TWI277690B - Position correction controller of rotary body - Google Patents

Position correction controller of rotary body Download PDF

Info

Publication number
TWI277690B
TWI277690B TW94138354A TW94138354A TWI277690B TW I277690 B TWI277690 B TW I277690B TW 94138354 A TW94138354 A TW 94138354A TW 94138354 A TW94138354 A TW 94138354A TW I277690 B TWI277690 B TW I277690B
Authority
TW
Taiwan
Prior art keywords
value
interval
engine
unit
calculation
Prior art date
Application number
TW94138354A
Other languages
Chinese (zh)
Other versions
TW200622094A (en
Inventor
Toichiro Hikichi
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of TW200622094A publication Critical patent/TW200622094A/en
Application granted granted Critical
Publication of TWI277690B publication Critical patent/TWI277690B/en

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Control Of Position Or Direction (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The reluctors 10 are disposed on the peripheral surface of a rotating body 8 such as a rotor yoke, and a sensor 1 detects the reluctors 10 and outputs pulse signals. A stage period calculation part 66 calculates the period of the pulse signals PLS. A dividing part 67 calibrates the period of the pulse signals with calibration values. The calibrated period is used to calculate the rotational variation values of the rotating body 8. The calculation part 61 of a calibration value determination device outputs actually measured values indicating the intervals between the selected reluctors 10 based on intervals between the pulse signals corresponding to the pre-selected reluctors 10. A reference value storage part 63 outputs the reference values of disposed intervals between the reluctors 10 based on the rotational speed of the rotating body 8. The dividing part 64 calculates the values of the ratio of the actually measured values to the reference value and calculates the calibration values by the dividing part 67 before outputting.

Description

1277690 九、發明說明: 【發明所屬之技術領域】 本發明有關於旋轉體之位置補正控制裝置,特別有關於 可以進行校正之旋轉體之位置補正控制裝置,使檢測旋轉 體之轉速變動之感測器之輸出不會影響到該感測器之被 檢測體之磁阻器之配置精確度之變動。 【先前技術】 圖15是方塊圖,用來表示先前技術之燃料喷射控制裝 置之主要部份功能。在該圖中,設在引擎之吸氣管之吸氣 負壓感測器(以下稱為「PB感測器」)1〇〇用來輸出表示吸 氣負壓之檢測信號。PB值變換部11〇將從pB感測器ι〇〇 輸入之檢測信號變換成為吸氣負壓pB。pB圖12〇吒情成 為吸氣負壓PB之函數之基本燃料噴射時間Ti,依照:輸 入之吸氣負壓PB輸出基本燃料噴射時間π。 „PB補正部130根據從PB感測器刚輸入之檢測信號, .异出大氣壓之預測值之代替大氣麗pA。以補正係數 部1輸出成為代替大氣麼以之函數之大氣壓補正雜 =:部150輸出以補正係數邱乘基本燃料喷射時間 、广贺射時間Tout。燃料喷射時間是利用 大氣壓PA補正基本燃料喷射時間π後之值BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position correction control device for a rotating body, and more particularly to a position correction control device for a rotating body that can be corrected, so as to detect a change in the rotational speed of the rotating body. The output of the device does not affect the variation of the configuration accuracy of the magnetoresistor of the detector of the sensor. [Prior Art] Fig. 15 is a block diagram showing the main functions of the prior art fuel injection control device. In the figure, an intake negative pressure sensor (hereinafter referred to as "PB sensor") provided in the intake pipe of the engine is used to output a detection signal indicating the suction negative pressure. The PB value conversion unit 11 converts the detection signal input from the pB sensor ι into the intake negative pressure pB. The basic fuel injection time Ti, which is a function of the suction negative pressure PB, is output according to the intake negative pressure PB of the input, and the basic fuel injection time π is output. The PB correction unit 130 is based on the detection signal just input from the PB sensor, and the predicted value of the atmospheric pressure is replaced by the atmospheric pressure pA. The correction coefficient unit 1 outputs the atmospheric pressure correction function which is a function of the replacement atmosphere. The output of 150 is the correction factor Qiu multiplied by the basic fuel injection time and the wide shot time Tout. The fuel injection time is the value after the basic fuel injection time π is corrected by the atmospheric pressure PA.

感測器100之檢測信號輸入到行程判㈣ 160,仃程判別部16〇根據pB ,ltKl m+ 則盗100之檢測信號進行 7 :匕定行程。確定之行程被輸入到級 该級辨別部170以現在之行程和來自曲柄脈波之級 312XP/發明說明書(補件)/95-02/9413 8354 5 1277690 (亦即滅之曲柄位置)作為基準,衫在曲柄脈波之每一 個間隨分配之位置資訊。假如判定為現在之級時,燃料 .贺射w期和點火時期就被決定。級之決定手法之一實例被 吕己載在本申請人之先前申含奢之 、 號公報。 ^之日本專利特開跡265894 在=前技術之燃料喷射控制裝置中,必須具備ρβ =曲柄脈波產生器’但是本申請人提案有可以削除其中 =感測II之手法(日本專利特開⑽㈠q隨號 =^4;108289號公報)。在該公報所記載者中,根二 ⑽壓縮行程之能量損失中減去排氣行程康 之月bl扣失,減後之值與吸入 赴摄〜π .工乳里具有相關性’從此觀 推疋吸入空氣量’根據其決定燃料噴射量。 [專利文獻1]日本專利特開2__265894號公報 專利文獻2]日本專利特開2__1{)8288號公報 /專利文獻3]曰本專利特開2004-108289號公報 .【發明内容】 (發明所欲解決之問題) 以根據曲柄之轉速轡各4 h , *… 化决疋燃料喷射量之方式構成之 專利文獻2,3之先前技術| ^ ^ 了衣置,根據曲柄脈波間隔之變 動,杈測曲柄之轉速變化。 配置在盥曲柄鹏柄脈波間隔會直接影響到被 柄軸成為一體或連結到曲柄軸之發光 子等之紅轉體之磁阻器之 „ pe p5 ^ ^ ▲之間隔之精確度。其結果是將磁阻 ::4石又之k動,判斷為曲柄轉速之變動,所以造The detection signal of the sensor 100 is input to the stroke judgment (four) 160, and the process determination unit 16 performs a 7:determination stroke based on the detection signal of the pB and ltKl m+. The determined stroke is input to the stage. The stage discriminating section 170 uses the current stroke and the level from the crank pulse 312XP/invention specification (supplement)/95-02/9413 8354 5 1277690 (that is, the position of the crank) The position information of the shirt along with the distribution of the crank pulse. If it is judged to be the current level, the fuel injection period and the ignition period are determined. An example of a decision-making method of the level is published by Lu Ji in the previous application of the applicant. ^Japanese Patent Special Trace 265894 In the fuel injection control device of the prior art, it is necessary to have a ρβ = crank pulse wave generator', but the applicant has proposed a method in which the = sensing II can be removed (Japanese Patent Special (10) (1) q With the number = ^ 4; No. 108289 bulletin). In the person described in the bulletin, the energy loss of the root two (10) compression stroke is subtracted from the exhaust stroke, and the value of the subtraction is subtracted from the value of the suction to the camera. The amount of intake air 'determines the fuel injection amount based on it. [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2004-108289. Problem to be solved) According to the prior art of Patent Document 2, 3, which is based on the rotational speed of the crank for 4 h, *..., the fuel injection amount is formed. ^ ^ The clothing is placed, according to the variation of the crank pulse interval, 杈The speed of the crank is measured. The spacing of the pulse wave arrangement in the crank handle directly affects the accuracy of the interval of the „ p p 5 ^ ^ ▲ of the magnetoresistor of the red-rotator that is integrated into the shank or the illuminator of the crankshaft. Is the magnetic resistance:: 4 stone and k movement, judged as the crank speed change, so

成在贺射控制產生變動。 W 312XP/發明說明書(補件)/95-02/94138354 1277690 本發明之目的是提供旋轉體之位置補正控制裝置,可以 補正受到磁阻器間隔之精度變動之影響之曲柄脈波間 •隔’可以對小變動之燃料喷射控制裝置等輸出校正值。 (解決問題之手段) 用以解決上述問題之本發明是一種旋轉體之位置補正 • &制I置’具有以既定間隔被配置在旋轉體之周面之多個 磁阻器,和用來檢測該磁阻器藉以輸出脈波信號之感測 器,根據上述脈波信號之間隔用來算出上述旋轉體之轉速 變動值,其特徵在於:具備有校正值決定手段,用來預先 ,出校正值藉以校正上述脈波信號之間隔;上述校正值決 定手,包含有:校正磁阻器間隔檢測手段,根據上述多個 磁阻器中之被預先選擇之磁阻器之對應產生之脈波信號 之間隔,輸出表示上述被選擇之磁阻器之間隔之實測值; 轉速檢測手段,根據上述脈波信號檢測上述旋轉體之轉 速;基準值產生手段.,根據上述轉速輸出上述被選擇之磁 ⑩阻器之配置間隔之基準值;和算料段,絲算出上述實 =和上述基準值之比值,藉以輸出校正值;在可以滿足 1頁疋之校正值算出條件時實行,以該校正值決定手段進行 、十、二二本t明之第2特徵在於上述校正值算出條件在 2轉體之減速時可以被滿h並且可以在該校正值算 ;鏟5 ’附加上述旋轉體之轉速必須在於預定範圍内, 轉體之驅動源之引擎必須為暖機狀態等條件。 另外,本發明之第3特徵在於具備有算出手段,使用t 312XP/發明說明書(補件)/95-02/94138354 7 1277690 值決定手段所構成之磁阻器間隔之實測值,用來 "出述奴轉體之驅動源之引擎之轉速變動值。 (發明效果) 阻1特效’利用脈波信號實測產生該脈波信號之磁 ^之間隔,求得該實測值和㈣設定之基準值之比值作 枯又Γ值、。亦即’根據邏輯上計算得之預先設定之基準 值對該基準值之偏差之二:出條件之3"以檢測實測 式t ^特说中,因為在減速時或轉速在預定範圍内時, ^引擎為讀ϋ轉",在旋㈣n變動不 動源=驅動力或阻力影響之條件下,決定校正值,所以可 以獲彳于局精確度之校正值。 =第3特徵’因為以高精確度之校正值構成實測值, 所以磁阻器之配置間隔之精確度如同先前技術者,亦即可 以以先前技術現有之製作精確度,提高轉速體之轉 之檢測精確度。 文哥 另外’不只可以使製作時之精確度變動之影響 如在”之分解•組裝時#’即使在磁阻器和感測哭之門j 隙有變化,或由於零件更換使磁阻器間隔成為不同之/ 況’只要引擎以上述校正值算出條件運轉下, 月 本發明之位置補正裝置。 稱建成 【實施方式】 下面參照圖式用來說明本發明之—實施形態。圖3 塊圖用來表不本發明之—實施形態之内燃機用燃料嘴射 312XP/發明說明書(補件)/95-02/94138354 0 1277690 匕制衣置之系統構造。在該圖中,曲 .用來檢測曲柄脈波PLS,節流闕開度二=分 之冷卻水溫TW。由微電腦和其周邊= 戈表引擎溫度 各個感測器卜2、3之輪出,以預定之\ 之職讀取 將其處理結果之指令對极&异法則進行處理, 6、和燃料泵7等進行輪出。心心射闕)5、點火線圈 曲柄脈波產生器1在結人丨 之曲柄勤m㈣”到圖中未顯不之引擎之輪出 ,曲柄軸之㈣體之周圍,以指定之間隔設置, 二個,磁阻器,藉以輸出作為曲柄術 ’: :柄脈波PLS產生週期對應到磁阻器之間隔,依昭= 柄 脈波ns決定代表曲柄角之級號碼。 ^曲柄 圖4是表示磁阻器之配置之轉子之前視圖。旋轉體 被引擎驅動之發電機之轉子磁輛或飛輪,結合到引擎之曲 柄軸9。該轉子磁軛8由例如銘等之非磁性體形成,在轉 籲子磁軛8之外周設置多個磁性感應體之磁阻器ι〇。被配 置成面對轉子磁軛8之外周之曲柄脈波產生器1,在每次 接近二離開該等之磁阻器1〇時,檢測到感應電流之變 化,藉以輸出曲柄脈波PLS。磁阻器1〇在圓周36〇度中 之240度之範圍内,以30度之間隔設置9個。亦即,磁 阻器1〇在轉子磁軛8之圓周之一部份區域以等間隔配置 夕個。因此,如圖所示,位於連續配置之9個之磁阻器 10中之兩端者之相互間之間隔成為120度。 轉子磁|厄8被女裂在曲柄軸9使活塞之行程和各個磁阻 312XP/發明說明書(補件)/95-02/9413 8354 9 1277690 态1 〇成為既定之位置關係。當嗜 時針方向旋轉時,在以望卩“ 軛8以圖中之順 得吟在u等間隔配置 旋轉方而p弓π κ炫阻态10中,位於 和万向開碩之磁阻器1()中 占h从 τ <1巧如〒央位置,位置掛進 成為位於引擎之行程之藍縮上死點。 置對丰 曲柄:=柄脈波PLS時,計測從檢測到前-次之 手段二:曲經過時間’以此方式設置脈波週期檢测 次之曲rm之週期變長時,可以判斷為前一 丙R波PLS疋由於旋轉方向開頭之磁阻器i 0所產 死點、’可以辨識為檢測到與二個上述死點(I縮上 . 彳氣上死點)之任一個對應之磁阻器1 0。 核測到之上死點是壓縮上死點C-T0P或排氣上死點 E TOP之判別可以依照與被檢測到之上死點對應之曲柄脈 /' PLS和其先前之曲柄脈波之間隔,亦即依照脈波週期之 不同而判別。因為壓縮行程之阻力比排氣行程大,所以曲 柄脈波PLS之週期較長。 ⑩下面說明利用ECU4之燃料噴射控制。圖5表示4行程 引擎之1循環(2旋轉)之吸氣負壓PB之變化,圖中表示 及氣負壓PB與引擎之轉速變動,吸氣•壓縮•燃燒•排 氟之σ個行程’及曲柄脈波PM和級之相關性。在該圖 中,曲柄軸9之2個旋轉,亦即引擎之丨個循環對應到曲 柄脈波PLS間隔,分配成為18個之級(級號碼#〇〜#17)。 在本貝知形恕中’著重在該圖5所示之引擎轉速ne之變 動和吸氣負壓PB之相關性,根據曲柄脈波pls之時間間 隔’亦即根據各個級之長度(以下稱為「級之週期TS0〜TS17 312XP/發明說明書(補件)/95-02/9413 8354 10 1277690 」)’鼻出弓I擎^ 壓ΡΒ。 速變動,根據該轉速變動預測吸氣負 圖6疋燃料嘖射士 ρβ預測值之演算算在出r用之ρα預測值和 脈波進行起動期以曲柄脈波pls作為觸發 刀以週期計數器計測。者读 、 計數器為著下一個計測被 ::使用:’週期 波PLS之週山^ 隹人驟S2,使用曲柄脈 圖”其士仃开出引擎之轉速變動之基本演算。 估屬疋:本演算之功能方塊圖。在圖7中,加算部11 使屬於排氣行程之級# 7 迥』TS7和級#8之週期TS8進 :二:二舁部12使屬於排氣行程之咖之週期TS11 管仃程和吸氣行程之級#12之週期加2進行加 :週期夕τ:算部13使從吸氣行程跨越壓縮行程之級#15 ^月TS15和屬於壓縮行程之級m之週期TS16進行加 =加异部14使屬於壓縮行程之級#11之週期Tsn和跨 丨赵壓f打程和燃燒行程之級#12之週期TS12進行加算。 減算部15進行從週期(TS11+TS12)中減去週期 (TS7+TS8)。亦即’檢測從排氣行程跨越吸氣行之二個級 =週期和排氣行程之二個級之週期之差作為轉速變動。減 异部16從週期(TS15+TS16)中減去週期(TSU+TS12)。亦 即,檢測從吸氣行程跨越壓縮行程之二個級之週 氣行程跨越吸氣行程之二個級之週期之不同作為轉速變\ 動。減算部17從週期(TS2+TS3)中減去週期(TS15+TS16) 。亦即,檢測從壓縮行程跨越燃燒行程之二個級之週期, 312XP/發明說明書(補件)/95-02/94138354 11 1277690 .行程跨越壓縮行程之二個級之週期之差作為轉 . ^ 15 18使加异部12之加算結果亦即週期(TSn + ' 一 #加异部13之加算結果亦即週期(TS15+TS16)更 2-步進行加算。除算部19以常數除加算冑18之加算結 、,將/、、σ果輸出作為預測演算用引擎轉速NEYPB。 平’月化處理部2G對減算部15之輸出進行平滑化處理, 鲁出其結果作為轉速變動值紐。平滑化處理部21對減 异部16之輪出進行平滑化,輸出其結果作為轉速變動值 △ΤΑ。平滑化處理部22對減算部17之輸出進行平滑化, 輸出其結果作為轉速變動值△ ΤΒ。 減算部23從轉速變動值ATA中減去轉速變動值△冗, 藉以輸出轉速變動值(ΛΤΑ—ΔΚ)。加算部24使轉速變動 值ΔΤΑ和轉速變動值ΑΤΒ進行加算,藉以輸出轉速變動 值(ΔΤΑ+ΛΤΒ)。當轉速變動值ΔΤΑ、ΔΤΒ、在零以 鲁下時,在平滑化處理部20、21、22被輸入零。另外,轉 速變動值(△ΤΑ-ΔΤΟ和轉速變動值(△ta+aw)之各個 之結果為零時,輸出零。 回到圖6,在步驟S3,讀入節流閥開度ΤΗ和引擎溫度 TW。在步驟S4,依照預測演算用引擎轉速ΝΕΥΡΒ從表中 檢索節流閥開度ΤΗ之演算變換值THCALC。 在步驟S5,為著變換高轉速演算和低轉速演算,判別 節流閥開度ΤΗ是否小於演算變換值THCALC。 當節流閥開度ΤΗ小於演算變換值THCALC時,就前進到 312ΧΡ/發明說明書(補件)/95·〇2/94138354 12 1277690 步驟S6。在步驟%,分別姑m 和引擎溫度TW,從表中於去預測演算用引擎轉速㈣叩 算用引擎轉速着速演算係數。與預測演 pB算出⑽數,和加速補i s ^讀11和低轉速時之 低轉速演算係數。然後、,檢二二出:係數等’作為 料4 &家與引擎溫度TW對廊夕艟、Φ 變動之溫度補正係數。 X U对應之轉速 在步驟S 7,進杆箭卢:f田、a μ 度提高。前處理Γ用來獲得低轉速側之精確 ’、介疋出預測ΡΒ濟算值ypRA 田十产产 出低轉速PA演算值YPCAL。 值YPBA,用來算 圖8是前處理演算之功能方塊圖。乘曾 態之ΡΒ算出用係數(斜率)a乘預測演算;;引擎轉速吊狀 NEYPB。乘算部26以吸氣行程前後 竭乘該乘算部25之輸出。除算部27㈣溫值= g除該乘算部26之輸出。 補止係數 乘算部28以加速補正項算出用係數(斜率 鼻用引擎轉速NEYPB。乘算部29以轉速變動值龍^玄 乘异部28之輸出。除算部3〇以油溫補正係數匕除 29之輸出。加算部31使加速補正項算出用係數(片段)打 加在除算部3G之輸出。加算部31之輸出是加速補正係數 k 〇 加速判斷部32在引擎轉速NE為臨限值(例如2〇〇〇π" 以下’而且加速補正係數k為自限值以上之情況時判斷為 加速,將除算部27之輸出轉送到預測演算值記憶部33, 記憶作為預測PB演算值YPBCAL。加速判斷部^判斷 312XP/發明說明書(補件)/95-02/94138354 13 1277690 2是加速之情況時’預測呢演算值親[保持前次之In the control of the shooting, there is a change. W 312XP/Invention Manual (Supplement)/95-02/94138354 1277690 The object of the present invention is to provide a position correction control device for a rotating body, which can correct the crank pulse wave interval between the magneto-resistor intervals. The correction value is output for a small variation fuel injection control device or the like. (Means for Solving the Problems) The present invention for solving the above problems is a position correction of a rotating body, and a plurality of magnetoresistors having a circumferential surface disposed at a predetermined interval, and used for Detecting a sensor for outputting a pulse wave signal by the magnetoresistor, and calculating a rotation speed variation value of the rotating body according to the interval between the pulse wave signals, wherein the correction value determining means is provided for pre-correcting The value is used to correct the interval of the pulse signal; the correction value determining hand includes: a correcting magnetoresistor interval detecting means, and generating a pulse wave signal according to a corresponding one of the plurality of magnetoresistors And an interval between the measured values indicating the interval of the selected magnetoresistor; the rotational speed detecting means detecting the rotational speed of the rotating body based on the pulse wave signal; and a reference value generating means for outputting the selected magnetic 10 according to the rotational speed The reference value of the arrangement interval of the resistor; and the calculation section, the silk calculates the ratio of the above real = and the above reference value, thereby outputting the correction value; When the correction value calculation condition is performed, the correction value determination means performs the tenth and the second, and the second characteristic is that the correction value calculation condition can be full h and can be at the correction value when the deceleration of the two rotation body is decelerated. Calculate; the shovel 5 'addition of the above-mentioned rotating body must be within the predetermined range, and the engine of the driving source of the rotating body must be in a warm state. Further, a third feature of the present invention is to provide a calculation means using the measured value of the reluctor interval formed by the value determination means of t 312XP / invention specification (supplement) / 95-02/94138354 7 1277690, for " The value of the engine speed change of the engine that drives the slave body. (Effect of the Invention) The resistance 1 effect is determined by the pulse wave signal actually measuring the interval between the magnetic signals of the pulse wave signal, and the ratio of the measured value to the reference value set by (4) is obtained as a dry value. That is, 'based on the logically calculated pre-set reference value, the deviation of the reference value is two: the condition of the 3" in the detection of the measured t ^ special, because during deceleration or when the rotational speed is within a predetermined range, ^The engine is read and rotated, and the correction value is determined under the condition that the rotation (four) n variable source = driving force or resistance, so the correction value of the local precision can be obtained. = the third feature 'Because the correction value with high precision constitutes the measured value, the arrangement interval of the magnetoresistor is as accurate as the prior art, that is, the accuracy of the prior art can be used to improve the rotation of the rotating body. Detection accuracy. Wenge's other 'can not only make the impact of the accuracy of the production changes as in the decomposition / assembly time #' even if the magneto-resistor and sensing crying door gap change, or due to parts replacement, the magnetoresistance interval The position correction device of the present invention is operated as long as the engine is operated under the above-described correction value calculation conditions. [Embodiment] The following is a description of the embodiment of the present invention with reference to the drawings. The present invention is a fuel nozzle for an internal combustion engine of the present invention 312XP / invention specification (supplement) / 95-02/94138354 0 1277690 system configuration of the garment manufacturing device. In the figure, the curve is used to detect the crank. Pulse wave PLS, throttle opening degree 2 = sub-cooling water temperature TW. By the microcomputer and its surrounding = Got engine temperature, each sensor b, 2, 3 rounds out, read the scheduled job, the result will be processed The command is applied to the pole & the law, 6, and the fuel pump 7 and so on. Heart-to-heart shot) 5, the ignition coil crank pulse generator 1 in the knot crank (m) "four" to the figure is not obvious No engine wheel, crank shaft Around the body, set at a specified interval, two, magnetoresistors, by which the output is used as a crank handle': : The handle pulse PLS generation period corresponds to the interval of the magnetoresistor, and the yaw = handle pulse ns determines the crank angle Level number. ^Crank Figure 4 is a front view of the rotor showing the configuration of the magnetoresistor. Rotating body The rotor magnet or flywheel of the generator driven by the engine is coupled to the crankshaft 9 of the engine. The rotor yoke 8 is formed of, for example, a non-magnetic body such as Mie, and a plurality of magnetoresistances of a magnetic inductor are disposed on the outer periphery of the transfer sub-yoke 8. The crank pulse generator 1 disposed to face the outer circumference of the rotor yoke 8 detects a change in the induced current every time the two of the magnetoresistors 1 are removed, thereby outputting the crank pulse PLS. The magnetoresistor 1 is arranged in a range of 240 degrees in the circumference of 36 degrees, and is arranged at intervals of 30 degrees. That is, the reluctors 1 are arranged at equal intervals in a portion of the circumference of the rotor yoke 8. Therefore, as shown in the figure, the interval between the two ends of the nine magnetoresistors 10 arranged in series is 120 degrees. Rotor magnetic | E 8 is split in the crankshaft 9 to make the stroke of the piston and the respective reluctance 312XP / invention manual (supplement) / 95-02 / 9413 8354 9 1277690 state 1 〇 become the established positional relationship. When the clockwise direction is rotated, in the yoke "the yoke 8 is arranged in the figure, the rotation is arranged at an interval of u, and the p-axis π κ is in a state of resistance 10, and the magnetoresistor 1 is located in the universal direction. () in the h from τ < 1 coincident as the central position, the position is hung into the blue shrinking top dead center of the engine. The pair of Feng crank: = handle pulse PLS, the measurement from the detection to the pre-time Means 2: The passage time of the song is set in this way. When the period of the pulse period detection rm is longer, it can be judged that the previous C-wave PLS 产 is produced by the magnetoresistor i 0 at the beginning of the rotation direction. The point, 'can be recognized as detecting the magnetoresistor 10 corresponding to any of the above two dead points (I shrink up. Helium top dead center). The upper dead point is the compression top dead center C- The discrimination of T0P or exhaust top dead center E TOP can be determined according to the interval between the crank pulse / ' PLS corresponding to the top dead center detected and its previous crank pulse wave, that is, according to the pulse period. The resistance of the compression stroke is larger than the exhaust stroke, so the period of the crank pulse PLS is long. 10 The following describes the fuel injection control using ECU4. Fig. 5 shows the change of the suction negative pressure PB of one cycle (2 rotations) of the 4-stroke engine. The figure shows the fluctuation of the air negative pressure PB and the engine speed, and the σ stroke of the intake, compression, combustion, and fluorine discharge. 'And the correlation between the crank pulse PM and the stage. In the figure, the two rotations of the crankshaft 9, that is, the one cycle of the engine corresponds to the crank pulse PLS interval, and is assigned to 18 levels (level number # 〇~#17). In this book, we focus on the correlation between the fluctuation of the engine speed ne and the suction negative pressure PB shown in Figure 5, according to the time interval of the crank pulse pls. The length of the stage (hereinafter referred to as "the period of the stage TS0~TS17 312XP/invention specification (supplement) / 95-02/9413 8354 10 1277690") "nose out bow I engine ^ pressure ΡΒ. According to the rotation speed change, the calculation of the suction negative map 6 疋 fuel 啧 ρβ predicted value is calculated in the r ρα predicted value and the pulse wave is used in the start period, and the crank pulse pls is used as the trigger knife to measure the cycle counter. . The reader reads the counter for the next measurement:: Use: 'Periodic wave PLS Zhoushan ^ 隹人STEP S2, use the crank pulse diagram" The basic calculation of the engine speed of the engine is opened. The function block diagram of the calculation. In Fig. 7, the addition unit 11 makes the cycle TS8 belonging to the stage 7 7 of the exhaust stroke and the stage TS8 of the stage #8: 2: the second part 12 makes the cycle of the coffee which belongs to the exhaust stroke The cycle of the TS11 pipe process and the intake stroke stage #12 plus 2 is added: cycle τ: the calculation section 13 makes the cycle from the intake stroke to the compression stroke #15 ^月TS15 and the cycle of the stage of the compression stroke m The TS 16 performs the addition/addition of the different portion 14 to add the period Tsn belonging to the stage #11 of the compression stroke and the period TS12 of the stage #12 of the cross-stroke and the stroke of the combustion stroke. The subtraction unit 15 performs the slave period (TS11+TS12). The period is subtracted (TS7 + TS8), that is, 'the difference between the two stages of the exhaust stroke from the two stages of the intake line = the period and the exhaust stroke is detected as the rotation speed fluctuation. The period (TSU+TS12) is subtracted from the period (TS15+TS16), that is, the detection of two stages from the intake stroke across the compression stroke The cycle of the two strokes spanning the two strokes of the intake stroke is used as the speed change. The subtraction unit 17 subtracts the period (TS15+TS16) from the period (TS2+TS3). That is, the detection crosses the combustion from the compression stroke. The two-stage cycle of the trip, 312XP/Invention Manual (supplement)/95-02/94138354 11 1277690. The difference between the two stages of the stroke spanning the compression stroke is taken as a turn. ^ 15 18 Addition of the addendum 12 As a result, the period (the addition result of the TSn + ' one-addition unit 13), that is, the period (TS15+TS16) is further added in two steps. The division unit 19 adds the addition of the constant 除18 by the constant, and the /, The σ fruit output is used as the engine speed NEYPB for the prediction calculation. The smoothing processing unit 2G smoothes the output of the subtraction unit 15 and clarifies the result as the rotation speed fluctuation value NZ. The smoothing processing unit 21 pairs the severance unit 16 The rounding is smoothed, and the result is output as the rotational speed variation value Δ. The smoothing processing unit 22 smoothes the output of the lowering unit 17, and outputs the result as the rotational speed variation value Δ ΤΒ. The subtraction unit 23 is from the rotational speed fluctuation value ATA. Subtract the speed change value △ redundant, by The output rotational speed variation value (ΛΤΑ-ΔΚ) is added. The addition unit 24 adds the rotational speed fluctuation value ΔΤΑ and the rotational speed fluctuation value , to output a rotational speed variation value (ΔΤΑ+ΛΤΒ). When the rotational speed fluctuation value ΔΤΑ, ΔΤΒ is at zero At the time, the smoothing processing units 20, 21, and 22 are input with zero. When the respective values of the rotational speed fluctuation value (ΔΤΑ-ΔΤΟ and the rotational speed fluctuation value (Δta+aw) are zero, zero is output. 6. At step S3, the throttle opening ΤΗ and the engine temperature TW are read. In step S4, the throttle conversion value THCALC of the throttle opening ΤΗ is retrieved from the table in accordance with the predicted engine speed ΝΕΥΡΒ. In step S5, in order to convert the high speed calculation and the low speed calculation, it is determined whether or not the throttle opening ΤΗ is smaller than the calculated transformation value THCALC. When the throttle opening ΤΗ is smaller than the calculated transformation value THCALC, proceed to 312 ΧΡ / invention manual (supplement) / 95 · 〇 2 / 94138354 12 1277690 step S6. In step %, the engine speed and the engine temperature TW are used to calculate the engine speed from the table to the engine speed (4). Calculate the (10) number with the prediction pB, and calculate the low-speed calculation coefficient when accelerating the complement i s ^ reading 11 and the low rotation speed. Then, check the second and second: coefficient, etc. as the material 4 & home and engine temperature TW on the colset, Φ change temperature correction coefficient. The speed corresponding to X U is increased in step S7, f field, a μ degree. The pre-processing Γ is used to obtain the accuracy of the low-speed side, and the predicted value of the ypRA field is produced by the low-speed PA calculation value YPCAL. The value YPBA is used to calculate. Figure 8 is a functional block diagram of the pre-processing calculus. The multiplication state is calculated by multiplying the coefficient (slope) a by the prediction calculus; the engine speed is hanged by NEYPB. The multiplier 26 multiplies the output of the multiplier 25 before and after the intake stroke. The calculation unit 27 (four) temperature value = g is divided by the output of the multiplication unit 26. The compensation coefficient multiplication unit 28 uses the acceleration correction term calculation coefficient (the slope nose engine rotation speed NEYPB. The multiplication unit 29 outputs the rotation speed variation value of the remote control unit 28. The division unit 3〇 uses the oil temperature correction coefficient 匕The addition unit 31 adds the acceleration correction term calculation coefficient (segment) to the output of the division unit 3G. The output of the addition unit 31 is the acceleration correction coefficient k 〇 the acceleration determination unit 32 sets the engine rotation speed NE as the threshold value. (For example, 2〇〇〇π" hereinafter, and when the acceleration correction coefficient k is equal to or greater than the limit value, the acceleration is determined, and the output of the division unit 27 is transferred to the predicted calculation value storage unit 33, and the predicted PB calculation value YPBCAL is stored. Acceleration judgment unit ^ judgment 312XP / invention manual (supplement) / 95-02/94138354 13 1277690 2 is the case of acceleration, 'predicting the calculation value pro [keeping the previous

。力!7^7=加速補正係數k乘預測Ρβ演算i YPBCAL 正項被補正之^狀態之PB算出係數(片幻加在加速補 賴㈣演算值Υ職。加算部35之輸出_ 測===步驟S8,演算該預測Ρβ演算值ΥΡβΑ和預 嚕數I」 ΕΥΡΒ,及依照轉速變動和低轉速演曾 係數之,轉速ΡΑ演算值YpACAL。 ”外 乘;部3β低‘速PA預測演算之功能方塊圖。在圖9中, 引整鐘、*以低轉迷Ρβ算出用係數(斜率)P乘預測演算用 36之於Ψ ΝΕΥΡ^。乘算部37以轉速變動ΔΤΒ乘該乘算部 ^ 。除算部38以油溫補正係數h補正乘算部37 21:減算部39從預測ρβ演算值ypba中減去除算部 減算部\9。除/部❹低轉❹^ )^ 之輸出。乘算部41以常數乘除算部40之輸出 用來輸出低轉速ΡΑ演算值YPACAL。 、, 回到圖6,在步驟S9,算出ΡΑ預測值ΥΡΑ。圖1〇是流 私圖’用來表示步驟S9之詳細部份。在圖i 〇中,在步驟 S90判斷預測條件。當引擎轉速NE在預定範圍,節流閥 開度TH不是最大值之情況時,步驟S9〇成為肯定,在步 驟S91判斷是否為減速中。假如不是減速中時,前進到步 驟S92,判斷是否為從起動後起在預定循環(例如別個循 展)乂内假如步驟S92為肯定時,就前進到步驟S93, 14 312XP/發明說明書(補件)/95-〇2/94丨38354 Ϊ277690 ,仃起動時演算。例如 鼻值YPCAI。火 力十均預疋次數部份之PA演 間之情況日字I在步驟S92為否定亦即從起動起經過長時 兄才’就前進到步驟S94限制從仏旦 —個循環之pA^ 制夂化1。例如,將每 在步驟t9 值抓从之變化量限制在預定之幅度。 如,在以#^進行PA演算值職AL之平滑化處理。例 上二:數循環之_算值^^ 步驟咖十^ 循環之PA演算值YPCAL之值。在 不是物、目丨/ 處理之結果作為PA預測值YPA。在 驟^為否定)或減速中(步 值YPA月疋)之情況時’在步驟咖輸出前次之PA預測 ’目6,在步驟sl〇演算低轉速時^pB預測值。圖 =轉速時之PB預測值γρΒ之演算功能之方塊圖。在 :中,乘算部42以低轉速叩算出.用係數(斜率)ρ乘 預測演算用引擎轉速ΝΕΥΡΒ。乘算部43 ΤΒ乘,乘算部42之輸出。除算部44以油溫補正係= 除乘^部43之輸出。乘算部45以低轉速抑算出用係數 (片段)q乘前次之ΡΑ預測值。除算部46以常數除該乘算 部45之輸出。加算部47使除算部44和除算部铛之輸: 進行相加,用來輸出低轉速PB之預測值γρΒ。 回到圖6。當步驟S5為否定時就前進到步驟S1丨。在步 驟S11 ’分別使用預測演算用引擎轉速ΝΕγΡΒ、引擎溫产 TW、和節流閥開度τη,從表中檢索高轉速演算係數 預測演算用引擎轉速ΝΕΥΡΒ對應地,檢索高轉速時之ρβ 3UXP/發明說明書(補件)/95-〇2/94〗38354 15 丄277690 :出:係數,溫度補正係數之權重等作為高轉 正係數外二檢索與引擎溫度TH對應之轉速變動之溫;1 、、。然後檢索與節流閥開度TH 瞀 速迎卿對應之高轉速PA算“基準用引擎轉 以用之處理時,因為不進行前處理PB演算,所 速變動二sii,依照高轉速ΡΑ算出用基準值t和轉 又動次异南轉速PA演算值YPACAL。 除=高轉速PA預測演算之功能方塊圖。在圖η中, 除::"/:由溫補正餘v除轉速變動值幢⑽。 :二!流闊開度冗有關之高轉速PA算出用基 算部49 异部48之輸出。乘算部50以常數乘該除 1 9之輸出,絲輸出高轉速以演算值YpAcAL。 户=圖Γ在步驟S13,算出高轉速時之Μ預測值。其 ^二低轉速時之PA預測值γρΑ之算出處理相同。在步 驟S14演算高轉速時之叩預測值。 圖13是高轉速時之叩預測值γρΒ之演算功能之方塊 "圖13中’乘异部51以高轉速ΡΒ算出用係數(斜率)r 預測演算用引擎轉速_B。乘算部52以轉速變動值 △ ΤΑ+ΛΤΒ)乘该乘算部51之輸出。除算部53以油溫補 正係數"除乘算部52之輸出。乘算部54以高轉速PB算 出用係,(片段)s乘前次之pA預測值。除算部55以常數 除孩乘异部54之輸出。加算部56使除算部53和除算部 55之輸出進仃相加’藉以輸出高轉速μ預測削。 燃料喷射時間Tout之算出使用以此方式演算出之以預 312XP/發明說明書(補件)/95-02/9413 8354 1277690 測值和PB預測值。 曰另外’行程之朗可以町面所述之方式進行。圖η 判別處理之功能方塊圖。加算部57使級#14之週 』TS14和級#15之週期TS15進行加算。力口算部57 58,:rr行程起跨越塵縮行程之區域之時間。加算‘ 58使級#5之週期TS5和級#6之週期 5部二之行程跨越排咖 文加^ 57之輸出中減去加算部58之輪出。行程判 口P 60判斷減算部59之輸出是否為 程跨越壓縮行程之區域之時間比從燃燒:程跨越 ::Γ之時間長’所以假如減算部59之輸出為正時, J蚧為級唬碼和行程正確對應,確定該行程。另 59^_負)時’判斷為級號碼和行 Ε王TOP; /應’替換該行程。料,以替換排氣上死點 -TOP和ι縮上死點之方式變更級號碼。如此一 :j據演算結果確定之行程判別其級,用來決定姆料 射捋期和點火時期。 ’ 、 鐵動浐i^本次#中’所s兒明之手段是依照磁阻器1 〇之 :^湘曲柄脈波產生器1檢測到之級週期。圖U 二二m裝置之功能之方塊圖。利用曲柄脈波產生 :、ι“到之曲柄脈波PLS被輸入到級週期算出部61。 ;週期异出部61根據曲柄脈波pLS算出級#7之週期π? 口,#8之週期以8之加算值(TS7+TS8),級#ιι之週期训 口級12之週期TS12之加算值⑽hts⑵,級如之週 312XP/發明說明書(補件)/95-02/9413 8354 17 1277690 』TS15和級#16之週期TS16之加算值(TS15+TS16),和 級#2之週期TS2和級#3之週期TS3之加算值(1^2 +以3)。 引擎轉速算出部62根據曲柄脈波pls算出引擎轉速 NE,將其輸入到級週期基準值記憶部63。級週期基準值 記憶部63收納與引擎轉速NE對應之級週期基準值 TSBASE。上述各個級#7、#8、#n、#12、#15、#16、、 #3對應到曲柄角3〇。。因此,對每一個引擎轉速皿,預 先計算和記憶與曲柄角6〇。(2個級部份之曲柄角)對應之 級週期之級週期基準值TSBASE。除算部64以級週期基準 值TSBASE除從級週期算出部61輸出之2級部份之實際測 疋值。除算結果K0708、K1112、K1516、K0203被輸入到 权正值算出部65。校正值算出部65取入η次(例如η = 2〇) 之除异結果’輸出其移動平均值(κ〇7〇8Α、Κ1112Α、 Κ1516Α 、 Κ0203Α)。 杈正值算出用之曲柄脈波PLS在可以滿足校正值算出條 馨件2取入。校正值算出條件,例如,在減速時被滿足。減 速打之轉速變動不會受到大氣壓PA或吸氣負壓pB之影 響i對引擎轉速成為大致一定之值。因此,算出和記憶與 引擎轉速對應之級週期基準值TSBASE,在減速時取入曲 柄脈波 PLS,測定週期(TS7+TS8),(TS11+TS12),(TS15 + TS16),和(TS2 + TS3),利用除算部64求得其測定結果和 級週期基準值TSBASE之比值,作為校正值。 另外’校正值异出用之曲柄脈波PLs之取入亦可以在預 定之引擎轉速NE之上下限之範圍(例如4000rpm〜 312XP/發明說明書(補件)/95-02/94138354 18 1277690 60 0 Or pm)進行。另外,亦可以在引擎之油溫為預定值(例 如,8 0 C )以上時,亦即暖機後進行。因為不容易受到阻 力之影響。 圖/疋包含使用有上述校正值之級週期心仪止功能之 轉速變動值算出裝置之方塊圖。級周期算出部66相當於 圖7之加算部11、12、13、14。利用該級週期算出部66 算出之週期(TS7+TS8)、(TS11+TS12)、(TS15+TS16),和 (TS2+TS3)被輸入到除算部67,對該等分別除以上述校正 ,K(m8A、K1112A、K1516A、K0203A。除算部 67 之輸出 是被校正值K0708A、K1112A、K1516A、K0203A校正過之 S16) ’和(TS2 + TS3)使用在® 7之減算部15、16、 1 =後之演算’算出轉速變動值δτα、δτβ、和 争定二::式3實施形態中’根據級週期之基準值預先 ^。因此’根據校正過之級週期之燃料嘖射㈣,可:: 易冗到磁阻器10之間隔之變動之影響。 上述校正值之异出亦可以臣 可以滿足校正值算出條件時實:=擎之運轉條件’在 出條件之方式使引擎$、軍姑、亦可以以滿足校正值算 ^ π式運轉’在該試運算中笞屮栌τ佶夺 將其記憶,採用該校正值—H出&正值和 另外,本發明戶斤示之,乂订貫際之引擎控制。 置使用校正值算出手/,列疋算出内燃機轉速變動值之裝 PB之手段,但是本“並^用以檢测引擎之吸氣負遷 W ^限於此種方式。亦可適用 312XP/發明說明書(補件)/95-02/94138354 19 1Z//〇y〇 -在算出利用内燃機以外 速變動值,藉以進彳-s 動源進行旋轉之旋轉體之轉 .【圖式簡單說明】丁,源之各種控制之系統。 圖1是方塊圖,用來表 〃 圖2是具有校正功能之鐘^值异出裝置之功能。 圖3是方塊圖,用來表,動值算出裝置之方塊圖。 用燃料噴射控制裴置〕不發明之一實施形態之内燃機 、〈糸統構造。 圖4是表示磁阻器之配 圖5表示4行程引塾 轉子之前視圖。 轉速變化,吸氣·二之吸氣負㈣之變化,與引擎之 柄脈波和級之相關性。“丄#亂之各個行程,以及曲 圖6疋燃料喷射日矣卩卩τ ^ ΡΒ預測值之演算處理::鼻出所使用之ΡΑ預測值和 圖7是基本演算之功能方塊圖。 圖8,前處理演算之功能方塊圖。 圖9疋低轉速ΡΑ預測演算之功能方塊圖。 二〇曰疋广程圖’用來表示圖6之步驟s9之詳細部份。 ==低轉速時之PB預測值γρβ之演算功能之方塊圖。 圖12疋尚轉速ΡΑ預測演算之功能方塊圖。 圖13是0高轉速時之_測值γρβ之演算功能之方塊圖。 圖14疋行程判別處理之功能方塊圖。 圖15疋方塊圖,用來表示先前技術之燃料喷射控制裝 置之主要部份之功能。 【主要元件符號說明】 312ΧΡ/發明說明書(補件)/95·02/94138354 20 1277690 1 曲柄脈波產生器(感測器) 2 節流閥感測器 3 水溫感測器. force! 7^7=Acceleration correction coefficient k multiplication prediction Ρβ calculus i YPBCAL The positive term is corrected by the state of the PB calculation coefficient (the film magic is added to the acceleration compensation (four) calculus value. The output of the addition unit 35 _ test === step S8, calculate the predicted Ρβ calculus ΥΡβΑ and pre-turn number I” ΕΥΡΒ, and according to the rotational speed variation and the low rotational speed performance coefficient, the rotational speed ΡΑ calculation value YpACAL. “External multiplication; part 3β low” speed PA prediction calculation function block In Fig. 9, the rounding clock and * are calculated by the low-conversion Ρβ calculation coefficient (slope) P by the prediction calculation 36. The multiplication unit 37 multiplies the multiplication unit φ by the rotation speed variation ΔΤΒ. The calculation unit 38 corrects the multiplication unit 37 21 with the oil temperature correction coefficient h: the subtraction unit 39 subtracts the calculation unit subtraction unit \9 from the predicted ρβ calculation value ypba. The output of the division unit ❹ ❹ ^ ) ^ is multiplied. The portion 41 is used to output the low rotation speed ΡΑ calculation value YPACAL by the output of the constant multiplication and division unit 40. Returning to Fig. 6, in step S9, the ΡΑpredicted value ΥΡΑ is calculated. Fig. 1 is a flow private diagram 'to indicate step S9 The detailed part. In Fig. i, the prediction condition is judged in step S90. When the engine speed NE is in advance When the throttle opening degree TH is not the maximum value, the step S9 is affirmative, and it is determined whether or not the vehicle is decelerating in step S91. If it is not in the case of deceleration, the routine proceeds to step S92, and it is determined whether or not it is from the start. If it is affirmative in step S92, the process proceeds to step S93, 14 312XP/invention manual (supplement)/95-〇2/94丨38354 Ϊ277690, and the calculation is started at the start. For example, nose The value YPCAI. The situation of the PA performance of the part of the firepower 10 times is the negative of the word I in step S92, that is, after the long time from the start, the process proceeds to step S94 to limit the pA from the cycle. ^ 夂化1. For example, the amount of change per value captured at step t9 is limited to a predetermined range. For example, the smoothing of the PA calculation value AL is performed by #^. Example 2: Number cycle _ The value of the ^^ step is the value of the PA calculation value YPCAL of the cycle. The result is not the object, the result of the processing, or the result of the processing, as the PA prediction value YPA. In the case of a negative judgment or a deceleration (step value YPA month) In the case of 'in the step coffee output the previous PA prediction' target 6, in the step Sl〇 calculates the predicted value of ^pB at low speed. Figure = block diagram of the calculation function of PB predicted value γρΒ at the time of rotation. In the middle, the multiplication unit 42 calculates at low speed. Multiply the prediction by the coefficient (slope) ρ The engine speed ΝΕΥΡΒ is multiplied by the multiplication unit 43 and the output of the multiplication unit 42. The division unit 44 corrects the output of the oil temperature correction system = the multiplication unit 43. The multiplication unit 45 suppresses the calculation coefficient (fragment) at a low rotation speed. q is multiplied by the previous predicted value. The dividing unit 46 divides the output of the multiplying unit 45 by a constant. The addition unit 47 adds the divisions of the division unit 44 and the division unit 用来 to output the predicted value γρΒ of the low rotation speed PB. Go back to Figure 6. When the step S5 is negative, the process proceeds to a step S1. In step S11', the engine speed ΝΕγΡΒ, the engine temperature production TW, and the throttle opening degree τη are respectively used to retrieve the high-speed calculation coefficient prediction calculation engine rotation speed 从 from the table, and the ρβ 3UXP at the high rotation speed is searched for. /Inventive manual (supplement)/95-〇2/94〗 38354 15 丄277690: Out: the coefficient, the weight of the temperature correction coefficient, etc. as the high-turn positive coefficient, and the temperature of the rotational speed change corresponding to the engine temperature TH; ,. Then, the high-speed PA corresponding to the throttle opening TH idling Yingqing is searched. "When the reference engine is used for processing, the pre-processing PB calculation is not performed, and the speed is changed by two sii. The reference value t and the rotation and the second rotation speed PA calculation value YPACAL. In addition to = high speed PA prediction calculation function block diagram. In the figure η, except:: "/: by the temperature compensation positive residual v in addition to the speed change value building (10): The output of the high-speed PA calculation base unit 49 for the high-speed PA is calculated by the multiplication unit 50. The multiplication unit 50 multiplies the output of the division by a constant, and outputs a high rotation speed to calculate the value YpAcAL. In step S13, the predicted value of Μ at the time of high rotation speed is calculated. The calculation process of the PA prediction value γρΑ at the time of the second low rotation speed is the same. The predicted value of 叩 at the high rotation speed is calculated in step S14. In the case of the calculation function of the predicted value γρΒ, the multiplication unit 51 predicts the calculation engine rotation speed _B at the high rotation speed ΡΒ calculation coefficient (slope) r. The multiplication unit 52 changes the rotation speed value Δ ΤΑ +ΛΤΒ) multiplied by the output of the multiplying unit 51. The dividing unit 53 corrects the coefficient by oil temperature &quot In addition to the output of the multiplication unit 52. The multiplication unit 54 calculates the system at the high rotation speed PB, and multiplies the (segment) s by the previous pA prediction value. The division unit 55 divides the output of the child multiplication unit 54 by a constant. The output of the dividing unit 53 and the dividing unit 55 are added to each other to output a high-speed μ predictive cut. The calculation of the fuel injection time Tout is calculated in this way to pre-312XP/invention specification (supplement)/95-02 /9413 8354 1277690 Measured value and PB predicted value. 曰In addition to the method described in the section of the stroke, the function block diagram of the figure η discrimination processing. The addition unit 57 makes the week of the stage #14 TS14 and level #15 The cycle TS15 is added. The force calculation unit 57 58, the time when the rr stroke crosses the region of the dust reduction stroke. Adding '58 makes the cycle of the cycle #5 of the level #5 and the cycle of the level #6 of the second part of the cycle The output of the addition 57 is subtracted from the rounding of the addition unit 58. The stroke judgment port P 60 determines whether the output of the subtraction unit 59 is the time spanning the region of the compression stroke than from the combustion: the span of the process: the time of the Γ is long If the output of the subtraction unit 59 is positive, J蚧 is the correct correspondence between the level weight and the stroke, and the determination is made. Itinerary. When another 59^_ negative), it is judged as the level number and the line king TOP; / should be replaced by the stroke. Material, to replace the exhaust top dead center - TOP and ι shrink to the dead point to change the level number. Such a: j according to the calculation of the results of the determination of the stroke to determine its level, used to determine the prime shot period and ignition period. ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The ^C crank pulse generator 1 detects the period of the cycle. Figure U is a block diagram of the function of the device. The crank pulse wave is generated by the crank pulse wave, and the crank pulse PLS is input to the stage period calculation unit 61. The period difference generating unit 61 calculates the period π of the stage #7 based on the crank pulse wave pLS, and the period of #8 is 8 added value (TS7 + TS8), level #ιι cycle cycle level 12 cycle TS12 added value (10)hts (2), level such as week 312XP / invention manual (supplement) / 95-02/9413 8354 17 1277690 』TS15 And the added value of the period TS16 of the stage #16 (TS15+TS16), and the added value of the period TS2 of the stage #2 and the period TS3 of the stage #3 (1^2 + to 3). The engine speed calculation unit 62 is based on the crank vein. The wave pls calculates the engine speed NE and inputs it to the stage period reference value storage unit 63. The stage period reference value storage unit 63 stores the stage period reference value TSBASE corresponding to the engine speed NE. The above stages #7, #8, #n , #12, #15, #16,, #3 correspond to the crank angle 3〇. Therefore, for each engine speed dish, pre-calculate and remember the crank angle 6〇. (Crank angle of 2 stages) The stage period reference value TSBASE of the corresponding step period is divided by the stage period reference value TSBASE by the level 2 portion outputted from the stage period calculation unit 61. In addition, the calculation results K0708, K1112, K1516, and K0203 are input to the weight positive value calculation unit 65. The correction value calculation unit 65 takes in the result of the divisible result (for example, η = 2〇) and outputs the moving average value ( 〇 〇 7〇8Α, Κ1112Α, Κ1516Α, Κ0203Α). The crank pulse PLS used for the calculation of the positive value can be calculated by satisfying the correction value. The correction value calculation condition is, for example, satisfied during deceleration. The change in the rotational speed is not affected by the atmospheric pressure PA or the suction negative pressure pB. The engine speed is approximately constant. Therefore, the stage cycle reference value TSBASE corresponding to the engine speed is calculated and stored, and the crank vein is taken during deceleration. The wave PLS, the measurement period (TS7+TS8), (TS11+TS12), (TS15 + TS16), and (TS2 + TS3), the ratio of the measurement result to the stage period reference value TSBASE is obtained by the dividing unit 64 as a correction. In addition, the input of the crank pulse PLs for the correction value may also be within the lower limit of the predetermined engine speed NE (for example, 4000 rpm to 312 XP / invention manual (supplement) / 95-02/94138354 18 1277690 60 0 Or pm). In addition, it can also be carried out when the engine oil temperature is above a predetermined value (for example, 80 C), that is, after warming up. Because it is not easily affected by the resistance. Figure /疋 contains the stage heart rate using the above correction value A block diagram of the function of calculating the rotational speed variation value of the function. The stage period calculation unit 66 corresponds to the addition units 11, 12, 13, and 14 of Fig. 7 . The periods (TS7+TS8), (TS11+TS12), (TS15+TS16), and (TS2+TS3) calculated by the stage period calculation unit 66 are input to the division unit 67, and the above-described corrections are respectively divided by the above-mentioned corrections. K (m8A, K1112A, K1516A, K0203A. The output of the calculation unit 67 is S16 corrected by the correction values K0708A, K1112A, K1516A, K0203A) and (TS2 + TS3) are used in the subtraction unit 15, 16, 1 of the ® 7 = calculus after the calculation of the rotational speed fluctuation values δτα, δτβ, and the second criterion: in the embodiment 3, the reference value of the stage period is previously determined. Therefore, the fuel injection (four) according to the corrected period can be: It is easy to be redundant to the influence of the variation of the interval of the magnetoresistor 10. The above-mentioned correction value can also be used to satisfy the correction value calculation condition: = the engine operating condition 'in the condition of the condition, the engine $, the sergeant can also satisfy the correction value π-type operation' In the trial operation, 笞屮栌τ 佶 将 将 将 将 , , , 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶 佶The correction value is used to calculate the hand/, and the method of calculating the engine speed change value is used to install the PB. However, the "intake control engine's suction load W^ is limited to this method. The 312XP/invention specification can also be applied. (Supplement) /95-02/94138354 19 1Z//〇y〇-In the calculation of the external speed variation value of the internal combustion engine, the rotation of the rotating body is performed by the 彳-s source. [Simplified description] D, The various control systems of the source. Figure 1 is a block diagram for the function of Figure 2. Figure 2 is a block diagram of the clock function with a correction function. Figure 3 is a block diagram for the table, the block diagram of the value calculation device Fig. 4 is a front view showing a four-stroke pilot rotor of Fig. 5 showing a configuration of a magnetoresistor. Fig. 4 is a front view showing a four-stroke pilot rotor. The change of suction negative (four), the correlation with the engine pulse wave and the level. "丄#################################################################### The predicted value after use and Figure 7 are functional block diagrams of the basic calculations. Figure 8. Functional block diagram of the pre-processing calculus. Figure 9 is a functional block diagram of the low speed ΡΑ prediction calculus. The second radiance map 'is used to indicate the detailed portion of step s9 of Fig. 6. == Block diagram of the calculation function of the PB prediction value γρβ at low speed. Figure 12 is a functional block diagram of the ΡΑ ΡΑ ΡΑ prediction calculus. Fig. 13 is a block diagram showing the calculation function of the measured value γρβ at 0 high rotational speed. Fig. 14 is a functional block diagram of the stroke discriminating process. Figure 15 is a block diagram showing the function of the main part of the prior art fuel injection control device. [Main component symbol description] 312ΧΡ/Invention manual (supplement)/95·02/94138354 20 1277690 1 Crank pulse generator (sensor) 2 Throttle sensor 3 Water temperature sensor

4 ECU 5 燃料喷射閥 6 點火線圈 7 燃料泵 8 旋轉體 •9 曲柄轴 10 磁阻器 11、12、13、18、24 加算部 、3卜 35 、 47 、 56 、 57、58 15、16、17、23、39、57 減算部 19、27、30、38、40、44 除算部4 ECU 5 Fuel injection valve 6 Ignition coil 7 Fuel pump 8 Rotating body • 9 Crank shaft 10 Magnetoresistors 11, 12, 13, 18, 24 Adding unit, 3Bu 35, 47, 56, 57, 58 15、16, 17, 23, 39, 57 Reduction Department 19, 27, 30, 38, 40, 44 Division

、46 、 48 、 49 、 53 、 55 20 ^ 21 > 22 25 、 26 、 28 、 29 、 34 、 36 平滑化處理部 乘算部 、37 、 41 、 42 、 43 、 45 、 50 、 51 、 52 、 54 32 加速判斷部 33 預測演算值記憶部 61、6 6級週期算出部(校正磁阻器間隔檢測手段) 62 引擎轉速算出部 312XP/發明說明書(補件)/95-02/94138354 21 1277690 63 基準值記憶部(基準值產生手段) 64、67 除算部 65 校正值算出部 100 PB感測器 110 PB值變換部 120 PB圖 130 PB補正部 140 P A補正係數記憶部 160 行程判別部 170 級辨別部 NE 引擎轉速 PA 大氣壓 PB 吸氣負壓 PLS 曲柄脈波 TH 節流閥開度 TW 引擎溫度 22 312XP/發明說明書(補件)/95-02/94138354, 46 , 48 , 49 , 53 , 55 20 ^ 21 > 22 25 , 26 , 28 , 29 , 34 , 36 Smoothing processing unit multiplication unit , 37 , 41 , 42 , 43 , 45 , 50 , 51 , 52 54 32 acceleration determination unit 33 prediction calculation value storage unit 61, 6-1 stage calculation unit (corrected reluctor interval detection means) 62 engine rotation speed calculation unit 312XP/invention specification (supplement)/95-02/94138354 21 1277690 63 Reference value storage unit (reference value generation means) 64, 67 Division calculation unit 65 Correction value calculation unit 100 PB sensor 110 PB value conversion unit 120 PB diagram 130 PB correction unit 140 PA correction coefficient storage unit 160 Stroke determination unit 170 Identification section NE engine speed PA atmospheric pressure PB suction negative pressure PLS crank pulse TH throttle valve opening TW engine temperature 22 312XP / invention manual (supplement) / 95-02/94138354

Claims (1)

1277690 十、申請專利範圍: 1·;種旋轉體之位置補正控制裝置,具有以指定間隔被 萨以轉體之周面之多個磁阻器,和用來檢測該磁阻器 嶋號之感測器,根據上述脈波信號之間隔用 來π出上述旋轉體之轉速變動值,其特徵在於. 校正值決定手段,用來預先算出校正值藉以校正 上述脈波信號之間隔; 上述校正值決定手段包含有· = 阻器間隔檢測手段,根據上述多個磁阻器中之被 干上阻器之對應產生之脈波信號之間隔,輸出表 不上述被璉擇之磁阻器之間隔之實測值; 轉速檢測手段,根據上述脈波信號檢測上述㈣體之轉 器據Γ轉速輸*上述被選擇之磁1" 藉正:㈣上述實測值和上述基準值之比值, 在可以滿足預定之校正佶瞀 手段進行處理。料,㈣校正值決定 請專利範圍第1項之旋轉體之位置補正控制裝 置,其中 上述旋轉體以引擎驅動;和 上述权正值算出條件是在上述引擎 ^㈣㈣定範圍内而且上述引擎為暖機狀態時,= 23 312XP/發明說明書(補件)/95·〇2/94ΐ38354 足之條件。 3·如申請專利範圍第1項 置,其中 知轉體之位置補正控制裝 上述旋轉體以弓丨擎驅動;, 具備有: 選=Γ測手段’根據上述多個磁阻器中之被預先 1對應產生之脈波信號之間隔,輸出表示磁 |且叩之間隔之貫測值;和 ^校正手段,以上述校正值校正上述實測值; 根據以上述校正值校正過之磁阻器之間隔,算出引擎之 轉速變動值。1277690 X. Patent application scope: 1·; a position correction control device for a rotating body, having a plurality of magnetoresistors that are rotated around the circumference of Sayre at a specified interval, and a sense of detecting the nickname of the magnetoresistor The detector is configured to π out the rotational speed variation value of the rotating body according to the interval between the pulse signals, wherein the correction value determining means is configured to calculate a correction value in advance to correct the interval of the pulse wave signal; The means comprises: a resistor interval detecting means, and according to the interval of the pulse wave signals generated by the corresponding upper resistors of the plurality of magnetoresistors, the output is not measured by the interval of the selected magnetoresistors The rotation speed detecting means detects the rotation speed of the (four) body according to the pulse signal, and selects the selected magnetic quantity 1" by: (4) the ratio of the above measured value to the reference value, which can satisfy the predetermined correction佶瞀 means to deal with. (4) The correction value determines the position correction control device of the rotating body of the first item of the patent scope, wherein the rotating body is driven by an engine; and the positive value calculation condition is within the range of the engine (4) (4) and the engine is warm In the state of the machine, = 23 312XP / invention manual (supplement) / 95 · 〇 2 / 94 ΐ 38354 foot conditions. 3. According to the first item of the patent application scope, wherein the position correction control device of the transfer body is driven by the bow engine; the device has: selection=measurement means 'according to the plurality of magnetoresistors 1 corresponding to the interval of the generated pulse wave signals, outputting a measured value representing the interval of the magnetic | and 叩; and ^ correcting means, correcting the measured value by the above correction value; according to the interval of the magnetoresistor corrected by the above correction value Calculate the engine speed change value. 312ΧΡ/發明說明書(補件)/95-02/94138354 24312ΧΡ/Invention Manual (supplement)/95-02/94138354 24
TW94138354A 2004-11-29 2005-11-02 Position correction controller of rotary body TWI277690B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344251A JP4297278B2 (en) 2004-11-29 2004-11-29 Rotating body position correction control device

Publications (2)

Publication Number Publication Date
TW200622094A TW200622094A (en) 2006-07-01
TWI277690B true TWI277690B (en) 2007-04-01

Family

ID=36631495

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94138354A TWI277690B (en) 2004-11-29 2005-11-02 Position correction controller of rotary body

Country Status (4)

Country Link
JP (1) JP4297278B2 (en)
CN (1) CN100398803C (en)
BR (1) BRPI0505361A (en)
TW (1) TWI277690B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487834B (en) * 2012-10-11 2015-06-11 山葉發動機股份有限公司 Engine system and saddle-straddling type motor vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086228B2 (en) * 2008-01-31 2012-11-28 本田技研工業株式会社 Operation control device for internal combustion engine
JP5281617B2 (en) * 2010-08-06 2013-09-04 トヨタ自動車株式会社 Rotation detector
JP5328757B2 (en) * 2010-12-17 2013-10-30 本田技研工業株式会社 Engine control device
CN114567228B (en) * 2022-04-29 2022-07-15 泰克曼(南京)安全防护设备有限公司 High-precision rotating speed calibration method for universal motor driving chip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601339A (en) * 1983-06-10 1985-01-07 Diesel Kiki Co Ltd Device for detecting variation of rotational speed of internal-combustion engine
JPH02191835A (en) * 1989-01-18 1990-07-27 Fuji Heavy Ind Ltd Fuel injection control device for internal combustion engine
JPH11200915A (en) * 1998-01-08 1999-07-27 Yanmar Diesel Engine Co Ltd Combustion control method of gas engine
JP4159006B2 (en) * 1999-03-15 2008-10-01 本田技研工業株式会社 Fuel injection control device for single cylinder engine
JP3756034B2 (en) * 2000-02-04 2006-03-15 株式会社日立製作所 Multi-cylinder engine control system
JP2002256956A (en) * 2001-02-26 2002-09-11 Denso Corp Control device for internal combustion engine
WO2004027241A1 (en) * 2002-09-19 2004-04-01 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487834B (en) * 2012-10-11 2015-06-11 山葉發動機股份有限公司 Engine system and saddle-straddling type motor vehicle

Also Published As

Publication number Publication date
JP4297278B2 (en) 2009-07-15
TW200622094A (en) 2006-07-01
CN100398803C (en) 2008-07-02
CN1782357A (en) 2006-06-07
BRPI0505361A (en) 2006-07-11
JP2006152910A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
TWI277690B (en) Position correction controller of rotary body
RU2438022C1 (en) Engine (versions)
US10408138B2 (en) Method and functional monitoring apparatus for functional monitoring of an apparatus for variable setting of a cylinder compression in a reciprocating-piston internal combustion engine
US8495910B2 (en) Air-fuel ratio estimating/detecting device
US20080270006A1 (en) Fuel Control System of Internal Combustion Engine
CN104136739B (en) Electromotor
US20090157279A1 (en) Fuel injection control device and method for continuously controlling fuel injection during engine operation based on throttle position
WO2013031919A1 (en) Supercharger control device
US7886584B2 (en) Method and apparatus for detecting a stroke of a 4-cycle internal combustion engine, based on changes in rotary engine speed
JP3976322B2 (en) Engine control device
JPH0253622B2 (en)
KR940001682Y1 (en) Fuel injection device
JPH0833116B2 (en) Engine fuel control device
TWI296299B (en)
EP1593825B1 (en) Method to balance the cylinders of a combustion engine with sensors for each cylinder
KR101855067B1 (en) A method of calibrating a cylinder pressure sensor and an internal combustion piston engine
JP3954761B2 (en) Electronically controlled fuel injection system for engines
US20080229816A1 (en) Device for Pressure-Based Load Detection
JPH02188648A (en) Engine controller
WO2004027241A1 (en) Fuel injection control device
JPS59101577A (en) Controller for internal-combustion engine
JP3959655B2 (en) Fuel injection control device for internal combustion engine
JP4340577B2 (en) In-cylinder pressure sensor temperature detection device, in-cylinder pressure detection device using the same, and control device for internal combustion engine
CN107725202A (en) The processing unit of tach signal
JP4001334B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees