TWI276272B - Surface-emitting semiconductor-laser component with a vertical emission-direction - Google Patents

Surface-emitting semiconductor-laser component with a vertical emission-direction Download PDF

Info

Publication number
TWI276272B
TWI276272B TW94116890A TW94116890A TWI276272B TW I276272 B TWI276272 B TW I276272B TW 94116890 A TW94116890 A TW 94116890A TW 94116890 A TW94116890 A TW 94116890A TW I276272 B TWI276272 B TW I276272B
Authority
TW
Taiwan
Prior art keywords
semiconductor laser
semiconductor
contact layer
radiation
layer
Prior art date
Application number
TW94116890A
Other languages
Chinese (zh)
Inventor
Wilhelm Stein
Tony Albrecht
Peter Brick
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Application granted granted Critical
Publication of TWI276272B publication Critical patent/TWI276272B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

A surface-emitting semiconductor-laser component, especially electrically pumped semiconductor-laser component, with a vertical emission-device is provided, which is provided to generate a laser radiation by means of an external optical resonator (4, 5), including a semiconductor-body with a semiconductor-layer sequence (2), which has a lateral main extending direction and an active area (3) used to generate radiation, where inside the resonator a radiation-transparent contact-layer (6) is arranged and is conductively connected with the semiconductor-body.

Description

1276272 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種表面發射式半導體雷射組件,特別是電 性泵送之半導體雷射組件,包括:一垂直式發射元件,其 藉由一種光學共振器而產生雷射輻射;以及半導體本體, 其半導體層序列具有一橫向之主延伸方向和一用來產生輻 射之活性區。 【先前技術】 在傳統之電性泵送之表面發射式半導體雷射組件中,由 於半導體本體之半導體材料之通常較小的.隻生,則泵送 電流經常在經由電流擴大層而由半導體本體之導 ............. 電側注入半導體本體中。因此,例如需使用各種由III-V-半導體材料(例如,n-GaAs)所構成的層。但此種電流擴大 層通常同樣在橫向中具有一種小的導電性,其通常與半導 體本體的導電性屬同一等級;或此種霉流擴大層會吸收上 述活性區中所產生的輻射。由於電流擴大層之小的導電 性,則通常須以較大的厚度來製成上述之電流擴大層以使 電流有效地注入,但這樣會使電流擴大層中所吸收的輻射 功率增大。整體而言,由於橫向中較小的導電性及/或由於 吸收性而使半導體組件效率下降的危險性提高。 【發明内容】 本發明的目的是提供一種已改良的表面發射式半導體組 件。 本發明中上述目的以具有申請專利範圍第1項特徵的半 .1276272 導體組件來達成。本發明有利的其它形式描述在申請專利 範圍各附屬項中。 本發明中具有垂直式發射元件之表面發射式半導體組件 包括一種半導體本體,其半導體層序列具有一種橫向的主 延伸方向和一種用來產生輻射的活性區,其中該垂直式發 射元件藉由一種外部之光學共振器而產生雷射輻射,此共 . 振器內部中配置一種可透過輻射的接觸層且此接觸層導電 性地與半導體本體相連接。此半導體雷射組件較佳是藉由 ® 可透過輻射的接觸層來進行電性泵送。 具有吸收性之電流擴大層中的吸收損耗因此可有利地下 降,這樣對此組件的效率及/或雷射操作門限値是有利的。 情況需要時除了上述之可透過輻射的接觸層之外亦可設 有一種具有吸收性的電流擴大層,其對輻射的透過率較該 接觸層者還低。但此電流擴大層的厚度在與傳統之半導體 雷射組件比較時可有利地下降。 上述接觸層在橫向中的導電率較佳是足夠高,使泵送電 流可藉由該接觸層而均勻地注入至半導體本體中。特別有 利的是該接觸層在橫向中具有一種導電性或具有一種結 ' 構,使經由半導體本體之中央區之橫向之泵送電流較經由 k 半導體本體之邊緣區者還大,其中電流較佳是經由半導體 本體而注入接觸層中。 橫向之泵送電流密度基本上具有一種類似於高斯(Gauss) 形式的外形,其最大値在中央區,由最大値開始在中央區 中以較平坦之邊緣下降且在邊緣區中以較陡的邊緣下降。 1276272 藉由接觸層’則可在半導體本體上之中央區中一較大的 丰頁向範圍中,例如,1()至1〇〇〇〇微米,較佳是1〇〇至1〇〇〇 微米或100至500微米的橫向範圍中,達成一種在橫向中 均勻的泵送電流密度分佈。 此外’在半導體本體上配置該接觸層。因此,可使電流 較有效率地注入至半導體本體中。特別有利的是··此接觸 層的特徵是對該半導體本體具有一種有利的電性接觸性。 例如’該接觸層對該半導體本體形成一種歐姆接觸。 在本發明的一種較佳的形式中,接觸層具有一種氧化 物’特別是一種金屬氧化物。可透過輻射的導電性氧化物 (TC〇: Transparent Conducting Oxide),特別是金屬氧化物, 之特徵是在一廣大的波長範圍中具有高的輻射透過率且同 時在橫向中具有高J勺導電性。該接觸層例如可包含一種或 -一一*_______ 多種TC0-材料,其例如可爲氧化鋅(ZnO),氧化銦錫(IT0), 氧化錫(Sn02)或氧化鈦(Ti02)或由這些材料所構成。爲了 提高導電性,則接觸層較佳是以金屬來摻雜。例如,Zn〇 可以鋁來摻雜。 接觸層較佳是含有Zn〇或IT0。Zn〇之特徵是對p-導電 之半導體材料具有一種特別有利的接觸性。1276272 IX. Description of the Invention: The present invention relates to a surface-emitting semiconductor laser assembly, and more particularly to an electrically pumped semiconductor laser assembly comprising: a vertical emitting element, which is optical The resonator generates laser radiation; and the semiconductor body has a semiconductor layer sequence having a lateral main extension direction and an active region for generating radiation. [Prior Art] In a conventional electrically pumped surface-emitting semiconductor laser assembly, since the semiconductor material of the semiconductor body is generally small, the pumping current is often passed through the current amplification layer by the semiconductor body. The guide .......... The electrical side is injected into the semiconductor body. Therefore, for example, various layers composed of a III-V-semiconductor material (for example, n-GaAs) are used. However, such a current spreading layer generally also has a small electrical conductivity in the transverse direction, which is generally of the same grade as the conductivity of the semiconductor body; or such a mildew expanding layer absorbs the radiation generated in the active region. Due to the small conductivity of the current spreading layer, it is usually necessary to form the above current expanding layer with a large thickness to efficiently inject the current, but this increases the radiation power absorbed in the current expanding layer. Overall, the risk of lowering the efficiency of the semiconductor component due to less conductivity in the lateral direction and/or due to absorption. SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved surface emitting semiconductor package. The above object in the present invention is achieved by a half-1276272 conductor assembly having the features of claim 1 of the patent application. Other forms of advantageous aspects of the invention are described in the various dependent claims. The surface emitting semiconductor device having a vertical emitting element in the present invention comprises a semiconductor body having a semiconductor layer sequence having a lateral main extending direction and an active region for generating radiation, wherein the vertical emitting element is externally The optical resonator generates laser radiation, and a radiation-permeable contact layer is disposed in the interior of the resonator and the contact layer is electrically connected to the semiconductor body. The semiconductor laser component is preferably electrically pumped by a radiation permeable contact layer. The absorption losses in the absorbing current spreading layer can therefore be advantageously reduced, which is advantageous for the efficiency of the assembly and/or the laser operating threshold. In addition to the above-mentioned radiation-permeable contact layer, it is also possible to provide an absorbing current-enlarging layer which has a lower transmittance to radiation than the contact layer. However, the thickness of this current spreading layer can be advantageously reduced when compared to conventional semiconductor laser components. The conductivity of the contact layer in the lateral direction is preferably sufficiently high that the pumping current can be uniformly injected into the semiconductor body by the contact layer. It is particularly advantageous if the contact layer has a conductivity in the transverse direction or has a structure such that the pumping current in the transverse direction via the central region of the semiconductor body is greater than that in the edge region of the k semiconductor body, wherein the current is preferred. It is injected into the contact layer via the semiconductor body. The lateral pumping current density basically has a shape similar to the Gaussian form, with a maximum enthalpy in the central zone, starting from the maximum 値 in the central zone with a flatter edge and a steeper edge zone The edge is falling. 1276272 can be in the range of a large page in the central region of the semiconductor body by the contact layer, for example, 1 () to 1 〇〇〇〇 micron, preferably 1 〇〇 to 1 〇〇〇 In the lateral range of micrometers or 100 to 500 micrometers, a uniform pumping current density distribution in the transverse direction is achieved. Furthermore, the contact layer is arranged on the semiconductor body. Therefore, current can be injected into the semiconductor body more efficiently. It is particularly advantageous if this contact layer is characterized by an advantageous electrical contact to the semiconductor body. For example, the contact layer forms an ohmic contact to the semiconductor body. In a preferred form of the invention, the contact layer has an oxide ', particularly a metal oxide. Radiation-transparent conductive oxide (TC〇: Transparent Conducting Oxide), especially metal oxide, characterized by high radiation transmittance in a wide wavelength range and high J-spray conductivity in the lateral direction . The contact layer may comprise, for example, one or one of a plurality of TC0-materials, which may be, for example, zinc oxide (ZnO), indium tin oxide (IT0), tin oxide (Sn02) or titanium oxide (Ti02) or from these materials. Composition. In order to improve conductivity, the contact layer is preferably doped with a metal. For example, Zn〇 can be doped with aluminum. The contact layer preferably contains Zn〇 or IT0. Zn 〇 is characterized by a particularly advantageous contact to the p-conductive semiconductor material.

Zn〇在波長介於400奈米(nm)和1100奈米之間時具有 接近於〇之吸收係數且在波長介於340奈米(nm)和丨200 奈米之間時具有〇 · 1或更小的吸收係數° IT0在波長大於 5 00奈米直至1〇〇〇奈米或更大時具有接近於0之吸收係數 且在波長介於400奈米(nm)和500奈米之間時具有0· 1或 .127.6272 更小的吸收係數。此種小的吸收係數對應於高値的透過 率。 接觸層之厚度較佳是100奈米或更大且小於或等於1000 奈米。接觸層在橫方向中的層電阻例如可爲20 Ω _sq或更 小。單位Ω —sq表示此層電阻之每平方面積(^uare)之電 阻。 . 在本發明的一較佳的形式中,共振器是由一種形成在半 導體本體中及/或以佈拉格(Bragg)鏡面形成的第一鏡面以 馨及另一外部鏡面所限定。 上述之外部鏡面可形成該共振器所發出之輻射用之耦合 鏡面且因此較佳是具有一種較第一鏡面還小的反射率。特 別有利的是該外部鏡面藉由一種無輻射區而與半導體本體 相隔開。 活性區中所產生的輻射須在第一鏡面和外部鏡面之間反 射,使共振器中經由活性區中所感應的發射而形成一種輻 射場以產生相參(coherent)的輻射(雷射輻射),其經由耦合 ®鏡面而由共ί辰器發出。 依據本發明的另一形式,該接觸層在活性區和共振器之 • 外部鏡面之間配置在輻射的直接通道中。 藉由一種具有外部共振器(VECSEL: Vertical External Cavity Surface Emitting Laser或半導體晶圓雷射)之表面 發射式半導體雷射組件,則在與具有內部共振器(VCSEL·· Vertical Cavity Surface Emitting Laser)之組件相比較時可 達成較高的輸出功率。 .1276272 依據本發明的另一形式,活性區包含一種單一-或多重 量子井結構。這些結構特別適用於半導體雷射組件。情況 需要時活性區亦可包含一個或多個量子點或一個或多個釐 子線。 在本發明的另一較佳的形式中,在半導體本體和接觸層 之間或在接觸層之遠離半導體本體之此側上設置一種光學 , 調質器。 依據本發明的另一有利的形式,光學調質器至少一部份 ® 形成共振器中輻射(或輻射模式)用的抗反射調質器或高反 射調質器。藉由高反射調質器,則藉由活性區中已感應的 發射之一種由反射所提高的成份可使雷射操作門限値下 降,然後,由共振器中發出較小的輻射功率。一種抗反射 調質器在輸出較高的輻射功率時可造成一種高的門限値。 抗反射調質器或高反射調質器例如可以層的形式來構成 且可包含一種或多種視情況而不同的材料。 各層較佳是就其視情況而不同的折射率及/或厚度(例 如,一個或多個λ /4-層之形式)以對應於所期望的高反射 或抗反射特性而配置著。例如,至少另一層包含~種介電 材料。特別是該接觸層可以一層來構成或以光學調質器來 構成。 先學調質§SF直接鄰接於接觸層時特別有利。 在本發明的另一較佳的形式中,共振器中設有一種選擇 兀件或該接觸層是以選擇兀件構成。較佳是在共振器中形 成該選擇元件以選取波長及/或選取該輻射的極性。共振 .1276272 器中輻射之特定的波長及/或極性可藉由適當地形成該選 擇元件而較其波長或極性更優先地被選取。因此,情況需 要時由半導體本體所發出的輻射之波長或極性狀態可受到 影響。 特別是共振器中輻射之極性能以上述方式而獲得穩定, 使輻射之極性不易由該選擇元件所預設的極性(一種線性 • 之極化,例如,S-極化或P-極化)偏離。 依據本發明的另一有利的形式,該選擇元件包含一種柵 ® 格結構。藉由柵格參數,例如,柵格線的配置和間距,其 在柵格結構上會造成該輻射之相對應的折射和反射,則可 調整該選擇元件之選擇特性。 依據本發明的另一有利的形式,半導體本體配置在一種 載體上’載體優先在機械上使半導體本體穩定。 該載體較佳是具有載體層,其上一種半導體層系統配置 在晶圓複合物中,此半導體層系統用來形成多個半導體本 體且包含一種相對應的半導體層序列。 ® 由半導體層系統例如可藉由微影術與蝕刻過程的組合使 多個配置在共同的載體層上之半導體本體被結構化。載體 例如可在使該結構分割成半導體晶片(至少一個配置在該 載體上的半導體本體)時由載體層所形成。 載體層特別是可包含半導體層系統之生長基板或由此生 長基板所形成’此生長基板上較佳是以磊晶方式生長該半 導體層系統。 但載體層亦可與半導體層系統之生長基板不同。 -10- • 1276272 例如,上述載體可含有一種與生長基板不同之半導體材 料或含有一種金屬及/或由散熱件所形成。 右載體不同於半導體層系統之生長基板,則例如在製程 中該生長基板上所配置之半導體層系統或多個半導體本體 可由一與該生長基板相面對的側面以固定在一與該生長基 板不同的載體層上。這例如特別適合使用晶圓鍵結法,例 如’陽極鍵結法’共晶鍵結法或焊接法,來達成。然後, 該生長基板被剝蝕,這例如可藉由雷射剝蝕方法,機械方 法(例如’硏磨)或化學方法(例如,蝕刻)來達成。在分割 時’半導體本體之載體可由一與生長基板不同的載體層來 形成。 但半導體本體亦可在分割之後配置-或固定在一與生長 基板不同的載體上,然後情況需要時該生長基板或其殘留 物由半導體本體中去除。 該生長基板之剝蝕可有利地使載體選擇時之自由度提 高。載體不必滿足各種對生長基板之高的需求性而是可較 自由地就較有利的特性(例如,較高的導熱性及/或導電性) 來作選擇。 在本發明的另一有利的形式中,預先使半導體本體固定 且該接觸層在半導體本體固定之後施加在半導體本體上。 半導體本體和該接觸層因此可藉由不同的方法及/或依序 製成。半導體本體例如可藉由磊晶來製成且一種較佳是含 有TCO之接觸層在磊晶相位已結束之後藉由濺鍍而施加 在半導體本體上。 -11 - .1276272 須指出:在預製該半導體本體時亦可預製一種半導體層 系統,其用來形成多個半導體本體。 在本發明的另一有利的形式中,共振器中配置一種非線 性的光學元件,其較佳是用來進行頻率轉換。例如,此非 線性的光學元件可形成一種倍頻器(S H G : ie c ο n d ii_a r m ο n i c Generation)。此非線性的光學元件較佳是用來使不可見之 光譜區(例如,紅外線)中的輻射之頻率轉換成可見之光譜 區中的輻射。 本發明的其它特徵,優點和適用性描述在各圖式中的實 施例中。 【實施方式】 相同-,相同形式-或作用相同的元件在各圖式中設有相 同的參考符號。 第1圖是本發明的半導體雷射組件之第一實施例之切面 圖。 在載體1上配置一種半導體層序列2,其具有一種用來 產生輻射(其較佳是具有一種紅外線光譜區中的波長)之活 性層3。此活性層例如以多重量子井結構來形成。 在活性層3和載體1之間配置一種佈拉格-鏡面4,其與 一外部之鏡面5 —起形成一種活性區3中所產生的輻射用 的光學共振器。佈拉格-鏡面4在本實施例中與半導體層 序列2 —起積體化在半導體組件之半導體本體中。 在本發明的一種有利的形式中,半導體組件(特別是半 導體本體或活性區)包含至少一種III-V_半導體材料,其由 -12- 1276272 材料系統 InxGayAli x yP,InxGayAli.yN 或 IiixGayAli + yAs, 其中OSySl且x + ySl所構成。半導體本體亦 可具有〜種由ΙΠ_ν_半導體材料系統InyGaiyASxIVx,其中 且O^ygl所構成的半導體材料。 上述材料之特徵是一種可簡易達成的高的內部量子效率 且適用於由紫外線(特別是InxGayAlnyN)經由可見光(特 別是I^GayAl^yN ’ InxGayAli + yP)直至紅外線光譜區(特 別是 Ir^GayAlmAs,InyGabyAhPbx)之輻射。 半導體本體較佳是以材料系統Ii^GayAh + yAs爲主。紅 外線光譜區(特別是波長800奈米和11〇〇奈米之間的波長 範圍)中的輻射可特別有效地以此種材料來產生。例如, 載體含有GaAs且半導體層序列以材料系統Ir^GayAlmAs, 其中 〇SxSl,〇$ySl 且 x + ySl 爲主。 在本發明的一種有利的形式中,活性區中所產生的輻射 之波長是在200奈米和2000奈米之間的光譜區中。該接 觸層對活性區中所產生的輻射之波長而言較佳是具有一種 特別高的透過率。 外部之鏡面5可形成該共振器中藉由感應式發射所產生 的雷射輻射之發射鏡面且具有一種較佈拉格-鏡面4還小 的反射率。藉由外部鏡面之配置或共振器長度,則可使共 振器所發出的相參之雷射輻射之發射外形(profile)受到影 響。 佈拉格-鏡面具有多個半導體層對(pair),其具有一種有 利之高的折射率差異値。例如,每一 GaAs-和AlGaAs- λ /4 -13- 1276272 層分別形成一對半導體層。佈拉格-鏡面4中之多個層對 顯不在第1圖中。佈拉格-鏡面較佳是包含一種由20至30 個或更多的半導體層對所構成的序列,於是對雷射輻射而 言可使佈拉格-鏡面之總反射率成爲9 9 · 9 %或更大。佈拉格 -鏡面例如能以磊晶方式而與半導體層序列一起製成。 在半導體層序列2之遠離載體1之此側上在半導體層序 列之一接觸區上配置一種對所產生的輻射可透過的接觸層 6,其可含有一種以鋁來摻雜(其摻雜濃度是2%)之ZnO層 或由此種層所構成。此接觸層6導電性地與半導體層序列 相連接。此接觸層較佳是直接配置在半導體層序列上。半 導體層序列和接觸層之間的電性接觸區較佳是具有一種歐 姆特性。半導體組件經由一種配置在載體之遠離半導體層 序列2之此側上的第一終端7和一配置在半導體層序列之 面對載體之此側上的第二終端8(上述二種終端分別含有至 少一種金屬)而受到電性上的泵送。 爲了防止第二終端8 (大致上是一種金屬終端)中的吸收 作用,則層形式之第二終端8在半導體層序列之中央區上 須成爲空白且第二終端8例如以環形的形式經由半導體層 序列之邊緣區而延伸。第二終端8導電地與接觸層6相連 接且例如可包含鈦,鋁,鉑或包含這些材料中至少一種之 合金。 較佳是在第二終端8和半導體層序列2之間配置一種隔 離層9,其具有一種具備橫向範圍之空白區,此空白區至 少在一些部份區域中大於第二終端中的空白區,使得在這 -14- 1276272 些部份區域中該第二終端可與接觸層相重疊。由於半導體 層序列在橫向中較該接觸層有較小的導電性以及電流主要 是經由該接觸層而注入至中央區中,則活性區之配置在隔 離層下方的邊緣區之電性上的泵送現象可有利地被防止。 該隔離層9例如可包含一種氮化矽,氧化矽或氧化之氮 化矽。該隔離層同時可形成鈍化層,其可提高對該半導體 本體的保護使不受有害性的外部所影響。 經由第二終端8而饋入接觸層中的電流由於此接觸層6 在橫向中有利的高的橫向導電性而大部份可經由半導體本 體之中央區以注入至半導體層序列中。經由整面之第一終 端7,載體1和佈拉格·鏡面4以大面積方式均勻地注入至 活性區中的電荷載體可與經由第二終端8和接觸層6而注 入至活性區3中的電荷載體相重組而發出輻射。此種發出 輻射的重組或輻射產生會由於半導體層序列之較小的橫向 導電性而大部份發生在活性區的中央區中。 本發明之半導體本體中泵送電流之路徑可藉由接觸層之 與半導體本體的接觸面和隔離層之形成來決定。因此,使 電流導入至半導體本體中所用的較昂貴的其它措施’例 如,一種藉由半導體本體內部-或半導體層序列之邊緣區 中之植入或氧化物遮蔽物所造成的適當的電性上的閉塞作 用即可有利地省略。 活性區中所產生的輻射可在垂直方向中由表面1 0而自 半導體本體發出,在無輻射區11上方傳送且入射至外部 之鏡面5。 -15- 1276272 依據本發明的一種有利的形式,半導體層序列較佳是在 其由活性區觀看時面向該接觸層之此側上包含至少一種P-導電之半導體層。特別好的情況是使半導體層序列之一區 域P ·導電性地形成在接觸層和活性區之間及/或一區域n-導電性地形成在佈拉格-鏡面和活性區之間。依據本發明 的另一種有利的形式,載體和佈拉格-鏡面以η-導電性方 式而形成。 載體1可由半導體本體之生長基板之部份區塊所形成, 生長基板上首先生長佈拉格-鏡面且然後較佳是以磊晶方 式生長半導體層序列。 依據本發明另一種有利的形式,該隔離層首先可以整面 方式施加在已預製成的半導體本體上。施加完成之後使半 導體層序列之接觸區上的隔離層被去除。此區域(其中隔 離層已去除)中在半導體本體上施加該接觸層材料。此接 觸層可像隔離層一樣濺鍍在半導體本體上或半導體層序列 該接觸層在情況需要時可與一個或多個由半導體本體側 面配置而成之層相組合或與一個或多個事後施加在接觸層 上的(較佳是)介電層相組合以形成共振器中輻射-或輻射模 式用的高反射層或抗反射層。 情況需要時配置一種非線性的光學元件,以便在共振器 中(較佳是在無輻射區11中)進行頻率之轉換。 第2Α圖顯示本發明的半導體雷射組件之半導體本體之 俯視圖。第2Β圖顯示泵送電流密度在接觸層中之與半導 -16 - 1276272 體本體上之橫向位置相關的外形。 第2A圖顯示本發明的半導體雷射組件之半導體本體之 俯視圖。例如,由第1圖之無輻射區n所看到的俯視圖 顯示在該接觸層上。例如,第1圖可顯示第2 A圖中沿著 線A - A之切面圖。第1圖之第二終端之顯示即可省略。 第2A圖中顯示一配置在半導體本體上的隔離層9,其 、 例如在接觸區12(其包含中央區120和終端指121)中成爲 空白區’中央區1 2 0和終端指1 2 1較佳是由中央區開始而 ^ 在徑向中向外延伸且佔有該接觸區1 2之較小的面積。 接觸層6在隔離層9之空白區中施加在整個接觸區12 上。空白區之形成因此決定了該接觸層和半導體本體之間 的接觸面之形式。藉由一種例如是環形的終端(其在終端 指1 2 1之區域中導電性地與接觸層6相連接且在中央區1 20 上方成爲空白),則藉由該接觸層6可使電流注入至活性 區中。 第2B圖是由接觸層此側經由半導體本體之泵送電流密 度j相對於橫向位置r之關係圖。此曲線之區段900對應 於圖2A之邊緣區域,其中半導體本體由隔離層9所覆蓋。 區段1 2 1 0對應於終端指1 2 1,且區段1 200對應於中央區 120 〇 中央區120中泵送電流密度較高且較均均。泵送電流由 中央區1 2 0之中央之最大値開始在區段1 2 0 0中在終端指 之方向中只輕微地下降,但在邊緣區之區段90 0(其中配置 著該隔離層9)中該泵送電流密度較小。在終端指之區段 -17- 1276272 1 2 1 0中該泵送電流密度較強烈地向外下降。 因此’藉由可透過輻射之接觸層,則可在橫向的中央區 120上達成一種較均勻的泵送電流密度分佈。中央區之橫 向範圍例如可爲10至1〇〇〇〇微米,較佳是1〇〇微米或更 大。來自接觸層此側之在半導體本體上之橫向之泵送電流 密度分佈較佳是可對應於高斯-或超高斯(hypergauss)分佈 來達成。 第2B圖中由於在廣泛之厚度區中接觸層材料在橫向中 ^ 之高的導電性而使所示的泵送外形之形式與接觸層之厚度 無關。因此,本發明中該接觸層可以較小的厚度(例如,1 〇 .微米或更小)來實現。 第3圖是本發明之半導體雷射組件之半導體本體之另一 種半導體本體的俯視圖。 例如,第1圖之無輻射區1 1之俯視圖顯示在第3圖之 接觸層上。第1圖例如顯示一種沿著第3圖之線B-B之切 面圖。第1圖之第二終端可不必顯示。 _ 此處設有一種由柵格線1 30所形成的柵格形式之選擇元 件1 3。柵格結構(例如,一種線柵格形式者)可藉由蝕刻而 施加在隔離層9中及/或接觸層6中。較佳是該柵格結構 至少在接觸區12之中央區中設在半導體本體上之接觸層 6中。 藉由柵格結構(特別是柵格線之間距)可使共振器中已放 大的輻射之波長和此組件所發出的雷射輻射之波長受到影 響。因此,雷射輻射-模式在柵格上之折射和反射會使該 -18- Ϊ276272 模式之損耗增大且因此使此模式之雷射操作門限値不可達 成或只能困難地達成。藉由柵格線之間距可調整此柵格之 折射特性或反射特性。 此外’上述之選擇元件可使極化穩定,此時藉由栅格結 »可使其中一雷射輻射模式之極化狀態較另一極化模式之 極化狀態更優先。 該選擇元件1 3因此可用作極化濾波器及/或波長濾波 器。 ® 接觸區1 2和接觸層6此處可以圓形方式構成且接觸層 可藉由與第二終端之適當之重疊(其大致上如第1圖所示) 而被接觸。 第4圖顯示本發明的半導體雷射組件之第二實施例之切 面圖。 第4圖所示的半導體雷射組件對應於第1圖所示者。與 第1圖所示的實施例不同的是:具有佈拉格-鏡面4之半 導體本體和具有活性區3之半導體層序列2由佈拉格-鏡 面4之此側而在一種連接層14上方配置在載體1上且較 佳是穩定地固定著。載體1在本實施例中較佳是與半導體 本體之生長基板不同且例如包含一種散熱件,其含有CuW, CuDia,Cu,SiC 或 BN。 散熱件可有利地使熱由活性區中排出,使此組件之與熱 有關的效率下降的危險性下降,特別是在高功率時更明 顯,高功率通常亦會造成高的熱損耗。 爲了製成上述之組件,則首先例如可預製半導體本體’ -19- 1276272 其中佈拉格鏡面在半導體層序列之後製作在生長基板 上。由佈拉格-鏡面此側使半導體本體藉由共晶鍵結而固 定在載體上,然後例如藉由濕式化學蝕刻或雷射剝蝕方法 而將生長基板剝鈾。上述之連接層1 4例如可以是一種藉 由共晶鍵結而形成的層。第4圖之半導體本體然後以與第 1圖中所示之半導體本體相反之順序而製成。 本專利申請案主張2004年5月28日之德國專利申請案 DE 10 2004 026163.6 以及 DE 10 2004 040077.6 之優先權, 其所揭示之整個內容於此明顯地作爲參考以收納於本專利 申請案中。 本發明不限於依據上述實施例所作的描述。反之,本發 明包含每一新的特徵和各特徵的每一種組合,其特別是包 含各申請專利範圍中各特徵的每一種組合,當該特徵或該 組合本身未明顯地顯示在各申請專利範圍中或各實施例中 時亦同。 【圖式簡單說明】 第1圖本發明的半導體雷射組件之第一實施例之切面 圖。 第2A圖本發明的半導體雷射組件之半導體本體之俯 視圖。 第2B圖泵送電流密度之與第2A圖相對應的橫向外 形。 第3圖> 本發明的半導體雷射組件之半導體本體之俯視 圖0 -20- 1276272 第4圖本發明的半導體雷射組件之第二實施例之切面 圖。 【主要元件符號說明】Zn〇 has an absorption coefficient close to 〇 at a wavelength between 400 nm and 1100 nm and has 〇·1 or between 340 nm and 丨200 nm. Smaller absorption coefficient ° IT0 has an absorption coefficient close to zero at wavelengths greater than 500 nm up to 1 nm or more and is between 400 nm (nm) and 500 nm. Has a smaller absorption coefficient of 0·1 or .127.6272. This small absorption coefficient corresponds to the transmittance of sorghum. The thickness of the contact layer is preferably 100 nm or more and less than or equal to 1000 nm. The layer resistance of the contact layer in the lateral direction may be, for example, 20 Ω _sq or less. The unit Ω - sq represents the resistance per square area (^uare) of this layer resistance. In a preferred form of the invention, the resonator is defined by a first mirror surface formed in the body of the semiconductor and/or formed by a Bragg mirror surface and another outer mirror surface. The outer mirror described above can form a coupling mirror for the radiation emitted by the resonator and thus preferably has a lower reflectivity than the first mirror. It is particularly advantageous if the outer mirror is separated from the semiconductor body by a non-radiative region. The radiation generated in the active region must be reflected between the first mirror and the outer mirror to cause a radiation field in the resonator to be induced by the emission induced in the active region to produce coherent radiation (laser radiation). It is sent out by the coupling device via the coupling® mirror. According to another form of the invention, the contact layer is disposed in the direct path of radiation between the active region and the outer mirror of the resonator. By a surface-emitting semiconductor laser assembly having an external resonator (VECSEL: Vertical External Cavity Surface Emitting Laser or semiconductor wafer laser), and having an internal resonator (VCSEL··Vertical Cavity Surface Emitting Laser) Higher output power can be achieved when components are compared. .1276272 In accordance with another form of the invention, the active region comprises a single- or multiple quantum well structure. These structures are particularly suitable for semiconductor laser components. The active zone may also contain one or more quantum dots or one or more centimeter wires as needed. In a further preferred form of the invention, an optical, tempering device is arranged between the semiconductor body and the contact layer or on the side of the contact layer remote from the semiconductor body. According to another advantageous form of the invention, at least a portion of the optical conditioner is formed to form an anti-reflective or high-reflecting conditioner for radiation (or radiation mode) in the resonator. With a highly reflective temper, the laser operating threshold is reduced by a component of the induced emission in the active region that is enhanced by reflection, and then less radiant power is emitted from the resonator. An anti-reflection conditioner can cause a high threshold 在 when outputting high radiant power. The anti-reflective conditioner or high-reflection conditioner can be constructed, for example, in the form of a layer and can comprise one or more materials that vary from case to case. Preferably, the layers are arranged with different refractive indices and/or thicknesses (e.g., in the form of one or more λ /4-layers) depending on the desired high reflection or anti-reflective properties. For example, at least one other layer contains a dielectric material. In particular, the contact layer can be formed in one layer or in an optical conditioner. It is particularly advantageous to learn tempering § SF directly adjacent to the contact layer. In another preferred form of the invention, the resonator is provided with a selective member or the contact layer is formed of a selected member. Preferably, the selection element is formed in the resonator to select a wavelength and/or to select the polarity of the radiation. Resonance .1276272 The particular wavelength and/or polarity of the radiation in the device can be selected more preferentially than its wavelength or polarity by suitably forming the selective element. Therefore, the wavelength or polarity state of the radiation emitted by the semiconductor body can be affected when necessary. In particular, the polar properties of the radiation in the resonator are stabilized in the manner described above such that the polarity of the radiation is less susceptible to the polarity preset by the selected component (a linear polarization, such as S-polarization or P-polarization). Deviation. According to another advantageous form of the invention, the selection element comprises a grid structure. The selection characteristics of the selected component can be adjusted by grid parameters, such as the configuration and spacing of the grid lines, which cause corresponding refraction and reflection of the radiation on the grid structure. According to another advantageous form of the invention, the semiconductor body is arranged on a carrier. The carrier preferentially mechanically stabilizes the semiconductor body. The carrier preferably has a carrier layer on which a semiconductor layer system is disposed in a wafer composite for forming a plurality of semiconductor bodies and comprising a corresponding semiconductor layer sequence. ® A plurality of semiconductor bodies arranged on a common carrier layer are structured by a semiconductor layer system, for example by a combination of lithography and etching processes. The carrier can be formed, for example, by a carrier layer when the structure is divided into semiconductor wafers (at least one semiconductor body disposed on the carrier). The carrier layer, in particular, may comprise a growth substrate of a semiconductor layer system or a growth substrate formed thereon. The growth substrate preferably grows the semiconductor layer system in an epitaxial manner. However, the carrier layer can also be different from the growth substrate of the semiconductor layer system. -10- • 1276272 For example, the carrier may contain a semiconductor material different from the growth substrate or contain a metal and/or be formed by a heat sink. The right carrier is different from the growth substrate of the semiconductor layer system. For example, in the process, the semiconductor layer system or the plurality of semiconductor bodies disposed on the growth substrate may be fixed to a growth substrate by a side facing the growth substrate. On different carrier layers. This is for example particularly well achieved using wafer bonding methods such as 'anode bonding' eutectic bonding or soldering. Then, the growth substrate is ablated, which can be achieved, for example, by a laser ablation method, a mechanical method (e.g., "honing") or a chemical method (e.g., etching). At the time of division, the carrier of the semiconductor body can be formed by a carrier layer different from the growth substrate. However, the semiconductor body can also be disposed after the singulation - or on a different carrier than the growth substrate, and then the growth substrate or its residue can be removed from the semiconductor body as the case requires. The ablation of the growth substrate advantageously provides an increased degree of freedom in the selection of the carrier. The carrier does not have to satisfy various high requirements for the growth substrate but may be selected to be more freely advantageous (e.g., higher thermal conductivity and/or conductivity). In a further advantageous embodiment of the invention, the semiconductor body is previously fixed and the contact layer is applied to the semiconductor body after the semiconductor body has been attached. The semiconductor body and the contact layer can thus be produced by different methods and/or in sequence. The semiconductor body can be formed, for example, by epitaxy and a contact layer, preferably containing a TCO, is applied to the semiconductor body by sputtering after the epitaxial phase has ended. -11 - .1276272 It should be noted that a semiconductor layer system can also be prefabricated when prefabricating the semiconductor body for forming a plurality of semiconductor bodies. In another advantageous form of the invention, a non-linear optical component is provided in the resonator, which is preferably used for frequency conversion. For example, this non-linear optical element can form a frequency multiplier (S H G : ie c ο n d ii_a r m ο n i c Generation). The non-linear optical component is preferably used to convert the frequency of the radiation in the invisible spectral region (e.g., infrared) into radiation in the visible spectral region. Other features, advantages and applicability of the present invention are described in the embodiments of the drawings. [Embodiment] The same elements, the same form or the same functions are provided with the same reference symbols in the respective drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a first embodiment of a semiconductor laser device of the present invention. On the carrier 1, a semiconductor layer sequence 2 is provided which has an active layer 3 for generating radiation, which preferably has a wavelength in the infrared spectral region. This active layer is formed, for example, in a multiple quantum well structure. Between the active layer 3 and the carrier 1, a Bragg mirror 4 is provided which, together with an outer mirror 5, forms an optical resonator for the radiation generated in the active region 3. In the present embodiment, the Bragg-mirror 4 is integrated with the semiconductor layer sequence 2 in the semiconductor body of the semiconductor component. In an advantageous form of the invention, the semiconductor component, in particular the semiconductor body or active region, comprises at least one III-V semiconductor material, which is composed of -12-1276272 material system InxGayAli x yP, InxGayAli.yN or IiixGayAli + yAs , where OSySl and x + ySl are formed. The semiconductor body may also have a semiconductor material composed of a ΙΠ_ν_semiconductor material system InyGaiyASxIVx, and O^ygl. The above materials are characterized by a high internal quantum efficiency that can be easily achieved and are suitable for use by ultraviolet light (especially InxGayAlnyN) via visible light (especially I^GayAl^yN 'InxGayAli + yP) up to the infrared spectral region (especially Ir^GayAlmAs) , InyGabyAhPbx) radiation. The semiconductor body is preferably based on a material system Ii^GayAh + yAs. Radiation in the infrared spectral region (especially in the wavelength range between 800 nm and 11 nm) can be produced particularly efficiently with such materials. For example, the carrier contains GaAs and the semiconductor layer sequence is based on the material system Ir^GayAlmAs, where 〇SxSl, 〇$ySl and x + ySl are dominant. In an advantageous form of the invention, the wavelength of the radiation produced in the active zone is in the spectral region between 200 nm and 2000 nm. The contact layer preferably has a particularly high transmittance for the wavelength of the radiation generated in the active region. The outer mirror 5 forms the emitting mirror of the laser radiation produced by the inductive emission in the resonator and has a lower reflectivity than the Bragg-mirror 4. By the configuration of the external mirror or the length of the resonator, the emission profile of the coherent laser radiation emitted by the resonator can be affected. The Bragg-mirror has a plurality of pairs of semiconductor layers which have a favorable high refractive index difference 値. For example, each of the GaAs- and AlGaAs-λ /4 -13 - 1276272 layers respectively form a pair of semiconductor layers. A plurality of layer pairs in the Prague-mirror 4 are not shown in Fig. 1. Preferably, the Bragg-mirror comprises a sequence of 20 to 30 or more pairs of semiconductor layers, so that the total reflectance of the Bragg-mirror can be 9 9 · 9 for laser radiation % or greater. The Bragg-mirror can be produced, for example, in an epitaxial manner together with a semiconductor layer sequence. On the side of the semiconductor layer sequence 2 remote from the carrier 1 , a contact layer 6 which is permeable to radiation is formed on one of the contact regions of the semiconductor layer sequence, which may comprise a doping with aluminum (doping concentration thereof) It is a 2%) ZnO layer or consists of such a layer. This contact layer 6 is electrically connected to the semiconductor layer sequence. Preferably, the contact layer is disposed directly on the semiconductor layer sequence. The electrical contact region between the semiconductor layer sequence and the contact layer preferably has an ohmic characteristic. The semiconductor component is connected via a first terminal 7 disposed on the side of the carrier remote from the semiconductor layer sequence 2 and a second terminal 8 disposed on the side of the semiconductor layer sequence facing the carrier (the above two terminals respectively contain at least A metal) is electrically pumped. In order to prevent absorption in the second terminal 8 (substantially a metal terminal), the second terminal 8 in the form of a layer has to be blank on the central region of the semiconductor layer sequence and the second terminal 8 is via a semiconductor, for example in the form of a ring. The edge region of the layer sequence extends. The second terminal 8 is electrically conductively connected to the contact layer 6 and may, for example, comprise titanium, aluminum, platinum or an alloy comprising at least one of these materials. Preferably, an isolation layer 9 is disposed between the second terminal 8 and the semiconductor layer sequence 2, and has a blank area having a lateral extent, the blank area being larger than the blank area in the second terminal at least in some partial areas. The second terminal can overlap the contact layer in some of the regions of the -14-1276272. Since the semiconductor layer sequence has less conductivity in the lateral direction than the contact layer and current is mainly injected into the central region via the contact layer, the active region is disposed in the electrical region of the edge region below the isolation layer. The sending phenomenon can be advantageously prevented. The spacer layer 9 may, for example, comprise a tantalum nitride, hafnium oxide or ruthenium nitride oxide. The spacer layer can simultaneously form a passivation layer which enhances the protection of the semiconductor body from externalities that are not harmful. The current fed into the contact layer via the second terminal 8 is mostly implantable into the semiconductor layer sequence via the central region of the semiconductor body due to the advantageous high lateral conductivity of the contact layer 6 in the lateral direction. The charge carrier uniformly implanted into the active region in a large-area manner by the carrier 1 and the Bragg mirror 4 via the entire first terminal 7 can be injected into the active region 3 via the second terminal 8 and the contact layer 6 The charge carriers recombine to emit radiation. Such radiation-emitting recombination or radiation generation occurs in the central region of the active region due to the small lateral conductivity of the semiconductor layer sequence. The path of pumping current in the semiconductor body of the present invention can be determined by the formation of the contact surface of the contact layer with the semiconductor body and the isolation layer. Therefore, other expensive measures for introducing current into the semiconductor body are, for example, an appropriate electrical property caused by implantation or oxide masking in the inner region of the semiconductor body or in the edge region of the semiconductor layer sequence. The occlusion effect on the upper side can advantageously be omitted. The radiation generated in the active region can be emitted from the semiconductor body by the surface 10 in the vertical direction, transmitted over the non-radiation region 11 and incident on the outer mirror surface 5. -15- 1276272 In an advantageous form of the invention, the semiconductor layer sequence preferably comprises at least one P-conductive semiconductor layer on the side facing the contact layer when viewed from the active region. It is particularly preferred that one region of the semiconductor layer sequence P is electrically formed between the contact layer and the active region and/or a region n-conductively formed between the Bragg-mirror and the active region. According to another advantageous form of the invention, the carrier and the Bragg-mirror are formed in an eta-conducting manner. The carrier 1 may be formed by a partial block of a growth substrate of a semiconductor body on which a Bragg-mirror is first grown and then preferably a semiconductor layer sequence is grown in an epitaxial manner. According to a further advantageous embodiment of the invention, the separating layer can first be applied to the prefabricated semiconductor body in a planar manner. After the application is completed, the isolation layer on the contact region of the semiconductor layer sequence is removed. The contact layer material is applied to the semiconductor body in this region where the isolation layer has been removed. The contact layer can be sputtered onto the semiconductor body like the isolation layer or the semiconductor layer sequence can be combined with one or more layers arranged laterally of the semiconductor body or with one or more afterwards, if desired. The (preferably) dielectric layers on the contact layer combine to form a highly reflective or anti-reflective layer for the radiation- or radiation pattern in the resonator. The case requires a non-linear optical element to be converted in order to perform frequency conversion in the resonator (preferably in the non-radiation zone 11). Figure 2 is a plan view showing the semiconductor body of the semiconductor laser device of the present invention. Figure 2 shows the profile of the pumping current density in the contact layer relative to the lateral position of the semi-conductive -16 - 1276272 body. Figure 2A shows a top view of the semiconductor body of the semiconductor laser device of the present invention. For example, a top view seen from the non-radiation zone n of Figure 1 is shown on the contact layer. For example, Figure 1 can show a cross-sectional view along line A - A in Figure 2A. The display of the second terminal of Fig. 1 can be omitted. Figure 2A shows an isolation layer 9 disposed on the semiconductor body, which, for example, becomes a blank area in the contact region 12 (which includes the central region 120 and the terminal fingers 121). The central region 1 2 0 and the terminal finger 1 2 1 It preferably extends from the central zone and extends outwardly in the radial direction and occupies a smaller area of the contact zone 12. The contact layer 6 is applied over the entire contact area 12 in the blank area of the spacer layer 9. The formation of the blank region thus determines the form of the contact surface between the contact layer and the semiconductor body. Current can be injected by the contact layer 6 by means of a terminal, for example a ring, which is electrically conductively connected to the contact layer 6 in the region of the terminal finger 1 2 1 and becomes blank over the central region 1 20 Into the active area. Figure 2B is a graph of the pumping current density j versus the lateral position r from the side of the contact layer via the semiconductor body. Section 900 of this curve corresponds to the edge region of Figure 2A in which the semiconductor body is covered by an isolation layer 9. Section 1 2 1 0 corresponds to terminal finger 1 2 1, and section 1 200 corresponds to central zone 120 〇 central zone 120 where the pumping current density is higher and more uniform. The pumping current starts from the maximum 値 in the center of the central zone 120, and only slightly drops in the direction of the terminal finger in the segment 1200, but the segment 900 in the edge zone (where the isolation layer is disposed) 9) The pumping current density is small. In the section of the terminal finger -17- 1276272 1 2 1 0, the pumping current density drops more strongly outward. Thus, by the radiation-permeable contact layer, a more uniform pumping current density distribution can be achieved in the lateral central region 120. The lateral extent of the central zone may be, for example, 10 to 1 μm, preferably 1 μm or more. The lateral pumping current density distribution on the semiconductor body from this side of the contact layer is preferably achieved in response to a Gaussian- or hypergauss distribution. The shape of the pumping profile shown in Fig. 2B is independent of the thickness of the contact layer due to the high electrical conductivity of the contact layer material in the transverse direction in a wide range of thickness regions. Therefore, in the present invention, the contact layer can be realized with a small thickness (for example, 1 Å. μm or less). Figure 3 is a top plan view of another semiconductor body of a semiconductor body of a semiconductor laser device of the present invention. For example, a top view of the non-radiation region 1 1 of Fig. 1 is shown on the contact layer of Fig. 3. Fig. 1 shows, for example, a cross-sectional view taken along line B-B of Fig. 3. The second terminal of Figure 1 may not need to be displayed. _ Here a selection element 13 in the form of a grid formed by grid lines 1 30 is provided. A grid structure (e.g., in the form of a line grid) can be applied to the isolation layer 9 and/or the contact layer 6 by etching. Preferably, the grid structure is provided in the contact layer 6 on the semiconductor body at least in the central region of the contact region 12. The wavelength of the amplified radiation in the resonator and the wavelength of the laser radiation emitted by the assembly are affected by the grid structure (especially the spacing between the grid lines). Therefore, the refraction and reflection of the laser radiation-mode on the grid increases the loss of the -18-Ϊ276272 mode and thus the laser operating threshold of this mode is unreachable or can only be achieved with difficulty. The refractive or reflective properties of this grid can be adjusted by the spacing of the grid lines. Furthermore, the above-mentioned selection elements can stabilize the polarization, in which case the polarization state of one of the laser radiation modes can be prioritized by the polarization state of the other polarization mode by the grid junction. This selection element 13 can thus be used as a polarization filter and/or a wavelength filter. The contact region 12 and the contact layer 6 can here be formed in a circular manner and the contact layer can be contacted by a suitable overlap with the second terminal, which is substantially as shown in Fig. 1. Figure 4 is a cross-sectional view showing a second embodiment of the semiconductor laser device of the present invention. The semiconductor laser unit shown in Fig. 4 corresponds to the one shown in Fig. 1. In contrast to the embodiment shown in FIG. 1 , the semiconductor body having the Bragg-mirror 4 and the semiconductor layer sequence 2 with the active region 3 are situated on the side of the connection layer 14 from the side of the Bragg mirror 4 . It is disposed on the carrier 1 and is preferably stably fixed. The carrier 1 is preferably different from the growth substrate of the semiconductor body in this embodiment and includes, for example, a heat dissipating member containing CuW, CuDia, Cu, SiC or BN. The heat sink advantageously allows heat to escape from the active zone, reducing the risk of heat-related efficiency degradation of the component, particularly at high power, which typically also results in high heat loss. In order to produce the above-mentioned components, first, for example, a semiconductor body '-19-1276272 can be prefabricated in which a Bragg mirror is formed on the growth substrate after the semiconductor layer sequence. The semiconductor body is fixed to the carrier by eutectic bonding from the side of the mirror surface of the mirror, and then the growth substrate is stripped of uranium, for example by wet chemical etching or laser ablation. The above connecting layer 14 may be, for example, a layer formed by eutectic bonding. The semiconductor body of Fig. 4 is then fabricated in the reverse order of the semiconductor body shown in Fig. 1. This patent application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of The invention is not limited to the description made in accordance with the above embodiments. Instead, the present invention encompasses each new feature and each combination of features, which in particular includes each combination of features in the scope of the various claims, when the feature or the combination itself is not The same applies to the middle or the embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a first embodiment of a semiconductor laser unit of the present invention. Figure 2A is a top plan view of a semiconductor body of a semiconductor laser assembly of the present invention. Figure 2B shows the transverse shape of the pumping current density corresponding to Figure 2A. Fig. 3 is a plan view of a semiconductor body of a semiconductor laser device of the present invention. Fig. 0 -20-1276272 Fig. 4 is a cross-sectional view showing a second embodiment of the semiconductor laser device of the present invention. [Main component symbol description]

1 載體 2 半導體層序列 3 活性區 4 佈拉格-鏡面 5 外部鏡面 6 接觸層 7 第一終端 8 第二終端 9 隔離層 10 表面 11 無輻射區 1 2 接觸區 120 中央區 12 1 終端指 13 選擇元件 130 柵格線 -21 -1 Carrier 2 Semiconductor layer sequence 3 Active region 4 Bragg-mirror 5 External mirror 6 Contact layer 7 First terminal 8 Second terminal 9 Isolation layer 10 Surface 11 No radiation zone 1 2 Contact zone 120 Central zone 12 1 Terminal finger 13 Select component 130 grid line-21 -

Claims (1)

I年方月π日修(象)正本 1276272 p ι 第94116890號「呈現垂直發射方向之表面發射式半導體 雷射組件」專利案 (2006年8月修正) 十、申請專利範圍: 1 . 一種表面發射式半導體雷射組件,特別是電性泵送之半 導體雷射組件,包括·· 一垂直式發射元件,其藉由一外 部之光學共振器(4,5)以產生雷射輻射;以及一種半導 體本體,其半導體層序列(2)具有一橫向的主延伸方向和 一用來產生輻射的活性區(3),其特徵爲:共振器內部中 配置一種可透過輻射的接觸層(6)且此接觸層(6)是與半 導體本體導電性地相連接。 2 ·如申請專利範圍第1項之半導體雷射組件,其中接觸層(6) 含有一種氧化物。 3 ·如申請專利範圍第1項之半導體雷射組件,其中接觸層 (6)含有一種TCO-材料。 4·如申請專利範圍第1之半導體雷射組件,其中接觸層(6) 含有ΖηΟ或ΙΤ0。 5 ·如申請專利範圍第1項之半導體雷射組件,其中接觸層 (6)配置在半導體本體上。 6 ·如申請專利範圍第2項之半導體雷射組件,其中接觸層(6) 配置在半導體本體上。 7 ·如申請專利範圍第1項之半導體雷射組件,其中接觸層 (6)在活性區(3)和共振器(4,5)之外部鏡面(5)之間配置 在直接之輻射通道中。 1276272 8.如申請專利範圍第2項之半導體雷射組件,其中接觸層(6) 在活性區(3)和共振器(4,5)之外部鏡面(5)之間配置在直 接之輻射通道中。 9 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中該共振器由一種佈拉格鏡面(4)所限定。 10.如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中半導體本體在其面向接觸層(6)之此側上具有至少 —ρ -導電層。 1 1 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中活性區中所產生的輻射之波長位於不可見(較佳 是紅外線)之光譜區域中。 12.如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中此半導體雷射組件是一種藉由接觸層(6)以進行電 性泵送之半導體雷射組件。 1 3 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中預製半導體本體且該接觸層(6)事後施加在半導體 本體上。 14.如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中半導體本體配置在載體(1)上。 1 5 .如申請專利範圍第1 4項之半導體雷射組件,其中載體(1 ) 是與半導體層序列之生長基板不同。 1 6 .如申請專利範圍第1 4項之半導體雷射組件,其中載體(1 ) 形成散熱件。 1 7 .如申請專利範圍第1至8項中任一項之半導體雷射組件 1276272 ,其中在半導體本體和接觸層(6)之間或在該接觸層(6) 之遠離半導體本體之此側上設置一種光學調質器。 1 8 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中在共振器中設有一種選擇元件(13)或接觸層(6)構 成該選擇元件(1 3 )。 1 9 .如申請專利範圍第1 8項之半導體雷射組件,其中該選擇 元件(1 3 )用來選取波長及/或選取該共振器中該輻射的極 化。 2 0.如申請專利範圍第1 8項之半導體雷射組件,其中該選擇 元件(13)具有一種柵格結構(130)。 2 1 .如申請專利範圍第20項之半導體雷射組件,其中該柵格 結構(1 3 0)至少一部份形成在接觸層(6 )中。 2 2 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中在共振器中配置一種非線性之光學元件,其用來 進行頻率之轉換。 23 .如申請專利範圍第1至8項中任一項之半導體雷射組件 ,其中活性區中所產生的輻射之波長位於200奈米# 2 0 0 0奈米之間的光譜區域中。I-year 月日修 (象)本本1276272 p ι No. 94116890 "surface-emitting semiconductor laser assembly with vertical emission direction" patent case (amended in August 2006) X. Patent application scope: 1. A surface A radiating semiconductor laser assembly, in particular an electrically pumped semiconductor laser assembly, comprising: a vertical radiating element, which is produced by an external optical resonator (4, 5) to generate laser radiation; a semiconductor body having a semiconductor layer sequence (2) having a lateral main extension direction and an active region (3) for generating radiation, characterized in that a radiation-permeable contact layer (6) is arranged in the interior of the resonator and The contact layer (6) is electrically connected to the semiconductor body. 2. The semiconductor laser component of claim 1, wherein the contact layer (6) contains an oxide. 3. The semiconductor laser component of claim 1, wherein the contact layer (6) contains a TCO-material. 4. The semiconductor laser assembly of claim 1, wherein the contact layer (6) contains ΖηΟ or ΙΤ0. 5. The semiconductor laser component of claim 1, wherein the contact layer (6) is disposed on the semiconductor body. 6. The semiconductor laser component of claim 2, wherein the contact layer (6) is disposed on the semiconductor body. 7. The semiconductor laser component of claim 1, wherein the contact layer (6) is disposed in the direct radiation channel between the active region (3) and the outer mirror (5) of the resonator (4, 5) . 1276272 8. The semiconductor laser component of claim 2, wherein the contact layer (6) is disposed between the active region (3) and the outer mirror (5) of the resonator (4, 5) in a direct radiant channel in. 9. The semiconductor laser component of any one of claims 1 to 8, wherein the resonator is defined by a Bragg mirror (4). 10. The semiconductor laser component of any of claims 1 to 8, wherein the semiconductor body has at least a -p-conductive layer on its side facing the contact layer (6). The semiconductor laser module of any one of claims 1 to 8, wherein the wavelength of the radiation generated in the active region is in a spectral region of invisible (preferably infrared). 12. The semiconductor laser component of any one of claims 1 to 8, wherein the semiconductor laser component is a semiconductor laser component that is electrically pumped by a contact layer (6). A semiconductor laser assembly according to any one of claims 1 to 8, wherein the semiconductor body is prefabricated and the contact layer (6) is applied to the semiconductor body afterwards. 14. The semiconductor laser component of any of claims 1 to 8, wherein the semiconductor body is disposed on the carrier (1). A semiconductor laser assembly according to claim 14 wherein the carrier (1) is different from the growth substrate of the semiconductor layer sequence. 16. The semiconductor laser assembly of claim 14, wherein the carrier (1) forms a heat sink. The semiconductor laser component 1762272 of any one of claims 1 to 8, wherein between the semiconductor body and the contact layer (6) or on the side of the contact layer (6) remote from the semiconductor body An optical conditioner is provided on the top. The semiconductor laser assembly of any one of claims 1 to 8, wherein a selection element (13) or a contact layer (6) is provided in the resonator to constitute the selection element (13). 19. The semiconductor laser component of claim 18, wherein the selection component (13) is for selecting a wavelength and/or selecting an amplification of the radiation in the resonator. The semiconductor laser assembly of claim 18, wherein the selection element (13) has a grid structure (130). The semiconductor laser assembly of claim 20, wherein at least a portion of the grid structure (130) is formed in the contact layer (6). The semiconductor laser assembly of any one of claims 1 to 8, wherein a non-linear optical element is disposed in the resonator for frequency conversion. The semiconductor laser module of any one of claims 1 to 8, wherein the wavelength of the radiation generated in the active region is in a spectral region between 200 nm #200 nm.
TW94116890A 2004-05-28 2005-05-24 Surface-emitting semiconductor-laser component with a vertical emission-direction TWI276272B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10402616 2004-05-28
DE10404007 2004-08-18

Publications (1)

Publication Number Publication Date
TWI276272B true TWI276272B (en) 2007-03-11

Family

ID=38646198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94116890A TWI276272B (en) 2004-05-28 2005-05-24 Surface-emitting semiconductor-laser component with a vertical emission-direction

Country Status (1)

Country Link
TW (1) TWI276272B (en)

Similar Documents

Publication Publication Date Title
US10622512B2 (en) Light emitting diode with reflective part for UVA and blue wavelengths
US10153616B2 (en) Electron beam pumped vertical cavity surface emitting laser
US5796771A (en) Miniature self-pumped monolithically integrated solid state laser
US6967981B2 (en) Nitride based semiconductor structures with highly reflective mirrors
KR101294911B1 (en) Optoelectronic semiconductor chip
JP3795007B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4860024B2 (en) InXAlYGaZN light emitting device and manufacturing method thereof
US8023547B2 (en) Vertical extended cavity surface emission laser and method for manufacturing a light emitting component of the same
TWI357700B (en) Opto-electronic semiconductor device
TWI390759B (en) Method for fabricating group iii nitride devices and devices fabricated using method
US20080179605A1 (en) Nitride semiconductor light emitting device and method for fabricating the same
US10033158B1 (en) Semiconductor laser, laser assembly and method of making a semiconductor laser
JP6926205B2 (en) Semiconductor laser diode
KR20080087135A (en) Nitride semiconductor light emitting element
KR20000076604A (en) WAFER BONDED AlxGayInzN STRUCTURES
US20110182317A1 (en) Surface emitting semiconductor laser having a plurality of active zones
JP2006157024A (en) Light emission semiconductor element
JPH07105572B2 (en) Electrically excited cavity laser device
US7620088B2 (en) Surface emitting-semiconductor laser component featuring emission in a vertical direction
JP2018125404A (en) Surface emitting laser element
JP2007096327A (en) Beam emission semiconductor chip
TWI276272B (en) Surface-emitting semiconductor-laser component with a vertical emission-direction
US8811448B2 (en) Optoelectronic component
CN100474716C (en) Surface-emitting semiconductor laser component featuring emission in a vertical direction
US20070153863A1 (en) Surface-emitting type semiconductor laser and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees