pif.d〇〇: The new current method in the row memory cell array library 6: Shenzhong = The operation refresh operation of the synchronous memory element of 3=5 items: the second self; the refresh operation process includes the memory address of each memory to each memory bank. * Method: Medium =;, the four-synchronization success-sequential refresh operation The new operation process includes each memory in each self • 8 such as “_~ ;^”. After that, the current mode is in the new mode. The column is first updated to a new column operation. The subsequent columns of the ~70 column library perform a continuous self-refresh method. The operation of the synchronous memory element described in item 9: =] and the automatic refresh of all memory cell array libraries After the nmr _ type is executed in the case of the self-riding mode, the column of the library is executed - the refresh operation; 2 each (10) early array line self: two:: the current column in the mode is updated to a new column after the first time The memory of the synchronous memory element r: the number of special, === Shen ^ _ _ 9th summary of the synchronization, the operation of the 12779 (4) c method, in which the number of self-refresh mode memory addresses is equal to Boss &quot;The number of additional external refresh unit array libraries owed. The memory of the refresh operation when it is listed. 12. For the patent application scope method, in the self-refresh mode, before the operation of the synchronous memory element Current column and all memory sheets The initial update to the new-column process includes: initiating a simultaneous refresh operation on the current column of the array library that has not performed the current column auto-refresh operation. All of the memory units 13·--the synchronous memory element has multiple memory cell arrays Library, step by step component = step memory component with an external refresh memory address; ~ _ method includes: the current column is executed ^ (four) memory cell array library, into self-refresh mode in response to power-off instructions; in self-refresh In the mode, the refresh operation is performed in the current column of the parent = memory library. The front column is updated to the new column first. There are a plurality of memory units, the "fourth method of the piece" (the fourth method), the synchronous memory element has a step: the operation method of the memory element includes: the current column memory address corresponding to the memory cell array entry Z, automatic refresh operation; The refresh mode responds to the power-off command; in the mode, the current column 31 12779S^S^pif-doc of all the memory cell array libraries starts the simultaneous refresh operation; and the current column in the second refresh mode is updated to the new bucket. The operation method of the plurality of recording operation methods 'steel step memory element with f-external memory element includes: the current column two brush:: the operation: the self-refresh mode of the memory cell array library corresponding to the address in response to the power-off instruction; Start the simultaneous refresh operation; h after the self-refresh mode towel (4) early: under update to the new same day #1= mode, the current column and column of all memory list (four) column library; with the new operation:: some memory unit The subsequent columns of the array library sequentially perform self-brushing. ================================================================================== , into the self-refresh mode to respond to the power-off command; receive the attached, self-mode, the library address without leaving the self-refresh mode, until each memory unit = J ^ has executed a refresh operation; % after the self The current column in the touch mode is first updated to the new_column; 32 I2779^35Pifd〇c and two are two: the self-refresh operation is performed after the column. There are multiple memory cells 'array;:: operation method' the synchronous memory element And f-outer:::::Recalling the operation method of the component includes: After the current column in the self-refresh mode, the first time: New:: After the new column, the self-refresh is performed. Current: Second? New:: Library: The king of the corresponding memory cell array library. The current column in the meta-array library is the operation of the c-operation and the operation. The memory element has a method of synchronizing the memory of the piece, the synchronization has many = recalling the material, step "Receiving an external refresh request; the method of knowing the spoon includes: executing in the U column of the external library to return to the self-refresh mode in response to the power-off command; in the self-refresh mode, not in the self-refresh mode Refreshing the request and executing the phase St-form until the new operation of the refusal library, and then the current column in the self-refresh mode 33 12779835Pifd〇c after the current column is updated to a new column Perform a self-refresh operation. 19. A method of operating a memory controller, the method of operating the memory controller comprising: transmitting an auto-refresh memory address to a memory unit formed by the n memory banks in an order of addressing the n memory cell array banks And then addressing the n memory banks, so that the memory unit can sequentially refresh the current columns in the n memory banks according to the order of automatically refreshing the memory address addresses before refreshing another column of one of the memory banks; Sending a power-off command to the memory unit; and, if the memory unit is not activated, transmitting an additional auto-refresh memory address to the memory unit to enable the memory unit to complete the refresh operation of the current column before the self-refresh operation begins. 2 (λ) The method of operating the memory controller as described in claim 19, wherein the number of additional auto-refresh memory addresses issued after the power-off command is equal to η. 21. As claimed in claim 19 The method of operating the memory controller, wherein the number of additional auto-refresh memory addresses issued after the power-off command is equal to the number of memory cell array banks that have not performed the current column refresh operation. 22. A memory system comprising: At least one memory unit having n memory banks and an addressable memory bank auto-refresh operation, the memory unit including an auto-refresh circuit that addresses a refresh column of each addressed memory bank to perform an auto-refresh operation until η memory banks have been completed in at least one automatic refresh operation 34 12779835Pifd〇c ==! The circuit in the unit causes the refresh in each memory that has not been addressed to be listed in the self-refresh mode to complete the refresh operation; Address: It claims to start the instruction and provide external refresh memory location t ΙΪΓ 1 1 of n consecutive automatic refresh operations For the n-memory-connection _ 23. The automatic refresh operation of the memory unit is started as described in claim 22 of the patent application. The person described in item 23, wherein the pre-emptive refresh Back to the external refresh signal line on the line has been = when; column instructions, 2 items of the _, system, including the system of the ί 适 适 执 6 6 · · · · · · 丨 丨 丨 丨 , , , , , , , , , , , Solid independent addressable memory cell array library · Current operation = bit address generator, called all memory cell array library 35 12779843⁄43⁄4 d〇c Refresh second bank = stop == to receive - externally provided memory address to The memory cell array library should be used; the clearing should be in the memory address of the memory, and the data in the memory cell _ library will be completed. Generate a new _ new column; and give the refresh address a record of the soap, from the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Operation. The synchronous memory element described in Item 26 of the self-enclosed, refreshing its self-refresh mode The self-reported 1=^ externally provided memory address or the synchronous memory element described in item 27 of the self-brushing, wherein the brother-switch in the self-mode cap selects the self-memory memory location i\V 〇 29. A synchronous memory component as claimed in claim 28, wherein the memory bank = address is generated before the current refresh column is updated from the refresh mode, and the self-forest memory address memory is generated. Array library. 3〇· As stated in the scope of the patent, the synchronous memory component, 36 12779835^^ (4) generator ===: before the column, the memory has not yet executed the address of the current column address for the refresh operation The synchronous memory component described in item 28, wherein the more-array array library selects all the memory sheets including the 28-represented _remembering elements when performing the first ΐ refresh mode, and the refresh operation is selected when entering the self-refresh mode before the executor All memory cell array libraries of the new column address are executed. == Synchronization as described in item 27 of the patent application scope is currently refreshed in the self-refresh mode =/, the switch selects the self-refresh memory location ^ is updated to new - At the time of the first synchronous memory component described in item 33 of the profit range, the new operation of the self-refreshing memory address is selected in the refresher wheel before the new operation, and the cattle continue to receive the externally provided memory. The address is used to brush the _(10) component of the rtf patent (4), item 34, until the person 2 receives the externally provided memory address for refreshing all the H-address operations of the front-end addressing. . The address of the refreshing operation of the ~70 train library is the same as that of the 34th item of the patent. The self-refresh mode receives the n externally provided 37 memory addresses for the refresh operation. 37. As in the scope of the patent application, the first-switch acts as a synchronous memory element of =. Should, ride, 库 address counter wheel 38 · If the application scope of the patent range, I refresh the clock circuit to include -,, the synchronous memory component, provide 1 new from the meaning; the self-refresh clock occurs in the pulse self器 = item memory element, its side 'and - self-lining time 4 refresh mode, the automatic brush special tree occurs two generations - ' "in the self-start refresh clock generator start with the first yarn ^ ^" the self-refresh The clock generator is at the second speed; the raw signal; the self-refreshing clock generator has an output stage (. turns out the clock signal, and the self-clock generator performs the self-refresh with the self-refresh or (OR赖 Operation. U output % pulse from the component, which selects all memory cell array libraries with " ^ &amp; as described in claim 35 of the synchronous memory component, its 38 1277983⁄4^ iloi疋 circuit includes ·· Delay circuit to delay self-refreshing clock; one and one to receive self-refreshing clock and delay self-refreshing clock · to line all fresh (four) solution (four) memory address in the patent application scope mentioned in item 26 Synchronized The new circuit includes a setting ^ Wu member, the entire memory cell = # new work has not been executed when the pepper ^ 39
TW94124644A 2004-07-21 2005-07-21 Semiconductor memory device performing auto refresh in the self refresh mode TWI277983B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040056967 2004-07-21
US11/169,241 US7164615B2 (en) 2004-07-21 2005-06-27 Semiconductor memory device performing auto refresh in the self refresh mode

Publications (2)

Publication Number Publication Date
TW200615971A TW200615971A (en) 2006-05-16
TWI277983B true TWI277983B (en) 2007-04-01

Family

ID=38626087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94124644A TWI277983B (en) 2004-07-21 2005-07-21 Semiconductor memory device performing auto refresh in the self refresh mode

Country Status (3)

Country Link
JP (1) JP4559318B2 (en)
DE (1) DE102005035079B4 (en)
TW (1) TWI277983B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723679B2 (en) * 2009-01-14 2011-07-13 エルピーダメモリ株式会社 Semiconductor memory device, memory system, and refresh control method for semiconductor memory device
US8471582B2 (en) 2009-01-27 2013-06-25 Qualcomm Incorporated Circuit for detecting tier-to-tier couplings in stacked integrated circuit devices
JP2012252742A (en) * 2011-06-02 2012-12-20 Elpida Memory Inc Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627791A (en) * 1996-02-16 1997-05-06 Micron Technology, Inc. Multiple bank memory with auto refresh to specified bank
KR100237621B1 (en) * 1996-08-27 2000-01-15 김영환 Refresh control circuit for semiconductor memory device
KR100276386B1 (en) * 1997-12-06 2001-01-15 윤종용 Refresh method and apparatus for semiconductor memory device
KR19990078379A (en) * 1998-03-30 1999-10-25 피터 토마스 Decoded autorefresh mode in a dram

Also Published As

Publication number Publication date
JP2006031929A (en) 2006-02-02
JP4559318B2 (en) 2010-10-06
TW200615971A (en) 2006-05-16
DE102005035079A1 (en) 2006-02-16
DE102005035079B4 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US7164615B2 (en) Semiconductor memory device performing auto refresh in the self refresh mode
US6741515B2 (en) DRAM with total self refresh and control circuit
TWI303422B (en) Dynamic semiconductor memory with improved refresh mechanism
TW564420B (en) System and method for performing partial array self-refresh operation in a semiconductor memory device
JP4025509B2 (en) Read / write buffer which is completely unaffected by refresh of semiconductor memory and its operation method
CN1315132C (en) Renovating memory having zero write-in restoring time and maximumless periodic time
TW526500B (en) Multi-port memory based on DRAM core
TWI317524B (en) Pseudo-dual port memory having a clock for each port
JP4734580B2 (en) Enhanced bus turnaround integrated circuit dynamic random access memory device
JP2003123470A (en) Semiconductor storage device
TWI271736B (en) Refresh mechanism in dynamic memories
WO2003056563A1 (en) Semiconductor storage device and refresh control method thereof
JP2001357670A (en) Semiconductor storage device
US10504582B2 (en) Timing control circuit shared by a plurality of banks
TW200842873A (en) Semiconductor memory device and write control method therefor
JPH1166843A (en) Semiconductor storage device
JP2010186530A (en) Semiconductor memory device, memory system, and refresh control method for semiconductor memory device
TWI225260B (en) Circuits and methods for providing page mode operation in semiconductor memory device having partial activation architecture
TWI277983B (en) Semiconductor memory device performing auto refresh in the self refresh mode
TW200305881A (en) Semiconductor memory device
JP2003317499A (en) Semiconductor memory device and memory system using the same
JP3725715B2 (en) Clock synchronization system
JP2012123889A (en) Semiconductor device
TWI222067B (en) Synchronous SRAM-compatible memory and method of driving the same
TW200539180A (en) Semiconductor memory device without decreasing performance thereof even if refresh operation or word line changing operation occur during burst operation