TWI276756B - Regenerative thermal oxidizer - Google Patents

Regenerative thermal oxidizer Download PDF

Info

Publication number
TWI276756B
TWI276756B TW94129314A TW94129314A TWI276756B TW I276756 B TWI276756 B TW I276756B TW 94129314 A TW94129314 A TW 94129314A TW 94129314 A TW94129314 A TW 94129314A TW I276756 B TWI276756 B TW I276756B
Authority
TW
Taiwan
Prior art keywords
heat recovery
gas
chamber
combustion furnace
chambers
Prior art date
Application number
TW94129314A
Other languages
Chinese (zh)
Other versions
TW200708688A (en
Inventor
Guo-Liang Liau
Chen-Huang Chang
Hung-Ta Peng
Original Assignee
Superior Air Treat Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Superior Air Treat Technology filed Critical Superior Air Treat Technology
Priority to TW94129314A priority Critical patent/TWI276756B/en
Publication of TW200708688A publication Critical patent/TW200708688A/en
Application granted granted Critical
Publication of TWI276756B publication Critical patent/TWI276756B/en

Links

Abstract

A regenerative thermal oxidizer includes a combustion chamber for oxidizing a gas, two regenerative thermal chambers respectively connected to two ends of the combustion chamber, two switching valves respectively connected to the regenerative thermal chambers, and at least one residual gas treatment apparatus for removing residual gas that remains in the regenerative thermal chambers. Each of the switching valves has a rotary plate having an opening for switching an inlet opening and an outlet opening of each switching valve, so that it is easy to control the switching valves.

Description

1276756 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種熱回收式燃燒爐(Regenerative Thermal Oxidizer, RTO),特別是指一種具有控制簡單之 切換閥的熱回收式燃燒爐。 【先前技術】 熱回收式燃燒爐是一種用於處理中低濃度有機揮發性 氣體(volatile organic compound, V0C)的節能型環保裝 置,並且由於熱回收式燃燒爐具有熱使用效率高(>90%) 以及燃料使用量低等優點,熱回收式燃燒爐係已廣泛地應 用於各種工業,例如半導體產業、光電產業、煉油及石 化、合成樹脂製造、以及表面塗裝等工業。 請參考第1圖,第1圖係為習知之熱回收式燃燒爐示 意圖。如第1圖所示,一熱回收式燃燒爐10係包含有一 熱回收室12,一熱回收室14,以及一燃燒室16連接於熱 回收室12與熱回收室14之間。其中,熱回收室12包含 有一蓄熱室12a以及一空室12b,而熱回收室14亦包含 有一蓄熱室14a以及一空室14b,蓄熱室12a與14a係填 充有複數個蓄熱磚,而該等蓄熱磚通常是由石質或陶瓷等 蓄熱材料所構成。此外,燃燒室16之内係設有一燃燒器 a 1276756 (burner)l8,用來使燃燒室16維持於一適當的反應溫度 (2 800°C),進而可使燃燒室16内的v〇C廢氣氧化生成 、 二氧化碳(c〇2)和水氣(仏〇)。一般而言,燃燒器18係經由 焚燒燃料(fuel)來提供燃燒室16所需的反應溫度。 如第1圖所示,熱回收式燃燒爐另包含有一進氣 歧管(inlet manifold)24 以及一排氣歧管(〇utlet • manif〇ld)26。其中,進氣歧管24係連接至一廢氣源 ^ (source dirty gas),例如:汽機車塗裝廠的排氣 管’並係用來將廢氣源所產生的V〇C廢氣送入熱回收室 12與14以進行反應。此外,進氣歧管24係具有一連接 於熱回收室12之進氣支管24a與一連接於熱回收室14之 進氣支管24b,而且進氣支管24a與24b分別包含有一進 氣閥門20a與一進氣閥門20b,進氣支管24a與24b内的 φ V0C廢氣必須分別經過進氣閥門2〇a與20b,才可進入熱 回收室12與14。另一方面,排氣歧管26主要包含有一 連接於熱回收室12之排氣支管26a與一連接於熱回收室 14之排氣支管26b,而排氣支管26a與26b則分別具有一 排氣閥門22a與一排氣閥門22b,並且,反應後的乾淨氣 體則必須經過排氣閥門22a與22b,才能進入排氣支管 二 26a與26b,進而排放至大氣中。 1276756 明再參考第1圖,接下來將解釋習知之熱回收式燃燒 爐10的運作過程。首先,將熱回收室12設定為一進氣模 式(inlet mode),並使熱回收室14處於一排氣模式 (outlet mode),此時進氣閥門20a與排氣閥門22b係分 ’ 別被開啟,而進氣閥門20b與排氣閥門22a則被關閉。接 著’ V0C廢氣自進氣歧管24進入進氣支管24a,並沿著進 氣支管24a進入熱回收室12之内,然後V0C廢氣會穿過 % 蓄熱室12a而進入燃燒室16,並且燃燒室16内的高溫會 誘發V0C廢氣產生乳化反應’而生成水氣與二氧化碳。隨 後,水氣與二氧化碳係穿過熱回收室14、排氣支管26b 與排氣歧管26,最後被排放到大氣中,並且當水氣與二 氧化碳經過蓄熱室14a時,蓄熱室14a内的蓄熱碑會吸收 水氣與二氧化碳的熱能’同時並冷卻水氣與二氧化碳。 隹 接著,將熱回收室14轉換成進氣模式,並將熱回收 室12設定成排氣模式,此時進氣閥門2〇b與排氣閥門 22a分別被開啟,而進氣閥門20a與排氣閥門22b則被關 閉。然後,V0C廢氣會沿著進氣歧管24與進氣支管24b 進入熱回收室14之内’並穿過蓄熱室14a而進入燃燒室 16之内。此外,當V〇C廢氣經過蓄熱室14a時,蓄熱室 • 14a内的蓄熱磚會與V〇C廢氣進行熱交換,而將之前所吸 收之熱能傳導給v〇c廢氣’如此一來’當V0C廢氣進入燃 燒室16時,V0C廢氣係具有較高的溫度,因而可節省燃 1276756 燒器18的燃料使用量。之後,燃燒室16内的高溫會使 VOC廢氣反應成水氣與二氧化碳,而水氣與二氧化碳便會 沿著熱回收室12、排氣支管26a以及排氣歧管26而散逸 到大氣中,並且當水氣與二氧化碳經過蓄熱室12a時,蓄 熱室12a内的蓄熱碑會吸收水氣與二氧化碳的熱能,同時 並冷卻水氣與二氧化碳。 鲁然而,當熱回收室12處於進氣模式時,v〇C廢氣係 從熱回收室12進入燃燒室16,但是由於氣體壓力的關 係,熱回收室12内的v〇C廢氣並無法完全進入燃燒室 16,因而使得部分的VOC廢氣會殘留在空室12b之内。如 此一來,當熱回收室12處於排氣模式時,乾淨的氣體會 從燃燒室16進入熱回收室12内,然後被排氣歧管邡排 放到大氣中,同時,殘留在空室12β内的v〇c廢氣便會與 φ乾淨的氣體一起被排玫到大氣中,進而造成空氣污染。此 外,習知之熱回收式燃燒爐丨〇係利用四個獨立的閥門 20A、20B、22A與22B ’來控制熱回收室12與14内的氣 體進出,也就是說,當習知之熱回收式燃燒爐進行反 應時,其必須同時控制四個閥門2〇a、20B、22A與22B, 但是閥門的數目越多,閥門的控制程序越複雜,並且越容 易產生控制錯誤的情形,進而降低熱回收式燃燒爐1〇的 廢氣處理效率。 8 d 1276756 【發明内容】 本發明的目的是提供一種熱回收式燃燒爐,以解決前 述問題。 " 依據本發明之目的,本發明的較佳實施例係提供一種 熱回收式燃燒爐,其包含有一用來燃燒一氣體之燃燒室, 兩個分別連接於該燃燒室之兩端的熱回收室,兩個分別連 • 接於該等熱回收室的切換閥,以及至少一用以去除殘留於 ' 各該熱回收室之該氣體的餘氣處理裝置,其中各該切換閥 均具有一閥箱與一轉盤,並且各該閥箱具有一進氣室與一 排氣室,該進氣室具有一第一進氣口,用以將該氣體輸入 各該熱回收室,而該排氣室具有一第一排氣口,用以將燃 燒後之該氣體輸入該排氣室,此外該轉盤係具有一開口, 用來切換該第一進氣口與該第一排氣口。 參 由於本發明僅需控制兩個轉盤,即可控制四個進氣口 與排氣口的開啟與關閉,因此本發明之切換閥不僅具有控 制簡單之優點,並具有製作簡單以及製造成本低廉等優 勢。除此之外,由於本發明之熱回收式燃燒爐另包含有至 少一餘氣處理裝置,用以去除殘留於各該熱回收室内的廢 -氣,如此便可避免殘留於各該熱回收室之廢氣被排放至大 .氣申,進而可減少空氣污染之情形產生。 1276756 【實施方式】 請參考第2圖至第4圖,第2圖至第4圖係為本發明 ^ 較佳實施例之熱回收式燃燒爐示意圖。如第2圖所示,一 熱回收式燃燒爐30係包含有一熱回收室32,一熱回收室 .1 …、 34,以及一燃燒室36連接於熱回收室32與熱回收室34 之間。其中,熱回收室32係包含有一蓄熱室32a、以及 一位於蓄熱室32a下方之空室32b,而熱回收室34亦包 ❿含有一蓄熱室34a、以及一位於蓄熱室34a下方之空室 34b,蓄熱室32a與34a係填充有複數個蓄熱磚,而該等 蓄熱碑通常是由石質或陶瓷等蓄熱材料所構成。另外,燃 燒室36内係設有一燃燒器38,用來使燃燒室36得以維 持於一適當的反應溫度(g 800°c),進而可使燃燒室36 内的VOC廢氣氧化生成二氧化碳和水氣。一般而言,燃燒 器38係經由焚燒燃料來提供燃燒室36所需的反應溫度。 此外,熱回收式燃燒爐3〇另包含有一進氣歧管6〇與 一排氣歧管62,進氣歧管6〇係連接至一廢氣源,例如: 汽機車塗裝廠的排氣管,而排氣歧管62係用來將反應後 的乾淨氣體排放至大氣中。其中,進氣歧管6〇包含有一 進氣支官60a與一進氣支管6〇b,分別用來將y〇c廢氣送 -入熱回收至32與34之内以進行反應,而排氣歧管62係 —包含有-排氣支管62a與—排氣支管,用來將反應後 的乾淨氣體輸送至排氣歧管62。 1276756 如第2圖所示,熱回收式燃燒爐30另包含有一切換 閥40與一切換閥50,分別裝設於熱回收室32與熱回收 ' 室34的底部,用來控制熱回收室32與34内的氣體進 " 出。並且如第3圖所示,切換閥40係包含有一閥箱42與 一轉盤48,其中轉盤48係以可轉動的方式設置於閥箱42 的表面上,而閥箱42係連接於熱回收室32的底部並包含 • 有一進氣室42a與一排氣室42b,並且進氣室42a與排氣 • 室42b係彼此不相通。此外,進氣室42a係具有一用以連 通進氣室42a與熱回收室32的進氣口 44a、以及一連接 至進氣支管60a的進氣口 44b,並且進氣支管60a内的 VOC廢氣必須依序經過進氣口 44b與進氣口 44a,方可流 入熱回收室32之内。另;方面,排氣室42.b則具有一用 以連通排氣室42b與熱回收室32的排氣口 46a、以及一 ^ 連接至排氣支管62a的排氣口 46b,而氧化後的乾淨氣體 係必須依序經過排氣口 46a與排氣口 46b,才可進入排氣 支管62a與排氣歧管62之中。除此之外,轉盤48係具有 一開口 48a,而且切換閥40係利用一控制單元(未顯示) 來控制轉盤48,以使轉盤48可沿著雙箭頭AA’所示之方 向轉動,而且轉盤48係可利用開口 48a來切換進氣口 44a與排氣口 46a之開啟與關閉。也就是說,當轉盤48 的開口 48a對準進氣口 44a時,進氣口 44a係可連通進氣 室42a與熱回收室32,而排氣口 46a則被關閉而無法連 11 1276756 通排氣室42b與熱回收室32。反之,當轉盤48的開口 48a對準排氣口 46a時,排氣口 46a係可連通排氣室42b 與熱回收室32,而進氣口 44a則被關閉而無法連通進氣 室42a與熱回收室32。 另一方面,如第2圖所示,切換閥50的構造係與切 換閥40相同,其亦包含有一具有一進氣室52a與一排氣 • 室52b的閥箱52、以及一可轉動之轉盤58,並且進氣室 52a係具有一用以連通進氣室52a與熱回收室34的進氣 口 54a、以及一連接於進氣支管60b的進氣口 54b,而排 氣室52b則具有一用以連通排氣室52b與熱回收室34的 排氣口 56a、以及一連接至排氣支管62b的排氣口 56b。 除此之外,如第2圖所示,熱回收式燃燒爐30另包 φ 含有一氣體抽取裝置64與一氣體抽取裝置68,分別用來 作為一餘氣處理裝置,以去除殘留於空室32b與34b之 VOC廢氣,在本發明之較佳實施例中,氣體抽取裝置64 與67係分別為一抽風扇(fan)。另一方面,抽風扇64係 藉由一抽氣支管66而連接於空室32b與進氣支管60a之 間,而且抽氣支管66上設置有兩個閥門67a與67b,用 以控制抽氣支管66内之氣體進出,而抽風扇68則是經由 一抽氣支管70而連接於空室34b與進氣支管60b之間, 並且抽氣支管70上設置有兩個閥門71a與71b,用以控 1276756 制抽氣支管70内之氣體進出。另外,在本發明之其它實 施例中,抽風扇64係可同時連接至空室34b與空室 34b,並省略抽風扇68之設置,亦即利用一個抽風扇64 來抽取空室34b與空室34b内的VOC廢氣。 請參考第2圖與第4圖,接下來將解釋本發明之熱回 收式燃燒爐30的運作過程。如第2圖所示,首先將熱回 ❿ 收室32設定為一進氣模式,並將熱回收室34設定為一排 ^ 氣模式,此時切換閥40會將轉盤48的開口 48a旋轉至進 氣口 44a上方,以打開進氣口 44a並關閉排氣口 46a,同 時切換閥50則將轉盤58的開口 58a轉動至排氣口 56a上 方,以打開排氣口 56a並關閉進氣口 54a。接著,VOC廢 氣係沿著進氣歧管60而進入進氣支管60a,並經由進氣 口 44b與進氣口 44a而進入熱回收室32之内,然後VOC φ 廢氣會穿過蓄熱室32a而進入燃燒室36之内,而且燃燒 室36會於高溫下將VOC廢氣氧化成的水氣與二氧化碳。 最後,乾淨的水氣與二氧化碳會通過熱回收室34,並經 由排氣口 56a與56b、排氣支管62b以及排氣歧管62而 散逸到大氣中,並且由於水氣與二氧化碳係於高溫下產 生,所以剛生成的水氣與二氧化碳係具有大量的熱能,因 此當水氣與二氧化碳經過蓄熱室34a時,蓄熱室34a内的 蓄熱碑會吸收水氣與二氧化碳内的熱能,以冷卻水氣與二 氧化碳。另一方面,抽風扇64會將殘留於空室32b内的 13 1276756 VOC廢氣抽出,並將抽出的VOC廢氣送到進氣支管60a或 進氣歧管60之内。 〜 之後,如第4圖所示,將熱回收室34設定為進氣模 ; 式,同時並將熱回收室32設定為排氣模式,此時切換閥 40會將轉盤48的開口 48a旋轉至排氣口 46a上方,以打 開排氣口 46a並關閉進氣口 44a,同時切換閥50則將轉 • 盤58的開口 58a轉動至進氣口 54a上方,以打開進氣口 ^ 54a並關閉排氣口 56a。緊接著,V0C廢氣會沿著進氣歧 管60進入進氣支管60b,並經由進氣口 54b與進氣口 54a 而進入熱回收室34之内,隨後VOC廢氣會穿過蓄熱室 34a而進入燃燒室36,並且當V0C廢氣經過蓄熱室34a 時,蓄熱室· 34a内的蓄熱磚會與VOC廢氣進行熱交換,而 將之前所吸收之熱能傳導給V0C廢氣,以提高V0C廢氣的 ^ 溫度。然後,燃燒室36會於高溫下將V0C廢氣氧化成水 氣與二氧化碳,之後水氣與二氧化碳會通過熱回收室 32,並經由排氣口 46a與46b、排氣支管62a以及排氣歧 管62而散逸到大氣中,並且當剛形成的水氣與二氧化碳 經過蓄熱室32a時,蓄熱室32a内的蓄熱碑會吸收水氣與 二氧化碳的熱能,以降低水氣與二氧化碳的溫度。另一方 面,抽風扇68會將殘留於空室34b内的V0C廢氣抽出, 並將抽出的V0C廢氣送到進氣支管60a或進氣歧管60之 内。1276756 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a Regenerative Thermal Oxidizer (RTO), and more particularly to a heat recovery type combustion furnace having a control valve that is simple to control. [Prior Art] A heat recovery type combustion furnace is an energy-saving environmental protection device for treating a medium and low concentration volatile organic compound (VOC), and has a high heat use efficiency due to a heat recovery type combustion furnace (>90 %) and low fuel consumption, heat recovery burners have been widely used in various industries, such as semiconductor industry, photovoltaic industry, oil refining and petrochemical, synthetic resin manufacturing, and surface coating industries. Please refer to Fig. 1, which is a schematic view of a conventional heat recovery type combustion furnace. As shown in Fig. 1, a heat recovery type combustion furnace 10 includes a heat recovery chamber 12, a heat recovery chamber 14, and a combustion chamber 16 connected between the heat recovery chamber 12 and the heat recovery chamber 14. The heat recovery chamber 12 includes a regenerator 12a and an empty chamber 12b, and the heat recovery chamber 14 also includes a regenerator 14a and an empty chamber 14b. The regenerators 12a and 14a are filled with a plurality of regenerator bricks, and the regenerator bricks are filled with the regenerator bricks. It is usually made of a heat storage material such as stone or ceramic. In addition, a burner a 1276756 (burner) 18 is provided in the combustion chamber 16 for maintaining the combustion chamber 16 at an appropriate reaction temperature (2 800 ° C), thereby allowing the v〇C in the combustion chamber 16 to be Exhaust gas oxidation, carbon dioxide (c〇2) and water vapor (仏〇). In general, burner 18 provides the reaction temperature required for combustion chamber 16 via incineration fuel. As shown in Fig. 1, the heat recovery type combustion furnace further includes an intake manifold 24 and an exhaust manifold (26). The intake manifold 24 is connected to a source dirty gas, for example, an exhaust pipe of a steam locomotive coating plant, and is used to send the V〇C exhaust gas generated by the exhaust gas source into the heat recovery. Chambers 12 and 14 are reacted. In addition, the intake manifold 24 has an intake manifold 24a connected to the heat recovery chamber 12 and an intake manifold 24b connected to the heat recovery chamber 14, and the intake manifolds 24a and 24b respectively include an intake valve 20a and An intake valve 20b, the φ V0C exhaust gas in the intake branch pipes 24a and 24b must pass through the intake valves 2a and 20b, respectively, to enter the heat recovery chambers 12 and 14. On the other hand, the exhaust manifold 26 mainly includes an exhaust branch pipe 26a connected to the heat recovery chamber 12 and an exhaust branch pipe 26b connected to the heat recovery chamber 14, and the exhaust branch pipes 26a and 26b respectively have an exhaust pipe. The valve 22a and an exhaust valve 22b, and the cleaned gas after the reaction must pass through the exhaust valves 22a and 22b to enter the exhaust branch pipes 26a and 26b, and then discharged to the atmosphere. 1276756 Referring again to Fig. 1, the operation of the conventional heat recovery type combustion furnace 10 will be explained next. First, the heat recovery chamber 12 is set to an inlet mode, and the heat recovery chamber 14 is placed in an outlet mode, at which time the intake valve 20a and the exhaust valve 22b are separated. It is opened, and the intake valve 20b and the exhaust valve 22a are closed. Then, the V0C exhaust gas enters the intake manifold 24a from the intake manifold 24, and enters the heat recovery chamber 12 along the intake manifold 24a, and then the V0C exhaust gas passes through the % regenerator 12a and enters the combustion chamber 16, and the combustion chamber The high temperature in 16 induces an emulsification reaction of the V0C exhaust gas to generate moisture and carbon dioxide. Subsequently, the water vapor and the carbon dioxide pass through the heat recovery chamber 14, the exhaust branch pipe 26b and the exhaust manifold 26, and are finally discharged to the atmosphere, and when the water vapor and the carbon dioxide pass through the regenerator 14a, the heat storage monument in the regenerator 14a It will absorb the heat of water and carbon dioxide' while cooling the water and carbon dioxide. Next, the heat recovery chamber 14 is converted into the intake mode, and the heat recovery chamber 12 is set to the exhaust mode, at which time the intake valve 2〇b and the exhaust valve 22a are respectively opened, and the intake valve 20a and the row are respectively opened. The gas valve 22b is closed. Then, the V0C exhaust gas enters the heat recovery chamber 14 along the intake manifold 24 and the intake manifold 24b and passes through the regenerator chamber 14a to enter the combustion chamber 16. In addition, when the V〇C exhaust gas passes through the regenerator 14a, the heat storage bricks in the regenerator chamber 14a exchange heat with the V〇C exhaust gas, and transfer the previously absorbed heat energy to the v〇c exhaust gas. When the V0C exhaust gas enters the combustion chamber 16, the V0C exhaust gas has a higher temperature, thereby saving the fuel usage of the burning 1276756 burner 18. Thereafter, the high temperature in the combustion chamber 16 causes the VOC exhaust gas to react into moisture and carbon dioxide, and the moisture and carbon dioxide are dissipated into the atmosphere along the heat recovery chamber 12, the exhaust manifold 26a, and the exhaust manifold 26, and When the water vapor and the carbon dioxide pass through the regenerator 12a, the heat storage monument in the regenerator 12a absorbs the heat energy of the water vapor and the carbon dioxide, and simultaneously cools the water vapor and the carbon dioxide. However, when the heat recovery chamber 12 is in the intake mode, the v〇C exhaust gas enters the combustion chamber 16 from the heat recovery chamber 12, but due to the gas pressure, the v〇C exhaust gas in the heat recovery chamber 12 cannot be completely entered. The combustion chamber 16 thus causes a portion of the VOC exhaust gas to remain within the empty chamber 12b. In this way, when the heat recovery chamber 12 is in the exhaust mode, clean gas enters the heat recovery chamber 12 from the combustion chamber 16, and is then discharged into the atmosphere by the exhaust manifold, while remaining in the empty chamber 12? The v〇c exhaust gas will be discharged into the atmosphere together with the φ clean gas, which will cause air pollution. In addition, the conventional heat recovery type combustion furnace utilizes four independent valves 20A, 20B, 22A and 22B' to control the ingress and egress of gases in the heat recovery chambers 12 and 14, that is, when conventional heat recovery combustion When the furnace reacts, it must control the four valves 2〇a, 20B, 22A and 22B at the same time, but the more the number of valves, the more complicated the control program of the valve, and the easier it is to generate control errors, thus reducing the heat recovery type. Exhaust gas treatment efficiency of the furnace. 8 d 1276756 SUMMARY OF THE INVENTION An object of the present invention is to provide a heat recovery type combustion furnace to solve the aforementioned problems. According to the purpose of the present invention, a preferred embodiment of the present invention provides a heat recovery type combustion furnace comprising a combustion chamber for burning a gas, and two heat recovery chambers respectively connected to both ends of the combustion chamber. a switching valve connected to the heat recovery chambers, and at least one residual gas treatment device for removing the gas remaining in each of the heat recovery chambers, wherein each of the switching valves has a valve box And a turntable, and each of the valve boxes has an inlet chamber and an exhaust chamber, the inlet chamber having a first inlet for inputting the gas into each of the heat recovery chambers, wherein the chamber has a first exhaust port for inputting the burned gas into the exhaust chamber, and the turntable has an opening for switching the first intake port and the first exhaust port. Since the invention only needs to control two turntables, the opening and closing of the four air inlets and the exhaust ports can be controlled. Therefore, the switching valve of the invention not only has the advantages of simple control, but also has simple manufacturing and low manufacturing cost. Advantage. In addition, since the heat recovery type combustion furnace of the present invention further comprises at least one residual gas treatment device for removing waste gas remaining in each of the heat recovery chambers, it is possible to avoid remaining in each of the heat recovery chambers. The exhaust gas is discharged to a large gas supply, which in turn reduces the occurrence of air pollution. 1276756 [Embodiment] Please refer to Figs. 2 to 4, and Fig. 2 to Fig. 4 are schematic views showing a heat recovery type combustion furnace according to a preferred embodiment of the present invention. As shown in FIG. 2, a heat recovery type combustion furnace 30 includes a heat recovery chamber 32, a heat recovery chambers .1, 34, and a combustion chamber 36 connected between the heat recovery chamber 32 and the heat recovery chamber 34. . The heat recovery chamber 32 includes a regenerator 32a and a vacant chamber 32b located below the regenerator 32a, and the heat recovery chamber 34 also includes a regenerator 34a and an empty chamber 34b located below the regenerator 34a. The regenerators 32a and 34a are filled with a plurality of heat storage bricks, and the heat storage monuments are usually made of a heat storage material such as stone or ceramic. In addition, a combustor 38 is disposed in the combustion chamber 36 for maintaining the combustion chamber 36 at an appropriate reaction temperature (g 800 ° C), thereby oxidizing the VOC exhaust gas in the combustion chamber 36 to generate carbon dioxide and moisture. . In general, burner 38 provides the reaction temperature required for combustion chamber 36 via incineration of fuel. In addition, the heat recovery type combustion furnace 3〇 further includes an intake manifold 6〇 and an exhaust manifold 62, and the intake manifold 6 is connected to an exhaust gas source, for example: an exhaust pipe of a steam locomotive painting factory The exhaust manifold 62 is used to discharge the clean gas after the reaction to the atmosphere. The intake manifold 6〇 includes an intake manifold 60a and an intake manifold 6〇b for respectively transferring the y〇c exhaust gas into the heat recovery to 32 and 34 for reaction, and exhausting The manifold 62 is comprised of an exhaust manifold 62a and an exhaust manifold for delivering the cleaned gas after the reaction to the exhaust manifold 62. 1276756 As shown in FIG. 2, the heat recovery type combustion furnace 30 further includes a switching valve 40 and a switching valve 50 installed at the bottom of the heat recovery chamber 32 and the heat recovery chamber 34, respectively, for controlling the heat recovery chamber 32. Into the gas inside 34 " out. And as shown in FIG. 3, the switching valve 40 includes a valve box 42 and a turntable 48, wherein the turntable 48 is rotatably disposed on the surface of the valve box 42, and the valve box 42 is connected to the heat recovery chamber. The bottom of 32 includes and has an inlet chamber 42a and an exhaust chamber 42b, and the inlet chamber 42a and the exhaust chamber 42b are not in communication with each other. Further, the intake chamber 42a has an intake port 44a for communicating the intake chamber 42a and the heat recovery chamber 32, and an intake port 44b connected to the intake branch pipe 60a, and the VOC exhaust gas in the intake branch pipe 60a. It is necessary to pass through the intake port 44b and the intake port 44a in order to flow into the heat recovery chamber 32. On the other hand, the exhaust chamber 42.b has an exhaust port 46a for connecting the exhaust chamber 42b and the heat recovery chamber 32, and an exhaust port 46b connected to the exhaust manifold 62a, and oxidized. The clean air system must pass through the exhaust port 46a and the exhaust port 46b in order to enter the exhaust branch 62a and the exhaust manifold 62. In addition, the turntable 48 has an opening 48a, and the switching valve 40 uses a control unit (not shown) to control the turntable 48 so that the turntable 48 can be rotated in the direction indicated by the double arrow AA', and the turntable The 48 series can utilize the opening 48a to switch the opening and closing of the intake port 44a and the exhaust port 46a. That is, when the opening 48a of the turntable 48 is aligned with the air inlet 44a, the air inlet 44a can communicate with the air inlet chamber 42a and the heat recovery chamber 32, and the air outlet 46a is closed and cannot be connected to the 11 1276756. The gas chamber 42b and the heat recovery chamber 32. On the contrary, when the opening 48a of the turntable 48 is aligned with the exhaust port 46a, the exhaust port 46a can communicate with the exhaust chamber 42b and the heat recovery chamber 32, and the intake port 44a is closed to be unable to communicate with the intake chamber 42a and the heat. Recycling room 32. On the other hand, as shown in Fig. 2, the switching valve 50 is constructed in the same manner as the switching valve 40, and also includes a valve box 52 having an intake chamber 52a and an exhaust chamber 52b, and a rotatable The turntable 58 has an intake port 54a for communicating the intake chamber 52a with the heat recovery chamber 34, and an intake port 54b connected to the intake manifold 60b, and the exhaust chamber 52b has An exhaust port 56a for connecting the exhaust chamber 52b and the heat recovery chamber 34, and an exhaust port 56b for connecting to the exhaust manifold 62b. In addition, as shown in Fig. 2, the heat recovery type combustion furnace 30 further includes a gas extracting device 64 and a gas extracting device 68, which are respectively used as a residual gas treating device to remove residuals in the empty chamber. The VOC exhaust gases of 32b and 34b, in the preferred embodiment of the invention, the gas extraction devices 64 and 67 are each a fan. On the other hand, the draft fan 64 is connected between the empty chamber 32b and the intake manifold 60a by an exhaust manifold 66, and the exhaust manifold 66 is provided with two valves 67a and 67b for controlling the exhaust manifold. The gas in the 66 enters and exits, and the exhaust fan 68 is connected between the empty chamber 34b and the intake manifold 60b via an exhaust manifold 70, and the exhaust manifold 70 is provided with two valves 71a and 71b for controlling 1276756 The gas in the exhaust pipe 70 is taken in and out. In addition, in other embodiments of the present invention, the exhaust fan 64 can be simultaneously connected to the empty chamber 34b and the empty chamber 34b, and the arrangement of the exhaust fan 68 is omitted, that is, the exhaust chamber 64 is used to extract the empty chamber 34b and the empty chamber. VOC exhaust in 34b. Referring to Figures 2 and 4, the operation of the heat recovery type combustion furnace 30 of the present invention will be explained next. As shown in Fig. 2, first, the heat recovery chamber 32 is set to an intake mode, and the heat recovery chamber 34 is set to a row of gas mode, at which time the switching valve 40 rotates the opening 48a of the turntable 48 to Above the intake port 44a, the intake port 44a is opened and the exhaust port 46a is closed, and the switching valve 50 rotates the opening 58a of the turntable 58 above the exhaust port 56a to open the exhaust port 56a and close the intake port 54a. . Next, the VOC exhaust gas enters the intake manifold 60a along the intake manifold 60, enters the heat recovery chamber 32 via the intake port 44b and the intake port 44a, and then the VOC φ exhaust gas passes through the regenerator 32a. It enters the combustion chamber 36, and the combustion chamber 36 oxidizes the VOC exhaust gas into moisture and carbon dioxide at a high temperature. Finally, clean moisture and carbon dioxide pass through the heat recovery chamber 34 and escape to the atmosphere via the exhaust ports 56a and 56b, the exhaust manifold 62b, and the exhaust manifold 62, and are attached to the atmosphere due to moisture and carbon dioxide. The generated water vapor and the carbon dioxide system have a large amount of heat energy. Therefore, when the water vapor and the carbon dioxide pass through the regenerator 34a, the heat storage monument in the regenerator 34a absorbs the heat energy in the water vapor and the carbon dioxide to cool the water gas and carbon dioxide. On the other hand, the extracting fan 64 draws out the 13 1276756 VOC exhaust gas remaining in the empty chamber 32b, and sends the extracted VOC exhaust gas into the intake manifold 60a or the intake manifold 60. After that, as shown in Fig. 4, the heat recovery chamber 34 is set to the intake mode; and the heat recovery chamber 32 is set to the exhaust mode, at which time the switching valve 40 rotates the opening 48a of the turntable 48 to Above the exhaust port 46a, the exhaust port 46a is opened and the intake port 44a is closed, and the switching valve 50 rotates the opening 58a of the rotary disk 58 above the intake port 54a to open the intake port 54a and close the row Air port 56a. Next, the V0C exhaust gas enters the intake manifold 60b along the intake manifold 60, and enters the heat recovery chamber 34 via the intake port 54b and the intake port 54a, and then the VOC exhaust gas passes through the regenerator 34a and enters. The combustion chamber 36, and when the V0C exhaust gas passes through the regenerator 34a, the regenerator bricks in the regenerator chamber 34a exchange heat with the VOC exhaust gas, and conduct the previously absorbed heat energy to the V0C exhaust gas to increase the temperature of the V0C exhaust gas. Then, the combustion chamber 36 oxidizes the V0C exhaust gas to moisture and carbon dioxide at a high temperature, after which the water vapor and carbon dioxide pass through the heat recovery chamber 32, and through the exhaust ports 46a and 46b, the exhaust branch pipe 62a, and the exhaust manifold 62. When it is released into the atmosphere, and when the newly formed water vapor and carbon dioxide pass through the regenerator 32a, the heat storage monument in the regenerator 32a absorbs the heat energy of the water vapor and the carbon dioxide to lower the temperature of the water vapor and the carbon dioxide. On the other hand, the extracting fan 68 draws out the V0C exhaust gas remaining in the empty chamber 34b, and sends the extracted V0C exhaust gas to the intake manifold 60a or the intake manifold 60.

14 1276756 值得注意的是,本發明之切換閥4〇係利用轉盤48來 打開或關閉進氣口 44a與排氣口 46a,而切換閥5〇則是 、利用轉盤58來切換進氣口 54a與排氣口 56a的開啟與關 閉,亦即本發明僅需控制兩個轉盤,即可控制四個進氣口 : 與排氣口的開啟與關閉。然而,第1圖所示之習知熱回收 式燃燒爐10必須控制四個閥門,才可控制四個進氣口與 排氣口的開啟與關閉,所以相較於習知熱回收式燃燒爐 • 10,本發明之切換闕4〇與50不僅具有控制簡單之優點, 並/、有製作簡卓以及製造成本低廉等優勢。除此之外,本 發明之熱回收式燃燒爐30另包含有抽風扇64與68,而 抽風扇64與68係可將殘留於空室32b與34b内的VOC廢 氣抽出’並將抽出的VOC廢氣送回進氣支管6〇a與6〇b 内,如此便可避免殘留於空室32b與34b之voc廢氣被排 放至大氣中,進而可使熱回收式燃燒爐30所排出的氣體 φ 符合各國環保法規之要求,以避免空氣污染之情形產生。 此外,第2圖所示之熱回收式燃燒爐並非本發明唯一 的實施方式’以下係為本發明之其它實施例,並且為了方 便說明’以下的說明係以相同的標號來表示相同的元件。 請參考第5圖,第5圖係為本發明第二實施例之熱回收式 燃燒爐示意圖。熱回收式燃燒爐30另包含有一吹氣式裝 置(purge apparatus)72,其係藉由吹氣支管74而連接至 空室32b與空室34b,並且吹氣支管74上設置有三個閥14 1276756 It is worth noting that the switching valve 4 of the present invention utilizes the turntable 48 to open or close the intake port 44a and the exhaust port 46a, and the switching valve 5 is to use the turntable 58 to switch the intake port 54a and The opening and closing of the exhaust port 56a, that is, the present invention only needs to control two turntables, and can control four air inlets: opening and closing with the exhaust port. However, the conventional heat recovery type combustion furnace 10 shown in Fig. 1 has to control four valves to control the opening and closing of the four intake ports and the exhaust port, so that compared with the conventional heat recovery type combustion furnace • 10, the switching switches 4〇 and 50 of the present invention not only have the advantages of simple control, but also have the advantages of simple manufacturing and low manufacturing cost. In addition, the heat recovery type combustion furnace 30 of the present invention further includes extraction fans 64 and 68, and the extraction fans 64 and 68 extract the VOC exhaust gas remaining in the empty chambers 32b and 34b' and extract the extracted VOC. The exhaust gas is sent back to the intake branch pipes 6〇a and 6〇b, so that the vocal exhaust gas remaining in the empty chambers 32b and 34b can be prevented from being discharged into the atmosphere, so that the gas φ discharged from the heat recovery type combustion furnace 30 can be matched. The requirements of national environmental regulations to avoid air pollution. Further, the heat recovery type combustion furnace shown in Fig. 2 is not the only embodiment of the present invention. The following is a description of the other embodiments of the present invention. Please refer to Fig. 5, which is a schematic view of a heat recovery type combustion furnace according to a second embodiment of the present invention. The heat recovery type combustion furnace 30 further includes a purge apparatus 72 connected to the empty chamber 32b and the empty chamber 34b by the air blowing branch 74, and the air blowing branch 74 is provided with three valves.

15 1276756 門76a、76b與76c,分別用來控制吹氣支管74内之氣體 進出。此外,吹氣式裝置72係用來作為一餘氣處理裝 置,用來將壓縮後的乾空氣(compressed dry air,CDA) ★ 吹入空室32b與34b,進而將殘留於空室32b與34b的 V0C廢氣吹向燃燒室36,以去除殘留於空室32b與34b之 V0C廢氣,進而町避免殘留於空室32b與34b之V0C廢氣 被排放至大氣中。 請參考第6圖’第6圖係為本發明第三實施例之熱回 收式燃燒爐示意圖。熱回收式燃燒爐30另包含有一設置 於空室32b内的逆止風門(check damper)78 ’以及一設置 於空室34b内的逆止風門80,並且逆止風門78與80均 係用來作為一餘氣處理裝置,用以去除殘留於空室32b與 34b之V0C廢氣。此外,逆止風門78係包含有一隔板78c • 以及兩個逆止葉片(blade)78a與78b,其中隔板78c係將 空室32b分隔成雨個不相連通的氣室33a與33b ’並且逆 止葉片78a係樣允許沿箭頭BB’所示之方向流動的氣體 通過,逆止葉片78b則僅允許沿著箭頭CC’所示之方向 流動的氣體通過。此外,逆止風門80的構造係與逆止風 門78相同,逆止風門80亦包含有一隔板80c、以及兩個 逆止葉片8〇a與8〇b,其中隔板80c係將空室34b分隔成 兩個不相連通的氟室35a與35b,並且逆止葉片80a係僅 允許沿著箭頭ββ’所示之方向流動的氣體通過,而逆止 (s 1276756 葉片80b則僅允許沿著箭頭CC’所示之方向流動的氣體 通過。必須注意的是,由於隔板78c、80c係分別將空室 32b、34b分隔成兩個不相連通的氣室33a、33b以及氣室 35a、35b,所以殘留於氣室33a内的VOC廢氣不會擴散到 : 氣室33b内,相同地,殘留於氣室35a内的¥〇(:廢氣不會 擴散到氣室35b内,如此一來,便可確保氣室3北與氣室 35b不會被VOC廢氣所污染,進而可避免殘留於空室挪 • 與34b之VOC廢氣被排放至大氣中。 相較於習知技術,本發明之切_ 4()4ί 來打開或關閉進氣口 44a與排氣口 46a,而切換闕5〇則 是利用轉盤58來切換進氣口 54a與排氣口咖的開啟盘 關閉,亦即本發明僅需控制兩個轉盤,即可控制四個钱 口與排氣口的開啟與關閉,如此_步 ; 木,本發明之切換閥15 1276756 Doors 76a, 76b and 76c, respectively, are used to control the ingress and egress of gas in the blow branch pipe 74. In addition, the air blowing device 72 is used as a residual gas processing device for blowing compressed dry air (CDA) ★ into the empty chambers 32b and 34b, and then remaining in the empty chambers 32b and 34b. The V0C exhaust gas is blown to the combustion chamber 36 to remove the V0C exhaust gas remaining in the empty cells 32b and 34b, and the V0C exhaust gas remaining in the empty cells 32b and 34b is prevented from being discharged to the atmosphere. Please refer to Fig. 6', which is a schematic view of a heat recovery type combustion furnace according to a third embodiment of the present invention. The heat recovery type combustion furnace 30 further includes a check damper 78' disposed in the empty chamber 32b and a check damper 80 disposed in the empty chamber 34b, and the check valves 78 and 80 are used for both. As a residual gas treatment device, the V0C exhaust gas remaining in the empty chambers 32b and 34b is removed. In addition, the backstop damper 78 includes a partition 78c and two backstop blades 78a and 78b, wherein the partition 78c divides the empty chamber 32b into rain-incompatible chambers 33a and 33b' and The check blade 78a pattern allows the gas flowing in the direction indicated by the arrow BB' to pass, and the check blade 78b allows only the gas flowing in the direction indicated by the arrow CC' to pass. In addition, the structure of the backstop damper 80 is the same as that of the backstop damper 78. The backstop damper 80 also includes a partition plate 80c and two check blades 8a and 8B, wherein the partition 80c is a hollow chamber 34b. Divided into two non-communicating fluorine chambers 35a and 35b, and the backstop blade 80a only allows gas flowing in the direction indicated by the arrow ββ' to pass, and the backstop (s 1276756 blade 80b is only allowed to follow the arrow) The gas flowing in the direction indicated by CC' passes. It must be noted that since the partitions 78c, 80c separate the empty chambers 32b, 34b into two non-interconnecting gas chambers 33a, 33b and the gas chambers 35a, 35b, respectively, Therefore, the VOC exhaust gas remaining in the gas chamber 33a does not diffuse into: in the gas chamber 33b, and similarly, the residual gas remaining in the gas chamber 35a (the exhaust gas does not diffuse into the gas chamber 35b, and thus, It is ensured that the gas chamber 3 north and the gas chamber 35b are not contaminated by the VOC exhaust gas, thereby preventing the VOC exhaust gas remaining in the empty chamber and the 34b from being discharged into the atmosphere. Compared with the prior art, the invention is cut _ 4 () 4 ί to open or close the air inlet 44a and the exhaust port 46a, and switch 阙 5 〇 is to use the turn 58 to switch the air inlet 54a and the opening tray of the exhaust port to close, that is, the invention only needs to control two dials to control the opening and closing of the four money ports and the exhaust port, such as _ step; Switching valve of the invention

40與50不僅具有控制簡單之優點,並具有製作 J 製造成本低廉等優勢。除此之外,本發 ^ ^ Θ之熱回收式燃燒 爐30另包含有至少-餘氟處理褒置,用以去除 室32b與34b内的V0C廢氣,以避免殘留於 : 34=慨廢氣被排放至大氣中,進而可使熱回收式鮮 爐30所排出的氣體符合各國環保法規之要求 : 氣汚染之情形產生。 避免空 凡依本發明申請 以上所述僅為本發明之較佳實施例, 1276756 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範 圍。 【圖式簡單說明】 ^ 第1圖係為習知之熱回收式燃燒爐示意圖。 第2圖至第4圖係為本發明較佳實施例之熱回收式燃燒爐 示意圖。 ❿ 第5圖係為本發明第二實施例之熱回收式燃燒爐示意圖。 • 第6圖係為本發明第三實施例之熱回收式燃燒爐示意圖。 【主要元件符號說明】 10 熱回收式燃燒12 爐 熱回收室 12a 蓄熱室 12b 空室 14 熱回收室 14a 蓄熱室 14b 空室 16 燃燒室 18 燃燒器 20a 進氣閥門 20b 進氣閥門 22a 排氣閥門 22b 排氣閥門 24 進氣歧管 24a 進氣支管 24b 進氣支管 26 排氣歧管 26a 排氣支管 26b 排氣支管 30 熱回收式燃 燒爐 1276756 32 熱回收室 32a 32b 空室 33a 33b 氣室 34 34a 蓄熱室 34b 35a 氣室 35b 36 燃燒室 38 40 切換閥 42 42a 進氣室 42b 44a 進氣口 44b 46a 排氣口 46b 48 轉盤 48a 50 切換閥 52 52a . 進氣室 52b 54a 進氣口 54b 56a 排氣口 56b 58 轉盤 58a 60 進氣歧管 60a 60b 進氣支管 62 62a 排氣支管 62b 64 抽風扇 66 67a 閥門 67b 68 抽風扇 7040 and 50 not only have the advantage of simple control, but also have the advantages of making J manufacturing cost is low. In addition, the heat recovery type combustion furnace 30 of the present invention further comprises at least a residual fluorine treatment device for removing the V0C exhaust gas in the chambers 32b and 34b to avoid residual: 34 = Discharge into the atmosphere, so that the gas discharged from the heat recovery type fresh furnace 30 can meet the requirements of national environmental regulations: Gas pollution occurs. The present invention is intended to be a preferred embodiment of the invention, and equivalent variations and modifications of the scope of the invention are intended to be included within the scope of the invention. [Simple description of the figure] ^ Figure 1 is a schematic diagram of a conventional heat recovery type combustion furnace. 2 to 4 are schematic views of a heat recovery type combustion furnace in accordance with a preferred embodiment of the present invention. ❿ Fig. 5 is a schematic view of a heat recovery type combustion furnace according to a second embodiment of the present invention. • Fig. 6 is a schematic view of a heat recovery type combustion furnace according to a third embodiment of the present invention. [Main component symbol description] 10 Heat recovery type combustion 12 Furnace heat recovery chamber 12a Regenerator 12b Empty chamber 14 Heat recovery chamber 14a Regenerator 14b Empty chamber 16 Combustion chamber 18 Burner 20a Intake valve 20b Intake valve 22a Exhaust valve 22b exhaust valve 24 intake manifold 24a intake manifold 24b intake manifold 26 exhaust manifold 26a exhaust manifold 26b exhaust manifold 30 heat recovery furnace 1276756 32 heat recovery chamber 32a 32b empty chamber 33a 33b gas chamber 34 34a Regenerator 34b 35a Air chamber 35b 36 Combustion chamber 38 40 Switching valve 42 42a Intake chamber 42b 44a Inlet port 44b 46a Exhaust port 46b 48 Turntable 48a 50 Switching valve 52 52a . Inlet chamber 52b 54a Inlet 54b 56a Exhaust port 56b 58 turntable 58a 60 intake manifold 60a 60b intake manifold 62 62a exhaust manifold 62b 64 extraction fan 66 67a valve 67b 68 extraction fan 70

蓄熱室 氣室 熱回收室 空室 氣室 燃燒器 閥箱 排氣室 進氣口 排氣口 開口 閥箱 排氣室 進氣口 排氣口 開口 進氣支管 排氣歧管 排氣支管 抽氣支管 閥門 抽氣支管 19 ⑧ 1276756 71a 閥門 71b 閥門 72 吹氣式裝置 74 吹氣支管 76a 閥門 76b 閥門 76c 閥門 78 逆止風門 78a 逆止葉片 78b 逆止葉片 78c 隔板 80 逆止風門 80a 逆止葉片 80b 逆止葉片 • 80c 隔板Regenerative chamber plenum heat recovery chamber empty chamber plenum burner valve box exhaust chamber inlet vent opening valve box exhaust chamber inlet vent opening opening intake manifold exhaust manifold exhaust manifold exhaust manifold Valve exhaust manifold 19 8 1276756 71a Valve 71b Valve 72 Air blower 74 Air blower 76a Valve 76b Valve 76c Valve 78 Backstop damper 78a Backstop vane 78b Backstop vane 78c Partition 80 Backstop damper 80a Backstop vane 80b Backstop blade • 80c partition

Claims (1)

1276756 十、申請專利範圍: 1. 一種熱回收式燃燒爐(regenerative thermal oxidizer,RTO),其包含有: 一燃燒室,用來氧化一氣體; 兩個熱回收室(regenerative thermal chamber);,分 別連接於該燃燒室之兩端; 籲 兩個切換閥(switching valve),分別連接於該等熱回 收室,各該切換閥均具有: 一閥箱,其具有一進氣室與一排氣室,其中該進氣 室具有一第一進氣口,用以將該氣體輸入各該 熱回收室,而該排氣室具有一第一排氣口,用 以將氧化後之該氣體輸入該排氣室;以及 一轉盤,其具有一開口,用來切換該第一進氣口與 _ 該第一排氣口;以及 至 餘氣處理裝置(residual gas treatment apparatus) ’用以去除殘留於各該熱回收室之該 氣體。 2·如申請專利範圍第i項之熱回收式燃燒爐,其中各該 進氣室另包含有一第二進氣口,而各該排氣室則另具有一 第二排氣口。 (8) 1276756 3. 如申請專利範圍第2項之熱回收式燃燒爐,另包含有 一進氣歧管(inlet manifold),連接於各該第二進氣口, 用以將該氣體經由各該第二進氣口而送入各該進氣室。 4. 如申請專利範圍第3項之熱回收式燃燒爐,另包含有 一排氣歧管(outlet manifold),連接於各該第二排氣 口,用以將氧化後之該氣體排放至大氣中。 5. 如申請專利範圍第1項之熱回收式燃燒爐,其中各該 熱回收室均係包含有: 一蓄熱室,其内包含有複數個蓄熱磚,用來與該氣體 進行熱交換;以及 一空室,位於該蓄熱室與各該熱回收室所對應之該切. 換閥之間。 6. 如申請專利範圍第5項之熱回收式燃燒爐,其中該餘 氣處理裝置係連接至各該空室。 7. 如申請專利範圍第6項之熱回收式燃燒爐,其中該餘 氣處理裝置係為一氣體抽取裝置,用來將殘留於各該空室 之該氣體抽離。 8. 如申請專利範圍第7項之熱回收式燃燒爐,其中該氣 ⑧ 1276756 體抽取裝置係包含有一抽風扇(fan)。 9.如申請專利範圍第6項之熱回收式燃燒爐,其中該餘 • 氣處理裝置係為一吹氣式裝置(purge apparatus),用來 ' 將殘留於各該空室之該氣體吹向該燃燒室,以驅除殘留於 各該空室之該氣體。 φ 10.如申請專利範圍第5項之熱回收式燃燒爐,其中該餘 氣處理裝置係設置於各該空室之内。 Π.如申請專利範圍第10項之熱回收式燃燒爐,其中該餘 氣處理裝置係為一逆止風門(check damper)。 12. 如申請專利範圍第5項之熱回收式燃燒爐,其中各該 蓄熱磚係包含有石質材料或陶瓷材料。 * 13. 如申請專利範圍第1項之熱回收式燃燒爐,其中該氣 體係為一有機揮發性氣體(volatile organic compound, V0C)。 : 14. 一種熱回收式燃燒爐,其包含有: 一燃燒室,用來氧化一氣體; 兩個熱回收室,分別連接於該燃燒室之兩端; (s 1276756 兩個切換閥,分別連接至該等熱回收室,各該切換閥 均具有: 一進氣口,用以將該氣體輸入各該熱回收室; 一排氣口,用以將氧化後之該氣體排出於各該熱回 收室之外;以及 一轉盤,其具有一開口,用來切換該進氣口與該排 氣口;以及 至少一餘氣處理裝置,用以去除殘留於各該熱回收室 之該氣體。 15. 如申請專利範圍第14項之熱回收式燃燒爐,其中各該 熱回收室均係包含有: 一蓄熱室,其内包含有複數個蓄熱磚,用來與該氣體 進行熱交換;以及 一空室,位於該蓄熱室與各該熱回收室所對應之該切 換閥之間。 16. 如申請專利範圍第15項之熱回收式燃燒爐,其中該餘 氣處理裝置係位於各該熱交換室之外,並係連接至各該空 室。 17. 如申請專利範圍第16項之熱回收式燃燒爐,其中該餘 氣處理裝置係為一氣體抽取裝置,用來將殘留於各該空室 (I 1276756 之該氣體抽離。 18. 如申請專利範圍第17項之熱回收式燃燒爐,其中該氣 ‘ 體抽取裝置係包含有一抽風扇。 3 19. 如申請專利範圍第16項之熱回收式燃燒爐,其中該餘 氣處理裝置係為一吹氣式裝置,用來將殘留於各該空室之 φ 該氣體吹向該燃燒室,以驅除殘留於各該空室之該氣體。 20. 如申請專利範圍第15項之熱回收式燃燒爐,其中該餘 氣處理裝置係設置於各該空室之内。 21. 如申請專利範圍第20項之熱回收式燃燒爐,其中該餘 氣處理裝置係為一逆止風門。 22. 如申請專利範圍第15項之熱回收式燃燒爐,另包含有 一進氣歧管,連接於各該進氣口,用以將該氣體經由各該 進氣口而送入各該熱回收室。 23. 如申請專利範圍第22項之熱回收式燃燒爐,另包含有 - 一排氣歧管,連接於各該排氣口,用以將氧化後之該氣體 排放至大氣中。 25 1276756 24. 如申請專利範圍第15項之熱回收式燃燒爐,其中各該 蓄熱磚係包含有石質材料或陶瓷材料。 25. 如申請專利範圍第14項之熱回收式燃燒爐,其中該氣 ' 體係為一有機揮發性氣體。 十一、圖式: 26 (S1276756 X. Patent Application Range: 1. A regenerative thermal oxidizer (RTO) comprising: a combustion chamber for oxidizing a gas; two regenerative thermal chambers; Connecting to both ends of the combustion chamber; calling two switching valves respectively connected to the heat recovery chambers, each of the switching valves having: a valve box having an inlet chamber and an exhaust chamber The air inlet chamber has a first air inlet for inputting the gas into each of the heat recovery chambers, and the exhaust chamber has a first exhaust port for inputting the oxidized gas into the row a gas chamber; and a turntable having an opening for switching the first air inlet and the first air outlet; and a residual gas treatment apparatus for removing residual The gas in the heat recovery chamber. 2. The heat recovery type combustion furnace of claim i, wherein each of the inlet chambers further comprises a second inlet, and each of the outlets further has a second outlet. (8) 1276756 3. The heat recovery type combustion furnace of claim 2, further comprising an intake manifold connected to each of the second intake ports for passing the gas through each of the The second intake port is fed into each of the intake chambers. 4. The heat recovery type combustion furnace of claim 3, further comprising an outlet manifold connected to each of the second exhaust ports for discharging the oxidized gas to the atmosphere . 5. The heat recovery type combustion furnace of claim 1, wherein each of the heat recovery chambers comprises: a regenerator, wherein a plurality of regenerator bricks are included for heat exchange with the gas; An empty chamber is located between the regenerator and the cut valve corresponding to each of the heat recovery chambers. 6. The heat recovery type combustion furnace of claim 5, wherein the residual gas treatment device is connected to each of the empty chambers. 7. The heat recovery type combustion furnace of claim 6, wherein the residual gas treatment device is a gas extraction device for evacuating the gas remaining in each of the empty chambers. 8. The heat recovery type combustion furnace of claim 7, wherein the gas 8 1276756 body extraction device comprises a fan. 9. The heat recovery type combustion furnace of claim 6, wherein the waste gas treatment device is a purge apparatus for 'blowing the gas remaining in each of the empty chambers The combustion chamber is used to drive off the gas remaining in each of the empty chambers. Φ 10. The heat recovery type combustion furnace of claim 5, wherein the residual gas treatment device is disposed in each of the empty chambers.热. The heat recovery type combustion furnace of claim 10, wherein the residual gas treatment device is a check damper. 12. The heat recovery type combustion furnace of claim 5, wherein each of the heat storage bricks comprises a stone material or a ceramic material. * 13. The heat recovery type combustion furnace of claim 1, wherein the gas system is a volatile organic compound (VOC). A heat recovery type combustion furnace comprising: a combustion chamber for oxidizing a gas; and two heat recovery chambers respectively connected to the two ends of the combustion chamber; (s 1276756 two switching valves, respectively connected Each of the switching valves has: an air inlet for inputting the gas into each of the heat recovery chambers; and an exhaust port for discharging the oxidized gas to each of the heat recovery chambers And a turntable having an opening for switching the air inlet and the exhaust port; and at least one residual gas processing device for removing the gas remaining in each of the heat recovery chambers. The heat recovery type combustion furnace of claim 14, wherein each of the heat recovery chambers comprises: a regenerator, wherein a plurality of regenerator bricks are included for heat exchange with the gas; and an empty chamber The heat recovery type combustion furnace of the heat recovery chamber corresponding to each of the heat recovery chambers, wherein the waste gas treatment device is located in each of the heat exchange chambers. Outside, and tied 17. The heat recovery type combustion furnace of claim 16, wherein the waste gas treatment device is a gas extraction device for residual the gas in each of the empty chambers (I 1276756) 18. The heat recovery type combustion furnace according to claim 17, wherein the gas extraction device comprises a suction fan. 3 19. The heat recovery type combustion furnace according to claim 16 of the patent application, wherein The residual gas treatment device is a blow-type device for blowing φ of the gas remaining in each of the empty chambers toward the combustion chamber to drive off the gas remaining in each of the empty chambers. Item 15 is a heat recovery type combustion furnace, wherein the residual gas treatment device is disposed in each of the empty chambers. 21. The heat recovery type combustion furnace according to claim 20, wherein the residual gas treatment device is A reverse recovery damper. 22. The heat recovery type combustion furnace of claim 15 further comprising an intake manifold connected to each of the intake ports for sending the gas through each of the intake ports Enter each heat recovery room. The heat recovery type combustion furnace of claim 22 of the patent scope further includes an exhaust manifold connected to each of the exhaust ports for discharging the oxidized gas to the atmosphere. 25 1276756 24. The heat recovery type combustion furnace of claim 15 , wherein each of the heat storage bricks comprises a stone material or a ceramic material. 25. The heat recovery type combustion furnace of claim 14 wherein the gas system is one Organic volatile gases. XI. Schema: 26 (S
TW94129314A 2005-08-26 2005-08-26 Regenerative thermal oxidizer TWI276756B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94129314A TWI276756B (en) 2005-08-26 2005-08-26 Regenerative thermal oxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94129314A TWI276756B (en) 2005-08-26 2005-08-26 Regenerative thermal oxidizer

Publications (2)

Publication Number Publication Date
TW200708688A TW200708688A (en) 2007-03-01
TWI276756B true TWI276756B (en) 2007-03-21

Family

ID=38646342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94129314A TWI276756B (en) 2005-08-26 2005-08-26 Regenerative thermal oxidizer

Country Status (1)

Country Link
TW (1) TWI276756B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066460B2 (en) * 2012-07-12 2017-01-25 新東工業株式会社 Thermal storage exhaust gas purification system

Also Published As

Publication number Publication date
TW200708688A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
CN212657734U (en) Volatile organic waste gas treatment improvement system with double rotating wheels
WO2017128188A1 (en) Rotary heat accumulating-type waste gas incineration device
CN101435580A (en) Thermal storage cremation furnace for storing press and cleaning
CN105003924B (en) Swinging RTO combustion systems
CN107899888A (en) A kind of VOCs processing units for being used for accurate coating apparatus
TWI276756B (en) Regenerative thermal oxidizer
CN212481331U (en) Energy-saving double-runner cold side bypass over-temperature control system
CN210035535U (en) Heat accumulating type thermal combustion furnace system
CN101561145A (en) External gas removing type heat-storage incinerator
CN115899725B (en) RTO equipment with external reversing valve
TW200842287A (en) Apparatus and method for bake out of regenerative thermal oxidizer
CN107940476A (en) Heat storage burner with ring type rotary valve
CN207486821U (en) A kind of rotation RTO furnace bodies that can realize interim blowing out heat preservation
JP5629220B2 (en) Switching valve and gas processing system
CN107781829A (en) A kind of rotation RTO bodies of heater and its heat preserving method that can realize interim blowing out insulation
CN107940479A (en) Heat storage burner with double valve plates rotary valve
CN206973587U (en) Regenerative Combustion System with air draught switching device
CN206973586U (en) Regenerative Combustion System with swing switching valve
CN207122907U (en) Regenerative Combustion System with two-way switching valve
CN1928432A (en) Heat recovery combustion furnace
CN206617946U (en) Integral type RTO regenerative oxidation stoves
JP4784174B2 (en) Garbage carbonization equipment
TWM323583U (en) High-efficiency heat-preservation waste gas incinerator
CN215808545U (en) RTO heat accumulation formula heating power incinerator