TWI274159B - 3-D dielectrophoresis chip and the manufacturing method thereof - Google Patents

3-D dielectrophoresis chip and the manufacturing method thereof Download PDF

Info

Publication number
TWI274159B
TWI274159B TW94131521A TW94131521A TWI274159B TW I274159 B TWI274159 B TW I274159B TW 94131521 A TW94131521 A TW 94131521A TW 94131521 A TW94131521 A TW 94131521A TW I274159 B TWI274159 B TW I274159B
Authority
TW
Taiwan
Prior art keywords
electrode
particles
dielectrophoresis
layer
electrode array
Prior art date
Application number
TW94131521A
Other languages
Chinese (zh)
Other versions
TW200712494A (en
Inventor
Shian-Jang Jang
Tsung-Chain Chang
Yi-Fang Jeng
Jau-Hung Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94131521A priority Critical patent/TWI274159B/en
Application granted granted Critical
Publication of TWI274159B publication Critical patent/TWI274159B/en
Publication of TW200712494A publication Critical patent/TW200712494A/en

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

The present invention provides a dual-layer electrode dielectrophoresis chip, which is suitable for separating and collecting various particles with different dielectric properties in dielectrophoresis liquid, and comprises an upper substrate and a lower substrate with up and down separation; a set of micro-channel forming layer assembled between two substrates; and, two electrode array layers covering the opposite surfaces of two substrates, respectively; wherein, these substrates and channel forming layers are associated to define a micro-channel for dielectrophoresis liquid driving the flow of these particles; and, these electrode array layers are located at the top and bottom of the micro-channel, respectively, and when these electrode array layers are applied with AC electricity in predetermined frequency, the particles with different dielectric properties would be endured with the reaction of dielectrophoresis force generated by these electrode array layers in the delivery process by the dielectrophoresis liquid for separation and collection in categories.

Description

1274159 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種晶片,特別是指一種雙層電極式 介電泳晶片。 【先前技術】 介電泳晶內是一種利用各種微粒本身與所存在之介電 泳液體間的介電特性差異,以及施加於粒子懸浮液體中的 交流電場梯度變化,來誘導該等微粒於介電泳液體令被極 化而產生介電泳力(Dielectrophoresis force,DEP force ), 使該等分別具有不同介電特性之微粒分別受正介電泳力( p〇S1t1Ve DEP f〇rce)作用而位移至電場強度最強的區域,以 及受負介電泳力(negatlve DEP force)之作用而分別位移 到電場強度最弱的區域,因而可藉此將具有不同介電特性 之微粒分離。 習知平面式介電泳晶片大致包括一基板、一被覆於基 板頂面之電極陣列’及—覆蓋於該基板與電極陣列頂面^ 與該基板相配合界定出-微流道之蓋板。藉由該電極陣列 於該微流道中產生之電場分布梯度,促使介電泳液體中之 各種微粒分別受介電泳力作用,而分別被電極陣列吸附或 斥離。但此種平面式介電泳晶片之電極陣列的電場強度分 布:隨著離電極表面越遠而越弱,所以懸浮於液體較上方 之Μ粒經常不易受介電泳力的操控 。 工因此械粒分離效果差 在上返情況下,當介電泳晶片需在 、、 %冰液體流動的情 彳仃“時,液體的流動速度必須相當緩慢,以防止 5 1274159 液體流力大於電極陣列、土 平夕」η相對退離電極陣列之微粒間的 電泳力,所以此類介雷、、t曰 ^ /曰日片通吊媒法在較高液體流速的 情況下進行微粒的有效率分離。 另外’白知基板與蓋板之結合,以熱熔接合 bondmg)與介f接合方式為較為常見的接合方式,熱炫接合 方式需要經過數小時的高溫熱壓過程,如晶片中有電極存 在的狀況,熱炫接人τ ^ 二,、、烙接。遇必須不斷的除氧或通入氮氣,避免 電極在兩溫時產生氧化,此 ^ 此方式雖然接合強度較佳但須在 局溫下作用,存在著兮羊客服止 4夕限制i卞件,且所接合時間較冗長 而&quot;貝接合方式主要是藉由在基板上塗佈接著劑,缺後 再將蓋板壓合固定於基板上,雖然接合方式簡單快速,'但 此種屋合組接方式常會使接著劑被擠壓人微流道中,而造 成微流道阻塞,因此晶片的製造良率低。 在二車乂新式之微流體晶片中,對於生物微粒 的分選’ A多需先將料生物微粒作螢光標定,再配合光 學方式進行檢測’並藉由所測得之螢光種類來驅動晶片中 之流道閘門開關’使不同螢光之微粒流向不同的位置。但 此:微流體晶片在使用上除了必需事先對待側物標定上不 同赏光外’亦需仰賴大型的光學儀器,相對成本較高。 【發明内容】 、因此,本發明之目的,即在提供一種可有效操控與分 離/、有不同;|電特性之微粒的雙層電極式介電泳晶片。 本毛月之另一目的,在於提供一種可在預定液體流動 狀態下分離與收集微粒之雙層電極式介電泳晶片。 1274159 、 本發明之再-目的,在於提供-種可提高晶片製造良 率的雙層電極式晶片製造方法。 於疋,本發明介電泳晶片適用分離與收集介電泳液體 中各種具有不同介電特性的微粒,並包含上下間隔之一上 土板〃下基板、一組接於該等基板相向面之微流道成型 ‘層及一上下間隔對稱地分別被覆於該等基板相向面之電 ' +陣列層。其中’該等基板與流道成型層相配合界定出一 • 可仏&quot;包永液體帶動該等粒子流動之中空微流道,該等電 、 ㈣列層則是分別位於該微流道頂、底側。當該等電極陣 . %層被施加預定頻率之交流電時,可使位於微流道中且具 有&gt;不=介電特性之微粒在介電泳液體推送通過程中,分別 又乂等弘極陣列層所產生之介電泳力的作用而被分離與分 類收集。 ' 【實施方式】 、有關本發明之前述及其他技術内容、特點與功效,在 • '下-口麥考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 如圖1〜3所示,本發明介電泳晶片之較佳實施例,適 用於將夕種位於一預定介電泳液體(圖未示)中且具有不 同&quot;包特性之微粒(圖未示)分離並分類收集,在本實施. _ 例中,該等微粒可以是生物微粒,例如細菌、細胞或血球 莖 , -A- __p . 、’、 是非生物微粒,例如乳膠微粒(Latex)等,只要 該等微粒具有不同之介電特性即可。 έ又層兒極式介電泳晶片包含上下間隔平行之一上基 7 1274159 板3與一下基板4、_固接於該等基板3、4相向面並與該 等基板3、4相配合界定出一微流道5〇的流道成型層5,及 二上下間隔地被覆於該等基板3、4相向面之薄膜狀電極陣 列層6。 該等基板3、4是呈平板狀,且該上基板3右端部頂面 具有前、後間隔,並分別号伸連通該微流道5〇之一第一集 中孔3Ό1與-第二集中孔3Q2,而該上基板3左端部頂面則1274159 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a wafer, and more particularly to a two-layer electrode type dielectrophoresis wafer. [Prior Art] Dielectrophoresis intragranular is a difference in dielectric properties between various microparticles themselves and a dielectrophoretic liquid present, and changes in the alternating electric field gradient applied to the suspension liquid of the particles to induce the microparticles in the dielectrophoretic liquid. The polarization of the Dielectrophoresis force (DEP force) is generated, so that the particles having different dielectric properties are respectively displaced by the positive dielectrophoretic force (p〇S1t1Ve DEP f〇rce) to the strongest electric field strength. The regions, as well as the negative dielectrophoretic force (negatlve DEP force), are respectively displaced to the regions where the electric field strength is the weakest, thereby separating particles having different dielectric properties. A conventional planar dielectrophoretic wafer generally comprises a substrate, an electrode array </ RTI> covering the top surface of the substrate, and a cover plate covering the substrate and the top surface of the electrode array to define a micro flow channel. The electric field distribution gradient generated in the microchannel by the electrode array causes the various particles in the dielectrophoretic liquid to be respectively subjected to dielectrophoretic force and respectively adsorbed or repelled by the electrode array. However, the electric field intensity distribution of the electrode array of such a planar dielectrophoresis wafer is weaker as it is farther from the electrode surface, so the particles suspended above the liquid are often not easily manipulated by the dielectrophoretic force. Therefore, the mechanical particle separation effect is poor. In the case of the upper return, when the dielectrophoretic wafer needs to flow in, the % ice liquid flows, the liquid flow rate must be relatively slow to prevent the liquid flow force of the 5 1274159 from being larger than the electrode array. , 土平夕" η relatively retreat from the electrophoresis force between the particles of the electrode array, so such mediation, t曰^ / 曰 片 通 吊 吊 在 在 在 在 在 在 在 在 在 在 在 在 有 有 有 有 有 有 有. In addition, the combination of 'white substrate and cover plate, hot melt bonding bondmg) and dielectric bonding is a common bonding method. The thermal bonding method requires several hours of high-temperature hot pressing process, such as the presence of electrodes in the wafer. The situation, the hot and cool people τ ^ two,,, and the connection. In the case of constant oxygen removal or nitrogen gas, the electrode is prevented from oxidizing at two temperatures. This method has a good joint strength but must be applied at a local temperature. There is a limit on the 4th day of the service. And the joining time is more verbose and the "bead joint method is mainly by applying an adhesive on the substrate, and then pressing and fixing the cover plate on the substrate after the absence, although the joining method is simple and fast, 'but such a housing group The bonding method often causes the adhesive to be squeezed into the micro flow channel, causing the micro flow channel to block, so the wafer manufacturing yield is low. In the new microfluidic wafer of the two cars, the sorting of biological particles 'A need to first set the biological particles for the cursor, and then optically detect it' and drive it by the type of fluorescent light measured. The flow gate switch in the wafer 'flows different fluorescent particles to different locations. However, the use of microfluidic wafers in addition to the need to prioritize the appreciation of the side objects is also dependent on large optical instruments, which is relatively expensive. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a two-layer electrode type dielectrophoresis wafer that can effectively manipulate and separate particles having different electrical characteristics. Another object of the present invention is to provide a two-layer electrode type dielectrophoresis wafer which can separate and collect particles in a predetermined liquid flow state. 1274159. A further object of the present invention is to provide a two-layer electrode wafer manufacturing method which can improve wafer fabrication yield. In the present invention, the dielectrophoretic wafer of the present invention is suitable for separating and collecting various particles having different dielectric properties in the dielectrophoretic liquid, and comprises one of the upper and lower partitions of the upper and lower substrates, and a group of microfluids connected to the opposite faces of the substrates. The channel forming layer and the electrical '+ array layer of the opposing faces of the substrates are respectively symmetrically spaced apart from each other. Wherein the substrates cooperate with the flow channel forming layer to define a hollow microchannel that drives the flow of the particles, and the (4) column layers are respectively located at the top of the microchannel The bottom side. When the electrode arrays of the electrode array are applied with alternating current of a predetermined frequency, the particles located in the microchannel and having the dielectric characteristics of the dielectric layer can be pushed in the process of the dielectrophoretic liquid, respectively. The resulting dielectrophoretic force is separated and classified and collected. [Embodiment] The foregoing and other technical contents, features and effects of the present invention will be apparent from the detailed description of a preferred embodiment of the present invention. As shown in FIGS. 1 to 3, a preferred embodiment of the dielectrophoretic wafer of the present invention is suitable for particles having a different &quot;package characteristic&quot; (not shown) in a predetermined dielectrophoretic liquid (not shown). Separating and classifying the collection, in the present embodiment, the particles may be biological particles, such as bacteria, cells or blood bulbs, -A- __p . , ', are non-biological particles, such as latex particles (Latex), etc., as long as The particles may have different dielectric properties. The έ 层 极 极 极 介 包含 包含 极 极 极 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A flow path molding layer 5 having a micro flow path of 5 turns and a film electrode array layer 6 having a vertical flow gap covering the opposite surfaces of the substrates 3 and 4. The substrates 3 and 4 are in the shape of a flat plate, and the top surface of the right end portion of the upper substrate 3 has front and rear intervals, and respectively extends to communicate with one of the first flow holes 3Ό1 and the second concentrated hole of the micro flow path 5〇. 3Q2, and the top surface of the left end of the upper substrate 3 is

具有一延伸連通該微流道5〇之注入孔3〇3。在本實施例中 ,該等基板3、4皆是由鈉玻璃製成,但實施時,該等基板 3、4亦可以由石夕晶片、壓克力、鋼片製成,且不以上述種 類為限。 s亥肌道成型層5具有一貫穿其頂、底面並用與和該等 基板3、4相配合界定出該微流道5〇之溝槽51,及二分別 鄰近溝槽51前、後侧緣之防阻塞槽仏該微流道5〇且有 :左右延伸且左端與該注入孔3〇3連通之主流段5〇ι、二自 該主流段501右端往右前方延伸並與第—集中&amp;如連通 之第-分流段502,及—自該主流段5〇1右端往右後方延伸 亚與第二集中孔3G2連通之第二分流段則。在本實施例中 ,該微流道50之高度約25〜3〇 _,寬度約則降,但實 施時’該微流道50之外形與大小尺寸皆不以此為限。μ 該等電極陣列層6是上、下間隔對稱地突設於該等基 板3、4相向面。在本實施财,主要是藉由設計該等電極 陣列層6對應切該主流段训中之部位的排列形式,來 產生所需之介電泳效應,而位於微流道50外的部位僅是用 1274159 $提1、所而%壓之設備(圖未示)電連接。為方便救述 ’以下僅針對該等電極陣列層6對應位於主流段训頂、 底側的b局部結構進行說明。在本實施例中’每-電極陣列 層6疋由依序被覆疊接於所對應基板3、4上之鉻(Cr)與金 (AU)金屬缚臈製成,但實施時,該等電極陣列層6之材質不 以此為限。 、 母一電極陣列層6由左至右依序包括-分選電極單元 61…术中電極早凡62 ’及—導引電極單元63。該分選電 圣早7&quot; 61具有多數垂直微流道50長度方向,且左、右間 .隔排列地跨置於兮士、六队μ ^ 、μ机奴501前、後側緣間之長條狀分選 電極611。其中,μ认 甘 、 ;上基板3底面之該等分選電極611是 分別對應位於相對下方之兩相鄰分選電極611間。 該集中電極單元62具有多數前、後兩兩成對且左、右 間隔排列之集中電極621,及二 隹 &amp; —刖、後間隔且为別位於該等 市^ 右側之城垛狀聚焦電極022。該等隼中電&amp; 621是分別自該主^/ 電極 L又 則、後邊緣由左往右逐漸延伸靠 近,且右端開口是對岸. 非 間的間隙。淺朝向该匈、後間隔之聚焦電極622 .該導引電極單元63則包括—第—導引電極631與 一導引電極632,該第一導引雷 ¥引电極631疋自主流段501前側 緣由左在右珂方延伸過該 $镇一八、“ 又501之中心線51,而指向 “弟一以段502,』該第二導引電極咖則是自主 後側緣由絲讀枝伸㈣第—導引祕631以,^ 延伸至主流段501與第二分流段如連通處。 、’ 奶4159 以下便針對各電極單元 係進行說明。 61〜63與該等微粒間之作用關 片η際進仃微粒之分離與分類 先將該等電極單元w t ^ ^ ^ 早兀01〜63與一用以供給交流電源 備電連接,並分別料兮斤+ ’、电源口又 4對㈣電極衫㈣3施加1使位於 做机道50中之微粒產生 、 + 產生)丨包冰的乂-電,亚將含有該等微 ,之介電泳液體經由該上基板3之注入孔3〇3而注入主流 π中,且使介電泳液體以-就流速帶動該等微粒沿 Μ机段501流動’而在流動過程中分別受該等電極單元 ^〜63所誘發之介電泳力的作用。並分別於基板3之該等收 :孔301、302連通設置一收集已被分離之微粒的中空收 肉(圖未示)。 … 山在本實施例中,介電泳液體m與排出是分別透過 、从推動幫浦(syringe pump )(圖未示)推動或拉動一微 注j針筒(圖未示)來進行,但實施時不以此為服。而在 ^實施例中,用以測試之微粒分別為微生物微粒、有標定 螢光之乳膠微粒,及無標定螢光之乳膠微粒等。 士當該等微粒被介電泳液體推送至該等分選電極單元61 日守’、疋利用該等分選電極611上下左右間隔對稱之立體排列 所產生之電場分布,使不同介電特性之微粒分別被該 寺分選電極麗吸附或斥離’進而可將不同介電特性之微粒 分離。 以〔⑽出心酵母菌(Yeasts)生物微粒為例, 介電泳液體為10 mM KC1,導電度為1405 gS/cm,生物微 10 1274159 怨為限。 夕制如圖卜2、4所示’以下即針對該立體式介電泳晶片 衣程步驟依序進行說明。 步驟(―)被覆電極陣列層。以微機電製程、直*電 Ϊ錢及微料料方式,分別於料基板3、4^沉積形 成所气外形之薄膜狀電極陣列層6。由於在該等基板3、4There is an injection hole 3〇3 extending to the microchannel 5〇. In this embodiment, the substrates 3 and 4 are made of soda glass, but in practice, the substrates 3 and 4 can also be made of a stone wafer, an acrylic, a steel sheet, and not The type is limited. The sigma muscle shaping layer 5 has a groove 51 extending through the top and bottom surfaces thereof and defining the micro flow path 5〇 in cooperation with the substrates 3 and 4, and two adjacent front and rear side edges of the groove 51, respectively. The anti-blocking groove 仏 the micro-channel 5 〇 and has: a main flow segment 5 〇 ιι, 2 extending from the left end and the injection hole 3 〇 3, and a right end extending from the right end of the main flow segment 501 to the right front and the first-concentration &amp; For example, the connected first-dividing section 502, and the second splitting section extending from the right end of the main section 5〇1 to the right rear side and the second concentrated hole 3G2. In this embodiment, the height of the microchannel 50 is about 25 to 3 〇 _, and the width is about, but the shape and size of the microchannel 50 are not limited thereto. The electrode array layers 6 are vertically symmetrically protruded from the opposing faces of the substrates 3, 4 in the upper and lower directions. In the implementation of the present invention, the electrode array layer 6 is designed to correspond to the arrangement of the portions in the main segment, thereby generating the desired dielectrophoretic effect, and the portion outside the microchannel 50 is only used. 1274159 $1, and the device of the % pressure (not shown) is electrically connected. In order to facilitate the rescue, the following describes only the partial structure of the electrode array layer 6 corresponding to the top and bottom sides of the main stream segment. In the present embodiment, the 'per-electrode array layer 6' is made of chromium (Cr) and gold (AU) metal bonds which are sequentially laminated on the corresponding substrates 3, 4, but in practice, the electrode arrays are The material of layer 6 is not limited to this. The mother-electrode array layer 6 includes, in order from left to right, the -sorting electrode unit 61...the intraoperative electrode is 62' and the guiding electrode unit 63. The sorting electric saint 7&quot; 61 has the length direction of most vertical microchannels 50, and the left and right sides are arranged in a row between the gentleman, the six teams μ ^ , the front and back sides of the μ machine slave 501 . Long strip-shaped sorting electrode 611. Wherein, the sorting electrodes 611 on the bottom surface of the upper substrate 3 are respectively corresponding to the two adjacent sorting electrodes 611 located opposite to each other. The concentrated electrode unit 62 has a plurality of front and rear pairs of concentrated electrodes 621 arranged in a left and right interval, and two 隹 &amp; 刖, a rear space and a city-shaped focusing electrode 022 located on the right side of the city. . The 隼 中 中 &amp; 621 is from the main ^ / electrode L and then the rear edge gradually extends from left to right, and the right end opening is the opposite side. The guiding electrode unit 63 includes a first guiding electrode 631 and a guiding electrode 632, and the first guiding lightning electrode 631 is autonomous flow segment 501. The front side edge extends from the left to the right side of the $1, "the centerline 51 of the 501, and points to the "one of the 501," the second guiding electrode is the autonomous rear side edge (4) The first guide 631 extends to the main section 501 and the second split section such as a joint. , ' milk 4159 or less will be described for each electrode unit. The separation between the 61~63 and the particles, the separation and classification of the intergranular particles, the first electrode unit wt ^ ^ ^ early 01~63 and one for the supply of AC power supply, and separately兮金+ ', the power port and 4 pairs (4) electrode shirt (4) 3 apply 1 to make the particles in the tunnel 50 produce, + produce) 丨 冰 冰 冰 电 电 电 , , , , , , , , , , , , , , The injection hole 3〇3 of the upper substrate 3 is injected into the main stream π, and the dielectrophoretic liquid is caused to flow along the crucible section 501 at a flow rate, and is subjected to the electrode units respectively during the flow. The effect of the induced dielectrophoretic force. And respectively, a plurality of hollow meats (not shown) for collecting the separated particles are connected to the receiving holes 301 and 302 of the substrate 3. ... In this embodiment, the dielectrophoretic liquid m and the discharge are respectively transmitted through a push pump (not shown) or a micro-j syringe (not shown), but the implementation is performed. Do not take this as a service. In the embodiment, the particles to be tested are microbial particles, latex particles with calibrated fluorescence, and latex particles without calibration fluorescence. When the particles are pushed by the dielectrophoretic liquid to the sorting electrode unit 61, the electric field distribution generated by the three-dimensional arrangement of the upper and lower left and right sides of the sorting electrode 611 is used to make the particles of different dielectric properties. The particles of different dielectric properties can be separated by the adsorption or detachment of the electrode by the temple. Taking [(10) Yeasts bioparticles as an example, the dielectrophoretic liquid is 10 mM KC1, the conductivity is 1405 gS/cm, and the biomicro 10 1274159 is limited. The eve is shown in Figures 2 and 4, hereinafter, the step of the stereolithography electrophoresis wafer process will be described in order. The step (-) covers the electrode array layer. The film-like electrode array layer 6 of the gas shape is deposited on the substrate 3, 4^ by means of a microelectromechanical process, a direct charge, and a micro-material. Due to the substrates 3, 4

2覆成型電極陣制6的方式,已為半導體製程中所經 吊採用之技術,故不再詳述。 V驟(一)於上基板3頂面穿設注人孔% 301、3犯。 予耒干孔 、二)成型流道成型2 The method of overmolding the electrode array 6 has been adopted for the semiconductor process, and will not be described in detail. V (1) is placed on the top surface of the upper substrate 3 through the injection hole % 301, 3.耒 dry hole, 2) forming flow channel forming

,'队〜衣狂乃八將SU8-25 光阻材料(ep〇xybasedphotoresist)被覆於下基板4頂面而 形成所需之流道成型層5,且該流道成型層5具有一貫穿盆 頂、底面並與預定之微流道5〇外形相同的溝槽5卜該溝槽 51是對應涵蓋該電極陣列^ 6。實施時,該流道成型層I 之材f亦可以是聚乙蕴胺(Polyinnde),但實施時,該二道 成型層5之材質與被覆方式皆不以此為限。 I 步驟(四)顯影製作防阻塞槽。先利用光罩透過光微影技 術,於該流道成型層5頂面顯影製作出二左右延伸且=別 鄰近該溝槽51前、後侧緣之防阻塞槽52。 步驟.(五)接合上、下基板。以旋轉塗佈方式於該流道成 型層5頂面被覆一層低黏滯度的接著劑(圖未示),然後將 上基板3被覆有電極陣列層6之一側面往下覆蓋溝槽η地 壓合黏固於該流道成型4 5頂面,使所需之電極陣列層6 15 1274159 局。卩區域相向對稱地位於該溝槽$ 1 其技2 曰 上、下側,此時,該箄 土反、4與流道成型層5會相配' 完成該立體式介電泳晶片之製程。^起道5〇。即 在本實施例中,該接著劍為Μ μη-且在該等基板3、 予I’為I〜2 藉由該等防阻塞槽52之設;後可;二感光膠曝光硬化。 程中’使得鶴向溝槽51的彳3、4塵合過 中, 稷者^ s先k入該防阻塞槽52 了避免接著劑被擠入溝_ 道50阻塞。 料51内而使得所構成之微流 歸納上述,依據該等電 設計與作動方式,以及63之立體分布結構 兮箄料私61〜63、介電泳液體與 4寻微粒間之介電泳特性 L 1定侍包冰液體中的該等微粒在 通過该寺上、下間隔之電極單元 隹 W - 1〜63日守,可先被該等分 k电極早凡6 i產生之介 力及附或斥離,進而可將該等 /、有不冋;丨電特性之微粒 Μ访順皮, /刀離,亚可控制該等微粒的 釋放順序。接著,以該等华 一 ^ ^ ^ - _ 、包極早兀62將來自該等分選 电和早兀6 J之該等微粒一 、#曰^ 顆一顆排列地被推送前 ’ Τ ’再藉由控制施加於該等導引電極63 ,、Aii 之铽粒分離且分別推送至微 抓逗50之預定區域集中, 子目田方便且準確的將不同介 电特性之微粒分選與集中, 生物微粒。 &quot;亥雜可以是生物微粒或非 另外’藉由在流道成型層5 抓 頂面蝕刻該等防阻塞槽52 之ΰ又冲 了確保該等基板3、4厭人d士 £ δ %,接著劑無法滲入微 16 1274159, 'Team ~ madness is eight to SU8-25 photoresist material (ep〇xybasedphotoresist) is coated on the top surface of the lower substrate 4 to form the desired flow channel forming layer 5, and the flow channel forming layer 5 has a through the basin top The groove 5 having the same bottom surface and the same shape as the predetermined micro flow path 5 卜 corresponds to the electrode array 6 . In the implementation, the material f of the flow channel forming layer I may also be a polyimine. However, the material and the coating method of the two molding layers 5 are not limited thereto. I Step (4) Developing an anti-blocking groove. First, the reticle is passed through the photolithography technique, and the top surface of the flow path forming layer 5 is developed to form two anti-blocking grooves 52 extending adjacent to the front and rear side edges of the groove 51. Step (5) Joining the upper and lower substrates. The top surface of the flow channel forming layer 5 is coated with a low-viscosity adhesive (not shown) by spin coating, and then the upper substrate 3 is covered with one side of the electrode array layer 6 to cover the trench η. Press-bonding to the top surface of the runner molding 4 5 makes the desired electrode array layer 6 15 1274159. The crucible region is symmetrically located on the upper and lower sides of the trench $1. At this time, the crucible reverse, 4 and the flow channel forming layer 5 are matched to complete the process of the stereoscopic dielectrophoresis wafer. ^Started 5 〇. That is, in this embodiment, the scabbard is Μμη- and the substrates 3 and I' are I~2 by the anti-blocking grooves 52; the second photoresist is exposed and cured. In the middle of the process, the cranes are immersed in the spurs 3 and 4 of the groove 51, and the squirrel s first enters the clogging prevention groove 52 to prevent the adhesive from being squeezed into the groove _way 50 to block. In the material 51, the formed microfluids are summarized as described above, according to the isoelectric design and the actuation mode, and the three-dimensional distribution structure of 63, the private electrophoresis characteristics of the dielectrophoretic liquid and the interrogation particles. The particles in the ice liquid of the fixed package are kept on the upper and lower electrode units 隹W - 1 to 63 of the temple, and may be firstly produced by the aliquot of the k electrode and 6 y Rejection, in turn, can be such that there is no convulsion; the particles of the electrical properties are stalked, and the knives are separated, and the sub-control can control the release order of the particles. Then, the particles from the sorting electricity and the early 兀6 J are pushed one by one, and the front ' ' Τ 以 以 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 兀 包 包 包 包 兀 包 包 包 包 包By controlling the application of the guiding electrodes 63, the particles of Aii are separated and pushed to the predetermined regions of the micro-trap 50, the sub-field conveniently and accurately sorts and concentrates the particles of different dielectric properties. , biological particles. &quot;Hai Miscellaneous may be biological particles or non-additional 'by blocking the top surface of the flow channel forming layer 5 to etch the anti-blocking grooves 52 and ensuring that the substrates 3, 4 are disgusting, ,% The agent can not penetrate into the micro 16 1274159

【主要元件符號說明】 3 ··….· ....上基板 52 .…· ...防阻塞槽 301.... ....第一集中孔 6....... ...電極陣列層 302···· …·第二集中孔 61 …·. ...分選電極單元 303···· ....注入孔 61……· 4....... ....下基板 62 …·· ...集中電極單元 5....... ....流道成型層 621···. ...集中電極 50 .···· ....微流道 622.... ...聚焦電極 501·.·. ....主流段 63 ...導引電極單元 502.... —第一分流段 631.... ...第一導引電極 503.... …·第二分流段 632.... ...第二導引電極 51 •…. ....溝槽[Description of main component symbols] 3 ·······. Upper substrate 52 ..... ... anti-blocking groove 301...... first concentrated hole 6.. .. electrode array layer 302······ second concentrated hole 61 ...·....sorting electrode unit 303····....injecting hole 61...· 4....... ....substrate 62 ...···concentrated electrode unit 5 ..... flow path forming layer 621···....concentrating electrode 50 ........ .. micro-channel 622....focus electrode 501·.....mainstream segment 63...lead electrode unit 502....-first shunt segment 631.... .. the first guiding electrode 503.....the second shunting section 632....the second guiding electrode 51.....the groove

1919

Claims (1)

1274159 及一則、後間隔並可吸附與斥離通過該等集中電極且 /、有不同&quot;电特性之該等微粒的指叉型聚焦電極。 4.依據申請專利範圍第2項所述之立體式介電泳晶片,並 ^該微流道具有-左右延伸之主流段,及分別自g “又右端往右後方與右前方延伸之一第_分流段盘一第 二:,該導引電極單元具有一自主流段前側緣朝右 後方延伸並可將預定介電特性之微粒導引至第—分 的第-導引電極,及一自該主流段後侧緣朝右前方延: 2 = 導引至第二分流段的第 5.:據^專利範圍第2項所述之立體式介電泳晶片,发 ’該電極陣列層更包括—前後延伸地跨置於該微产、= 則、後側緣間而可吸附與斥離該等具有不同介電特:: 微粒的分選電極單元。 电特1±之 6·:據申睛專利範圍第5項所述之立體式介電 中,該分選電極單元具有多數左、右間隔排列且分別ς 置於δ亥微流道前、後側緣間之分選電極。 7 7·依射請專利範圍第丨項所述之立體式介電泳 車列層包括依序位於該介電‘流4 之一刀^極單元與—集中電極單元,且•該 極早凡被施加預定頻率之交流電時,該分選::―電 吸附與斥離該等具有不同介電特性H =可 極單元可使來自分選電極單 〜中電 列地被推送前進。 木中且—顆一顆棑 21 1274159 .=據中請專利範圍第7項所述之立體式介電以片,立 道:該t選電極單元具有多數左、右間隔地跨置於微流 =、後側緣間並可吸附與斥離具有不同介電特性 被的分選電極。 9·:據中請專利範圍第7項所述之立體式介電泳晶片,其 ^集中電極單元具有二分別自該微流道前、後側緣 右相向延伸靠近而可使該等微粒集中通過之集中電極 二及二前、後間隔並可使通過該等集中電極之該等微粒 顆顆排歹地被推送前進的指又型聚焦電極。 1。·依據申請專:範圍第丨項所述之立體式介電泳晶片,其 中,該基板是由鈉玻璃、矽晶片、壓克力或鋼片製成。 u.依據中請專利範圍第丨項所述之立體式介電泳晶片,其 中’該流道成型層是由選自於由光阻材料、聚乙酸胺以 及光阻材料與聚乙醯胺之混合所組成之群體製成。 u·-種立體式介電泳晶片之製造方法,包含以下步驟: (A)刀別於一上基板與一下基板頂面被覆成型一薄膜 狀電極陣列層; 、 (B) 於已被覆電極陣列層之上基板頂面穿設一注入孔 ,及至少二收集孔; (C) 於已被覆電極陣列層之下基板頂面成型一流道成 型層’该流道成型層具有一左右延伸且貫穿其頂、底面 並對應涵蓋該電極陣列層之溝槽; ⑼於流道成型I頂面蝕刻成形二間隔位&amp;該溝槽前 、後側之防阻塞槽; 22 1274159 (E)將上基板具有電極陣列層之一側面覆蓋該溝槽地 往下對應壓合黏固於該流道成型層頂面,使該等電極陣 ' 列層相向對稱地位於溝槽上、下侧,並使該等收集孔與 注入孔分別與該溝槽連通。 1 3 ·依據申請專利範圍第i 2項所述之立體式介電泳晶片之製 一 方法’其中’,步驟(C )是以光阻材料、聚乙酿胺以 及光阻材料與聚乙醯胺之混合所組成之群體於該下基板 頂面被覆成型該流道成型層。 _ 14.依據申請專利範圍第12項所述之立體式介電泳晶片之製 造方法,其中,步驟(E )是先以旋轉塗佈方式於該流 道成型層頂面塗佈UV感光膠,並於該上基板對應壓合 於該流道成型層頂.面後,使UV感光膠曝光硬化而黏固1274159 and an interdigitated focusing electrode that is capable of adsorbing and repelling such particles that pass through the concentrated electrodes and/or have different &quot;electrical properties&quot;. 4. According to the stereoscopic dielectrophoresis chip described in claim 2, and the micro flow channel has a main section extending to the left and right, and one of the "right end to the right rear and the right front" respectively. a second segment of the shunt segment: the guiding electrode unit has a front side edge of the autonomous flow segment extending toward the right rear side and guiding the particles of predetermined dielectric characteristics to the first guiding electrode of the first branch, and The rear side edge of the main flow segment is extended to the right front side: 2 = the fifth to the second shunt segment guided by the second shunt segment: according to the stereoscopic dielectrophoresis wafer described in the second paragraph of the patent scope, the electrode array layer further includes Extendingly interspersed between the micro-production, the ruthenary, and the rear side edge to adsorb and repel the sorting electrode unit having different dielectric:: particles. The electric special 1±6·: according to the patent In the three-dimensional dielectric of the fifth aspect, the sorting electrode unit has a plurality of sorting electrodes arranged at the left and right intervals and respectively disposed between the front and rear edges of the δHui microchannel. The stereoscopic dielectrophoresis train layer described in the scope of the patent application includes sequentially located in the dielectric 'flow 4 One of the knives and the concentrating electrode unit, and • When the AC current of a predetermined frequency is applied to the pole, the sorting:: ―Electrosorption and repulsion have different dielectric properties H = postable unit The column from the sorting electrode to the middle electricity is pushed forward. The wood is a piece of 棑21 1274159.= According to the third-party dielectric material described in item 7 of the patent scope, the stand: the t-selection The electrode unit has a plurality of left and right spaced spanning electrodes between the microfluids and the rear side edges and capable of adsorbing and repelling different dielectric properties. 9: According to the scope of claim 7 The stereoscopic dielectrophoresis wafer has two concentrated electrode units respectively extending from the front and rear side edges of the micro flow channel to the right side to allow the particles to pass through the concentrated electrode two and two front and rear intervals. The three-dimensional dielectrophoresis wafer according to the application of the scope of the invention, wherein the substrate is driven by the particles of the concentrating electrodes. Sodium glass, tantalum wafer, acrylic or steel sheet U. The stereoscopic dielectrophoresis wafer according to the above-mentioned patent scope, wherein the flow channel forming layer is selected from the group consisting of photoresist materials, polyacetic acid amines, and photoresist materials and polyethylenes. The method for manufacturing a stereoscopic dielectrophoresis wafer comprises the following steps: (A) forming a film electrode array layer on a top substrate and a top surface of the lower substrate; (B) inserting an injection hole and at least two collection holes on the top surface of the substrate above the coated electrode array layer; (C) forming a first-class molding layer on the top surface of the substrate under the coated electrode array layer. The molding layer has a groove extending from the top and bottom surfaces thereof and corresponding to the electrode array layer; (9) forming a top spacer in the flow path forming I and an anti-blocking groove on the front and rear sides of the groove; 22 1274159 (E) The upper substrate has one side of the electrode array layer covering the groove and is pressed and adhered to the top surface of the flow channel forming layer, so that the electrode arrays are symmetrically located in the trench. Upper and lower sides, and the collection holes And the injection hole are respectively connected to the groove. 1 3 · According to the method for preparing a stereoscopic dielectrophoresis wafer according to the scope of the patent application, item i 2, wherein the step (C) is a photoresist material, a polyamine, a photoresist material and a polyacetamide. The group of the mixture is coated on the top surface of the lower substrate to form the flow channel forming layer. The method for manufacturing a stereoscopic dielectrophoretic wafer according to claim 12, wherein the step (E) is first applying a UV photoresist to the top surface of the flow channel forming layer by spin coating, and After the upper substrate is pressed against the top surface of the flow channel forming layer, the UV photosensitive adhesive is exposed and hardened and adhered. 23twenty three
TW94131521A 2005-09-13 2005-09-13 3-D dielectrophoresis chip and the manufacturing method thereof TWI274159B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94131521A TWI274159B (en) 2005-09-13 2005-09-13 3-D dielectrophoresis chip and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94131521A TWI274159B (en) 2005-09-13 2005-09-13 3-D dielectrophoresis chip and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI274159B true TWI274159B (en) 2007-02-21
TW200712494A TW200712494A (en) 2007-04-01

Family

ID=38623069

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94131521A TWI274159B (en) 2005-09-13 2005-09-13 3-D dielectrophoresis chip and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI274159B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399488B (en) * 2009-12-31 2013-06-21 Nat Univ Chung Cheng A microfluidic driving system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904958B2 (en) 2013-03-07 2016-04-20 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof
TW201445135A (en) * 2013-05-23 2014-12-01 Nat Applied Res Laboratories Method and chip for capturing and analyzing biological particles by composite electromotive force
JP6151128B2 (en) 2013-08-12 2017-06-21 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof
TWI803153B (en) * 2022-01-18 2023-05-21 醫華生技股份有限公司 Contactless selection device and biological particle selection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399488B (en) * 2009-12-31 2013-06-21 Nat Univ Chung Cheng A microfluidic driving system

Also Published As

Publication number Publication date
TW200712494A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
Nasiri et al. Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications
Moon et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)
US10967387B2 (en) Continuous whole-chip 3-dimensional DEP cell sorter and related fabrication method
Sajeesh et al. Particle separation and sorting in microfluidic devices: a review
TWI274159B (en) 3-D dielectrophoresis chip and the manufacturing method thereof
US20120085649A1 (en) Dielectrophoresis devices and methods therefor
US20120301867A1 (en) Recovering nucleated red blood cells and method for concentrating and recovering nucleated red blood cells
CN115007231B (en) Microfluidic chip for cell-microbead capturing pairing
Čemažar et al. Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields–a review
JP2012076016A (en) Apparatus and method for continuous two-dimensional particle separation
JP2007267635A (en) Cell separation tool and method for separating cell by using the same
Xing et al. Continuous-flow electrokinetic-assisted plasmapheresis by using three-dimensional microelectrodes featuring sidewall undercuts
CN103586093B (en) Microfluidic chip and manufacturing method thereof
Schertzer et al. Mechanical filtration of particles in electrowetting on dielectric devices
WO2021115047A1 (en) Microfluidic chip and whole blood separation method based on microfluidic chip
JP4012111B2 (en) Sample separation filter and electrophoresis device
CN209348659U (en) Micro-fluidic chip and samples fusion device
Zhang et al. High velocity dielectrophoretic cell separation using continuously extended sidewall electrode featuring undercut profile
JP5354324B2 (en) Microchip manufacturing method
TWI448678B (en) Method and device for separating charged particles in liquid sample and manufacturing method of the device
Meng CMOS nanofluidics
Ning Microfluidic devices for cell separation and sample concentration
KR101383887B1 (en) System for trapping and releasing microparticle
US20230241607A1 (en) Flexible material for use in microfluidic or microscale devices for cell or particle manipulation
TWI404802B (en) Methods enable for bio-identification and manipulation of nano-scale biomolecular

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees