TWI276536B - Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator - Google Patents

Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator Download PDF

Info

Publication number
TWI276536B
TWI276536B TW94114937A TW94114937A TWI276536B TW I276536 B TWI276536 B TW I276536B TW 94114937 A TW94114937 A TW 94114937A TW 94114937 A TW94114937 A TW 94114937A TW I276536 B TWI276536 B TW I276536B
Authority
TW
Taiwan
Prior art keywords
film
metal
ionic polymer
metal powder
powder
Prior art date
Application number
TW94114937A
Other languages
Chinese (zh)
Other versions
TW200639055A (en
Inventor
Jen-Guei Jung
Yi-Jr Hung
Bo-Kai Fang
Ming-Shaung Ju
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94114937A priority Critical patent/TWI276536B/en
Publication of TW200639055A publication Critical patent/TW200639055A/en
Application granted granted Critical
Publication of TWI276536B publication Critical patent/TWI276536B/en

Links

Abstract

The present invention relates to a method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator. The method includes dissolving and casting small metal particles e.g. silver nanoparticle, in Nafion solution followed embossing, electroless plating, and electroforming. The whole process takes about three hours and low cost. The IPMC actuator exhibits large deformation of bending curvature angle more than 90 DEG at low driving voltage of 3V. The IPMC actuator has the merits of excellent adhesion, short process time, low cost, high repeatability, large deformation and non-toxicity.

Description

1276536 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種離子式高分子金屬複合材料(Icmic Polymer-Metal Composites,IPMC)及 IPMC致動器之製造方 法,詳言之,係關於一種利用澆鑄法製造IPMC致動器之方 法。 【先前技術】 ^ 電致動聚合物(Electro及ctive Polymer,ΕΑΡ)是一種受電 . 刺激後會產生形變(Shape Deformation)之高分子材料,其係 用以作為致動器,而依其致動原理可分電子式與離子式兩 類。 參考圖la及圖lb,顯示習知電子式電致動聚合物(Electric ΕΑΡ)之示意圖。該電子式電致動聚合物1包括一介電彈性體 (Dielectric Elastomer)12(例如壓克力、石夕膠等材料)及二彈 性電極14、16,該等彈性電極14、16係分別位於該介電彈 φ 性體之上下表面。當該等彈性電極14、1 6被施加一高壓電 場時,會產生平行電場方向收縮而垂直電場方向擴張之運 動,如圖lb所示。 參考圖2,顯示習知離子式電致動聚合物(Ionic ΕΑΡ)之示 意圖。該離子式電致動聚合物2包括一離子式高分子(Ionic Polymer)22及二金屬電極24、26 ’該離子式高分子22通常 為一種電解質凝膠,例如Nafion (杜邦公司所生產)。該等 金屬電極24、26係分別位於該離子式高分子22之表面。當 該等金屬電極24、26被施加一外加電場時,該離子式高分 101105.doc 1276536 子22會產生離子交換造成陽(陰)離子彎曲動作,此類離子式 電致動聚合物2稱為離子式高分子金屬複合材料(Ionic Polymer-Metal Composites,IPMC) 〇 該電子式電致動聚合物1的優點在於:其形變量、致動應 力、最大效益乃至運作速度極佳,且無形狀記憶材料溫度 適用範圍限制、組裝複雜及壓電材料形變量小等缺點,如 [Mohsen Shahinpoor and Kwang J Kim, MIonic polymer-metal composites: I. Fundamentals’’,SMART MATERIALS AND STRUCTURES,pp·819-833, 2001.]所揭示,但是其缺點為其 内之該介電彈性體12所需之驅動電壓過大,約1 kV〜5 kV, 故不具生物相容性。 該離子式高分子金屬複合材料2的優點主要在於:低驅動 電壓,約1 V〜5 V,且其致動時形變量、致動應力等尚可且 具生物相容性(其製作過程無毒),故可適用於人體,在未來 生產應用具有很大的發展潛力。 然而,該離子式高分子金屬複合材料2在製作上最常遇到 的問題就是該等金屬電極24、26與該離子式高分子22間的 附著性不佳,因此在其致動時會剥離。目前最常見的解決 方法是利用無電鍍,其係利用金屬還原反應沈積金屬,整 個製造流程包括複雜的表面處理、吸附及還原反應等,因 此製作費時(約48小時)且昂貴(約$lUS/cm2),如[Shahinpoor, Y Bar-Cohenz,J O Simpsonx and J Smithxlonic,’’Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review’’,Smart Mater. 101105.doc 12765361276536 IX. Description of the Invention: [Technical Field] The present invention relates to a method for manufacturing an Icmic Polymer-Metal Composite (IPMC) and an IPMC actuator, and more particularly to A method of manufacturing an IPMC actuator by a casting method. [Prior Art] ^ Electro-actuated polymer (Electro and Ctive Polymer, ΕΑΡ) is a kind of polymer material that is subjected to deformation after being stimulated. It is used as an actuator and is actuated according to it. The principle can be divided into two types: electronic and ionic. Referring to Figures la and lb, a schematic diagram of a conventional electronic electro-active polymer (Electric ΕΑΡ) is shown. The electronic electro-actuating polymer 1 comprises a Dielectric Elastomer 12 (for example, a material such as acryl, Shiki, etc.) and two elastic electrodes 14, 16 respectively located at the elastic electrodes 14, 16 The dielectric bomb φ body is above the lower surface. When the elastic electrodes 14, 16 are applied with a high voltage electric field, a motion in which the direction of the parallel electric field contracts and the direction of the vertical electric field expands is generated, as shown in Fig. 1b. Referring to Figure 2, the schematic of a conventional ionic electro-actuating polymer (Ionic®) is shown. The ionic electroactive polymer 2 comprises an ionic polymer 22 and a dimetal electrode 24, 26'. The ionic polymer 22 is typically an electrolyte gel such as Nafion (manufactured by DuPont). The metal electrodes 24, 26 are located on the surface of the ionic polymer 22, respectively. When the metal electrodes 24, 26 are applied with an applied electric field, the ionic high score 101105.doc 1276536 sub 22 will cause ion exchange to cause a positive (female) ion bending action, such an ion type electro-actuated polymer 2 Ionic Polymer-Metal Composites (IPMC) 〇The advantages of the electronic electro-active polymer 1 are: its shape variable, actuating stress, maximum benefit and even operating speed, and no shape. Memory material temperature limitation range, complex assembly and small piezoelectric material shape variables, such as [Mohsen Shahinpoor and Kwang J Kim, MIonic polymer-metal composites: I. Fundamentals'', SMART MATERIALS AND STRUCTURES, pp·819-833 , 2001.], but the disadvantage is that the driving voltage required for the dielectric elastomer 12 is too large, about 1 kV to 5 kV, so it is not biocompatible. The advantages of the ionic polymer metal composite material 2 are mainly: a low driving voltage of about 1 V to 5 V, and the shape variable and the actuating stress during the actuation are still biocompatible (the production process is non-toxic). ), it can be applied to the human body, and has great development potential in future production and application. However, the most common problem encountered in the fabrication of the ionic polymer metal composite material 2 is that the adhesion between the metal electrodes 24, 26 and the ionic polymer 22 is poor, so that it peels off when it is actuated. . At present, the most common solution is to use electroless plating, which uses metal reduction to deposit metals. The entire manufacturing process includes complex surface treatment, adsorption and reduction reactions, etc., so the production takes time (about 48 hours) and is expensive (about $lUS/ Cm2), such as [Shahinpoor, Y Bar-Cohenz, JO Simpsonx and J Smithxlonic, ''Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review'', Smart Mater. 101105.doc 1276536

Struct· 7,R15-R30,1998]、[James Jungho Pak,Seung-Eun Cha,Ho-Jung Ahn and Seung-Ki Lee," Fabrication of IonicStruct· 7, R15-R30, 1998], [James Jungho Pak, Seung-Eun Cha, Ho-Jung Ahn and Seung-Ki Lee, " Fabrication of Ionic

Polymer Metal Composites by Electroless Plating of Ptff? Proceedings of the 32nd ISR,pp.19-21,2001·]、[Kwang J Kiml and Mohsen Shahinpoor, ’’Ionic polymer-metal composites: II. Manufacturing techniques1’,Smart Mater. Struct. 12? pp.65-79, 2003]>5.[Μ. Shahinpoor and Kwang J.Polymer Metal Composites by Electroless Plating of Ptff? Proceedings of the 32nd ISR, pp. 19-21, 2001·], [Kwang J Kiml and Mohsen Shahinpoor, ''Ionic polymer-metal composites: II. Manufacturing techniques1', Smart Mater. Struct. 12? pp.65-79, 2003]>5.[Μ. Shahinpoor and Kwang J.

Kim,’’Novel ionic polymer-metal composities equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles'1, Sensors Actuators A,pp. 125-132, 2002.]所揭示。因此近幾年有不同的製程方 法被提出,如熱壓、電鍍、高分子塗佈及微機電製程等, 如[M. Shahinpoor and Kwang J. Kim,’’Novel ionic polymer-metal composities equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles",Sensors Actuators A, pp.125-132, 2002·]、[Michael Y· F. Kwok,Wenli Zhou,Kim, ''Novel ionic polymer-metal composities equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles'1, Sensors Actuators A, pp. 125-132, 2002.]. Therefore, in recent years, different process methods have been proposed, such as hot pressing, electroplating, polymer coating, and microelectromechanical processes, such as [M. Shahinpoor and Kwang J. Kim, ''Novel ionic polymer-metal composities equipped with physical Loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles", Sensors Actuators A, pp.125-132, 2002·], [Michael Y. F. Kwok, Wenli Zhou,

Wen J. Li,and Yangsheng Xu,’’Micro Nafion Actuators for Cellular Motion Control and Underwater Manipulation”: www.ri.cmu.edu/eyents/iser00/papers/kwok.pdf1、[Steve Tung, Scott R Witherspoon,Larry A Roe,A1 Silano,David P Maynard and Ned Ferraro,MA MEMS-based flexible sensor and actuator system for space inflatable structures' Smart Materials and Structures,pp. 1230-1239, 2001·]、[Kwang J· Kim and Shahinpoor, ”A novel method of manufacturing three-dimensional ionic 101105.doc 1276536 polymer-metal composities(IPMCs) biomimetic sensors, actuators and artificial muscles’’,Polymer 43, pp.797-802, 2002·]及[Jennifer W. L. Zhou and Wen J. Li? ,fMEMS-Fabricated ICPF Grippers for Aqueous Applications’’,IEEE Conference,pp.556-559, 2003·]等 所揭示,然而該等方式仍有製作費時且昂貴之缺點。 因此,有必要提供一種創新、簡單且具進步性的離子式 高分子金屬複合材料之製造方法,以解決上述問題。 【發明内容】 本發明之主要目的係提供一種離子式高分子金屬複合材 料(IPMC)及IPMC致動器之製造方法,其係利用微小金屬粉 末(例如奈米粉末)製做成溶液,以澆鑄方式將其製作成電極 層,並配合快速的無電鍍製程及整合微機電技術完成IPMC 致動器,其具有高附著性、節省製作時間(低於三小時)、降 低成本(約$〇.5US/cm2)、高重複性、具有大形變量且無毒等 優點。 為達上述目的,本發明提供一種離子式高分子金屬複合 材料(IPMC)之製造方法,其包括: (a) 澆鑄一金屬粉末溶液於一基材上以形成一薄膜,其中 該金屬粉末之粒徑係小於1 μιη ; (b) 乾燥該薄膜; (c) 澆鑄一離子式高分子於該薄膜上;及 (d) 加熱該離子式高分子及該薄膜。 本發明另外提供一種離子式高分子金屬複合材料(IPMC) 致動器之製造方法,其包括: 101105.doc 1276536 (::堯鑄一第一金屬粉末溶液於-第-基材上以形成1 /膜’其中該第-金屬粉末之粒徑係小於i μη1; (b) 乾燥該第一薄膜; (c) 洗轉一苐一離子★古 千式阿分子於該第一薄膜上; (d) 加熱該第一離+ +古 子式回刀子及該第一薄膜,以形成一第 一厚膜; $ = 堯鑄n屬粉末溶液於—第二基材上以形成一第 一薄膑:其中該第二金屬粉末之粒徑係小於…; (f)乾無該第二薄膜; ⑷洗鑄-第二離子式高分子於該第二薄膜上; (h)加熱該第二離子式古 二厚膜;及 +式…及㈣二薄膜,以形成1 (1)接合該第一厚膜及該第二厚膜。 【實施方式】 ' 參考圖3a至圖3c,顯示根據本發明之離子式高分 複合材料之製造方法^意圖。本發明係利㈣鑄法製= 該離子式高分子金屬複合材料,其包括以下步驟。首先, 參考圖3a’澆鑄一金屬粉末溶液於一基材”上以形 膜32 Λ本實施例中,該金屬粉末溶液係為金屬粉末分散 於Nafion®(杜邦公司所吐吝、、一七丄 刀月文 … 1所生產)洛液中’且該金屬粉末係為銀 u立控係小於! _,較佳為數十奈米㈣。在本實施 例中,該基材係為玻璃材f之載玻片,“該基材儿亦 可以是其他可提供㈣的平面材料,例如_、金屬或半 導體等接者,乾燥該薄膜32,在本實施例中H用抽 101105.doc 1276536 真空法使該薄膜32乾燥。 接著,參考圖3b,澆鑄一離子式高分子33於該薄膜32上。 在本實施例中,該離子式高分子33係為Nafi〇n溶液。最後, 加熱垓離子式高分子33及該薄膜32,以製得一離子式高分 子金屬複合材料3,如圖3c所示。在本實施例中,係利用一 加熱板進行烘烤該離子式高分子33及該薄膜32,其加熱之 加工條件可分為一第一階段及一第二階段,該第一階段為 • 6〇°C至8〇°C,較佳為70。〇,且維持約30分鐘;該第二階段 為90 C至110 C,較佳為l〇〇°c,且維持約3〇分鐘。 由於本發明係利用澆鑄之方式且該金屬粉末之粒徑係為 奈米級,因此可提高該金屬薄膜32的導電性及其與該離子 式高分子3 3間之附著性。 參考圖4a至圖4e,顯示根據本發明之離子式高分子金屬 複合材料致動器之製造方法之第一實施例之示意圖。本實 施例之製造方法包括以下步驟。首先,參考圖乜,澆鑄一 籲金屬粉末溶液於-基材41上以形成一第一薄膜42。在本實 施例中,該金屬粉末溶液係為金屬粉末分散於5%Nafi〇^s 液中,且該金屬粉末係為銀粉,其粒徑係小於丨pm,較佳 為數十奈米(nm)。該銀粉與該Nafi〇n溶液之比例約為1 ·· $。 在本實施例中,該基材41係為玻璃材質之載玻片,然而該 基材4丨亦可以是其他可提供澆鑄的平面材料,例如陶瓷、 金屬或半導體等。接著,乾燥該第一薄膜42,在本實施例 中,係利用抽真空法使該第一薄膜42乾燥。 接著,參考圖4b,澆鑄一離子式高分子43於該第一薄膜 101105.doc -10- 1276536 42上。在本實施例+,該離子式高分子43係為2G%Nafion ㈣。之後’力口熱該離子式高分子43及該第—薄膜42。在 本貫施例中,係利用一加熱板進行烘烤該離子式高分子U 及該第一薄膜42,其加熱之加工條件可分為—第一階段及 -第二階段’該第-階段為贼至⑽,較佳為赃,且 維持約3G分鐘;該第二階段為9(Γ(^11(Γ(:, 且維持約3 0分鐘。 接著圖4c,H堯禱該金屬#末溶液於該離子式 高分子43上以形成一第二薄膜44。該金屬粉末溶液係與上 述之金屬粉末溶液相同。接著,乾燥該第二薄膜料,在本 實施例中,係利用抽真空法使該第二薄膜44乾燥。 接著,參考圖4d,利用無電鍍法分別形成一金屬層“於 該第-薄膜42及該第二薄膜44之表面,以降低該第一薄膜 42及該第二薄膜44表面之電阻。在本實施例中,該金屬層 45之材質係為銀。該無電鍍銀法之反應式如下: 2AgNO 3 + INaOH ^ Ag2〇 i +H20 + INaNO 3 Ag20 + 4NH3 + H20 2Ag{NH,\〇H ' 2Ag(NH3)2OH + C6Hn06 ^ 2Ag ^ +C6//n〇7M/4 + 3NH3 + H20 其中,NaOH係為0·5莫耳濃度(M),3〇毫升(ml); AgN〇3 係為0·6莫耳濃度(Μ),25毫升(ml); NH4〇H係為15莫耳濃度 (Μ) ’ 1.2毫升(ml) ; C6H12〇6係為〇·!莫耳濃度(M),35毫升 (ml),工作溫度約為70°C。 要注意的是,如果在圖4a之洗鑄步驟中所澆鑄之金屬粉 末改變時,例如改成金、鎳或白金等,則在此步驟可以配 合其它種無電鍍法,例如無電鍍金或無電鐘白金等。 101105.doc -11- 1276536 接著’參考圖4e,形成複數個驅動電壓之接點46於預設 位ft,以製得-離子式高分子金屬複合材料致動器4。在 本二例中’该等接點46係位於該金屬層45之外表面,其 貝系為錦其係㈣電鑄方式所形成,其電流密度為 1ASD(安培/公寸2),電鍍液之成分為氨基磺酸鎳(Nickel Sulfamate) 〇Wen J. Li, and Yangsheng Xu, ''Micro Nafion Actuators for Cellular Motion Control and Underwater Manipulation”: www.ri.cmu.edu/eyents/iser00/papers/kwok.pdf1, [Steve Tung, Scott R Witherspoon, Larry A Roe, A1 Silano, David P Maynard and Ned Ferraro, MA MEMS-based flexible sensor and actuator system for space inflatable structures' Smart Materials and Structures, pp. 1230-1239, 2001·], [Kwang J. Kim and Shahinpoor, "A novel method of manufacturing three-dimensional ionic 101105.doc 1276536 polymer-metal composities (IPMCs) biomimetic sensors, actuators and artificial muscles'', Polymer 43, pp. 797-802, 2002·] and [Jennifer WL Zhou and Wen J. Li?, fMEMS-Fabricated ICPF Grippers for Aqueous Applications'', IEEE Conference, pp. 556-559, 2003.], etc., however, these methods still have the disadvantage of being time consuming and expensive to manufacture. Therefore, it is necessary to provide an innovative, simple and progressive method for manufacturing an ionic polymer metal composite material to solve the above problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide an ionic polymer metal composite (IPMC) and a method for manufacturing an IPMC actuator, which are made by using a small metal powder (for example, a nano powder) to form a solution for casting. The method is made into an electrode layer, and the IPMC actuator is completed with a fast electroless plating process and integrated MEMS technology, which has high adhesion, saves production time (less than three hours), and reduces cost (about $〇.5US /cm2), high repeatability, large variable size and non-toxic. To achieve the above object, the present invention provides a method for producing an ionic polymer metal composite (IPMC), comprising: (a) casting a metal powder solution on a substrate to form a film, wherein the metal powder is granulated The diameter is less than 1 μm; (b) drying the film; (c) casting an ionic polymer onto the film; and (d) heating the ionic polymer and the film. The invention further provides a method for manufacturing an ionic polymer metal composite (IPMC) actuator, comprising: 101105.doc 1276536 (:: casting a first metal powder solution on a -th substrate to form 1 / film 'where the particle diameter of the first metal powder is less than i μη1; (b) drying the first film; (c) washing one turn of an ion ★ ancient thousand-type molecule on the first film; Heating the first ion + + ancient knives back to the first film to form a first thick film; $ = casting a genus powder solution onto the second substrate to form a first thin layer: Wherein the particle diameter of the second metal powder is less than...; (f) dry without the second film; (4) washing and casting - the second ion polymer on the second film; (h) heating the second ion type ancient a second thick film; and a +... and (4) two film to form 1 (1) to bond the first thick film and the second thick film. [Embodiment] Referring to Figures 3a to 3c, the ion according to the present invention is shown. The invention relates to a method for manufacturing a high-division composite material. The invention is a method for producing a high-molecular-weight metal composite material, which comprises the following steps. First, referring to FIG. 3a', a metal powder solution is cast on a substrate to form a film 32. In the present embodiment, the metal powder solution is a metal powder dispersed in Nafion® (DuPont spitting, one seven)丄刀月文... 1 produced) in the liquid solution 'and the metal powder is silver u control system is less than ! _, preferably tens of nanometers (four). In this embodiment, the substrate is made of glass The glass slide of f, "the substrate may also be other planar material which can provide (4), such as _, metal or semiconductor, etc., dry the film 32, in this embodiment H pump 101105.doc 1276536 vacuum The film 32 is dried. Next, referring to Fig. 3b, an ionic polymer 33 is cast on the film 32. In the present embodiment, the ionic polymer 33 is a Nafi〇n solution. Finally, the cesium ion is heated. The polymer 33 and the film 32 are used to produce an ionic polymer metal composite 3, as shown in Fig. 3c. In this embodiment, the ionic polymer 33 is baked by a heating plate and The film 32, the processing conditions for heating can be divided into a first stage and a In the second stage, the first stage is from 6 〇 ° C to 8 〇 ° C, preferably 70 〇, and is maintained for about 30 minutes; the second stage is from 90 C to 110 C, preferably l 〇〇 c, and maintained for about 3 minutes. Since the present invention utilizes a casting method and the particle diameter of the metal powder is nanometer, the conductivity of the metal thin film 32 and its ionic polymer 3 3 can be improved. Adhesion between the first embodiment of the ionic polymer metal composite actuator according to the present invention is shown in Fig. 4a to Fig. 4e. The manufacturing method of the present embodiment includes the following steps. First, referring to the figure, a metal powder solution is cast on the -substrate 41 to form a first film 42. In the present embodiment, the metal powder solution is a metal powder dispersed in a 5% Nafi® liquid, and the metal powder is a silver powder having a particle size smaller than 丨pm, preferably several tens of nanometers (nm). ). The ratio of the silver powder to the Nafi〇n solution is about 1 ··$. In the present embodiment, the substrate 41 is a glass slide glass. However, the substrate 4 may be other planar materials which can be cast, such as ceramics, metals or semiconductors. Next, the first film 42 is dried, and in the present embodiment, the first film 42 is dried by vacuuming. Next, referring to Fig. 4b, an ionic polymer 43 is cast on the first film 101105.doc -10- 1276536 42. In the present embodiment +, the ionic polymer 43 is 2G% Nafion (IV). Thereafter, the ionic polymer 43 and the first film 42 are heated. In the present embodiment, the ionic polymer U and the first film 42 are baked by a heating plate, and the processing conditions for heating can be divided into - the first stage and the second stage - the first stage For the thief to (10), preferably 赃, and maintain about 3G minutes; the second stage is 9 (Γ (^11 (Γ, and maintain about 30 minutes. Next Figure 4c, H prayers the metal # end The solution is applied to the ionic polymer 43 to form a second film 44. The metal powder solution is the same as the above metal powder solution. Then, the second film material is dried, in this embodiment, by vacuuming The second film 44 is dried. Next, referring to FIG. 4d, a metal layer is formed on the surface of the first film 42 and the second film 44 by electroless plating to reduce the first film 42 and the second film. The electric resistance of the surface of the film 44. In the present embodiment, the material of the metal layer 45 is silver. The reaction formula of the electroless silver plating method is as follows: 2AgNO 3 + INaOH ^ Ag2〇i + H20 + INaNO 3 Ag20 + 4NH3 + H20 2Ag{NH,\〇H ' 2Ag(NH3)2OH + C6Hn06 ^ 2Ag ^ +C6//n〇7M/4 + 3NH3 + H20 where NaOH is 0·5 molar concentration (M), 3〇 ml (ml); AgN〇3 is 0·6 molar concentration (Μ), 25 ml (ml); NH4〇H is 15 mol concentration (Μ) '1.2 ml (ml); C6H12〇6 is 〇·! molar concentration (M), 35 ml (ml), working temperature is about 70 ° C. Note that if in the washing step of Figure 4a When the metal powder to be cast is changed, for example, changed to gold, nickel or platinum, etc., other electroless plating methods such as electroless gold plating or electroless platinum can be used in this step. 101105.doc -11- 1276536 Next 'Reference 4e, a plurality of driving voltage contacts 46 are formed at a preset position ft to produce an -ion polymer metal composite actuator 4. In the present example, the contacts 46 are located in the metal layer. On the outer surface of 45, the shellfish is formed by the electroforming method of brocade (4), and its current density is 1ASD (ampere/inch 2), and the composition of the plating solution is Nickel Sulfamate.

參考圖5a至圖5g,顯示根據本發明之離子式高分子金屬 複合材料致動器之製造方法之第二實施例之示意圖。本實 施例之製造方法包括以下步驟。首先,參考圖5a,澆鑄一 第-金屬粉末溶液於一第一基材51上以形成一第一薄膜 :2。在本實施例中,該第—金屬粉末溶液係為金屬粉末分 散於5%NafiGn溶液巾,且該金屬粉末料銀粉,其粒徑係 小於1 μηι ’較佳為數十奈米(nm)。該銀粉與該溶液 之::例約為"5。在本實施例中’該第一基材川系為玻璃 材質之載玻片’然而該基材51亦可以是其他可提供洗禱的 平面材料例如陶竟、金屬或半導體等。接著,乾燥該第 -薄膜52’在本實施例中,係利用抽真空法使該第一薄膜 52乾燥。 接著,參考圖5b,澆鑄一第一離子式高分子53於該第一 薄膜52上,以形成一第一厚膜54。該第一厚膜“包括該第 一離子式高分子53及該第一薄膜52。在本實施例中,該第 一離子式高分子53係為20%Nafi〇n溶液。之後,加熱該第一 厚膜5 4在本貫施例中,係利用一加熱板進行烘烤該第一 厚膜54,其加熱之加工條件可分為一第一階段及一第二階 101105.doc -12- 1276536 段,該第一階段為we至80t,較佳為7(rc,且維持約3〇 分鐘;該第二階段為9吖至靴,較佳為贿,且維持 約30分鐘。 接著參考圖5e,洗鑄-第二金屬粉末溶液於—第二基材 55上以形成-第二薄膜56。在本實施例中,該第二金屬粉 末溶液與該第一金屬粉末溶液相同,該第二基材55亦為一 載玻片。接著’乾燥該第二薄膜56,在本實施例中,係利 用抽真空法使該第二薄膜5 6乾燥。 接著,參考圖5d,澆鑄一第二離子式高分子57於該第二 薄膜56上,以形成一第二厚膜58。該第二厚膜58包括該第 二離子式高分子57及該第二薄膜56。在本實施例中,該第 二離子式高分子57與該第一離子式高分子兄相同。之後, 加熱該第二厚膜58,在本實施例中,其加工條件與該上述 第一厚膜54相同。 接著,參考圖5e,接合該第一厚膜54及該第二厚膜58〇 在本實施例,係先形成一附著層材料59於該第一離子式高 分子53及該第二離子式高分子57之表面,再以冷壓方式2 室溫下接合該第一離子式高分子53及該第二離子式高分子 57持續20分鐘,再加熱至1〇〇艽後冷卻。 接著,參考圖5f,該第一離子式高分子53及該第二離子 式高分子57接合後形成一離子式高分子6〇,之後,利用無 電鍍法分別形成一金屬層61於該第一薄膜52及該第二薄膜 56之表面,以降低該第一薄膜52及該第二薄膜兄表面之電 阻。在本實施例中,該金屬層61之材質係為銀。該無電鍍 ^HOS.doc -13- 1276536 銀法之反應條件與該第一實施例之無電鍍銀法相同。要注 意的是,如果在圖5a及圖5c之澆鑄步驟中所澆鑄之金屬粉 末改變時,例如改成金、鎳或白金等,則在此步驟可以配 合其它種無電鍍法,例如無電鍍金或無電鍍白金等。 接著’參考圖5g,形成複數個驅動電壓之接點62於預設 位置上,以製彳于一離子式高分子金屬複合材料致動器$。在 本實施例中,該等接點62係位於該金屬層61之外表面,其 • 材質係為鎳,且其係利用電鑄方式所形成,其電流密度為 iASD(安培/公寸2),電鍍液之成分為氨基磺酸鎳(Nickel Sulfamate)。 本實施例之離子式高分子金屬複合材料致動器5之測試 結果如下。選取致動尺寸2〇 mmx2 mmx〇 2 min,在驅動電 I 1 V下,可以有2.1 mm之位移量,且驅動力為〇114 gf。 在驅動電壓2 V下,可以有4·4 mm之位移^,且驅動力為 0.168 gf。在驅動電壓3 v下,可以有6·78 mm之位移量,且 籲•驅動力為0.222 gf。此外,該致動器5之最大偏移角度可達 90度。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此,習於此技術之人士可在不違背本發 明之精神對上述實施例進行修改及變化。本發明之權利範 圍應如後述之申請專利範圍所列。 【圖式簡單說明】 圖la及圖lb顯示習知電子式電致動聚合物之示意圖; 圖2顯不習知離子式電致動聚合物之示意圖; 101105.doc -14- 1276536 圖3a至圖3c顯示根據本發明之離子式高分子金屬複合材 料之製造方法之不意圖, 圖4a至圖4e顯示根據本發明之離子式高分子金屬複合材 料致動器之製造方法之第一實施例之示意圖;及 圖5a至圖5g顯示根據本發明之離子式高分子金屬複合材 料致動器之製造方法之第二實施例之示意圖。 【主要元件符號說明】Referring to Figures 5a to 5g, there is shown a schematic view of a second embodiment of a method of manufacturing an ionic polymer metal composite actuator according to the present invention. The manufacturing method of this embodiment includes the following steps. First, referring to Fig. 5a, a first metal powder solution is cast on a first substrate 51 to form a first film: 2. In the present embodiment, the first metal powder solution is a metal powder dispersed in a 5% NafiGn solution, and the metal powder silver powder has a particle diameter of less than 1 μηι ', preferably several tens of nanometers (nm). The silver powder and the solution:: an example is about "5. In the present embodiment, the first substrate is a glass slide glass. However, the substrate 51 may be other flat material such as ceramics, metal or semiconductor which can provide a prayer. Next, the first film 52' is dried. In the present embodiment, the first film 52 is dried by vacuuming. Next, referring to Fig. 5b, a first ionic polymer 53 is cast on the first film 52 to form a first thick film 54. The first thick film "includes the first ionic polymer 53 and the first film 52. In the present embodiment, the first ionic polymer 53 is a 20% Nafi〇n solution. Thereafter, the first layer is heated. A thick film 5 4 in the present embodiment, the first thick film 54 is baked by a heating plate, and the processing conditions for heating can be divided into a first stage and a second stage 101105.doc -12- In paragraph 1276536, the first stage is we to 80t, preferably 7 (rc, and is maintained for about 3 minutes; the second stage is 9 inches to the boot, preferably bribe, and is maintained for about 30 minutes. 5e, washing the second metal powder solution onto the second substrate 55 to form a second film 56. In this embodiment, the second metal powder solution is the same as the first metal powder solution, the second The substrate 55 is also a slide glass. Then, the second film 56 is dried. In the present embodiment, the second film 56 is dried by vacuuming. Next, referring to FIG. 5d, a second ion is cast. a polymer 57 is formed on the second film 56 to form a second thick film 58. The second thick film 58 includes the second ion type high score 57 and the second film 56. In the present embodiment, the second ionic polymer 57 is the same as the first ionic polymer brother. Thereafter, the second thick film 58 is heated, in this embodiment, The processing conditions are the same as those of the first thick film 54. Next, referring to FIG. 5e, bonding the first thick film 54 and the second thick film 58. In this embodiment, an adhesion layer material 59 is first formed on the first On the surface of the ionic polymer 53 and the second ionic polymer 57, the first ionic polymer 53 and the second ionic polymer 57 are bonded to each other at room temperature for 20 minutes at room temperature, and then heated. After cooling to 1 〇〇艽, the first ionic polymer 53 and the second ionic polymer 57 are joined to form an ionic polymer 6〇, and then formed by electroless plating. A metal layer 61 is disposed on the surfaces of the first film 52 and the second film 56 to reduce the resistance of the surface of the first film 52 and the second film. In the embodiment, the material of the metal layer 61 is Silver. The electroless plating ^HOS.doc -13- 1276536 The reaction conditions of the silver method and the first The electroless silver plating method of the embodiment is the same. It should be noted that if the metal powder cast in the casting step of Figs. 5a and 5c is changed, for example, changed to gold, nickel or platinum, etc., this step can be combined with other An electroless plating method, such as electroless gold plating or electroless plating platinum, etc. Next, referring to FIG. 5g, a plurality of driving voltage contacts 62 are formed at predetermined positions to be actuated by an ion-type polymer metal composite material. In the present embodiment, the contacts 62 are located on the outer surface of the metal layer 61, and the material is made of nickel, and is formed by electroforming, and the current density is iASD (amperes/amps). Inch 2), the composition of the plating solution is Nickel Sulfamate. The test results of the ionic polymer metal composite actuator 5 of the present embodiment are as follows. Select the actuation size 2〇 mmx2 mmx〇 2 min. Under the driving power I 1 V, there is a displacement of 2.1 mm and the driving force is 〇114 gf. At a drive voltage of 2 V, there can be a displacement of 4·4 mm and a driving force of 0.168 gf. At the driving voltage of 3 v, there is a displacement of 6.78 mm, and the driving force is 0.222 gf. In addition, the actuator 5 has a maximum offset angle of up to 90 degrees. However, the above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1a and FIG. 1b show schematic diagrams of a conventional electronic electro-actuated polymer; FIG. 2 shows a schematic diagram of an ionic electro-actuated polymer; 101105.doc -14- 1276536 FIG. 3c shows a schematic view of a method of manufacturing an ionic polymer metal composite according to the present invention, and FIGS. 4a to 4e show a first embodiment of a method of manufacturing an ionic polymer metal composite actuator according to the present invention. Fig. 5a to Fig. 5g are schematic views showing a second embodiment of a method of manufacturing an ionic polymer metal composite actuator according to the present invention. [Main component symbol description]

1 電子式電致動聚合物 2 離子式電致動聚合物 3 離子式高分子金屬複合材料 4 離子式高分子金屬複合材料致動器 5 離子式高分子金屬複合材料致動器 12 介電彈性體 14、1 6 彈性電極 22 離子式高分子 24、26 金屬電極 31 基材 32 薄膜 33 離子式高分子 41 基材 42 第一薄膜 43 離子式高分子 44 第二薄膜 45 金屬層 101105.doc -15 - 1276536 46 接 51 第 52 第 53 第 54 第 55 第 56 第 57 第 58 第 59 附 60 離 61 金 62 接1 Electronic electroactuator 2 Ionic electroactuator 3 Ionic polymer metal composite 4 Ionic polymer metal composite actuator 5 Ionic polymer metal composite actuator 12 Dielectric elasticity Body 14, 16 Elastic electrode 22 Ionic polymer 24, 26 Metal electrode 31 Substrate 32 Thin film 33 Ionic polymer 41 Substrate 42 First film 43 Ionic polymer 44 Second film 45 Metal layer 101105.doc - 15 - 1276536 46 Connection 51 52nd 53rd 54th 55th 56th 57th 58th 59th 60 from 61 Gold 62

點 一基材 一薄膜 一離子式高分子 一厚膜 二基材 二薄膜 二離子式高分子 二厚膜 著層材料 子式高分子 屬層 點 101105.doc -16-Point one substrate one film one ion type polymer one thick film two base material two film diion type polymer two thick film layering material subtype polymer genus layer point 101105.doc -16-

Claims (1)

1276536 十、申請專利範圍: 1. 一種離子式高分子金屬複合材料(ipMc)之製造方法,其 包括: (a) 洗鑄一金屬粉末溶液於一基材上以形成一薄膜,其中 該金屬粉末之粒徑係小於1 μιη ; (b) 乾燥該薄膜; (c) 洗轉一離子式高分子於該薄膜上;及 (d) 加熱該離子式高分子及該薄膜。 2·如請求項1之方法,其中該步驟(a)中該金屬粉末溶液係為 金屬粉末與Nafion溶液。 3·如請求項1之方法,其中該步驟(a)中該金屬粉末係選自由 銀私、金粉、鎳粉及白金粉所組成之群。 4·如請求項1之方法,其中該步驟(a)中該基材之材質係選自 由玻壤、陶瓷、金屬及半導體所組成之群。 5·如請求項1之方法,其中該步驟(b)係利用抽真空法使該薄 膜乾燥。 6.如請求項丨之方法,其中該步驟(〇中該離子式高分子係為 Nafi〇n溶液。 月求項1之方法’其中該步驟(d)中該加熱之加工條件包 括第一階段及一第二階段,該第一階段為60°C至80 C ’該第二階段為90°C至110°C。 離子式南分子金屬複合材料(IPMC)致動器之製造方 法’其包括: (a) ~ —第一金屬粉末溶液於一第一基材上以形成一第 101105.doc 1276536 、中Θ第—金屬粉末之粒徑係小於1 μ m ; ()&s玄第—薄膜; 第—離子式高分子於該第—薄膜上; ⑽該第-離子式高分子及該第—薄膜,以形成一第 一厚膜; (e)'^l二金屬粉末溶液於—第二基材上以形成一第 ⑴:燥:第:::第二金屬粉末之粒徑係小於一; (g) 〉堯每一笫-施 J2. Jb -a. x 弟一離子式尚分子於該第二薄 (h) 加熱該第-龅;4 \ 4膜上, …離子式局分子及該第二薄膜,以形成-第 一尽膜;及 ⑴接合該第—厚膜及該第二厚膜。 9 _如請求項8之古、、土 4+ . 及’該步驟(a)中該第—金屬粉末溶液 及β步驟(e)中該第二 Nafion溶液。 金屬如末洛液皆為金屬粉末與 1。·::求項8之方法’其中該步驟⑷ 步驟(e)中該第二金屬 罘金屬叔末及该 白金粉所組成之群。 孟物鎳粉及 11·如請求項8之方法,其中哕牛 ⑷中該第二基材之材質中該第-基材及該步驟 導體所組成之群。、、自由玻璃、陶兗、金屬及半 12·如請求項8之方法,豆中 法H ^ v驟(b)及步驟(0皆利用抽直* 法使该弟-薄膜及該第二薄膜乾燥。 一 13·如請求項8之方法,其中 亥步驟(C)中該第一離子式高分子 101105.doc -2. 1276536 及該步驟(g)中該第二離子式高分子皆為Nafion溶液。 14·如请求項8之方法,其中該步驟(d)及該步驟(h)之該加熱 之加工條件皆包括一第一階段及一第二階段,該第一階 丰又為6〇C至80°C,該第二階段為90°C至110°C。 15·如凊求項8之方法,其中該步驟⑴係分別形成一附著層材 料於δ亥第一離子式高分子及該第二離子式高分子之表 面’再以冷壓方式接合該第一離子式高分子及該第二離 子式高分子,再加熱後冷卻。 16.如明求項8之方法,其中該步驟⑴後更包括: ⑴利用無電鍍法分別形成一金屬層於該第一薄膜及該第 一薄膜之表面,以降低該第一薄膜及該第二薄臈表面 之電阻。 17·如明求項16之方法,其中該金屬層之材質係選自由銀 鎳及白金所組成之群。 18·如明求項16之方法,其中該步驟⑴後更包括: (k)形成複數個接點於預設位置上。 19 ·如睛求項1 $之古 ^ , 方法,其中S亥接點之材質係為鎳,且1 利用電鑄方式所形成。 /、 20.=求項8之方法,其中該步驟⑴後更包括一形成複數 接點於預設位置上之步驟。 21 · —種離子式弇八2人府 。刀子金屬複合材料(IPMC)致動 法,其包括: 表1". 鳟一第 * 金屬籾末溶液於一基材上以形成一 膜’其中該第-金屬粉末之粒徑係小於 101J05.doc 1276536 (b)乾無該第一薄膜; (C)淹鑄-離子式高分子於該第—薄膜上. (d)加熱該離子式高分子及該第一薄臈;, 峨,H屬粉末溶液於該離子式高分子上以形成 .弟一μ ’其中該第二金屬粉末之粒徑係小於μ m,及 (f)乾燥該第二薄膜。 22. Π求項21之方法’其中該步驟⑷中該第-金屬粉末溶 步驟(e)中該第二金屬粉末溶液皆為金屬粉末與 Nafion溶液。 23. ,請求項21之方法,其中該步驟⑷中該第一金屬粉末及 该步驟⑷中該第二金屬粉末係選自由銀粉、金粉、錄粉 及白金粉所組成之群。 24·如印求項21之方法,其中該步驟⑷中該基材之材質係選 自由玻璃、陶瓷、金屬及半導體所組成之群。 25·如$月求項21之方法,其中該步驟⑻及步驟⑺皆利用抽真 空法使該第一薄臈及該第二薄膜乾燥。 26·如請求項21之方法,其中該步驟⑷中該離子式高分子係 為Nafion溶液。 27. 如請求項21之方法,其中該步驟⑷之該加熱之加工條件 皆包括一第一階段及一第二階段,該第一階段為6〇它至 80C ’该弟二階段為9〇°c至ii〇°c。 28. 如請求項21之方法,其中該步驟⑴後更包括: (g)利用無電鍍法分別形成一金屬層於該第一薄膜及該第 101105.doc 1276536 二薄臈之表面,以降低該第一薄膜及該第二薄膜表面 之電阻。 29.如請求項28之方法,其中該金屬層之材質係選自由銀、 鎳及白金所組成之群。 30·如請求項28之方法,其中該步驟(g)後更包括: (h)形成複數個接點於預設位置上。 31·如請求項30之方法,其中該接點之材質係為鎳,且其係 利用電鑄方式所形成。 、” 32.如請求項21之方法,其中該步驟⑺後更包括一形成複數 個接點於預設位置上之步驟。 101105.doc1276536 X. Patent Application Range: 1. A method for manufacturing an ionic polymer metal composite (IPMc), comprising: (a) washing a metal powder solution onto a substrate to form a film, wherein the metal powder The particle size is less than 1 μm; (b) drying the film; (c) washing the ion-type polymer onto the film; and (d) heating the ionic polymer and the film. 2. The method of claim 1, wherein the metal powder solution in the step (a) is a metal powder and a Nafion solution. 3. The method of claim 1, wherein the metal powder in the step (a) is selected from the group consisting of silver private powder, gold powder, nickel powder, and platinum powder. 4. The method of claim 1, wherein the material of the substrate in the step (a) is selected from the group consisting of glass, ceramics, metals, and semiconductors. 5. The method of claim 1, wherein the step (b) is to dry the film by vacuuming. 6. The method of claim 1, wherein the step (the ionic polymer in the crucible is a Nafi〇n solution. The method of the monthly claim 1) wherein the heating processing condition in the step (d) comprises the first stage And a second stage, the first stage is 60 ° C to 80 C 'the second stage is 90 ° C to 110 ° C. The manufacturing method of the ionic south molecular metal composite (IPMC) actuator' : (a) ~ - the first metal powder solution on a first substrate to form a 101105.doc 1276536, the medium-sized metal powder has a particle size of less than 1 μm; () & a film; a first-type polymer on the first film; (10) the first-ionic polymer and the first film to form a first thick film; (e) '^l metal powder solution in - The second substrate is formed on the second substrate to form a first (1): dry:::: second metal powder having a particle size of less than one; (g) 〉 尧 each 笫-施 J2. Jb -a. Heating the first thin layer (h), the ionic group molecule and the second film to form a first full film; and (1) bonding the first Thick film and the second thick film. 9 _ as claimed in claim 8 , soil 4 + . and 'the first metal powder solution in the step (a) and the second Nafion solution in the step (e). The metal such as the melamine liquid is a metal powder and the method of the method of the invention, wherein the second metal ruthenium metal and the platinum powder in the step (4) step (e). The method of claim 8, wherein the material of the second substrate in the material of the second substrate in the yak (4) is a group consisting of the first substrate and the conductor of the step., free glass, ceramics, metal and half 12 - The method of claim 8, the method of the method of the method of the method of the method of the method of the method of claim 8, wherein the film is dried by the straightening method, and the film is dried by the method of claim 8. In the step (C), the first ionic polymer 101105.doc-2. 1276536 and the second ionic polymer in the step (g) are both Nafion solutions. The processing conditions of the heating in the step (d) and the step (h) include a first stage and a second stage, and the first step is 6〇C to 80°C, the second stage is 90°C to 110°C. 15. The method of claim 8, wherein the step (1) forms an adhesion layer material at the first ionic height of the δ The molecules and the surface of the second ionic polymer are joined to the first ionic polymer and the second ionic polymer by cold pressing, and then heated and then cooled. 16. The method of claim 8, wherein After the step (1), the method further comprises: (1) forming a metal layer on the surface of the first film and the first film by electroless plating to reduce the resistance of the first film and the second thin surface. The method of claim 16, wherein the material of the metal layer is selected from the group consisting of silver nickel and platinum. 18. The method of claim 16, wherein the step (1) further comprises: (k) forming a plurality of contacts at the preset position. 19 · If the item 1 $古古 ^ , the method, in which the material of the S Hai junction is nickel, and 1 is formed by electroforming. /, 20. = The method of claim 8, wherein the step (1) further comprises the step of forming a plurality of contacts at the preset position. 21 · — A kind of ionic type 弇 eight 2 people. Knife metal composite (IPMC) actuation method, comprising: Table 1 " 鳟一* metal 籾 溶液 solution on a substrate to form a film 'where the particle size of the first metal powder is less than 101J05.doc 1276536 (b) dry without the first film; (C) flood casting-ion polymer on the first film. (d) heating the ionic polymer and the first thin layer; The solution is formed on the ionic polymer to form a second microparticle in which the particle diameter of the second metal powder is less than μm, and (f) drying the second film. 22. The method of claim 21, wherein in the step (4), the second metal powder solution in the step (e) is a metal powder and a Nafion solution. 23. The method of claim 21, wherein the first metal powder in the step (4) and the second metal powder in the step (4) are selected from the group consisting of silver powder, gold powder, recorded powder, and platinum powder. The method of claim 21, wherein the material of the substrate in the step (4) is selected from the group consisting of glass, ceramics, metals, and semiconductors. The method of claim 21, wherein the step (8) and the step (7) both dry the first thin layer and the second film by a vacuum method. The method of claim 21, wherein the ionic polymer in the step (4) is a Nafion solution. 27. The method of claim 21, wherein the heating processing conditions of the step (4) comprise a first stage and a second stage, the first stage being 6 〇 to 80 C 'the second stage is 9 〇 c to ii 〇 °c. 28. The method of claim 21, wherein the step (1) further comprises: (g) forming a metal layer on the surface of the first film and the first film of the 101105.doc 1276536 by electroless plating to reduce the The electrical resistance of the first film and the surface of the second film. 29. The method of claim 28, wherein the material of the metal layer is selected from the group consisting of silver, nickel, and platinum. The method of claim 28, wherein the step (g) further comprises: (h) forming a plurality of contacts at the preset position. 31. The method of claim 30, wherein the material of the joint is nickel and is formed by electroforming. 32. The method of claim 21, wherein the step (7) further comprises the step of forming a plurality of contacts at the preset position. 101105.doc
TW94114937A 2005-05-09 2005-05-09 Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator TWI276536B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94114937A TWI276536B (en) 2005-05-09 2005-05-09 Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94114937A TWI276536B (en) 2005-05-09 2005-05-09 Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator

Publications (2)

Publication Number Publication Date
TW200639055A TW200639055A (en) 2006-11-16
TWI276536B true TWI276536B (en) 2007-03-21

Family

ID=38646296

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94114937A TWI276536B (en) 2005-05-09 2005-05-09 Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator

Country Status (1)

Country Link
TW (1) TWI276536B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460618A (en) * 2009-04-22 2012-05-16 Idit技术集团 Ionic polymer metal composite capacitor
TWI406573B (en) * 2007-09-05 2013-08-21 Ind Tech Res Inst Flexible speaker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480438A (en) * 2016-09-28 2017-03-08 西安交通大学 A kind of preparation method and application of the controlled C/Pd compound electric polar form ionic polymer metal composite material of thickness of electrode
TWI754860B (en) * 2019-11-26 2022-02-11 國立中正大學 Soft engine using ionic polymer metal composite (IPMC)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406573B (en) * 2007-09-05 2013-08-21 Ind Tech Res Inst Flexible speaker
CN102460618A (en) * 2009-04-22 2012-05-16 Idit技术集团 Ionic polymer metal composite capacitor

Also Published As

Publication number Publication date
TW200639055A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
Kim et al. Low-voltage-driven soft actuators
Zhu et al. Softening gold for elastronics
Ding et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges
TWI276536B (en) Method for making an ionic polymer-metal composites (IPMC) and an IPMC actuator
Tiwari et al. The state of understanding of ionic polymer metal composite architecture: a review
US20090032394A1 (en) Ionic polymer devices and methods of fabricating the same
Jeong et al. Stretchable thermoelectric generators metallized with liquid alloy
Guo et al. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer–metal composite actuator
Kim et al. Interface design for stretchable electronic devices
JP5923234B2 (en) System and method for depositing a thin layer on a non-planar substrate by imprinting
TW201706131A (en) Thermal interface materials using metal nanowire arrays and sacrificial templates
TW200419735A (en) A negative thermal expansion system (NTEs) device for TCE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging
Fengel et al. Biocompatible silk-conducting polymer composite trilayer actuators
Peng et al. Fabrication and performance of ionic polymer-metal composites for biomimetic applications
Jager et al. Perpendicular actuation with individually controlled polymer microactuators
CN104671223A (en) Porous carbon and nitrogen two-dimensional nano-sheet and method for preparing IPMC electrochemical actuator
Khan et al. Polypyrrole nanoparticles-based soft actuator for artificial muscle applications
Yang et al. Recent progress in preparation process of ionic polymer-metal composites
Wang et al. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects
Yang et al. Property of ionic polymer metal composite with different thicknesses based on solution casting technique
Shahinpoor et al. Novel physically loaded and interlocked electrode developed for ionic polymer-metal composites (IPMCs)
Mousavi et al. Fabrication of ionic polymer metal composite for bio-actuation application: Sputtering and electroless plating methods
KR20100024041A (en) Ionic polymer-metal composite and method of fabricating the same
CN102522491A (en) Polymer device with driving and sensing capability, preparation thereof and application thereof
KR101198073B1 (en) Ionic polymer composite and methode thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees