TWI274186B - Light guide module - Google Patents

Light guide module Download PDF

Info

Publication number
TWI274186B
TWI274186B TW95108403A TW95108403A TWI274186B TW I274186 B TWI274186 B TW I274186B TW 95108403 A TW95108403 A TW 95108403A TW 95108403 A TW95108403 A TW 95108403A TW I274186 B TWI274186 B TW I274186B
Authority
TW
Taiwan
Prior art keywords
light
optical path
mirror
light guide
light guiding
Prior art date
Application number
TW95108403A
Other languages
Chinese (zh)
Other versions
TW200734679A (en
Inventor
Liang-Yu Yao
Wei-Chan Sung
Original Assignee
Darfon Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darfon Electronics Corp filed Critical Darfon Electronics Corp
Priority to TW95108403A priority Critical patent/TWI274186B/en
Application granted granted Critical
Publication of TWI274186B publication Critical patent/TWI274186B/en
Publication of TW200734679A publication Critical patent/TW200734679A/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

A light guide module for an input device. A light source outputs light beams. A biconvex lens is adjacent to the light source. The light beams pass through the biconvex lens and thereby become substantially parallel light beams. An optical path increasing device is adjacent to the biconvex lens, increasing optical path of the substantially parallel light beams. A prism is adjacent to the optical patch increasing device. The optical path increasing device is disposed between the biconvex lens and the prism. The substantially parallel light beams enter the prism through the optical path increasing device and are output to the exterior of the light guide module therefrom.

Description

074186 • ' 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種導光模組,特別是有關於一種可 增加光學滑鼠之照明效率之導光模組。 【先前技術】 請參閱第1圖5在一習知之光學滑鼠中’一導光模組 -1會對一表面S(例如桌面)進行照射,而一影像感測器2會 接收經由表面S所反射之影像或光線,藉以判斷光學滑鼠 Φ 之移動位置。 仍如第1圖所示,導光模組1通常是由一光源(例如 LED)11以及一稜鏡12所構成。稜鏡12是鄰接於光源11, 並且稜鏡12具有兩折射面12a、12b及兩反射面12c、12d。 光源11所發出之光線會先經由折射面12a來射入稜鏡12 之中,然後再依序經由反射面12c、12d之反射以及穿過折 射面12b而離開稜鏡12。接著,從稜鏡12射出之光線會 照射表面S,並被表面S所反射。此時,影像感測器2即 參 可藉由接收並分析經由表面S所反射之影像或光線,以判 斷光學滑鼠之移動位置。 然而,由於光源11所發出之光線通常並非準直或平行 的,故光線在通過稜鏡12且經由表面S反射後會呈現發散 之狀態。如上所述,影像感測器2所能接收到之影像或光 線強度會非常微弱,因而易導致影像感測器2在判斷光學 滑鼠之移動位置時發生錯誤,或甚至導致影像感測器2無 法判斷光學滑鼠之移動位置。因此,若為了要增進影像感 0798-A21517TWF(N2);C05120;HAWDONG 5 1274186 1須彳器2所能接收到之影像或光線強度,就必須提高光源il 之發光功率。然而,提高光源11之發光功率又會造成光學 滑鼠之耗電量增加。 【發明内容】 本發明基本上採用如下所詳速之特徵以為Γ要解決上 述之問題。也就是說,本發明適用於一輸入元件之中,並 - 且包括一光源,係發出一光束;一雙凸透鏡5鄰接於該光 源,其中5該光束係通過該雙凸透鏡而成為一大致平行之 Φ 光束;一光程增加裝置,鄰接於該雙凸透鏡,係用以增加 ^ 該大致平行之光束之光程;以及一稜鏡5鄰接於該光程增 加裝置,其中,該光程增加裝置係位於該雙凸透鏡與該稜 鏡之間,以及該大致平行之光束係經由該光程增加裝置而 射入該稜鏡之中,並且係經由該稜鏡而輸出至該導光模組 之外。 同時,根據本發明之導光模組,該光程增加裝置包括 一導光柱,以及該導光柱係間隔於該雙凸透鏡及該稜鏡。 • 又在本發明中,該導光柱係由高分子材料所製成。 又在本發明中,該導光柱之折射率係大於1.5。 又在本發明中,該導光柱之軸向長度對該雙凸透鏡之 焦長的比值係為3,該導光柱與該雙凸透鏡間之距離係等 於該雙凸透鏡之轴向長度’以及該導光柱與該棱鏡間之距 離係等於該雙凸透鏡之軸向長度。 又在本發明中,該光程增加裝置包括一第一反射鏡以 及一第二反射鏡,該第一反射鏡係相對於該第二反射鏡, 0798-A21517TWF(N2);C05120;HAWDONG 6 1274186 ' 以及該大致平行之光束係經由該第一反射鏡及該第二反射 鏡之反射而射入該稜鏡之中。 '又在本發明中,該第一反射鏡之形狀係與該第二反射 鏡之形狀互補。 又在本發明中,該光程增加裝置包括複數個反射鏡, ^ 以及該大致平行之光束係分別經由該等反射鏡之反射而射 - 入該棱鏡之中。 又在本發明中,該光程增加裝置包括一導光稜鏡,以 φ 及該大致平行之光束係經由該導光稜鏡内之多重全反射而 射入該稜鏡之中。 、 又在本發明中,該導光稜鏡係由高分子材料所製成。 又在本發明中,該導光稜鏡之折射率係大於1·5。 為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例並配合所附圖式做詳細說明。 【實施方式】 茲配合圖式說明本發明之較佳實施例。 鲁第一實施例 請參閱第2圖,本實施例之導光模組100乃是適用於 一輸入元件(例如,光學滑鼠)之中,並且主·要包括有一光 源110、一雙凸透鏡120、一光程增加裝置(導光柱)130以 及一稜鏡140 〇 光源110可以是一 LED,而雙凸透鏡120是鄰接於光 源 110。 光程增加裝置(導光柱)130是鄰接於雙凸透鏡120,而 0798-A21517TW(N2);C05120;HAWDONG 7 1274186 % 枚鏡/ 40是鄰接於光程增加裝置(導光柱)ι3〇。值得注意的 疋,光程增加裝置(導光柱)130是位於雙凸透鏡12〇與稜鏡 140之間。 ’ 光裎增加裝置(導光柱)130主要是用來增加光束的行 進距離。更詳細的來說,導光柱丨30是間隔於雙凸透鏡120 及I观14〇,並且導光柱130是由高分子材料(例如pc)所 製成,而可具有高折射率(例如L5以上的折射率)。此外, 為了使導光模組1〇〇的運作效果能更佳化,導光柱13〇之074186 • ' IX. EMBODIMENT DESCRIPTION: TECHNICAL FIELD The present invention relates to a light guiding module, and more particularly to a light guiding module capable of increasing the illumination efficiency of an optical mouse. [Prior Art] Referring to FIG. 1A, in a conventional optical mouse, a light guide module-1 illuminates a surface S (for example, a desktop), and an image sensor 2 receives a surface S. The reflected image or light is used to determine the moving position of the optical mouse Φ. Still as shown in Fig. 1, the light guiding module 1 is generally constituted by a light source (e.g., LED) 11 and a stack 12. The crucible 12 is adjacent to the light source 11, and the crucible 12 has two refractive surfaces 12a, 12b and two reflecting surfaces 12c, 12d. The light emitted by the light source 11 is first incident into the crucible 12 via the refractive surface 12a, and then exits the crucible 12 by the reflection of the reflective surfaces 12c, 12d and through the diffractive surface 12b. Then, the light emitted from the crucible 12 illuminates the surface S and is reflected by the surface S. At this time, the image sensor 2 can determine the moving position of the optical mouse by receiving and analyzing the image or light reflected by the surface S. However, since the light emitted by the light source 11 is generally not collimated or parallel, the light will appear divergent after passing through the crucible 12 and reflecting through the surface S. As described above, the image or light intensity that the image sensor 2 can receive is very weak, which may cause the image sensor 2 to make an error when determining the moving position of the optical mouse, or even cause the image sensor 2 It is impossible to judge the moving position of the optical mouse. Therefore, in order to enhance the image or light intensity that the image sensor 0798-A21517TWF(N2); C05120; HAWDONG 5 1274186 1 can receive, it is necessary to increase the luminous power of the light source il. However, increasing the luminous power of the light source 11 causes an increase in the power consumption of the optical mouse. SUMMARY OF THE INVENTION The present invention basically adopts the characteristics of the following detailed speeds in order to solve the above problems. That is, the present invention is applicable to an input element, and includes a light source that emits a light beam; a lenticular lens 5 is adjacent to the light source, wherein 5 the light beam passes through the lenticular lens to become substantially parallel Φ beam; an optical path increasing device adjacent to the lenticular lens for increasing the optical path of the substantially parallel beam; and a 稜鏡5 adjacent to the optical path increasing device, wherein the optical path increasing device Located between the lenticular lens and the cymbal, and the substantially parallel beam is incident into the cymbal via the optical path increasing device, and is outputted to the outside of the light guiding module via the cymbal. Meanwhile, according to the light guiding module of the present invention, the optical path increasing device includes a light guiding column, and the light guiding column is spaced apart from the lenticular lens and the crucible. • In the present invention, the light guiding column is made of a polymer material. In the present invention, the light guide column has a refractive index greater than 1.5. In the present invention, the ratio of the axial length of the light guiding column to the focal length of the lenticular lens is 3, the distance between the light guiding column and the lenticular lens is equal to the axial length of the lenticular lens and the light guiding column The distance from the prism is equal to the axial length of the lenticular lens. In the present invention, the optical path increasing device includes a first mirror and a second mirror, the first mirror is opposite to the second mirror, 0798-A21517TWF(N2); C05120; HAWDONG 6 1274186 And the substantially parallel beam is incident into the crucible by reflection of the first mirror and the second mirror. In still another aspect of the invention, the shape of the first mirror is complementary to the shape of the second mirror. In still another aspect of the invention, the optical path increasing means includes a plurality of mirrors, and the substantially parallel beam beams are respectively incident into the prisms by reflection of the mirrors. In still another aspect of the invention, the optical path increasing means includes a light guide pupil, and φ and the substantially parallel beam are incident into the crucible via multiple total reflections in the light guide pupil. In the present invention, the light guiding iridium is made of a polymer material. In the present invention, the refractive index of the light guide pupil is greater than 1.5. The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] A preferred embodiment of the present invention will be described with reference to the drawings. Referring to FIG. 2, the light guiding module 100 of the present embodiment is suitable for use in an input component (for example, an optical mouse), and includes a light source 110 and a lenticular lens 120. An optical path increasing device (light guiding column) 130 and a 稜鏡 140 〇 light source 110 may be an LED, and the lenticular lens 120 is adjacent to the light source 110. The optical path increasing device (light guiding column) 130 is adjacent to the lenticular lens 120, and 0798-A21517TW(N2); C05120; HAWDONG 7 1274186% Mirror/40 is adjacent to the optical path increasing device (light guiding column) ι3 〇. It is noted that the optical path increasing means (light guiding column) 130 is located between the lenticular lenses 12A and 稜鏡140. The aperture increasing device (light guiding column) 130 is mainly used to increase the traveling distance of the light beam. In more detail, the light guiding column 30 is spaced apart from the lenticular lens 120 and the first viewing frame, and the light guiding column 130 is made of a polymer material (for example, pc), and may have a high refractive index (for example, L5 or more). Refractive index). In addition, in order to improve the operation effect of the light guiding module 1 ,, the light guiding column 13

轴向長度Lm對雙凸透鏡120之焦長(焦點範圍長度)的比 值約為3,以及導光柱130與雙凸透鏡120間之距離D1& 導光柱130與稜鏡14〇間之距離〇2皆約等於雙凸诱浐 之軸向長度L12G。 〜 當光源110對雙凸透鏡120發出光束時,通過雙凸透 鏡二120之光束會成為大致平行之光束。此時,大致=行ς 光f會再進入導光柱130之中,而藉由增加大致平行二光 术在導光柱130中之光程(行進距離),即可使得從導光柱 130射出之光束成為近乎彼此平行之光束。接著\近乎彼 此平行之光束在通過稜鏡140而輸出至一表面(例如桌面)§ 上日守,其仍會被表面s反射成近乎彼此平行之光束也, 是說,經由表面s所反射之影像或光束不會呈現發散之2 態,而光學滑鼠之一影像感測器200即可接收到高強产之 影像或光末’因而可清楚判斷光學滑鼠之移動位置。 在另一方面,由於經由表面S所反射之影像或光束不 會呈現發散之狀態,而具有高強度,故光源110之發光功 0798-A21517TWF(N2);C05120;HAWDONG 8 1274186 、 率即可選擇性地被降低,如此一來,光學滑鼠之整體耗電 量便可降低。 第二實施例 在本實施例中,與第一實施例相同之元件均標示以相 • 同之符號。 < 請參閱第3圖,本實施例之導光模組100’亦是適用於 一輸入元件(例如,光學滑鼠)之中5並且主要包括有一光 Φ 源110、一雙凸透鏡120、一光程增加裝置130’以及一稜鏡 • 140。 如第3圖所示,光程增加裝置1305亦是用來增加光束 的行進距離’並且是由一第一反射鏡131以及一第二反射 鏡132所構成。第一反射鏡131是相對於第二反射鏡132, 並且第一反射鏡131之形狀是與第二反射鏡132之形狀互 補。 至於本實施例之其他元件構造或特徵均與第一實施例 • 相同,故為了使本案之說明書内容能更清晰易懂起見,在 此省略其重複之說明。 當光源Π0發出光束時,通過雙凸透鏡120之光束會 經由第一反射鏡131及第二反射鏡132上之多次反射來增 加其光程,因此,從光程增加裝置1305(或第一反射鏡131 及第二反射鏡132)所射出之光束會成為近乎彼此平行之光 束。接著,近乎彼此平行之光束在通過稜鏡140而輸出至 一表面(例如桌面)S上時,其仍會被表面S反射成近乎彼此 0798-A21517TWF(N2);C05120;HAWDONG 9 1274186 平行之光束,也就是說,經由表面s所反射之影像或光束 不會呈現發散之狀態,而光學滑鼠之一影像感測器200即 可接收到高強度之影像或光束,因而可清楚判斷光學滑鼠 之移動位置。 同樣地,由於經由表面S所反射之影像或光束不會呈 - 現發散之狀態,而具有高強度,故光源110之發光功率即 / 可選擇性地被降低,如此一來,光學滑鼠之整體耗電量便 可降低。 Φ 此外,本實施例之光程增加裝置並不侷限於僅具有兩 - 反射鏡(第一反射鏡131及第二反射鏡132),換就話說,光 程增加裝置亦可以具有更多個反射鏡,並且藉由使通過雙 凸透鏡120之光束經由多個反射鏡之反射來增加其光程, 以達成如上所述之效果。 第三實施例 在本實施例中,與第一實施例相同之元件均標示以相 • 同之符號。 請參閱第4圖,本實施例之導光模組100’’亦是適用於 一輸入元件(例如,光學滑鼠)之中,並且主要包括有一光 源110、一雙凸透鏡120、一光程增加裝置(導光稜鏡)130’5 以及一稜鏡140 〇 如第4圖所示,光程增加裝置(導光稜鏡)130”亦是用 來增加光束的行進距離。更詳細的來說,導光稜鏡130” 亦是由高分子材料(例如PC)所製成,而可具有高折射率(例 0798-A21517TWF(N2);C05120;HAWDONG 10 1274186 如1.5以上的折射率)。 至於本實施例之其他元件構造或特徵均與第一實施例 相同,故為了使本案之說明書内容能更清晰易懂起見,在 此省略其重複之說明。 當光源110發出光束時5通過雙凸透鏡120之光束會 進入導光稜鏡130’’之中,此時,由於導光稜鏡130’5之高 折射率及特殊形狀設計’故光束會在導光稜鏡13 0 ’’内經由 多重全反射來增加其光程。因此,從光程增加裝置130” φ 所射出之光束會成為近乎彼此平行之光束。接著5近乎彼 - 此平行之光束在通過棱鏡140而輸出至一表面(例如桌面)S 上時,其仍會被表面S反射成近乎彼此平行之光束,也就 是說5經由表面S所反射之影像或光束不會呈現發散之狀 態,而光學滑鼠之一影像感測器200即可接收到高強度之 影像或光束,因而可清楚判斷光學滑鼠之移動位置。 同樣地,由於經由表面S所反射之影像或光束不會呈 現發散之狀態5而具有高強度,故光源11 〇之發光功率即 鲁 可選擇性地被降低,如此一來5光學滑鼠之整體耗電量便 可降低。 雖然本發明已以較佳實施例揭露於上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 0798-A21517TWF(N2);C05120;HAWDONG 11 1274186 【圖式簡單說明】 第1圖係顯示一習知光學滑鼠中之導光模組及影像感 測器之平面示意圖; 第2圖係顯示本發明之第一個實施例之導光模組及影 像感測器之平面示意圖; 第3圖係顯示本發明之第二個實施例之導光模組及影 ' 像感測器之平面示意圖;以及 第4圖係顯示本發明之第三個實施例之導光模組及影 _ 像感測器之平面示意圖。 【主要元件符號說明】 1、 100、100’、100”〜導光模組 2、 200〜影像感測器 11、 110〜光源 12、 140〜稜鏡 12a、12b〜折射面 • 12c、12d〜反射面 120〜雙凸透鏡 130〜光程增加裝置(導光柱) 130’〜光程增加裝置 130”〜光程增加裝置(導光稜鏡) 131〜第一反射鏡 132〜第二反射鏡 Dl、D2〜距離 0798-A21517TWF(N2);C05120;HAWDONG 12 1274186 L12〇、L130〜軸向長度衣面The ratio of the axial length Lm to the focal length (focus range length) of the lenticular lens 120 is about 3, and the distance D1 between the light guiding rod 130 and the lenticular lens 120 is equal to the distance 〇2 between the light guiding column 130 and the 稜鏡14〇. It is equal to the axial length L12G of the double convex trap. ~ When the light source 110 emits a light beam to the lenticular lens 120, the light beam passing through the lenticular lens 120 becomes a substantially parallel light beam. At this time, roughly = the row of light f will re-enter the light guide column 130, and by increasing the optical path (traveling distance) of the substantially parallel diopter in the light guide column 130, the light beam emitted from the light guide column 130 can be made. Become a beam of nearly parallel to each other. Then, the light beams that are nearly parallel to each other are output to a surface (such as a table top) through the crucible 140, and are still reflected by the surface s into beams that are nearly parallel to each other, that is, reflected by the surface s. The image or beam does not exhibit a divergent state, and one of the optical mouse image sensors 200 can receive a high-strength image or light end, thus making it possible to clearly determine the moving position of the optical mouse. On the other hand, since the image or the light beam reflected by the surface S does not exhibit a state of divergence and has high intensity, the light source of the light source 110 is 0798-A21517TWF(N2); C05120; HAWDONG 8 1274186, the rate can be selected. Sexually reduced, as a result, the overall power consumption of the optical mouse can be reduced. SECOND EMBODIMENT In the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals. < Referring to FIG. 3, the light guiding module 100' of the present embodiment is also suitable for use in an input component (for example, an optical mouse) 5 and mainly includes a light Φ source 110, a lenticular lens 120, and a The optical path increasing device 130' and a 140. As shown in Fig. 3, the optical path increasing means 1305 is also used to increase the traveling distance of the light beam ' and is constituted by a first reflecting mirror 131 and a second reflecting mirror 132. The first mirror 131 is opposite to the second mirror 132, and the shape of the first mirror 131 is complementary to the shape of the second mirror 132. The other element configurations and features of the present embodiment are the same as those of the first embodiment, and therefore, in order to make the contents of the present specification clearer and easier to understand, the repeated description thereof will be omitted. When the light source Π0 emits a light beam, the light beam passing through the lenticular lens 120 increases its optical path by multiple reflections on the first mirror 131 and the second mirror 132, and thus, from the optical path increasing device 1305 (or the first reflection) The beams emitted by the mirror 131 and the second mirror 132) become beams that are nearly parallel to each other. Then, the beams that are nearly parallel to each other are output to a surface (such as a table top) S when passing through the crucible 140, and they are still reflected by the surface S to be nearly 0798-A21517TWF(N2); C05120; HAWDONG 9 1274186 parallel beams That is to say, the image or light beam reflected by the surface s does not exhibit a diverging state, and one of the optical mouse image sensors 200 can receive a high-intensity image or light beam, thereby clearly judging the optical mouse The location of the move. Similarly, since the image or the light beam reflected by the surface S does not exhibit a state of divergence, but has a high intensity, the light-emitting power of the light source 110 is selectively/reduced, thus, the optical mouse The overall power consumption can be reduced. In addition, the optical path increasing device of the present embodiment is not limited to having only two mirrors (the first mirror 131 and the second mirror 132). In other words, the optical path increasing device may have more reflections. The mirror and its optical path are increased by reflecting the light beam passing through the lenticular lens 120 through a plurality of mirrors to achieve the effects as described above. THIRD EMBODIMENT In the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals. Referring to FIG. 4 , the light guiding module 100 ′′ of the embodiment is also suitable for use in an input component (for example, an optical mouse), and mainly includes a light source 110 , a lenticular lens 120 , and an optical path increase. The device (light guide 130) 130'5 and a 稜鏡 140 〇 as shown in Fig. 4, the optical path increasing device (light guide 130) 130" is also used to increase the travel distance of the beam. More specifically The light guide 130" is also made of a polymer material (for example, PC), and may have a high refractive index (for example, 0798-A21517TWF (N2); C05120; HAWDONG 10 1274186 such as a refractive index of 1.5 or more). The other element configurations and features of the present embodiment are the same as those of the first embodiment, and therefore, in order to make the contents of the present specification clearer and easier to understand, the repeated description thereof will be omitted. When the light source 110 emits a light beam, the light beam passing through the lenticular lens 120 enters the light guide pupil 130''. At this time, due to the high refractive index and special shape design of the light guide pupil 130'5, the light beam will be guided. The aperture 13 0 '' increases its optical path by multiple total reflection. Therefore, the light beams emitted from the optical path increasing means 130" φ become light beams which are nearly parallel to each other. Then 5 is nearly the same - the parallel light beam is outputted through a prism 140 to a surface (for example, a table top) S, It will be reflected by the surface S into beams that are nearly parallel to each other, that is, the image or beam reflected by the surface S will not appear divergent, and one of the optical mouse image sensors 200 can receive high intensity. The image or the light beam can clearly determine the moving position of the optical mouse. Similarly, since the image or the light beam reflected by the surface S does not exhibit a diverging state 5 and has high intensity, the light source power of the light source 11 is Luke. The invention is selectively reduced, so that the overall power consumption of the optical mouse can be reduced. Although the invention has been disclosed in the preferred embodiments, it is not intended to limit the invention, and anyone skilled in the art will be able to The scope of protection of the present invention is defined by the scope of the appended claims. 0798-A21517TWF(N2);C05120;HAWDONG 11 1274186 [Simple description of the drawing] Fig. 1 is a schematic plan view showing a light guiding module and an image sensor in a conventional optical mouse; A schematic plan view of a light guiding module and an image sensor according to a first embodiment of the present invention; FIG. 3 is a plan view showing a light guiding module and a shadow image sensor of a second embodiment of the present invention; 4 is a schematic plan view showing a light guiding module and a shadow image sensor according to a third embodiment of the present invention. [Main component symbol description] 1, 100, 100', 100" to light guiding module 2. 200 to image sensor 11, 110 to light source 12, 140 to 12a, 12b to refracting surface 12c, 12d to reflecting surface 120 to lenticular lens 130 to optical path increasing device (light guiding column) 130'~light The path increasing device 130" to the optical path increasing device (light guiding device) 131 to the first mirror 132 to the second mirror D1, D2 to the distance 0798-A21517TWF (N2); C05120; HAWDONG 12 1274186 L12, L130~ Axial length

0798-A21517TWF(N2);C05120;HAWDONG0798-A21517TWF(N2);C05120;HAWDONG

Claims (1)

1274186 十、申請專利範圍: 1. 一種導光模組,適用於一輸入元件之中’包括: 一光源,係發出一光束; 一雙凸透鏡,鄰接於該光源,其中,該光束係通過該 雙凸透鏡而成為一大致平行之光束; 一光程增加裝置,鄰接於該雙凸透鏡,係用以增加該 大致平行之光束之光程;以及 一稜鏡,鄰接於該光程增加裝置,其中,該光程增加 • 裝置係位於該雙凸透鏡與該稜鏡之間,以及該大致平行之 - 光束係經由該光程增加裝置而射入該稜鏡之中,並且係經 由該稜鏡而輸出至該導光模組之外。 2. 如申請專利範圍第1項所述之導光模組,其中,該 光程增加裝置包括一導光柱,以及該導光柱係間隔於該雙 凸透鏡及該稜鏡。 3. 如申請專利範圍第2項所述之導光模組,其中,該 導光柱係由高分子枒料所製成。 • 4.如申請專利範圍第2項所述之導光模組,其中,該 導光柱之折射率係大於1·5。 5. 如申請專利範圍第2項所述之導光模組,其中,該 導光柱之軸向長度對該雙凸透鏡之焦長的比值係為3,該 導光柱與該雙凸透鏡間之距離係等於該雙凸透鏡之軸向長 度,以及該導光柱與該稜鏡間之距離係等於該雙凸透鏡之 軸向長度。 6. 如申請專利範圍第1項所述之導光模組,其中,該 0798-Α21517TWF(N2);C05120;HAWDONG 14 1274186 ι ' 光程增加裝置包括一第一反射鏡以及一第二反射鏡,該第 一反射鏡係相對於該第二反射鏡,以及該大致平行之光束 係經由該第一反射鏡及該第二反射鏡之反射而射入該稜鏡 之中。 7.如申請專利範圍第6項所述之導光模組,其中,該 第一反射鏡之形狀係與該第二反射鏡之形狀互補。 ^ 8.如申請專利範圍第1項所述之導光模組,其中,該 光程增加裝置包括複數個反射鏡,以及該大致平行之光束 ❿ 係分別經由該等反射鏡之反射而射入該稜鏡之中。 ~ 9.如申請專利範圍第1項所述之導光模組,其中,該 光程增加裝置包括一導光稜鏡,以及該大致平行之光束係 經由該導光稜鏡内之多重全反射而射入該稜鏡之中。 l〇t如申請專利範圍第9項所述之導光模組,其中,該 導光稜鏡係由高分子材料所製成。 11.如申請專利範圍第9項所述之導光模組,其中,該 導光稜鏡之折射率係大於1.5。 0798-A21517TWFCN2);C05120;HAWD〇NG 151274186 X. Patent application scope: 1. A light guiding module suitable for use in an input component includes: a light source that emits a light beam; a lenticular lens adjacent to the light source, wherein the light beam passes through the double a convex lens to become a substantially parallel beam; an optical path increasing device adjacent to the lenticular lens for increasing an optical path of the substantially parallel beam; and a cymbal adjacent to the optical path increasing device, wherein The optical path is increased. The device is located between the lenticular lens and the cymbal, and the substantially parallel beam is incident into the cymbal via the optical path increasing device, and is output to the raft via the cymbal Outside the light guide module. 2. The light guiding module of claim 1, wherein the optical path increasing device comprises a light guiding column, and the light guiding column is spaced apart from the lenticular lens and the cymbal. 3. The light guiding module of claim 2, wherein the light guiding column is made of a polymer material. 4. The light guide module of claim 2, wherein the light guide column has a refractive index greater than 1.5. 5. The light guiding module of claim 2, wherein a ratio of an axial length of the light guiding rod to a focal length of the lenticular lens is 3, and a distance between the light guiding column and the lenticular lens is It is equal to the axial length of the lenticular lens, and the distance between the light guiding rod and the crucible is equal to the axial length of the lenticular lens. 6. The light guiding module of claim 1, wherein the 0798-Α21517TWF(N2); C05120;HAWDONG 14 1274186 ι ' optical path increasing device comprises a first mirror and a second mirror The first mirror is incident on the second mirror with respect to the second mirror, and the substantially parallel beam is reflected by the first mirror and the second mirror. 7. The light guiding module of claim 6, wherein the shape of the first mirror is complementary to the shape of the second mirror. The light guide module of claim 1, wherein the optical path increasing device comprises a plurality of mirrors, and the substantially parallel beam beams are respectively incident through the reflection of the mirrors Among the embarrassment. The light guide module of claim 1, wherein the optical path increasing device comprises a light guide, and the substantially parallel light beam passes through the multiple total reflection in the light guide And shot into the shackles. l The light guide module of claim 9, wherein the light guide is made of a polymer material. 11. The light guide module of claim 9, wherein the light guide has a refractive index greater than 1.5. 0798-A21517TWFCN2); C05120; HAWD〇NG 15
TW95108403A 2006-03-13 2006-03-13 Light guide module TWI274186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95108403A TWI274186B (en) 2006-03-13 2006-03-13 Light guide module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95108403A TWI274186B (en) 2006-03-13 2006-03-13 Light guide module

Publications (2)

Publication Number Publication Date
TWI274186B true TWI274186B (en) 2007-02-21
TW200734679A TW200734679A (en) 2007-09-16

Family

ID=38623081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95108403A TWI274186B (en) 2006-03-13 2006-03-13 Light guide module

Country Status (1)

Country Link
TW (1) TWI274186B (en)

Also Published As

Publication number Publication date
TW200734679A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
JP5415539B2 (en) Compact optical system for producing uniform collimated light
JP3891535B2 (en) Irradiation angle variable illumination device and photographing device using the same
JP5006584B2 (en) Irradiation apparatus and irradiation system having the same
JP6274790B2 (en) Illumination device and optical member
US7631991B2 (en) Brightness enhancement of LED using selective ray angular recycling
US20060083005A1 (en) Illuminator
TW200609453A (en) Lens component, display unit for signal display lamp and signal display lamp
JP2010198851A (en) Light-emitting device and optical element
JP2006085150A (en) Optical system for light emitting apparatus
TW200944926A (en) A projector with reduced size and higher contrast
TWI418916B (en) Projection apparatus
JP2016139465A (en) Luminaire
KR20170079355A (en) Light emitting apparatus, optical module including the apparatus, and vehicle including the module
TW201414957A (en) Illumination device
CN101907235A (en) Multiple-lights-combining illumination device and the projection display device that has used this device
TWI274186B (en) Light guide module
JP2008004284A5 (en)
WO2019181506A1 (en) Vehicular lamp
JP5224880B2 (en) Illumination device and imaging device
CN112180665A (en) LCD projector conjugated high-efficiency illumination system and projection method
TWI305893B (en) Light guide module and optical mouse using the same
TWI736786B (en) Measuring apparatus and measuring method using the same
JP2006301586A (en) Lighting system
TW201522860A (en) Illumination apparatus
JP5398299B2 (en) Illumination optical system and image projection apparatus using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees