TWI274072B - Phosphor material and white light-emitting device using the same - Google Patents

Phosphor material and white light-emitting device using the same Download PDF

Info

Publication number
TWI274072B
TWI274072B TW92122179A TW92122179A TWI274072B TW I274072 B TWI274072 B TW I274072B TW 92122179 A TW92122179 A TW 92122179A TW 92122179 A TW92122179 A TW 92122179A TW I274072 B TWI274072 B TW I274072B
Authority
TW
Taiwan
Prior art keywords
light
fluorescent material
light emitting
wavelength
white light
Prior art date
Application number
TW92122179A
Other languages
Chinese (zh)
Other versions
TW200506041A (en
Inventor
Ru-Shi Liu
Yi-Shan Lin
Liang-Sheng Chi
Chien-Yuan Wang
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW92122179A priority Critical patent/TWI274072B/en
Publication of TW200506041A publication Critical patent/TW200506041A/en
Application granted granted Critical
Publication of TWI274072B publication Critical patent/TWI274072B/en

Links

Abstract

A white light-emitting device comprising a blue-violet or blue light-emitting diode and a phosphor material capable of emitting a yellow-green to orange-yellow light upon excitation by the light emitted by the light-emitting diode. The light from the light-emitting diode and the light from the phosphor material are mixed in an appropriate ratio to produce a white light. The phosphor material has a general formula (YxMyCez)Al5O12, where x+y=3, x, y <> 0, 0.5 > z > 0, and M is selected from the group consisting of Tb, Lu, and Yb, with (YxMy)Al5O12 serving as a host and Ce as an activator. By changing the composition of the metal elements in the host, the crystal field thereof may be modulated to thereby alter the energy level of the excited state to which the activator is transferred upon irradiation by a specific wavelength of light, leading to the change in the emitting wavelength of the phosphor material.

Description

1274072 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種高亮度白光半導體發光裝 置,特別關於一種利用藍紫光或藍光發光二極體配合 螢光粉以製作高亮度白光發光裝置之技術。 【先前技術】 白光乃多顏色之混合光。人眼所感受到的白 光,係為二種以上不同波長光源之混合光。例如,當 人眼同時受紅、藍、綠光之刺激、或同時受到藍光與 黃光之刺激時,均可感受為白光。將此原理應用於白 光半導體發光裝置之設計中,以目前之技術而言,主 要有三種可行方案。其一,係使用三顆分別可發出 紅、藍、綠光之發光二極體,並控制流經各發光二極 體之電流’以產生所需之白光。其二,係使用二顆分 別可發出黃、藍光之發光二極體,並控制流經各發光 二極體 實際應 發光二 之電流,以產生所需之白光。上述二種方法在 用具有缺點,由於其同時使用多個不同顏色之 確之白光。此外,在同 極體,當其中之一發生劣化時,將無法得到正 極體 種可行方案,則是利用 極體配合黃光螢光材料 一白光發光裝置。螢夹从、 &amp;材料受藍光激發所發出 光、與藍光二極體所菸山 ^ t ^ ^ _ ^出之藍光混合後,可產 度之白光。此方法不知— 个但無前述二種方法之缺 兼具驅動電路設計簡县 〇 ^ Π易、生產容易、耗電量牴 較低等優點,故目前夬μ j Λ部分白光半導體發光裝 用此法。 n光裝置中設置多個發光二 亦使其成本較高。第 一氮化銦鎵(InGaN)藍光 而製成 的黃色 生高亮 點,亦 與成本 置均採 曰本曰亞化學公司(Ni ehia Chemical)之中華民 1274072 國專利第1 5 6 1 7 7 I號及美國專利第5 9 9 8 9 2 5號,即為 上述第三種方式之創始技術,其利用藍光發光二極體 照射一螢光物質以產生與藍光互補之黃光,再利用透 鏡原理將黃光、藍光予以混合,使人眼產生白光之視 覺。其理論可由色度座標圖(C.I.E. chromicity diagram)解釋,即藍光與黃光間之連線可通過白光 區。此專利中所揭示之黃光螢光粉成分,係為摻雜鈽 (C e ) 之紀铭石瘤石 (YAG:Ce) ’其一般式為 (Yi-p-q-rGdpCeQSmr)3(Ali-sGas)5〇i2,其中 0·82ρ — 0、 0.2gq20.003、0.08^ r-0.003、l^s-0。 然而,目前商用InGaN型藍光發光二極體,大 部分係採用有機金屬氣相沈積法(M e t a 1 〇 r g a n i c chemical vapor deposition; MOCVD)製成,此種製 程難以控制只產生固定波長之藍光。因此,如何發展 一系列發光波長可調變之黃色螢光粉,使其可適合於 430 nm〜490 nm之藍光,乃為重要之課題。前述日 本日亞化學公司之專利所使用之光色調變方式,係為 添加另一種異質離子。例如,若螢光粉組成為 (Y1 - q C e q) 3 A 15 012,則受激發時可發出主波長 5 4 6 n m 之黃光;若添加釓 (Gd ) 使其組成變為 (Yl-p-qGdpCeq)3Al5〇12,則可使主波長產生紅位移至 5 5 6 nm 〇 雖然添加異質離子確實可達到螢光材料波長調 變之效果,但由於異質離子添加的比例很低,容易因 原料秤取時的些許誤差,即造成產生色光之改變,無 法獲得預期之光波波長。此外,異質離子的種類選擇 性亦較少。 【發明内容】 本發明之目的在於提供一種用於白光發光裝置 1274072 之螢光材料,其可調變發光波長,使其能夠有效搭配 不同發光波長之藍光發光二極體以混合產生白光。 本發明之螢光材料係以(YxMOAlsOu為主體結 構,並以鈽(Ce )為發光中心,其化學式為(YxMy Cez)Al5〇i2,其中 x + y 二 3,x、y^0 且 0·5&gt;ζ&gt;0, Μ係選自铽(Tb )、錙(Lu )及鏡(Yb )等金屬元素 所組成之群組,螢光材料主體結構中的金屬元素組成 比例之變化,可改變其主體晶格之晶格場,藉以調變 螢光材料受激發所發出之光的波長。 利用上述螢光材料製成之白光發光裝置中,具 有一可發出波長為430nm至500nm之藍紫光或藍光 發光二極體作為激發光源,其可激發上述螢光材料, 使其發出主波長為560nm至590nm之黃綠光至燈黃 光。此二者所發出之光經適當比例混合後即可產生白 色光。 目前之藍光發光二極體製程中,短波長之高亮 度藍光製造較為困難。相較於習知技術之螢光材料, 本發明之螢光材料所需搭配之藍光可調整至較長之 波長。並且,由激發光譜中可知,以較長波長之4 7 0 nm藍光激發,其發光效率高於460nm之短波長藍光。 再者,本發明調整光色之方法為改變其主體晶 格。相較於習用之改變異質離子之添加量的方式,因 後者所需添加之異質離子比例較低,極易因原料之秤 取誤差產生光色之改變,本發明之添加比例則較高, 故於製程上具有較佳之穩定性。 【實施方式】 本發明中,係利用铽(Tb )、錙(Lu)及鏡(Yb ) 等金屬離子,來取代習用 (YhCexUlsOu黃色螢光材 料之主體結構中的部分釔離子(Y )。由於Tb、Lu及 1274072BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-brightness white light semiconductor light-emitting device, and more particularly to a technology for producing a high-brightness white light-emitting device using a blue-violet light or a blue light-emitting diode in combination with a phosphor powder. . [Prior Art] White light is a mixed light of multiple colors. The white light perceived by the human eye is a mixture of two or more different wavelengths of light. For example, when the human eye is stimulated by red, blue, and green light, or simultaneously stimulated by blue light and yellow light, it can be perceived as white light. Applying this principle to the design of white light semiconductor light-emitting devices, there are three main feasible solutions in the current technology. First, three light-emitting diodes respectively emitting red, blue, and green light are used, and the current flowing through each of the light-emitting diodes is controlled to generate desired white light. Second, two light-emitting diodes that emit yellow and blue light, respectively, are used, and the current that flows through each of the light-emitting diodes is actually controlled to produce the desired white light. The above two methods have disadvantages in that they use a plurality of different colors of white light at the same time. In addition, in the case of the same body, when one of them deteriorates, it is impossible to obtain a feasible solution of the positive electrode, and the polar body is used in combination with the yellow fluorescent material, and a white light emitting device is used. The white light emitted by the clips from the &amp; material is excited by the blue light and mixed with the blue light emitted by the blue light diode. This method does not know - but the lack of the above two methods has the advantages of driving circuit design, simple county, easy production, low power consumption, etc., so at present, some white semiconductor light emitting devices are used. law. The provision of multiple illuminations in the n-light device also makes it costly. The yellow high-brightness point made by the first indium gallium nitride (InGaN) blue light is also the same as the cost. Ni ehia Chemical, Zhong Huan 1274072 Patent No. 1 5 6 1 7 7 I And U.S. Patent No. 5 9 9 9 2 5, which is the founding technique of the third mode described above, which uses a blue light emitting diode to illuminate a phosphor to generate yellow light complementary to blue light, and then utilizes the principle of a lens. The yellow light and the blue light are mixed to make the human eye produce the vision of white light. The theory can be explained by the C.I.E. chromicity diagram, that is, the connection between blue and yellow light can pass through the white light region. The yellow light fluorescing powder component disclosed in this patent is a yttrium (C e ) kiln stone (YAG:Ce) 'the general formula is (Yi-pq-rGdpCeQSmr) 3 (Ali-sGas) 5〇i2 , where 0·82ρ — 0, 0.2gq20.003, 0.08^ r-0.003, l^s-0. However, most of the commercial InGaN-type blue light-emitting diodes are currently fabricated by metal oxide vapor deposition (MOCVD), which is difficult to control to produce only a fixed wavelength of blue light. Therefore, how to develop a series of yellow fluorescent powders with adjustable wavelengths to make them suitable for blue light from 430 nm to 490 nm is an important issue. The photochromic change method used in the aforementioned Japanese Nichia Chemical Company patent is to add another heterogeneous ion. For example, if the phosphor composition is (Y1 - q C eq) 3 A 15 012, yellow light with a dominant wavelength of 546 nm can be emitted when excited; if 釓(Gd) is added, its composition becomes (Yl- p-qGdpCeq)3Al5〇12, the main wavelength can be red shifted to 5 5 6 nm. Although the addition of heterogeneous ions can achieve the effect of wavelength modulation of fluorescent materials, the proportion of heterogeneous ions is very low. A slight error in the weighing of the raw material causes a change in the color light to be obtained, and the desired wavelength of the light wave cannot be obtained. In addition, the type of heterogeneous ions is less selective. SUMMARY OF THE INVENTION An object of the present invention is to provide a fluorescent material for a white light emitting device 1274072, which can adjust the wavelength of the light emitting light so that it can effectively match the blue light emitting diodes of different light emitting wavelengths to produce white light by mixing. The fluorescent material of the present invention has (YxMOAlsOu as a main structure and has 钸(Ce) as a luminescent center, and its chemical formula is (YxMy Cez)Al5〇i2, where x + y is 2, x, y^0 and 0· 5&gt;ζ&gt;0, the lanthanide is selected from the group consisting of metal elements such as 铽(Tb), 锱(Lu), and mirror (Yb), and the change in the composition ratio of the metal elements in the main structure of the fluorescent material can be changed. a lattice field of the host lattice, whereby the wavelength of the light emitted by the fluorescent material is excited. The white light emitting device made of the above fluorescent material has a blue-violet light or blue light emitting a wavelength of 430 nm to 500 nm. The light-emitting diode serves as an excitation light source for exciting the fluorescent material to emit yellow-green light having a dominant wavelength of 560 nm to 590 nm to a yellow light, and the light emitted by the two is mixed in an appropriate ratio to generate white light. In the current blue light-emitting diode process, short-wavelength high-brightness blue light is difficult to manufacture. Compared with the fluorescent material of the prior art, the blue light required for the fluorescent material of the present invention can be adjusted to a longer wavelength. And by the excitation spectrum It is known that the long-wavelength blue light is excited by a longer wavelength of 480 nm blue light, and the light-emitting efficiency is higher than the short-wavelength blue light of 460 nm. Furthermore, the method for adjusting the color of light in the present invention is to change the main crystal lattice of the host. The heterogeneous ion is changed compared with the conventional one. The method of adding the amount, because the latter needs to add a lower proportion of heterogeneous ions, it is easy to change the color of the light due to the weighing error of the raw material, and the addition ratio of the invention is higher, so the stability is better in the process. [Embodiment] In the present invention, a metal ion such as strontium (Tb), strontium (Lu) or mirror (Yb) is used instead of a part of the ytterbium ion (Y) in the main structure of the YhCexUlsOu yellow fluorescent material. Due to Tb, Lu and 12774072

Yb等離子與γ離子具有相同之價數與相近之離子半 徑,因此彼此具有極高之相互取代性,而可形成一單 相結構之固態溶液。藉由變化螢光材料主體結構中的 金屬元素組成比例,可調變螢光材料之發光波長,使 其能夠有效搭配不同發光波長之藍光發光二極體,藉 以混合產生白光。 本發明螢光材料發光波長之調變原理係參照第 一圖與第二圖詳述如下。 純釔鋁石榴石晶體的價帶與傳導帶間之能隙相 當於紫外光之能量,因而其本身無法被可見光所激 發,亦即不吸收可見光,故粉體顏色呈白色。若於純 相之釔鋁石榴石中添加不同之稀土族離子,則可放射 不同顏色之螢光。例如,摻雜三價鈽(Ce3+ )於晶格 中取代釔之位置時,亦即化學式為(Y3-xCex ) AlsOu 或Y A G : C e3 +,則可被4 7 0 n m之藍光激發而產生黃色 之螢光。此外,摻雜三價铽(Tb3+ )可受激發而產生 綠光,摻雜三價銪(Eu3+ )可受激發而產生紅光,而 摻雜三價鉍(B i3+ )則可受激發而產生藍光。不同於 上述習知技術利用摻雜不同離子來發出不同波長的 光,相對地,本發明則利用調整主體結構之成分,使 摻雜同一種金屬之螢光材料亦可發出不同波長的 光。此乃基於同一離子於不同主體結構中所感應之晶 格場強度不同,進而使發光波長產生位移。所謂的「晶 格場理論 (crystal field theory)」主要係考量靜 電作用力,以點電荷模型處理金屬離子於錯合物及晶 體化合物中能階之分裂。假設金屬離子配位基及周圍 環境均視為不具結構、無電子軌域之點電荷,由此建 立一靜電場。晶格場理論即在處理此靜電場對於金屬 離子d執域上電子之作用。 10 1274072 第一圖顯示中心金屬處於正八面體(〇h)及正 四面體(Td )對稱環境時d電子軌域與周圍配位基電 子之作用,其中,實心圓點為配位基處於正四面體之 對稱位置,空心圓點則處於正八面體之對稱位置。由 群論(group theory)可知,d軌域可分別歸納為 t2g 及 eg兩種表象。於正八面體中,屬於 t2g之執域有 d X y、d y Z及d X Z ’而屬於e g則有d X - y與d Z ’於執域 球面内之電子密度達 90 %以上。由於電子帶有負電 荷,而周圍配位基就其電性而言亦屬負電性,因此對 於執域上之電子而言,兩者之間的作用力屬於靜電排 斥力。由第一圖可知,屬eg表象之d執域(dx2-y2與 dz2 )正對軸上之配位基電荷,導致排斥力較大,因 而此等執域幸父t 2 g表象之d軌域(dxy、dyz及d X Z )不 穩定,導致能量上升,產生能階分裂。如前所述之晶 格場理論,三價鈽(Ce3+)之電子組態為[XeMf1,其 4f 執域受自旋-執域偶合作用(spin - orbital coupling)分裂為2F5/2及2F?/2,而其5d執域則受到 晶格場之作用產生分裂。以铽(Tb )為例,第二圖之 左側及右側分別之顯示以铽(Tb )與釔(Y )為主體 晶格時之能階圖。如圖所示,當 Ce3+以 TbsAlsO^為 主體結構時,相較於Ce3+以YsAlsO^為主體結構的情 況,前者所形成之晶格場強度較大。因此,以Tb離 子取代主體晶格中的Y離子,將使發光中心之Ce34 的5 d電子能階分裂程度增大,減少由5 d軌域之最低 能階回到4 f能階之能量,亦即Δ E 1 &lt; Δ E 2,藉此使發 光波長產生紅位移。 更具體言之,本發明之螢光材料之成分係為 (YxMy Cez)Al5〇12,(YxMJAlsOu 為其主體結構,Ce 為 發光中心,其中x + y = 3且x、y^0,0·5&gt;ζ&gt;0, 11 72 ο7412 變 之至U改 裂遷‘量 使 分躍,能 階而變之 選成構中能發改態。 係組結光域激度基變 Μ所體發軌到強至改 镏 用 利 可 明 發一 本成 本組 , 、此之 }藉素 Tb。元 C組屬 铽群金 自之中 镱 及 之 受 所 子 0 e C 心 不 發 激 由 其 域態 而 因 明光 發紫 本藍 黃 之 述之nm 上rlm90可於 Π 9 ο 5後用 50至合應 素主使5d受場解地 元料,之態格緩應 屬材度e基晶式相 金光強C之於方色 等榮場成f 由 }變袼造 , ΓΓΤ NJ, b文晶,ΐ Υ改 子態 離發 激 晶 其 變 同 以 用當階最其 作h能之使 同 同 不 力 e 光光 放與 經長 階波 能光 低發 料 材 光 螢 之 發 激 光 藍 或 光 黃 橙 至 光 綠 白置 之裝 度光 亮發 高光 生白 產一 形 源料合 光材混 發之光 激光藍 為黃之 作出體。 體發極源 極而二光 可激 合受 配使 至nm混可二 m ο經料光 Π no 5光材發 30為之光光 4長出螢藍 為波發種一 長主所此用 波出者,利 受發二此卜 可而,因Ϊ 光製 色之 光 白 成 發光光 激發白 所光之 光藍度 藍與亮 之光高 長黃 一 波之得 用生製 選產而 受發 材可光, 螢度 明亮 發與 本長 波 的 體 極 二 光 發 光 藍 與 例 比 合 混 之 料 定 決 算 *t+ 式 公 色 混 用 利 本即 據成 根組 格 晶 料 材 光 螢 之 明 發 性 特 之 長 波 光 發 其 整 間 可 體不 主配 變搭 改可 由而 藉因 有, 具 係 利極 且, ,產 置生 裝量 光大 發於 光利 白有 成, 製成 而合 體可 極即 二法 光應。 發反值 光態價 藍固用 之之應 長單業 波簡產 同用具 中光例 由 置發 裝之 光性 發特 光電 白省 之具 成由 製乃 所源 料光 材發 光激 螢光 之藍 明或 發光 本紫 用藍 Ξ:於 生, 產後 所裝 體封 極經 同 當 適 合 己 西 比發 合一 混得 料獲 材可 光即 螢, 之流 ^00 己噚 酉 之 低 極 以 施 需 僅 12 1274072 光特性極佳之高亮度白光發光二極體。 關於本發明之螢光材料的製作方法,可視實際 需求而採用例如固態燒結法、凝膠法與共沉法等化學 法、或其他合適之方法。以下以M = Tb例舉二實施例 與一比較例作進一步之說明。 〈實施例一〉 一、 依化學計量比分別取 3 · 1 7 5 0克之硝酸釔 Υ(Ν〇3)3· 6H2〇、8.6 4 0 0 克之硝酸鋁 Α1(Ν〇3)3·9Η2〇、 0.1000 克之硝酸鈽 Ce(N〇3)3· 6Η2〇、與 8.6400 克之 氧化錢(Tb4〇7),使其形成(Yl.8〇Tbl.2〇Ce〇.0 5)Al5〇12。 ❿ 將秤取之原料以研磨方式均勻混合。 二、 將混合物置入坩堝中,並於空氣中以5 QC / 分鐘之升温速率加熱至 1 0 0 0 °C進行鍛燒 (c a 1 c i n a t i ο η )。2 4小時後,以5 °C /分鐘之降溫速 率冷卻至室溫。 三、 研磨鍛燒後之粉末,再將之置於坩堝中, 並於空氣中以1 5 0 0 °C燒結(s i n t e r i n g ) 2 4小時,燒 結步驟之升降溫速率仍為5 °C /分鐘。 胃 四 '研磨燒結後之粉末,再將之置於 H2/N2 (5°/〇/95°/〇 )之還原氣氛中,以 1 5 0 0 °C進行還原 (reduction) 1 2小時。此步驟為選擇性步驟,而非 必要步驟。其目的在於將樣品中之 Ce4 +離子還原成 Ce3+,藉以提高其發光亮度。 〈實施例二〉 一、依化學計量比分別取 4 · 1 8 9 7克之硝酸釔 13 1274072 Υ(Ν〇3)3 · 6H2〇、8· 64 0 0 克之硝酸鋁 A1 (Ν〇3)3·9Η2〇、 0·1000 克之硝酸鈽 Ce(N〇3)3· 6Η2〇、與 0.2836 克之 氧化錢(Tb4〇7),使其形成(Υ2. 375Tb 0 625 Ce〇.05)Al5〇12。 將秤取之原料以研磨方式均勻混合。 二、 將混合物置入坩堝中,並於空氣中以5 °C / 分鐘之升溫速率加熱至 1 0 0 0 °C進行鍛燒。2 4小時 後,以5 °C /分鐘之降溫速率冷卻至室温。 三、 研磨鍛燒後之粉末,將之再置於坩堝中, 在空氣中以1 5 0 0 °C燒結2 4小時,燒結步驟之升降溫 速率仍為5 °C /分鐘。 四、 研磨燒結後之粉末,再將之置於 H2/N2(5°/g/95%)之還原氣氛中,以1 5 0 0 °C進行還原12 小時。 〈比較例一〉 一、 依化學計量比分別取 5 · 2 9 2 3克之硝酸釔 Υ(Ν〇3)3· 6H2〇、8.6 4 0 0 克之硝酸鋁 Α1(Ν〇3)3·9Η2〇、 與 0.1 0 0 0克之硝酸鈽 Ce(N〇3)3· 6Η2〇,使其形成 (Y3Ce〇.G5) AhOu。將秤取之原料以研磨方式均勻混 合。 二、 將混合物置入坩堝中,並於空氣中以5 °C / 分鐘之升溫速率加熱至 1 0 0 0 °C進行鍛燒。2 4小時 後,以5 °C /分鐘之降溫速率冷卻至室溫。 三、 研磨鍛燒後之粉末,將之再置於坩堝中, 在空氣中以1 5 0 0 °C燒結2 4小時,燒結步驟之升降溫 1274072 速率仍為5 °C /分鐘。 四、研磨燒結後之粉末,再將之置於 }12/1(5%/95%)之還原氣氛中,以1 5 0 0 °(:進行還原12 小時。 最後,將上述各實施例及比較例所製得之螢光 材料冷卻至室溫後取出,並以研妹研磨之。接著,利 用光激發光光譜儀量測其發光特性,所測得之特性係 顯示於第三至第五圖中。 第三圖係根據本發明實施例一所合成之 籲 (YuTbuCeudAhOu螢光材料之激發光譜(A)與 發射光譜(Bl、B2 ),其中光譜B1係以47 0 nm之藍 光激發,光譜B1則係以4 6 0 nm之藍光激發。如第三 圖所示,當以 470 nm 之藍光激發 (Yi.8〇Tbi.2〇Ce().()5)Al5〇i2 螢光材料時’相較於以 460 nm 之藍光激發同一螢光材料,前者具有較高之發光效 率。由此可知本發明之螢光材料在長波長之藍光下激 發,可獲得較佳之效率。 第四圖中顯示具有不同Tb與Y比例之螢光材料 的發射光譜,其中,C為依據比較例一所製造之 (Y3Ce〇.05)Al5〇12螢光材料之發射光譜,D為依據實施 例二所製造之(Y2.375Tbo.625 Ce〇.05)Al5〇12螢光材料之 發射光譜,及 E 為依據實施例一所製造之 (Yl.8〇Tbl.2〇Ce().0 5)Al5〇12榮光材料之發射光譜。如第 四圖所示,比較例一之 (Y 3 C e G . 0 5 ) A 1 5 0 1 2螢光材料以 15 1274072 470 nm藍光激發時,其發射光譜之峰值為546 nm; 實施例二係添加不同比例之釔離子及铽離子,使其化 學組成為(Y2.375Tbo.625 Ce〇.〇5)Al5〇i2,受 470 nm 藍光 激發時,其發射光譜之峰值為 5 4 8 n m ;實施例一添 加铽離子之比例又較實施例二為高,其化學組成為 (Yi.8〇Tbi_2〇Ce〇.〇5)Al5〇i2,受 470 nm 藍光激發時’其 發射光譜之峰值為5 5 2 n m。由此可知,當T b之比例 逐漸增加時,發光材料受激發之發射光譜將產生紅位 移現象。故本發明利用改變螢光材料主體結構中金屬 籲 元素之組成,以調變其晶格場強度,使發光中心所感 受之作用力之不同,進而造成其發光波長之改變,其 效果可於此獲得證實。 第五圖顯示具有不同Tb與Y比例之螢光材料之 色度座標圖,其中F點為第四圖中之光譜C經程式轉 換後所得之色度座標點,G點為第四圖中之光譜D經 程式轉換後所得之色度座標點,及Η點為第四圖中之 0 光譜Ε經程式轉換後所得之色度座標點。如第五圖之 C I Ε色度座標圖所示,當Tb之比例逐漸增加時,色 度座標確實往長波長之方向移動,由此更加磘定本發 明之波長調變之功效。 雖然本發明已參照實施例及附圖說明如上,惟 其應被視為舉例性而非限制性者。本發明之範圍為由 隨附之申請專利範圍所限定而非由上述說明所限 制。所有根據本發明之精神所做成之修改與變化,均 16 1274072 應包含於本發明之範圍中。The Yb plasma has the same valence and similar ionic radius as the gamma ion, and thus has a very high mutual substitution with each other, and can form a solid solution of a single phase structure. By changing the composition ratio of the metal elements in the main structure of the fluorescent material, the wavelength of the light-emitting material can be adjusted to enable it to effectively match the blue light-emitting diodes of different light-emitting wavelengths, thereby mixing and generating white light. The principle of modulation of the wavelength of the luminescent material of the present invention is as follows with reference to the first and second figures. The energy gap between the valence band and the conduction band of pure yttrium aluminum garnet crystal is equivalent to the energy of ultraviolet light, so it cannot be excited by visible light itself, that is, it does not absorb visible light, so the color of the powder is white. If different rare earth ions are added to the pure phase yttrium aluminum garnet, different colors of fluorescence can be emitted. For example, when doped trivalent europium (Ce3+) is substituted for the position of yttrium in the crystal lattice, that is, the chemical formula is (Y3-xCex)AlsOu or YAG:C e3 + , it can be excited by blue light of 470 nm to produce yellow. Fluorescent. In addition, the doped trivalent europium (Tb3+) can be excited to generate green light, the doped trivalent europium (Eu3+) can be excited to generate red light, and the doped trivalent europium (B i3+ ) can be excited to generate Blu-ray. Different from the above-mentioned prior art, different ions are doped to emit light of different wavelengths. In contrast, the present invention utilizes the composition of the main structure to make the fluorescent material doped with the same metal emit light of different wavelengths. This is based on the difference in the intensity of the lattice field induced by the same ion in different host structures, which in turn causes the wavelength of the emitted light to shift. The so-called "crystal field theory" mainly considers the electrostatic force, and uses a point charge model to treat the division of metal ions in the complex and in the crystalline compound. It is assumed that the metal ion ligand and the surrounding environment are regarded as point charges having no structure and no electronic orbital, thereby establishing an electrostatic field. The lattice field theory deals with the action of this electrostatic field on the electrons in the domain of metal ions d. 10 1274072 The first figure shows the role of the d-electron domain and the surrounding ligand electrons in the symmetrical environment of the regular octahedron (〇h) and the tetrahedral (Td), where the solid dot is positive for the ligand. The symmetrical position of the tetrahedron, the hollow dot is in the symmetrical position of the regular octahedron. It can be seen from the group theory that the d-track domain can be summarized into two representations of t2g and eg, respectively. In the regular octahedron, the domain belonging to t2g has d X y, d y Z and d X Z ′ and the e g has d X - y and d Z '. The electron density in the sphere is more than 90%. Since the electrons have a negative charge and the surrounding ligands are also negatively charged in terms of their electrical properties, the force between the two is electrostatically repulsive for the electrons in the domain. It can be seen from the first figure that the d-domain (dx2-y2 and dz2) belonging to the eg image is directly opposite to the ligand charge on the axis, resulting in a large repulsive force, and thus the d-track of the T2 g representation of the domain The domains (dxy, dyz, and d XZ ) are unstable, causing energy to rise and generate energy level splits. As mentioned above, the lattice field theory, the electronic configuration of trivalent cesium (Ce3+) is [XeMf1, whose 4f domain is split into 2F5/2 and 2F by spin-orbital coupling? /2, and its 5d domain is split by the action of the lattice field. Taking 铽 (Tb) as an example, the left and right sides of the second figure respectively show the energy level diagrams when 铽(Tb) and 钇(Y) are the main lattices. As shown in the figure, when Ce3+ has TbsAlsO^ as the main structure, the lattice field strength formed by the former is larger than that of Ce3+ with YsAlsO^ as the main structure. Therefore, replacing the Y ion in the host lattice with Tb ions will increase the 5 d electron energy level splitting of the Ce34 at the center of the luminescence, and reduce the energy from the lowest energy level of the 5 d orbital domain to the energy level of the 4 f energy level. That is, Δ E 1 &lt; Δ E 2 , thereby causing a red shift in the emission wavelength. More specifically, the composition of the fluorescent material of the present invention is (YxMy Cez)Al5〇12, (YxMJAlsOu is its main structure, Ce is a luminescent center, where x + y = 3 and x, y^0, 0· 5&gt;ζ&gt;0, 11 72 ο7412 Change to U change cleavage 'quantity makes the jump, energy level change and select the structure to change the state. To the strong to change the use of Li Keming to send a cost group, and this} lends the Tb. The yuan C group belongs to the group of gold from the middle and the recipient of the object 0 e C heart does not stimulate its domain state And because of the light, the purple, the blue, the yellow, the rlm90 can be used after Π 9 ο 5, and 50 to the lysine is used to make the 5d field-resolved material, and the state is slow to respond to the degree e-based crystal phase Jinguangqiang C In the case of square color and other glory fields, it is changed from } to J, ΓΓΤ NJ, b 晶晶, Υ Υ 子 子 子 离 离 离 子 子 子 子 子 子 子 子 子 子 最 最 最 最 最 最 最 最 最 最 最 最Light release and long-term wave energy light low-emitting material light flashing laser blue or light yellow orange to light green white set of light bright high light white production one-shaped source material light The laser light blue of the material is made of yellow. The body is extremely polar and the two light can be excited to be matched to the nm. The light can be mixed with the m. The light is no. The light is 30. Fluorescent blue is a long-term master of the wave, and it is used by the wave, because the light of the light is white, the light is illuminating, and the light is blue and the light is high. Chang Huang Yi Bo has to use the raw system to select the production and the hair is light, the fluorescing bright hair and the long wave of the body two light blue and the example ratio of the material to determine the final settlement *t + type of public color mixed with the benefits of the roots The group of crystal materials, the light and the fire, the special characteristics of the long-wave light, the whole body can be replaced by the main body, and the cause can be used, and the system is extremely advantageous, and the production capacity is large. It is made in white, and it can be made into a combination of two methods. The counter-valued light state is blue and the solid is used. The single-industry wave is produced in the same way as the light in the light. The province’s system of production is the source of light and light. Light purple with blue enamel: Yu Sheng, post-natal body seals are suitable for the same as the West than the hair, a mixed material can be light, that is, firefly, the flow of ^00 噚酉 噚酉 低 以 以 施12 1274072 High-brightness white light-emitting diode with excellent light characteristics. Regarding the method for producing the fluorescent material of the present invention, a chemical method such as a solid state sintering method, a gel method or a coprecipitation method, or other suitable methods may be employed depending on actual needs. The following is a further description of the second embodiment and a comparative example with M = Tb. <Example 1> 1. According to the stoichiometric ratio, 3 · 1 75 50 g of lanthanum nitrate (Ν〇3)3·6H2〇, 8.6 4 0 0 g of aluminum nitrate Α1(Ν〇3)3·9Η2〇 0.1000 g of lanthanum nitrate Ce(N〇3)3·6Η2〇, and 8.6400 g of oxidized money (Tb4〇7) to form (Yl.8〇Tbl.2〇Ce〇.0 5)Al5〇12.均匀 Mix the raw materials of the scale evenly by grinding. 2. The mixture was placed in a crucible and heated in air at a heating rate of 5 QC /min to 1000 ° C for calcination (c a 1 c i n a t i ο η ). After 2 hours, cool to room temperature at a cooling rate of 5 °C / min. 3. The calcined powder is ground, placed in a crucible, and sintered (1 i n t e r i n g ) in air at 150 ° C for 24 hours, and the rate of rise and fall of the sintering step is still 5 ° C / min. Stomach 4' After grinding the sintered powder, it was placed in a reducing atmosphere of H2/N2 (5 ° / 〇 / 95 ° / 〇) and subjected to reduction at 150 ° C for 12 hours. This step is an optional step, not a necessary step. Its purpose is to reduce the Ce4+ ions in the sample to Ce3+, thereby increasing the luminance of the light. <Example 2> 1. According to the stoichiometric ratio, 4 · 1 8 9 7 gram of lanthanum nitrate 13 1274072 Υ(Ν〇3)3 · 6H2〇, 8·64 0 0 gram of aluminum nitrate A1 (Ν〇3)3 · 9Η2〇, 0·1000 grams of cerium nitrate Ce(N〇3)3·6Η2〇, and 0.2836 grams of oxidized money (Tb4〇7) to form (Υ2. 375Tb 0 625 Ce〇.05) Al5〇12. The material to be weighed is uniformly mixed by grinding. 2. The mixture was placed in a crucible and heated in air at a heating rate of 5 ° C / min to 1000 ° C for calcination. After 2 hours, cool to room temperature at a cooling rate of 5 °C / min. 3. The calcined powder is ground, placed in a crucible, and sintered in air at 150 ° C for 24 hours, and the temperature rise and fall of the sintering step is still 5 ° C / min. 4. The sintered powder was ground and placed in a reducing atmosphere of H2/N2 (5°/g/95%) and reduced at 150 °C for 12 hours. <Comparative example 1> 1. According to the stoichiometric ratio, take 5 · 2 9 2 3 grams of lanthanum nitrate (Ν〇3)3·6H2〇, 8.6 4 0 0g of aluminum nitrate Α1(Ν〇3)3·9Η2〇 It is formed with (Y3Ce〇.G5) AhOu with 0.10 gram of cerium nitrate Ce(N〇3)3·6Η2〇. The material to be weighed is uniformly mixed by grinding. 2. The mixture was placed in a crucible and heated in air at a heating rate of 5 ° C / min to 1000 ° C for calcination. After 2 hours, cool to room temperature at a cooling rate of 5 °C / min. 3. The calcined powder is ground, placed in a crucible, and sintered in air at 150 ° C for 24 hours. The temperature of the sintering step is 1274072 and the rate is still 5 ° C / min. 4. Grinding the sintered powder, and then placing it in a reducing atmosphere of ≤12/1 (5%/95%), and performing reduction at 1500 ° (for 12 hours). Finally, the above examples and The fluorescent material prepared in the comparative example was cooled to room temperature, taken out, and ground by a spectroscopy. Then, the luminescent property was measured by a photoexcited light spectrometer, and the measured characteristics were shown in the third to fifth figures. The third figure is the excitation spectrum (A) and the emission spectrum (Bl, B2) of the YuTbuCeudAhOu fluorescent material according to the embodiment of the present invention, wherein the spectrum B1 is excited by blue light of 47 0 nm, and the spectrum B1 It is excited by blue light of 460 nm. As shown in the third figure, when excited by blue light of 470 nm (Yi.8〇Tbi.2〇Ce().()5)Al5〇i2 fluorescent material' Compared with the excitation of the same fluorescent material with blue light of 460 nm, the former has higher luminous efficiency. It can be seen that the fluorescent material of the present invention is excited by long-wavelength blue light, and better efficiency can be obtained. An emission spectrum of a fluorescent material having different ratios of Tb to Y, wherein C is manufactured according to Comparative Example 1 (Y3) Ce〇.05) emission spectrum of Al5〇12 fluorescent material, D is the emission spectrum of (Y2.375Tbo.625 Ce〇.05) Al5〇12 fluorescent material manufactured according to Example 2, and E is based on implementation The emission spectrum of the (Yl.8〇Tbl.2〇Ce().0 5)Al5〇12 glory material manufactured in Example 1. As shown in the fourth figure, Comparative Example 1 (Y 3 C e G . 0 5 When the A 1 5 0 1 2 fluorescent material is excited by 15 1274072 470 nm blue light, the peak of its emission spectrum is 546 nm; in the second embodiment, different ratios of strontium ions and strontium ions are added to make the chemical composition (Y2. 375Tbo.625 Ce〇.〇5) Al5〇i2, when excited by 470 nm blue light, its emission spectrum peaks at 548 nm; in Example 1, the ratio of strontium ions added is higher than that in the second embodiment, and its chemical group It becomes (Yi.8〇Tbi_2〇Ce〇.〇5)Al5〇i2, and its peak of emission spectrum is 552 nm when excited by 470 nm blue light. It can be seen that when the proportion of T b is gradually increased, the luminescence The excited emission spectrum of the material will produce a red displacement phenomenon. Therefore, the present invention utilizes the composition of the metal-calling element in the main structure of the fluorescent material to modulate its lattice field. The intensity, which makes the difference in the force felt by the illuminating center, and thus the change of its illuminating wavelength, can be confirmed by this. The fifth figure shows the chromaticity coordinate diagram of the fluorescent material with different Tb and Y ratios, wherein Point F is the chromaticity coordinate point obtained by the conversion of the spectrum C in the fourth figure, and G point is the chromaticity coordinate point obtained by the conversion of the spectrum D in the fourth figure, and the defect is in the fourth picture. The chromaticity coordinate point obtained after the 0 spectrum is converted by the program. As shown in the C I Ε chromaticity coordinate diagram of the fifth figure, when the proportion of Tb is gradually increased, the chromaticity coordinates are surely moved in the direction of the long wavelength, thereby further determining the effect of the wavelength modulation of the present invention. The present invention has been described above with reference to the embodiments and the accompanying drawings. The scope of the invention is defined by the scope of the appended claims and not by the description. All modifications and variations made in accordance with the spirit of the invention are intended to be included in the scope of the invention.

1717

Claims (1)

1274072 拾、申請專利範圍: 1. 一種白光發光裝置,包含: 一發光二極體元件,可發出一預定波長之光;及 一螢光材料,其可受該發光二極體所發出之光激 發,而發出另一波長之光,該發光二極體所發出之 光與該螢光材料受激發所發出之光可混合而形成 白光, 其中,該螢光材料係以(YxMy)Al5(h2為主體結 構,並以# (Ce)為發光中心,其化學式為(YxMy Cez)Al5〇i2,其中 X + y = 3,x、y^0 且 0·5&gt;ζ &gt; 0,Μ係選自铽(Tb )、錙(Lu )及镱(Yb )等金 屬元素所組成之群組,該螢光材料主體結構中的金 屬元素組成比例之變化,可改變其主體晶格之晶格 場,藉以調變該螢光材料受激發所發出之光的波 長。 2. 如申請專利範圍第1項之白光發光裝置,其中, 該發光二極體所發出之光的主波長(domination wavelength)係介於 430 nm 至 500 nm 之範圍。 3. 如申請專利範圍第1項之白光發光裝置,其中, 該螢光材料受激發所發出之光的主波長 (domination wavelength)係介於 560 nm 至 590 nm之範圍。 4. 如申請專利範圍第1項之白光發光裝置,其中, 該螢光材料之原料粉體係選自金屬化合物之氧化 18 1274072 物、瑣酸鹽、有機金屬化合物及金屬鹽類所組成 之群組。 5. 如申請專利範圍第1項之白光發光裝置,其中, 該螢光材料係以固態燒結法製成。 6. 如申請專利範圍第1項之白光發光裝置,其中, 該螢光材料係以化學法製成。 7. 如申請專利範圍第6項之白光發光裝置,其中, 該化學法係為凝膠法。 8. 如申請專利範圍第6項之白光發光裝置,其中, 該化學法係為共沉法。 9. 一種螢光材料,用於一白光發光裝置中,其可受 一發光二極體所發出之預定波長之光激發,而發 出另一波長之光,該發光二極體所發出之光與該 螢光材料受激發所發出之光可混合而形成白光, 該螢光材料係以(YxMyUhO^為主體結構,並以鈽 (Ce )為發光中心,其化學式為(YxMy CezUlsOu, 其中 x + y = 3,x、y^0 且 0·5&gt;ζ&gt;0,Μ 係選 自铽(Tb )、錙(Lu )及鏡(Yb )等金屬元素所組 成之群組’該榮光材料主體結構中的金屬元素組 成比例之變化,可改變其主體晶格之晶格場,藉 以調變該螢光材料受激發所發出之光的波長。 10. 如申請專利範圍第9項之螢光材料,其中,該 發光二極體所發出之光的主波長(domination wavelength)係介於 430 nm 至 500 nm 之範圍。 19 1274072 11. 如申請專利範圍第9項之螢光材料,其中,該 螢光材料受激發所發出之光的主波長 (domination wavelength)係介於 560 nm 至 590 n m之範圍。 12. 如申請專利範圍第9項之螢光材料,其原料粉 體係選自金屬化合物之氧化物、硝酸鹽、有機金 屬化合物及金屬鹽類所組成之群組。 13. 如申請專利範圍第9項之螢光材料,其係以固 態燒結法製成。 _ 14. 如申請專利範圍第9項之螢光材料,其係以化 學法製成。 15. 如申請專利範圍第14項之螢光材料,其中,該 化學法係為凝膠法。 16. 如申請專利範圍第1 4項之螢光材料,其中,該 化學法係為共沉法。 201274072 Pickup, Patent Application Range: 1. A white light emitting device comprising: a light emitting diode element that emits light of a predetermined wavelength; and a fluorescent material that is excited by light emitted by the light emitting diode And emitting light of another wavelength, the light emitted by the light emitting diode and the light emitted by the fluorescent material being mixed to form white light, wherein the fluorescent material is (YxMy)Al5 (h2 is The main structure, with # (Ce) as the illuminating center, its chemical formula is (YxMy Cez)Al5〇i2, where X + y = 3, x, y^0 and 0·5&gt; ζ &gt; 0, Μ is selected from a group of metal elements such as T(Tb), 锱(Lu), and 镱(Yb), the change in the composition ratio of the metal elements in the main structure of the luminescent material, which can change the lattice field of the host lattice, thereby The wavelength of the light emitted by the fluorescent material is excited. 2. The white light emitting device of claim 1, wherein the domination wavelength of the light emitted by the light emitting diode is between Between 430 nm and 500 nm. 3. If the scope of patent application is item 1 The white light emitting device, wherein the domination wavelength of the light emitted by the fluorescent material is in the range of 560 nm to 590 nm. 4. The white light emitting device according to claim 1, wherein The raw material powder system of the fluorescent material is selected from the group consisting of oxidized 18 1274072 metal compound, tribasic acid salt, organometallic compound and metal salt. 5. The white light emitting device according to claim 1 of the patent scope, The fluorescent material is produced by a solid state sintering method. 6. The white light emitting device of claim 1, wherein the fluorescent material is chemically produced. A white light emitting device, wherein the chemical method is a gel method. 8. The white light emitting device according to claim 6, wherein the chemical method is a co-precipitation method. In a white light emitting device, it can be excited by light of a predetermined wavelength emitted by a light emitting diode to emit light of another wavelength, and the light emitted by the light emitting diode and the fluorescent material are excited. The emitted light can be mixed to form white light. The fluorescent material is composed of (YxMyUhO^ as the main structure and has 钸(Ce) as the illuminating center, and its chemical formula is (YxMy CezUlsOu, where x + y = 3, x, y ^0 and 0·5&gt;ζ&gt;0, Μ is a group consisting of metal elements such as 铽(Tb), 锱(Lu), and mirror (Yb), and the metal element composition ratio in the main structure of the glory material The change can change the lattice field of the host lattice to thereby modulate the wavelength of the light emitted by the phosphor material. 10. The fluorescent material of claim 9, wherein the light emitting diode has a domination wavelength in the range of 430 nm to 500 nm. 19 1274072 11. The fluorescent material of claim 9, wherein the fluorescent material is excited to emit a dominant wavelength in the range of 560 nm to 590 n m. 12. The phosphor material according to claim 9 wherein the raw material powder system is selected from the group consisting of oxides, nitrates, organic metal compounds and metal salts of metal compounds. 13. A fluorescent material as claimed in claim 9 which is produced by solid state sintering. _ 14. Fluorescent materials as claimed in item 9 of the patent application are made by chemical methods. 15. The fluorescent material of claim 14, wherein the chemical method is a gel method. 16. The fluorescent material of claim 14 of the patent application, wherein the chemical method is a co-precipitation method. 20
TW92122179A 2003-08-12 2003-08-12 Phosphor material and white light-emitting device using the same TWI274072B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92122179A TWI274072B (en) 2003-08-12 2003-08-12 Phosphor material and white light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92122179A TWI274072B (en) 2003-08-12 2003-08-12 Phosphor material and white light-emitting device using the same

Publications (2)

Publication Number Publication Date
TW200506041A TW200506041A (en) 2005-02-16
TWI274072B true TWI274072B (en) 2007-02-21

Family

ID=38623029

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92122179A TWI274072B (en) 2003-08-12 2003-08-12 Phosphor material and white light-emitting device using the same

Country Status (1)

Country Link
TW (1) TWI274072B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645488B2 (en) * 2017-11-09 2020-02-14 信越半導体株式会社 Semiconductor phosphor

Also Published As

Publication number Publication date
TW200506041A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
CN104877675A (en) Mixed-valence-state europium (Eu) ion doped single-matrix color-adjustable fluorescent powder and preparation method thereof
Tian et al. A new oxyapatite red phosphor Eu3+-doped Ca3Y7 (BO4)(SiO4) 5O: synthesis, structure and luminescence properties
Jia et al. Engineering mixed polyanion red-emitting Rb2Bi (PO4)(WO4): Eu3+ phosphors with negligible thermal quenching and high quantum yield
CN101694862B (en) Warm white light light-emitting diode (LED) and lithium matter fluorescent powder thereof
CN101307228B (en) Chlorine-aluminosilicate fluorescent powder and method for preparing same
TWI390766B (en) Blue - green light emitting semiconductors and their fluorescent powder
CN103555327A (en) Near ultraviolet excitation double perovskite fluorescent powder for white light LED and preparation method thereof
Naixu et al. Luminescent properties and energy transfer of color-tunable Sr3Y2 (SiO3) 6: Ce3+, Tb3+ phosphors
TW559627B (en) Method for producing bright white light diode with fluorescent powder
Ren et al. Luminescence properties and energy transfer of LaAl2. 03 (B4O10) O0. 54: Dy3+, Eu3+ phosphors
CN109181697A (en) A kind of niobates fluorescent powder of strong red emission and preparation method thereof
CN110591711B (en) Gallate red fluorescent powder for white light LED and preparation method thereof
CN112852422A (en) White LED fluorescent material and preparation method thereof
TWI274072B (en) Phosphor material and white light-emitting device using the same
CN103602335B (en) Blue fluorescent powder for white light LED and preparation method thereof
TW200537706A (en) White light-emitting apparatus
CN106590657B (en) A kind of lutetium aluminate green fluorescent powder and its preparation method and application
TWI326704B (en) A phosphor and method for making the same
CN109111912A (en) A kind of preparation of high power white LED nano-cluster core-shell fluorescent powder
CN106281313B (en) A kind of silicate fluorescent powder and its preparation method and application
CN103468261B (en) White light phosphor taking titanate as single substrate and preparation method of white light phosphor
CN106978174A (en) A kind of tungsten boric acid lanthanum fluorescent material of doping and preparation method and application
CN114381266B (en) Dynamic fluorescent lighting material and preparation method thereof
KR102113044B1 (en) Lithium-based garnet phosphor, preparing method of the same, and luminescent property of the same
CN107033896A (en) A kind of blue fluorescent powder for white-light LED and preparation method and application

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees