TWI276844B - Etching method - Google Patents

Etching method Download PDF

Info

Publication number
TWI276844B
TWI276844B TW95110657A TW95110657A TWI276844B TW I276844 B TWI276844 B TW I276844B TW 95110657 A TW95110657 A TW 95110657A TW 95110657 A TW95110657 A TW 95110657A TW I276844 B TWI276844 B TW I276844B
Authority
TW
Taiwan
Prior art keywords
gas
color filter
etching
substrate
reaction chamber
Prior art date
Application number
TW95110657A
Other languages
Chinese (zh)
Other versions
TW200736674A (en
Inventor
Yi-Tyng Wu
Hua-Wei Yu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW95110657A priority Critical patent/TWI276844B/en
Application granted granted Critical
Publication of TWI276844B publication Critical patent/TWI276844B/en
Publication of TW200736674A publication Critical patent/TW200736674A/en

Links

Landscapes

  • Optical Filters (AREA)
  • Drying Of Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

The invention is directed to a method for etching a color filter. The method comprises steps of providing a substrate having a multilayered filter material layer formed thereon and then disposing the substrate into an etching chamber with introducing a gas mixture into the etching chamber for performing a dry etching process so as to pattern the multilayered filter material layer, wherein the gas mixture comprises a physical reactive gas and a chemical reactive gas.

Description

127嶋.doc/e 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體製程與光學元件製作方 去且4寸別疋有關於一種彩色濾光月的姓刻方法及其製作 【先前技術】 現今社會多媒體技術相當發達,多半受惠於半導體元 件或顯示裝置的進步。就顯示器而言,具有高晝質、空間 =用效率佳、低消耗功率、無輻射等優越特性之液晶顯示 器已逐漸成為市場之主流。 …、 、液晶顯示器的主要是由顯示面板與背光模組所構 ,,其中顯示面板包括主動陣列顯示基板與彩色濾光片。 形色濾光片是用以將背光模組所發出的光進行過濾,而使 液晶顯示器具有全彩的功能。127嶋.doc/e IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor process and an optical component, and a method for engraving a color filter moon Production [Prior Art] Today's social multimedia technology is quite developed, and most of them benefit from the advancement of semiconductor components or display devices. As far as the display is concerned, liquid crystal displays having superior properties such as high quality, space = good efficiency, low power consumption, and no radiation have gradually become the mainstream in the market. The liquid crystal display is mainly composed of a display panel and a backlight module, wherein the display panel includes an active array display substrate and a color filter. The color filter is used to filter the light emitted by the backlight module, so that the liquid crystal display has a full color function.

彩色濾光片通常可分為單一膜層的濾光片盘且有a ^結構職光片。-般來說,具有複合層結構的渡光」 是藉由將不崎射率賴層交錯疊合^成,以達成對特) 波長過濾的目的。在-般具有複合層結構的濾光片的心 ,私中’財是先將具林同折射率⑽層料形成在』 板上,然後再進行雜射將上述_層圖宰化C "^知的雜_製賴使用的_氣體通常是由痛 氯化碳、氟化碳與氯氣所組成的混合氣體。 ,而,一般濾光片的膜層厚度至少 誦A’職),但採用上述的钱刻氣體來進行蝕刻製卷 127 嚇4doc/e 日守’姓刻速率卻只有17nm/min至22nm/min,其I虫刻速率 過低,往往使得蝕刻製程必須不僅耗費過多的時間,且距 量產的蝕刻速率必須達到30〇nm/min:的需求實有一段距 離,因此」,依照習知的蝕刻方法並無法有效量產濾光片。 【發明内容】 本發明的目的就是在提供一種彩色濾光片的蝕刻方 法’可以有效地提南4虫刻速率。 本發明的另一目的是提供一種彩色濾光片的蝕刻方 法,可以有效地縮短蝕刻時間。 本發明的再一目的是提供一種彩色濾光片的製作方 法,可以有效地縮短彩色濾光片的製程時間。 本發明提出一種彩色濾光片的蝕刻方法,首先,提供 一基板,此基板上已形成有多層式濾光片材料層。之後, 將基板置入蝕刻反應室中,通入混合氣體以進行乾式蝕刻 製程,將多層式濾光片材料層圖案化。此混合氣體包括物 理反應氣體與化學反應氣體。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述,化學反應氣體例如包括第一氣體與第二氣體,其中第 -氣體例如為氟化烴氣體,而第二氣體例如為無機含 體。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 f之無機含II氣體例如為六㈤t硫(SF6)或氟化氮(卿,或 是由六氟化硫與氟化氮所組成的氣體。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之氟化烴氣體例如為全氟化碳。 I27^g44doc/e 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之第一氣體更可以包括氯氣(ci2)。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之物理反應氣體例如為氬氣(Ar)或三氯化硼(BC13),或是 由氬氣與三氯化所組成的氣體。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之蝕刻反應室例如為反應性離子蝕刻(reactive i〇n etch,RIE)反應室、變壓偶式電衆(transfbrmer c〇upled plasma,TCP)反應室、電子環繞共振(electr〇n cyd〇tr〇n resonance ’ ECR)反應室或磁增強反應離子蝕刻(magnetic enhanced reactive ion etch,MERIE)反應室。 本發明另提出一種彩色濾光片的蝕刻方法,首先,提 供一基板,此基板上已形成有多層式濾光片材料層。之後, 將基板置入蝕刻反應室中,通入混合氣體以進行乾式蝕刻 製私,將多層式濾光片材料層圖案化。混合氣體包括第一 ,體與第二氣體,其中第—氣體包括貌化烴氣體,而第二 氣體包括無機含氟氣體。無機含氟氣體包括六氟化硫或氣 化氮,或是由六氟化硫與氟化氮所組成的氣體。 、依照本發明實施例所述之彩色濾光片的蝕刻方法,上 ^之氟化烴氣體的流量例如介於六氟化硫的丨倍至5倍之 、、依照本發明實施例所述之彩色濾光片白㈣虫刻方法,上 述之氟化烴氣體例如為全氟化碳。 依照本發明實施例所述之彩色濾、光片的银刻方法,上 127 ^S44doc/e 述之全氟化碳的流量例如介於六氟化硫的2倍至 之 〇 口 述之施例所述之彩色濾光軸刻方法"上 述之乐^虱體更可以包括氨氣。. 、、依照本發明實施例所述之彩色滤光片的餘刻方法,上 述之混合氣體更可以包括氬氣或三氯化硼,或盥 三氯化硼所組成的氣體。 虱乱,、 、、依,本發明實施例所述之彩色濾光片的軸彳方法,上 述之氬氣的流量例如介於六氟化硫的5倍至5〇倍之間。 …依,本發明實施例所述之彩色濾光片的蝕刻方法,上 述之二氯化硼的流量例如介於六氟化硫的0·5倍至10倍之 間。 口 妓本發明再提出一種彩色濾光片的製作方法,首先,提 供二基板。然後,於基板上形成第一複合層。接著,對第 複a層進行圖案化製程以形成第一濾、光片。然後,於基 =上形成第二複合層。繼之,對第二複合層進行圖案化刻 製程以形成第二濾光片。而後,於基板上形成第三複合層。 之後’對第三複合層進行圖案化製程以形成第三濾光片。 圖案化製程包括將基板置入蝕刻反應室中並通入混合氣 體,以進行乾式蝕刻製程,其中混合氣體包括物理反應氣 體與化學反應氣體。 依知本發明實施例所述之彩色濾、光片的韻刻方法,上 述之化學反應氣體例如包括第一氣體與第二氣體,其中第 —氣體例如為氟化烴氣體,而第二氣體例如為無機含氟氣 I276^4t4.d〇c/e 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之無機含氟氣體例如為六氟化硫或氟化氮,或是由六 化硫與氟化氮所組成的氣體。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之氟化烴氣體例如為全氟化碳。 依照本發明實施例所述之彩色濾光片的蝕刻方法,上 述之第一氣體更可以包括氯氣。The color filter can usually be divided into a single film filter disk and a structure light. In general, a light-emitting layer having a composite layer structure is formed by interlacing a non-small-rate layer to achieve wavelength filtering. In the heart of a filter with a composite layer structure, in the private sector, the first layer of the same refractive index (10) is formed on the plate, and then the above-mentioned _ layer is slaughtered C " The gas used in the process is usually a mixed gas composed of painful carbon chloride, carbon fluoride and chlorine. However, the thickness of the general filter film is at least 诵A'), but the above-mentioned money engraved gas is used for etching and winding 127. 4doc/e shou's rate is only 17nm/min to 22nm/min. The I insect engraving rate is too low, so that the etching process must not only take too much time, and the etching rate of mass production must reach 30〇nm/min: there is a certain distance, so, according to the conventional etching The method does not effectively produce a mass filter. SUMMARY OF THE INVENTION An object of the present invention is to provide an etching method for a color filter, which can effectively increase the rate of infestation. Another object of the present invention is to provide an etching method for a color filter which can effectively shorten the etching time. It is still another object of the present invention to provide a method of fabricating a color filter which can effectively shorten the processing time of the color filter. The present invention provides a method of etching a color filter. First, a substrate is provided on which a multilayer filter material layer has been formed. Thereafter, the substrate is placed in an etching reaction chamber, and a mixed gas is introduced to perform a dry etching process to pattern the multilayer filter material layer. This mixed gas includes a physical reaction gas and a chemical reaction gas. In the etching method of the color filter according to the embodiment of the present invention, the chemical reaction gas includes, for example, a first gas and a second gas, wherein the first gas is, for example, a fluorinated hydrocarbon gas, and the second gas is, for example, an inorganic gas. body. According to the etching method of the color filter according to the embodiment of the present invention, the inorganic II-containing gas of the above f is, for example, hexa(5)t sulfur (SF6) or nitrogen fluoride (either sulphur hexafluoride or fluorinated nitrogen). A gas filter according to an embodiment of the present invention, wherein the fluorinated hydrocarbon gas is, for example, a perfluorocarbon. I27^g44doc/e color filter according to an embodiment of the invention In the etching method, the first gas may further include chlorine gas (ci2). According to the etching method of the color filter according to the embodiment of the invention, the physical reaction gas is, for example, argon (Ar) or boron trichloride. (BC13), or a gas composed of argon gas and trichlorination. According to the etching method of the color filter according to the embodiment of the invention, the etching reaction chamber is, for example, reactive ion etching (reactive i〇n Etch, RIE) reaction chamber, transfbrmer c〇upled plasma (TCP) reaction chamber, electron cyclotron resonance (ECR) reaction chamber or magnetic enhanced reactive ion etching ( Magnetic enhanced reactive ion etch, MERIE The invention further provides a method for etching a color filter. First, a substrate is provided on which a multilayer filter material layer has been formed. Thereafter, the substrate is placed in an etching reaction chamber and passed through. Mixing the gas for dry etching to pattern the multilayer filter material layer. The mixed gas includes a first body, a second gas, wherein the first gas includes a hydrocarbon gas, and the second gas includes an inorganic fluorine The inorganic fluorine-containing gas includes sulfur hexafluoride or vaporized nitrogen, or a gas composed of sulfur hexafluoride and nitrogen fluoride. The etching method of the color filter according to the embodiment of the invention is as follows. The flow rate of the fluorinated hydrocarbon gas is, for example, 丨 to 5 times that of sulphur hexafluoride, and the color filter white (four) worm method according to the embodiment of the present invention, wherein the fluorinated hydrocarbon gas is, for example, Perfluorocarbon. According to the silver engraving method of the color filter and the light sheet according to the embodiment of the present invention, the flow rate of the perfluorocarbon described in 127 ^S44doc/e is, for example, 2 times that of sulfur hexafluoride. Color filter axis as described in the circumstance The method of the above-mentioned music can further include ammonia gas. In the method of the color filter according to the embodiment of the invention, the mixed gas may further comprise argon or boron trichloride. Or a gas composed of lanthanum trichloride. The axis of the color filter according to the embodiment of the present invention, the flow rate of the argon gas is, for example, 5 The method of etching the color filter according to the embodiment of the present invention, wherein the flow rate of the boron dichloride is, for example, between 0.5 and 10 times of sulfur hexafluoride. between. The present invention further proposes a method of fabricating a color filter. First, two substrates are provided. Then, a first composite layer is formed on the substrate. Next, a patterning process is performed on the first layer a to form a first filter, a light sheet. Then, a second composite layer is formed on the base =. Next, the second composite layer is patterned to form a second filter. Then, a third composite layer is formed on the substrate. Thereafter, the third composite layer is subjected to a patterning process to form a third filter. The patterning process includes placing a substrate into an etching reaction chamber and introducing a mixed gas for performing a dry etching process, wherein the mixed gas includes a physical reaction gas and a chemical reaction gas. According to the method of color filtering and light sheeting according to the embodiment of the present invention, the chemical reaction gas includes, for example, a first gas and a second gas, wherein the first gas is, for example, a fluorinated hydrocarbon gas, and the second gas is, for example, The inorganic fluorine-containing gas I276^4t4.d〇c/e is a method for etching a color filter according to an embodiment of the present invention, wherein the inorganic fluorine-containing gas is, for example, sulfur hexafluoride or nitrogen fluoride, or A gas composed of hexafluoride and nitrogen fluoride. According to the etching method of the color filter according to the embodiment of the invention, the above-mentioned fluorinated hydrocarbon gas is, for example, a perfluorocarbon. In the etching method of the color filter according to the embodiment of the invention, the first gas may further include chlorine gas.

、、依照本發明實施例所述之彩色濾光片的製作方法,上 速,物理反應氣體例如為氬氣或三氯化硼,或是由氯氣輿 三氯化硼所组成的氣體。 八〃 、、依照本發明實施例所述之彩色濾光片的製作方法,上 述之蝕刻反應室例如為反應性離子蝕刻反應室、變壓偶式 電漿,應t、電子環繞共減應室或磁增肢應離子姓刻According to the method of fabricating a color filter according to an embodiment of the present invention, the physical reaction gas is, for example, argon or boron trichloride, or a gas composed of chlorine lanthanum trichloride. According to the method for fabricating a color filter according to an embodiment of the present invention, the etching reaction chamber is, for example, a reactive ion etching reaction chamber, a transformer-type plasma, and a t-electron surrounding common reduction chamber. Or magnetic limbs should be ion-extended

依照本發明實施例所述之彩色滤光片的製作方法 述之第一複合層例如為紅色膜層。 、、依照本發明實施例所述之彩色濾光片的製作方法,上 述之第二複合層例如為綠色膜層。 、、依-本發明貫施例所述之彩色濾光片的製作方法,上 述之第二複合層例如為藍色膜層 本發明因採用無機含氟氣體,即六氣化硫、氣化氮或 與氟化氮所組成的氣體,作為蝕刻製程中的化 2應因此可以在_的過財提供足夠的氣離子 進灯反應,而達職高_速率的目的。此外,將本發 8 1276鼠。c/e ,之I虫刻方法應用於彩色濾光片的製作過程中,可以縮短 製程時間以增加產量。 »為讓本發明之上述和其他目的、特徵和優點能更明顯 易丨董下文特舉實施例,並配合所附圖式,作詳細說明如 下。 【實施方式】 圖1為依照本發明實施例所繪示的彩色濾光片的蝕刻 方法之步驟流程圖。請參照圖1,首先,在步驟100中, 提供一基板,此基板上已形成有一多層式濾光片材料層以 及一般熟知的半導體元件。多層式濾光片材料層例如是將 具有不同折射率的膜層交錯堆疊而成,其厚度例如是大於 8000A。舉例來說,多層式濾光片材料層例如是以低折射 率至高折射率的順序,將各膜層依序重複形成於基板上。 或者’在另一實施例中,多層式濾光片材料層也可以是以 高折射率至低折射率的順序,將各膜層依序重複形成於基 板上。此外,本發明中的多層式濾光片材料層可以是紅外 光線濾光片(infrared filter)、紫外光濾光片(ultraviolet filter)、RGB彩色濾光片(c〇l〇r filter)或CYM彩色濾光片。 之後’在步驟102中,將基板置入姓刻反應室中,通 入含有物理反應氣體與化學反應氣體的混合氣體以進行乾 式敍刻製程,將多層式濾光片材料層圖案化。钱刻反應室 例如為反應性離子I虫刻反應室、變壓偶式電漿反應室、電 子環繞共振反應室或磁增強反應離子蝕刻反應室。物理反 應氣體例如為氬氣、三氯化硼或由氬氣與三氯化硼所組成 I276M4 doc/e 的氣體’以在蝕刻的過程中作為提供離子轟擊 的來源。化學反應氣體例如包括第一氣體與 第二氣體。第一氣體例如為氟化烴氣體,例如為全氟化碳。 此外,第一氣體更可以包括氯氣。第二氣體例如為無機含 . 氟氣體,例如為六氟化硫、氟化氮或由六氟化硫與氟化氮 . 所組成的氣體,可以在蝕刻的過程中提供足夠的氟離子來 進<亍反應,而達到提南敍刻速率的目的。 〆在一實施例中,第一氣體為全氟化碳,第二氣體為六 瞻 氟化硫,則全氟化碳的流量例如是六氰化硫的2〜2〇倍。 另外,若第一氣體例如為氟化烷、氟化烯或氟化炔的氟化 烴氣體,則氟化烴氣體的流量例如是六氟化硫的丨〜1〇 倍。此外,氬氣的流量例如是六氟化硫的5〜5〇倍。或者, 三氯化硼的流量例如是六氟化硫的〇·5〜1〇倍。值得一提 的是,以上述氣體作為蝕刻製程中的钱刻氣體,可以將蝕 刻速率由習知的17nm/min至22nm/min,提高至 500nm/min,而達到將濾光片進行量產的目的。 • 特別一提的是,將本發明之蝕刻方法應用於彩色濾光 片的製作過程中,則可以縮短製程時間以及增加產量。 圖2A〜圖2F為依照本發明實施例所繪示的彩色濾光 片之製作流程剖面圖。首先,請參照圖2A,提供基板 2〇〇,基板200例如為矽基板,且基板200上已形成有一般 熟知的半導體元件(未繪示)。然後,於基板200上形成複 合層202。複合層202例如為紅色膜層,其形成方法例如 為物理氣相沈積法或化學氣相沈積法,將具有不同折射率 折射成。舉例來說,複合層2。2例如是以低 序’將各膜層依序重複形成於基板 高折射率至低折射顿=辦,複合層搬也可以是以 板200上。 順序,將各膜層依序重複形成於基. 以參照圖2Β,對複合層202進行圖案化製程 成囷安rUT圖案化製程u於於複合層202上形 ==== ),然後將基板200置入茲刻反應 以囝安=3 理反應氣€與化學反應氣體混合氣體, 20::安ί::為罩幕」進行乾式蝕刻製程來將複合層 Γ 理反應氣體例如為氬氣、三氯㈣或由氬 :Ξί=Γ成的氣體’以在侧的過程中作為提供 離子轟擊的來源。化學反錢體例如包括第—氣體與第二 亂體二第一氣體例如為氟化烴氣體,例如為全氣化碳。此 外第-氣體更可以包括氯氣。第二氣體例如為益機含 氣體,例如為六氣化硫、氟化氮或由六氟化硫與氟化氮所 組成的氣體’可以在钱刻的過程中提供足夠的氟離子來進 行反應,而達到提高餞刻速率的目的。另外,上述的姓刻 反應室例如為反應性離子钱刻反應室、變麼偶式電漿反應 室、電子環繞共振反應室或磁增強反應離子軸彳反應室。 然後,移除圖案化光阻層。 ~ 然後,請參照圖2C,於基板200上形成複合層2〇6。 複合層206例如為綠色膜層,其形成方法與複合層2〇2相 同,於此不再贅述。接著,於複合層2〇6上形成圖案化光 11 阻層208 ’以覆蓋敢形成、綠色濾光#的位置^ 繼之’請參照圖2D,對複合層206進行與上述相同 的乾式餞刻製程,、以形成濾光片21〇。然後,移除圖案低 光阻層208。 、—而後,請麥照圖2E,於基板2〇〇上形成複合層212。 複合層m例如為藍色膜i,其形成方法與複合層狐相 同,於此不再贅述。接著,於複合層212上形成圖案化光 阻層214,以職形成藍色濾光片驗置。 a、之後’請麥照圖2F,對複合層212進行與上述相同的 乾式钱刻製程以形成濾光片216 '然後,移除圖案化光阻 層 214 〇 特別-提的是,紅色濾、光片、綠色濾光片與藍色遽光 片的製作順序並非限定與上述實施例相同,可視需求 行變更順序。 卜絲上所述,本發明利用無機含氟氣體(六氟化硫、氟化 氮或由六氟化硫與氟化氮所組成的氣體)作為蝕刻製程中 的化學反應氣體’因此在似彳的過程中能夠提供足夠 離子來進行反應,提級_速率提高,簡短製程時間^。 此外,將本發明之制方法應祕彩色遽光片的製作a 中,同樣可以縮短蝕刻製程時間,進而增加產量。 王 範圍 雖然本發明已以實施例揭露如上,然其並非用以 本發明,任何熟習此技藝者,在不脫縣發明之精 圍内,當可作些許之更動與潤飾,因此本發明之保 當視後附之申請專利範圍所界定者為準。 12 doc/e 【圖式簡單說明】 圖1為依照本發明實施例所繪示的蝕刻方法之步驟 流程圖。 % 圖2A〜圖2F為依照本發明實施例所繪示的彩色濾光 片之製作流程剖面圖。 【主要元件符號說明】 100〜102 :步驟 200 :基板 • 202、206、212 :複合層 204、210、216 :濾光片 208、214 :圖案化光阻層 13The method of fabricating a color filter according to an embodiment of the invention is described as a first composite layer, for example, a red film layer. According to a method of fabricating a color filter according to an embodiment of the invention, the second composite layer is, for example, a green film layer. According to the method for fabricating a color filter according to the embodiment of the present invention, the second composite layer is, for example, a blue film layer. The present invention uses an inorganic fluorine-containing gas, that is, six gasified sulfur and gasified nitrogen. Or a gas composed of nitrogen fluoride, as the chemistry in the etching process 2 should therefore provide sufficient gas ion to enter the lamp reaction in the _ of the treasury, and achieve the purpose of high _ rate. In addition, the hair will be 8 1276 rats. The c/e, I insect method is applied to the color filter manufacturing process, which can shorten the process time to increase the yield. The above and other objects, features, and advantages of the present invention will become more apparent from [Embodiment] FIG. 1 is a flow chart showing the steps of an etching method of a color filter according to an embodiment of the invention. Referring to Figure 1, first, in step 100, a substrate is provided having a multilayer filter material layer and generally well known semiconductor components formed thereon. The multi-layered filter material layer is, for example, a stack of film layers having different refractive indices, and has a thickness of, for example, more than 8000 Å. For example, the layers of the multi-layer filter material are sequentially formed on the substrate in the order of low refractive index to high refractive index, for example. Alternatively, in another embodiment, the multi-layered filter material layer may be sequentially formed on the substrate in the order of high refractive index to low refractive index. In addition, the multi-layer filter material layer in the present invention may be an infrared filter, an ultraviolet filter, an RGB color filter (c〇l〇r filter) or CYM. Color filter. Thereafter, in step 102, the substrate is placed in the surname reaction chamber, and a mixed gas containing a physical reaction gas and a chemical reaction gas is introduced to perform a dry etching process to pattern the multilayer filter material layer. The reaction chamber is, for example, a reactive ion I insect reaction chamber, a variable pressure plasma chamber, an electron surrounding resonance chamber or a magnetically enhanced reactive ion etching chamber. The physical reaction gas is, for example, argon, boron trichloride or a gas of I276M4 doc/e composed of argon and boron trichloride as a source of ion bombardment during etching. The chemical reaction gas includes, for example, a first gas and a second gas. The first gas is, for example, a fluorinated hydrocarbon gas such as a perfluorocarbon. Further, the first gas may further include chlorine gas. The second gas is, for example, an inorganic fluorine gas, such as sulfur hexafluoride, nitrogen fluoride or a gas composed of sulfur hexafluoride and nitrogen fluoride, which can provide sufficient fluoride ions during the etching process. <亍 reaction, and achieve the purpose of mentioning the speed of the South. In one embodiment, the first gas is a perfluorocarbon and the second gas is a sulfuric acid. The flow rate of the perfluorocarbon is, for example, 2 to 2 times that of sulfur hexacyanohydride. Further, when the first gas is, for example, a fluorinated hydrocarbon gas of a fluorinated alkane, a fluorinated alkene or a fluorinated alkyne, the flow rate of the fluorinated hydrocarbon gas is, for example, 丨1 to 1 times the sulphur hexafluoride. Further, the flow rate of the argon gas is, for example, 5 to 5 times the sulfur hexafluoride. Alternatively, the flow rate of boron trichloride is, for example, 〇·5 to 1 〇 times that of sulfur hexafluoride. It is worth mentioning that, with the above gas as the engraving gas in the etching process, the etching rate can be increased from the conventional 17 nm/min to 22 nm/min to 500 nm/min, and the filter can be mass-produced. purpose. • In particular, when the etching method of the present invention is applied to the production process of a color filter, the process time and throughput can be shortened. 2A to 2F are cross-sectional views showing a process of fabricating a color filter according to an embodiment of the invention. First, referring to Fig. 2A, a substrate 2 is provided. The substrate 200 is, for example, a germanium substrate, and a generally well-known semiconductor element (not shown) has been formed on the substrate 200. Then, a composite layer 202 is formed on the substrate 200. The composite layer 202 is, for example, a red film layer formed by, for example, physical vapor deposition or chemical vapor deposition, and has a refractive index of different refractive indices. For example, the composite layer 2. 2 is formed, for example, in a lower order, in which the film layers are sequentially formed on the substrate from a high refractive index to a low refractive index, and the composite layer may be applied to the substrate 200. In sequence, each film layer is sequentially formed on the substrate. Referring to FIG. 2A, the composite layer 202 is patterned to form a ran rUT patterning process on the composite layer 202 (====), and then the substrate is 200 is placed in the reaction to 囝 = = 3 反应 反应 € 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学Trichloro (4) or a gas formed by argon: Ξί= is used as a source of ion bombardment in the process of the side. The chemical anti-money body includes, for example, a first gas and a second disordered gas. The first gas is, for example, a fluorinated hydrocarbon gas, such as fully vaporized carbon. Further, the first gas may further include chlorine gas. The second gas is, for example, a gas containing a gas, such as six gasified sulfur, nitrogen fluoride or a gas composed of sulfur hexafluoride and nitrogen fluoride, which can provide sufficient fluoride ions to carry out the reaction in the process of engraving. And achieve the purpose of increasing the engraving rate. Further, the above-mentioned surname reaction chamber is, for example, a reactive ion-etching reaction chamber, a variable-type plasma reaction chamber, an electron-surrounding resonance reaction chamber, or a magnetically-enhanced reaction ion-axis reaction chamber. The patterned photoresist layer is then removed. Then, referring to FIG. 2C, a composite layer 2〇6 is formed on the substrate 200. The composite layer 206 is, for example, a green film layer, and is formed in the same manner as the composite layer 2〇2, and will not be described again. Next, a patterned light 11 resist layer 208 ′ is formed on the composite layer 2〇6 to cover the position of the dashed formation and the green filter #. Next, please refer to FIG. 2D, and the composite layer 206 is subjected to the same dry etching as described above. The process is to form a filter 21〇. Then, the patterned low photoresist layer 208 is removed. Then, please take a picture 2E to form a composite layer 212 on the substrate 2A. The composite layer m is, for example, a blue film i, and the formation method thereof is the same as that of the composite layer fox, and will not be described herein. Next, a patterned photoresist layer 214 is formed on the composite layer 212 to form a blue filter inspection. a, after 'please the photo 2F, the composite layer 212 is subjected to the same dry etching process as described above to form the filter 216'. Then, the patterned photoresist layer 214 is removed, in particular, the red filter, The order in which the light sheet, the green filter, and the blue calender sheet are produced is not limited to the above-described embodiment, and the order of change can be changed as needed. As described above, the present invention utilizes an inorganic fluorine-containing gas (sulfur hexafluoride, nitrogen fluoride or a gas composed of sulfur hexafluoride and nitrogen fluoride) as a chemical reaction gas in an etching process. The process can provide enough ions to carry out the reaction, the grading rate is increased, and the short process time is ^. In addition, in the production of the color light-receiving sheet of the method of the present invention, the etching process time can be shortened, thereby increasing the yield. Although the present invention has been disclosed in the above embodiments, it is not intended to be used in the present invention. Anyone skilled in the art can make some modifications and retouchings in the essence of the invention. This is subject to the definition of the scope of the patent application. 12 doc/e [Simplified Schematic] FIG. 1 is a flow chart showing the steps of an etching method according to an embodiment of the invention. 2A to 2F are cross-sectional views showing a manufacturing process of a color filter according to an embodiment of the present invention. [Description of main component symbols] 100 to 102: Step 200: Substrate • 202, 206, 212: Composite layer 204, 210, 216: Filter 208, 214: Patterned photoresist layer 13

Claims (1)

1276^4· 十、申請專利範圍: 1·一種彩色滤光片的钱刻方法,包括· 提供-基板’該基板上已形成有—多層錢光片材料 曰,及 一將該基板置人-_反應室巾,通人—混合氣體以進 式蝕刻製程,將該多層式濾光片材料層 圖案化,該 此合氣體包括一物理反應氣體與一化學反應 請專利範圍第丨項所述之彩色濾光片的姓刻方 中該化學反應氣體包括—第—氣體與—第二氣體, =-氣體包括-氟化烴氣體,該第二氣體包括一 氟氣體。 、3.如中請專利範圍第2項所述之彩㈣光片_刻方 法:其中销機含氟氣體包括六氟化硫、氟化氮,以及由 六氟化硫與氟化氮所組成的氣體。 4.如申請專利範圍第2項所述之彩色濾光片的钱刻方 法,其中該氟化烴氣體包括全氟化碳。 、5.如中請專利範圍第4項所述之彩色濾、光片的茲刻方 法,其中該第一氣體更包括氯氣。 6. 如申請專利範圍第丨項所述之酬方法,其中該物 理反應氣體包括氬氣、三氯化调,以及由氬氣與三氯化删 所組成的氣體。 7. 如申請專·圍第1項所述之侧方法,其中雜 ,反應室,括反紐離子_反應室、㈣偶式電反應 室、電子環繞共振反應室以及磁增強反應離子蝕刻反應室。 14 1276ι^44.ά〇〇/6 8·一種彩色濾光片的蝕刻方法,包括·· 層;一基板,該基板上已形成^ ,該基板置人-细反應室中,通人—混合氣體以進 乙=刻製程,將該多層錢光片材料層圖案化,該混 第—氣體與—第二氣體,該第-氣體包括- 龜體’該第二氣體包括—無機含氟氣體,該無機含 包括六氟化硫、氟化氮,以及由六氣化硫與銳化 所組成的氣體。 9·如申請專利範圍第8項所述之彩色遽光片的钱刻方 其中该氟化烴氣體的流量為六氟化硫的1倍至5倍。 10·如申請專利範圍第8項所述之彩色濾光片的蝕刻 ',其中該氟化烴氣體包括一全氟化碳。 方1·如申明專利範圍第項所述之彩色濾光片的餘刻 彳其中该全氟化碳的流量為六氟化硫的2倍至1〇倍。 12·如申請專利範圍第1〇項所述之彩色濾光片的蝕刻 其中該第一氣體更包括氯氣。 方13·如申凊專利範圍第8項所述之彩色濾光片的蝕刻 / :其中該混合氣體更包括氬氣、三氯化,以及由氯 鐵二氯化硼所組成的氣體。 方法14·如申—請專利範圍第13項所述之彩色濾光片的蝕刻 /,其中氬氣的流量為六氟化硫的5倍至50倍。 方法如申凊專利範圍第13項所述之彩色濾光片的蝕刻 〆’其中二氯化硼的流量為六氟化硫的0.5倍至1〇倍。 15 I27^4^doc/e 16·-種彩色濾光片的製作方法,包括·· 提供一基板; 於該基板上形成一第—複合層; 光片 對.玄第-複合層進行—圖案化製程,以形成一第一滤 -, 於該基板上形成一第二複合層; 光片 對該第二複合層進行該圖案化製程以形成-第二濾 , 於該ΐ板上—形成一第三複合層;以及 ,對該第三複合層進行該《案化製程⑽成-第三濾 光片, " 其中該圖案化製程包括將該基板置人-勤j反應室中並通 入一混合氣體,以進行—乾式勤i製程,其中該混合氣體 包括一物理反應氣體與一化學反應氣體。 、Π·如申料利範圍第16項所述之彩色濾光片的飿刻 方法,其中該化學反應氣體包括—第—氣體與一第二氣 體,該第-氣體包括-氟化烴氣體,該第二氣體包括_無 機含氟氣體。 18·如申請專利範圍第17項所述之彩色濾光片的飿刻 方法,其中該無機含氟氣體包括六氟化硫、氟化氮,以及 由六氟化硫與氟化氮所組成的氣體。 19.如申請/利範圍第17項所述之彩色濾光片的钱刻 方法,其中忒氟化氣體包括全敦化碳。 20·如申請專利範圍第16項所述之彩色濾光片的颠刻 方法,其中該第一氣體更包括氯氣 16 21 ·如申請專利範圍第16項所述之飯刻方法,其中該 物理反應氣體包括氬氣或三氯化硼,或是由氬氣與三氯〈匕 爛所組成葯氣體。 、; 22·如申請專利範圍第16項所述之蝕刻方法,其中該 蝕刻反應室包括反應性離子蝕刻反應室、變壓偶式電漿反 應室、電子環繞共振反應室或磁增強反應離子蝕刻反應室。 23.如申請專利範圍第16項所述之蝕刻方法,其中該 第一複合層包括紅色膜層。 人 24·如申請專利範圍第16項所述之蝕刻方法,其中該 弟^一複合層包括綠色膜層。 25·如申請專利範圍第16項所述之蝕刻方法,其中該 第三複合層包括藍色膜層。 /、 ^1276^4· X. Patent application scope: 1. A method of engraving a color filter, including: providing a substrate, a substrate having a multi-layered light film material, and a substrate being placed on the substrate - _Reaction chamber towel, pass-through gas mixed etching process, the multi-layer filter material layer is patterned, the gas includes a physical reaction gas and a chemical reaction, please refer to the scope of the patent scope The chemical reaction gas in the last name of the color filter includes a first gas and a second gas, and the gas includes a -fluorinated hydrocarbon gas, and the second gas includes a fluorine gas. 3. The color film (4) as described in the second paragraph of the patent scope_photographing method: wherein the fluorine-containing gas of the pin machine comprises sulfur hexafluoride, nitrogen fluoride, and sulfur hexafluoride and nitrogen fluoride gas. 4. The method of engraving a color filter according to claim 2, wherein the fluorinated hydrocarbon gas comprises perfluorocarbon. 5. The method of color filter and light sheet according to item 4 of the patent application, wherein the first gas further comprises chlorine gas. 6. The method of claim 1, wherein the physical reaction gas comprises argon, trichlorination, and a gas consisting of argon and trichlorination. 7. For the side method described in Item 1, including the heterogeneous reaction chamber, including the anti-neon ion-reaction chamber, (iv) the even-type electric reaction chamber, the electron surrounding resonance reaction chamber, and the magnetically enhanced reactive ion etching reaction chamber. . 14 1276ι^44.ά〇〇/6 8· A method for etching a color filter, comprising: a layer; a substrate on which the substrate has been formed, the substrate is placed in a fine reaction chamber, and the mixture is mixed The gas is patterned by the B-etching process, and the mixed gas-gas and the second gas, the first gas includes - the turtle body, the second gas includes - an inorganic fluorine-containing gas, The inorganic content includes sulfur hexafluoride, nitrogen fluoride, and a gas composed of six gasified sulfur and sharpening. 9. A method of engraving a color calender as described in claim 8 wherein the flow rate of the fluorinated hydrocarbon gas is from 1 to 5 times that of sulfur hexafluoride. 10. The etching of a color filter according to claim 8, wherein the fluorinated hydrocarbon gas comprises a perfluorocarbon. The remainder of the color filter of claim 1, wherein the flow rate of the perfluorocarbon is from 2 times to 1 times the sulfur hexafluoride. 12. The etching of the color filter of claim 1, wherein the first gas further comprises chlorine. The etching of the color filter of the eighth aspect of the invention is as follows: wherein the mixed gas further comprises argon gas, trichlorination, and a gas composed of ferric chloride boron dichloride. Method 14: The etching of the color filter according to claim 13 of the patent application, wherein the flow rate of the argon gas is 5 to 50 times that of the sulfur hexafluoride. The method is the etching of the color filter described in claim 13 of the patent application, wherein the flow rate of the boron dichloride is 0.5 times to 1 times the sulfur hexafluoride. 15 I27^4^doc/e 16·- a method for fabricating a color filter, comprising: providing a substrate; forming a first composite layer on the substrate; and performing a pattern on the photo-parallel-composite layer a process for forming a first filter to form a second composite layer on the substrate; the light sheet performs the patterning process on the second composite layer to form a second filter on the raft plate to form a a third composite layer; and, the third composite layer is subjected to the process (10) into a third filter, wherein the patterning process comprises placing the substrate in a chamber and accessing the chamber A mixed gas is used to perform a dry process, wherein the mixed gas includes a physical reaction gas and a chemical reaction gas. The method of engraving a color filter according to claim 16, wherein the chemical reaction gas comprises a first gas and a second gas, and the first gas comprises a -fluorinated hydrocarbon gas. The second gas includes an inorganic fluorine-containing gas. 18. The method of engraving a color filter according to claim 17, wherein the inorganic fluorine-containing gas comprises sulfur hexafluoride, nitrogen fluoride, and sulfur hexafluoride and nitrogen fluoride. gas. 19. The method of engraving a color filter according to claim 17, wherein the fluorinated gas comprises fully denatured carbon. The method of engraving a color filter according to claim 16 , wherein the first gas further comprises chlorine gas 16 21 · The method of cooking according to claim 16 of the patent application, wherein the physical reaction The gas includes argon or boron trichloride, or a chemical gas composed of argon and trichloromethane. 22. The etching method of claim 16, wherein the etching reaction chamber comprises a reactive ion etching reaction chamber, a variable pressure plasma processing chamber, an electron surrounding resonance reaction chamber, or a magnetically enhanced reactive ion etching. Reaction chamber. 23. The etching method of claim 16, wherein the first composite layer comprises a red film layer. The method of etching according to claim 16, wherein the composite layer comprises a green film layer. The etching method of claim 16, wherein the third composite layer comprises a blue film layer. /, ^ 1717
TW95110657A 2006-03-28 2006-03-28 Etching method TWI276844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95110657A TWI276844B (en) 2006-03-28 2006-03-28 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95110657A TWI276844B (en) 2006-03-28 2006-03-28 Etching method

Publications (2)

Publication Number Publication Date
TWI276844B true TWI276844B (en) 2007-03-21
TW200736674A TW200736674A (en) 2007-10-01

Family

ID=38646371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95110657A TWI276844B (en) 2006-03-28 2006-03-28 Etching method

Country Status (1)

Country Link
TW (1) TWI276844B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449101B (en) * 2007-05-14 2014-08-11 Ulvac Inc Dry etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449101B (en) * 2007-05-14 2014-08-11 Ulvac Inc Dry etching method

Also Published As

Publication number Publication date
TW200736674A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
Ou et al. Extremely efficient white organic light‐emitting diodes for general lighting
TWI244355B (en) Highly efficient organic light emitting device using substrate having nanosized hemispherical recesses and method for preparing the same
Xiang et al. Extremely efficient transparent flexible organic light‐emitting diodes with nanostructured composite electrodes
US20170018740A1 (en) Organic light emitting diode, manufacturing method for organic light emitting diode, image display device and illumination device
TWI375080B (en) Light emitting devices for liquid crystal displays
TW200913767A (en) Light extraction film for organic light emitting diode display devices
US7786665B2 (en) Organic electroluminescent device having a diffraction grating for enhancing light extraction efficiency
KR101932298B1 (en) Oled light extraction films having nanoparticles and periodic structures
US20130181242A1 (en) Organic electroluminescent device and method for manufacturing thereof
Wang et al. Broadband Light Out‐Coupling Enhancement of Flexible Organic Light‐Emitting Diodes Using Biomimetic Quasirandom Nanostructures
TW201234583A (en) Organic light emitting diode and method for producing the same, image display device and lighting device
JP2004258380A (en) Display device and method for manufacturing transparent substrate for display device
TWI281097B (en) Silicon rich dielectric antireflective coating
JP2016045345A (en) Inorganic polarizer and manufacturing method of the same
Luo et al. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate
WO2021244369A1 (en) Light-emitting device and manufacturing method therefor, and display device or lighting device
US20130146902A1 (en) Display substrate and method of manufacturing the same
JP2008218406A (en) Organic el element, its manufacturing method, and evaluation method of organic el element
Li et al. Releasing the trapped light for efficient silver nanowires‐based white flexible organic light‐emitting diodes
TWI315162B (en) Organic electroluminescent device
TWI276844B (en) Etching method
Shin et al. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes
TW201137971A (en) Etching method and etching apparatu
JP2014130769A (en) Organic light emitting diode, substrate for organic light emitting diode, and method for manufacturing substrate
Chen et al. Design and fabrication of hybrid MLAs/gratings for the enhancement of light extraction efficiency and distribution uniformity of OLEDs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees