1272423 九、發明說明: 【發明所屬之技術領域】 本發明主要是關於半穿半反式液晶顯示裔,特別是關於單晶胞間隙(ceu gap)型之半穿半反式液晶顯示器。 【先前技術】 液晶顯示器一般可分成3類:穿透式液晶顯示器、反射式液晶顯示器和 半牙午反式液晶痛示器。然而穿透式液晶减示器中來自背光源之穿透率偉 3 8/),故為一低效率之光轉換器。因此穿透式液晶顯示器之背光裝置必須4 有高亮度,但也導致高耗電的問題。反射式液晶顯示器係使用週遭之光源以 成像,故可節省耗電量。然而反射式液晶顯示器須在白天使用或其週遭必須 有外部光源存在,而在晚上或光線昏暗處則無法使用。 因此目前係引入半穿半反式液晶顯示器的技術。一般而言,半穿半反式 液晶顯示器有兩個主要的發展途徑:單晶胞間隙(第丨3圖)與雙晶胞間隙(第i b圖)。第la圖是傳統使用單晶胞間隙(cellgap)的半穿半反式液晶顯示器之 手頁剖面示意圖。該半穿半反式液晶顯示器包含彼此相對之上下基板、工㈧ 和夾於上下基板之間的液晶層30(>共用電極22〇形成於上基板2〇〇之下,穿 透電極140則形成於穿透1 T、反射電極形成於反射區R。f透區τ與反射 區R具有相同之晶胞間隙⑹。 光效率一般係正比於入射光行經液晶層所經歷之總遲延變化。總遲延 變化疋1)與2)之乘積。1)是人射光所“看到之液晶分子目外加電壓所造成之 重新定向之雙折射恤efcngence)變化如。2)是入射光在液晶層所走的總路 徑長度。 因為反射區R之光線經過液晶層3〇〇共2次,但穿透區τ之光線只經過 液曰日層·3〇〇 -人,所以反射區R的光線在液晶層所經歷之總遲延變化為 △nx2d,是穿透區Τ··Δηχ(1之2倍。第比圖顯示在2·75ν時,R達到1〇〇%之 0773-A30419TWF(5.0) 5 1272423 亮度,但T僅50%。 如第2a ®所*,為使反雜式與穿賴柄達最佳之光效率,—般可使 用雙晶胞間隙(double eell gap)技術以將反射區R之晶胞間隙減至d/2,使光在 反射區R與穿透區T之液晶層所走的總路徑長度相等。因此,光在反 射區R之液晶層所經歷之總遲延變化MUxd/2,等於光在穿透區τ之液晶層 所經歷之總遲延變化—d。a此,如第2b圖所示,反射區&與穿透區^ 100%之相同光效率。但上述之技術册複雜,製程上,兩晶胞間隙差必需維持 良好之控制,且此製程必須仰财機料額外材的控制才行,而反射區 R與穿透HT之晶胞間隙差將導致j^T模式間不同之反應時間。 美國專利公報US2()_2(m編揭露-種只鮮晶胞_之半穿半 反式液晶顯轉。但該揭露内容並林楚。依據其於摘要巾之描述,該專 利案亚不使職減反射區之晶關隙的方法,而是改採減少反射區之雙折射 變化Δη,即可使反舰之鍵輕鱗於穿顧,而上述之結果係藉發生於 單晶Μ隙之反射區中之45。的像素局部切換㈣㈤咖她㈣〇f妝扭刪 加以貫現,且其係藉提供邊際電雜_祕)給單晶朗社反射區的液 晶分:所致1而此邊際電場則由不連續電極產生。由於該結構之整個反射 區都有不連續電極,因此如何商業化使用此結構並不清楚。 【發明内容】 本發明在解決上述之問題,並提供一穿透反射式液晶顯示器之陣列基 板。該陣列基板可產生-單晶胞間隙(cdlgap)之穿透反射式液晶顯示^ 其穿透區與反射區之光效率大體上相等。 即t , 、本發明揭露之穿透反射歧晶顯轉面板包括—像鱗舰構,其 透區含-紐聰missive d咖de),反射轉—不接電位之反射層 (reflctive layer)(,P,N^,^t#) 〇 板;數條錄紐上彼此蚊且肋定素之傾線(如M與掃描ς 0773-A30419TWF(5.0) 6 1272423 (^amimg lme);像素區具有一穿透區及一反射區;一穿透電極,設置於穿 处區中’及一不接電壓之反射層,設置於反射區中。 該牙透反射式液晶顯示器面板包括:上述之陣列基板;與上述之陣列基 板相對的另基板,此基板具有一共用電極;及一介於共用電 極之間的液晶層。 /、牙i 一 【實施方式】 〜弟3岐根據本發明之第丨實施例之半穿半反式液晶顯示器面板的像 j平面圖第4a圖疋沿著第3圖之4-4線所示之横剖面示意圖。參照第3 圖、弟4a圖,該半穿半反式液晶顯示器面板包含-障列基板SI f口-與陣列 ,si分隔的相對基板(〇pp〇singsub伽求〇。睁列基板§1包含一基板^ 就U虎線(DL)、數條掃描線(SL)、一反射層n、一穿透電極μ和形成於 ^層12與穿透_ 14之_平坦層%恤咖)。對面之基板 20之下有一共用電極(c〇mm〇n dectro邮。液晶層邓夾於穿透雪 丘 用電極22之間。 。 /、/、 數條知痴線叫延x軸延伸,數條信號線(DL)延γ轴延伸彼此交叉 用以2數個像素。-個像素包括-穿透區T與-反射區R。 ’ 心牙透電極14配置於基板1〇之穿透區τ。參照第3圖.、第如圖,穿透 “二可以是梳狀(c〇mb_ped)並含數個位於反射區r之狹缝袖料,進 而將穿透電極μ分成數個不連續的穿透電極塊分心反射層η沉積於基 板10、反射區R且不接電位。反射層12包括數個位於狹缝1处中之反 塊12a。穿透電極塊14a與反射塊皮依序交替設置。. 弟虬本努明之特徵在於反射層12並非電極,即不接電位。反之 穿透電極14須接電位。而於太t 个授包诅夂之 財所权—财,絲電麟,負型液晶 將垂直對準於電場。 其中於負型液晶之例子中、穿透 笔極Μ係接電但次射層12不接電(即 0773-A30419TWF(5.0) 7 1272423 非晝素電極)。穿透電極14之平面處則產生垂直該平面之垂直電場m,穿透 電極14之邊緣則以傾斜角小於90度之方式產生一橫向電場(邊際電場) E2。因此施加電壓時,穿透區T之液晶L1受E1控制,反射區R之液晶L2 受E2控制。傾斜角較小,等效雙折射變化(effectiVe birefringence change)Aneff, 也較小。因此,反射區R之液晶之等效雙折射變化△取也將小於穿透區T之 液晶之等效雙折射變化nTeff。 穿透電極塊14a之沿信號線之方向延伸的寬度wt,可以是1〜l〇jLim。反 射塊12a之沿信號線之方向延伸的寬度Wr,可以是uogm。在較佳之情況 下,Wt、Wr與晶胞間隙d可調整,使反射區R之等效雙折射變化減小至_2。 因此,反射區R之總遲延變化(total retardation change),(An/2)x2xd,變得與穿 透區T之總遲延變化Δηχά相等。結果反射區尺與穿透區τ之光效率大體 相等。 此外,可在上基板20與下基板1〇之外表面個別形成一補償膜 (compensator)(未圖示)與一偏光板(p〇iarizer)(未圖示)。該補償膜可以是四分 之一波長的薄膜(λ/4 film)。 第4b圖展示半穿半反式液晶顯示器面板l沿著第3圖之4_4線之橫剖 面示意圖。第4b圖異於第4a圖,第4b圖之半穿半反式液晶顯示器面板沒 $平坦層16,且反射層12與穿透電極14彼此交錯。當穿透電極ι4與反射 層Π相連日可,反射層I2可以是不導電之高反射係數材札例如,多層介電膜 (画lti切er didectrfc ftlm)。當穿透電極14與反射層12相隔_段距離或藉 絕緣薄膜隔離時,反射層12可以是導電之高反射係數材料,例如链、銀_ 合金,並使反射層12不接電位。 第5圖是根據本酬之第2實_之半穿枝式液關轉面板的像 素平面圖。第6a圖是沿著第5圖之6-6、線之橫剖面示意圖。參照第5圖、 第如圖,該半穿半反式液晶顯示器面板包含一陣列基板幻和一與陣列基板 S2分隔的相對基板(opposing油麵e)2〇。陣列基板兑包含—基板^、數 0773-A30419TWF(5.0) 8 1272423 條#號線(DL)、數條掃描線(sl)、一反射層12、一與反射層同層之穿透 電極14、一儲存電容(st〇rage capacit〇1)Cst,及形成於儲存電容c贫與反射層 12之間之平坦層16(planarization layer)。上基板20下方有一共用電極 (common electrode),液晶層30夹於穿透電極14與共同電極22之間。 數條掃描線(SL)沿著X軸延伸,數條信號線(DL)沿著γ軸延伸彼此交 叉,用以定義數個像素。一個像素包括一穿透區τ與一反射區R。 穿透電極14設置於基板1〇之穿透區τ。參照第5圖、第如圖,穿透 電極14可以是梳狀(comb_shaped)並含數個位於反射區R之狹缝(蝴丨处,進 而將牙透黾極14分成數個不連續的穿透電極塊i4a。反射層i2(被實線包圍 之斜線部分)設置於基板10之反射區R且不接電位。反射層12包括數個位 於狹縫14b對應區之反射層部12a。佔據被虛線包圍之斜線部分的儲存電容 Cst與一開關裝置(未圖示,如薄膜電晶體)則設置於反射層12之下。 犬員似弟一貝知例之敘述,參照第6a圖,本發明之特徵在於反射層12並非 電極,即不接電位(即非晝素電極)。穿透區T有垂直電場E1,反射區以有橫 向電場(邊際電場)E2。因此施加電壓時,穿透區τ之液晶u受耵控制,反 射區R之液晶L2受E2控制。因此,反射區R之液晶之等效雙折射變化 私小於牙攻區T之液晶之荨效雙折射變化nTeffD在較佳之情況下,^與 晶胞間隙d可調整,使反射區r之等效雙折射變化減小至Δη/2。因此,反射 區R之總遲延變化(total retardation change),(ΔηΑΜχίΙ,變得與穿透區Τ之 總遲延化Anxd相荨。結果反射區r與穿透區τ之光效率大體相等。 第6b圖是沿著第5圖之6-6線之另一橫剖面示意圖。第6b圖與第仏 圖之差異在於反射層之安排不同,第6a圖中穿透電極14與反射層12位於 同一層。然而第6b圖中,反射層12位於穿透電極14下方,但反射層部分12& 依舊設置於狹缝14b之相對位置。 雖然在先前的實施例中,儲存電容Cst是反射塊12a‘下方之分離的元件, 儲存電容Cst也可以與反射塊i2a制-元件。例如,儲存電容Cst可以有 〇773-A30419TWF(5.0) 9 1272423 —反射面,且其尺寸大小可以對應於兩相鄰穿透電極間之狹缝大小,但不 必然需要完全相同的尺寸。 電腦模擬 以液晶Μ1Χ-6882(Δε=-4,Δη=0·0988)進行光學運算。反射層12是紙反 身、j塊12a之寬度Wr是4μπι。穿透電極14是ΙΤΟ(銦錫氧化物),穿透電極塊 Ma之寬度wt是4μιη。晶胞間隙是4μιη。 弟7圖疋弟4b圖之液晶顯示板的反射比(re£[ecti〇I1 rati〇)相對方}電 璧之關係圖與透射比(transmission ratio)相對於電壓之關係圖。 第8圖是本發明之半穿半反式液晶顯示器裝置方塊圖。第牝圖之半穿 半反式液晶顯示器面板!被連接至控制器2而形成半穿半反式液晶顯示器 衣置〕。控制2包括由源極與閘極驅動之電路(未圖示),以控制半穿半反式 液晶顯示器面板1以提供與輸入一致之影像。 第9圖是合併第8圖之半穿半反式液晶顯示器裝置3之電子裝置方塊 圖。輸入裝置4被連接至控制器2而形成電子裝置^輸入裝置4可包括類 似微處理器之裝置,將龍輸人控繼2以提供影像。電子裝置可以是可攜 式裝置,如PDA(電子數位助理)、筆記型電腦、平板電腦(〖物⑺零㈣、 行動電話、顯示器螢幕裝置或非可攜式裝置,如桌上型電腦。 總之,本發明之半穿半反式液晶顯示器中之反射層12並非電極,反射區 =橫向電場伽咖! fleld)。因此,反射區&之液晶之等效雙折射獅 恥又小,反射區R之總遲延變化(t〇talreiardati〇nch姐软)也將變小。結果反 與穿透區Τ之光效率大體相等。於是本發明之半穿半反式液㈣示 杰反射區R與穿透區丁都達到最大之光效率。 ^然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任 、=心此項技料’在不_本發日把精神和歸心當可做些許更動與 成泰’因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 0773-A30419TWF(5.0) 10 1272423 【圖式簡單說明】 第la圖是傳統使用單晶胞間隙(ceu gap)的半穿半反式液晶顯示器之橫 剖面示意圖。 弟lb圖疋弟la圖之裝置的反射比(reflectionratio)相對於電壓之關係g 與透射比(transmission ratio)相對於電壓之關係圖。 第2a圖是傳統使用雙晶胞間隙半穿半反式液晶顯示器之橫剖面示咅 圖。 第2b圖是第2a圖之裝置的反射比(reflectionratio)相對於電壓之關係圖 與透射比(transmission ratio)相對於電壓之關係圖。 第3圖是根據本發明之第丨實施例之半穿半反式液晶顯示器面板的像 素平面圖。 第4a圖是沿著第3圖之4-4線之橫剖面示意圖。 弟4b圖疋沿者弟3圖之4-4線之另一橫剖面示意圖。 第5圖是根據本發明之第2實施例之半穿半反式液晶顯示器面板的傳 素平面圖。 第6a圖是沿著第5圖之6-6線之橫剖面示意圖。 弟6b圖疋沿者弟5圖之6-6線之另一橫剖面示意圖。 第7圖是第4b圖之液晶顯示器面板的反射比(reflection ratio)相野於泰 壓之關係圖與透射比(transmission ratio)相對於電壓之關係圖。 第8圖是本發明之半穿半反式液晶顯示器裝置方塊圖。 第9圖是本發明之電子裝置方塊圖。 【主要元件符號說明】 —— 穿透區〜T; 反射屋池; 晶胞間隙〜d ; 垂直電場〜El 0773-A30419TWF(5.0) 11 1272423 橫向電場(邊際電場)〜E2 ; 掃描線〜SL, 相對基板〜20 ; 下基板〜200 ; 共用電極〜22、220 ; 儲存電容〜Cst ; 反射層〜12 ; 穿透電極〜14、140 ; 寬度〜Wt ; 半穿半反式液晶顯示器面板〜1 ; 控制器〜2; 半穿半反式液晶顯示器裝置〜3 ; 輸入裝置〜4; 信號線〜DL ; 基板〜10 ; 上基板〜100 ; 液晶層〜300 ; 液晶層〜30 ; 穿透電極塊〜14a 反射塊〜12a ; 狹缝〜14b ; 寬度〜W,; 電子裝置〜5。 0773-A30419TWF(5.0) 121272423 IX. Description of the Invention: [Technical Field] The present invention relates mainly to a transflective liquid crystal display, and more particularly to a semi-transflective liquid crystal display of a single crystal cell gap type. [Prior Art] Liquid crystal displays can generally be classified into three types: transmissive liquid crystal displays, reflective liquid crystal displays, and semi-periodic trans liquid crystal pain devices. However, the transmissive liquid crystal display has a high transmittance from the backlight, so it is an inefficient optical converter. Therefore, the backlight of the transmissive liquid crystal display must have high brightness, but it also causes a problem of high power consumption. Reflective LCDs use ambient light sources for imaging, saving power. However, reflective LCDs must be used during the day or around them must have an external light source, but not at night or in dimly lit areas. Therefore, the technology of introducing a transflective liquid crystal display is currently introduced. In general, transflective liquid crystal displays have two main developmental pathways: single crystal cell gap (Fig. 3) and double cell gap (Fig. ib). Figure la is a schematic cross-sectional view of a hand-panel semi-transparent liquid crystal display using a single cell gap. The transflective liquid crystal display includes a liquid crystal layer 30 interposed between the upper substrate and the upper substrate, and is sandwiched between the upper and lower substrates (the common electrode 22 is formed under the upper substrate 2, and the electrode 140 is penetrated). Formed at 1 T, the reflective electrode is formed in the reflective region R. The f-transmissive region τ has the same cell gap (6) as the reflective region R. The light efficiency is generally proportional to the total delay variation experienced by the incident light passing through the liquid crystal layer. The delay variation 疋1) is the product of 2). 1) It is the change of the reorientation of the birefringence efcngence caused by the applied voltage of the liquid crystal molecules seen by the human light. 2) is the total path length of the incident light in the liquid crystal layer. After passing through the liquid crystal layer 3 times, but the light passing through the region τ passes only through the liquid helium layer, the total delay experienced by the light in the reflection region R in the liquid crystal layer is Δnx2d, which is The penetration zone Τ··Δηχ (2 times of 1). The figure shows that at 2·75ν, R reaches 1〇〇% of 0773-A30419TWF(5.0) 5 1272423 brightness, but T is only 50%. For example, 2a ® *, in order to achieve the best light efficiency of the anti-hybrid and the handle, the double eell gap technique can be used to reduce the cell gap of the reflection region R to d/2, so that the light is reflected. The total path length of the liquid crystal layer of the region R and the transmissive region T is equal. Therefore, the total delay variation MUxd/2 experienced by the liquid layer in the reflective region R is equal to the light experienced by the liquid crystal layer in the transmissive region τ. The total delay variation - d. a, as shown in Figure 2b, the reflection zone & and the penetration zone ^ 100% of the same light efficiency. But the above technical recollection In the process, the difference between the two cell gaps must be maintained, and the process must be controlled by the extra material of the grain, and the difference between the reflection zone R and the cell gap penetrating HT will result in the j^T mode. Different reaction time. US Patent Publication US 2 () _2 (m edited - the only fresh cell _ half of the trans-trans-liquid crystal display. But the disclosure content is Lin Chu. According to its description of the abstract towel, the In the patent case, the method of reducing the crystal gap of the anti-reflection zone is adopted, but the birefringence change Δη of the reflection zone is reduced, so that the anti-ship key is lightly scaled, and the above result is caused by The pixel in the reflection region of the single crystal gap is 45. The partial switching of the pixel (4) (5) Coffee (4) 〇f makeup twisted and deleted, and it provides the liquid crystal of the single crystal Langshi reflection area by providing the marginal electricity _ secret): The marginal electric field is generated by the discontinuous electrode. Since the entire reflective region of the structure has discontinuous electrodes, it is not clear how to commercialize the structure. [Invention] The present invention solves the above problems. And providing an array substrate of a transflective liquid crystal display The array substrate can produce a cdlgap transflective liquid crystal display, and the light efficiencies of the transmissive region and the reflective region are substantially equal. That is, t, the penetrating reflection dissimilar crystal revealed by the present invention The panel includes - like a scale ship, its transmissive zone contains - neutron missive d de, de-reflective - non-potential reflective layer (, P, N ^, ^ t #) 〇 board; Recording the lines of each other on the mosquitoes and ribs (such as M and scanning ς 0773-A30419TWF (5.0) 6 1272423 (^amimg lme); the pixel area has a penetrating zone and a reflecting zone; a penetrating electrode, set In the wearing area, and a reflective layer that is not connected to the voltage, is disposed in the reflective area. The transflective liquid crystal display panel comprises: the array substrate; the other substrate opposite to the array substrate, the substrate having a common electrode; and a liquid crystal layer interposed between the common electrodes. [Embodiment] [Embodiment] 弟 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 平面图 平面图 平面图 平面图 平面图 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋A schematic cross-sectional view. Referring to FIG. 3 and FIG. 4a, the transflective liquid crystal display panel includes a barrier substrate SI f-portion and an array, si separated relative substrates (〇pp〇singsub 伽 〇. A substrate ^ is a U-line (DL), a plurality of scanning lines (SL), a reflective layer n, a penetrating electrode μ, and a layer 12 formed on the layer 12 and the through layer _ 14 flat layer. There is a common electrode under the opposite substrate 20 (c〇mm〇n dectro mail. The liquid crystal layer is sandwiched between the piercing snowy electrode 22. /, /, several lines of obscurity are called extension x-axis extension, number The strip signal lines (DL) extend γ-axis extensions to each other for two pixels. One pixel includes a through-region T and a reflective region R. The core-toothed electrode 14 is disposed in the penetration region τ of the substrate 1 Referring to Figure 3, as shown in the figure, the penetration "two can be comb-shaped (c〇mb_ped) and contains a plurality of slit sleeves located in the reflection region r, thereby dividing the penetration electrode μ into a plurality of discontinuities. The penetrating electrode block distracting reflective layer η is deposited on the substrate 10 and the reflective region R and is not connected to the potential. The reflective layer 12 includes a plurality of anti-blocks 12a located in the slit 1. The penetrating electrode block 14a and the reflective block are sequentially ordered. Alternately set. The brother-in-law Benuming is characterized in that the reflective layer 12 is not an electrode, that is, it does not have a potential. Conversely, the penetrating electrode 14 has to be connected to a potential. However, in the case of too much money, the power of the financial institution is The negative liquid crystal will be vertically aligned with the electric field. In the case of the negative liquid crystal, the penetrating pen is electrically connected but the sub-layer 12 is not connected (ie, 0773-A3) 0419TWF(5.0) 7 1272423 non-alkali electrode). The plane perpendicular to the plane produces a vertical electric field m perpendicular to the plane, and the edge of the penetrating electrode 14 produces a transverse electric field at a slope angle of less than 90 degrees (marginal Electric field) E2. Therefore, when voltage is applied, the liquid crystal L1 of the penetration region T is controlled by E1, and the liquid crystal L2 of the reflection region R is controlled by E2. The inclination angle is small, and the effect birefringence change Aneff is also small. Therefore, the equivalent birefringence change Δ of the liquid crystal of the reflection region R will also be smaller than the equivalent birefringence change nTeff of the liquid crystal of the penetration region T. The width wt of the penetrating electrode block 14a extending in the direction of the signal line may be It is 1~l〇jLim. The width Wr of the reflection block 12a extending in the direction of the signal line may be uogm. In a preferred case, Wt, Wr and the cell gap d may be adjusted to make the equivalent of the reflection region R The change in refraction is reduced to _2. Therefore, the total retardation change of the reflection region R, (An/2)x2xd, becomes equal to the total retardation change Δηχά of the penetration region T. As a result, the reflection zone is worn and worn. The light efficiency of the τ is generally equal. A compensation film (not shown) and a polarizing plate (not shown) are separately formed on the outer surface of the upper substrate 20 and the lower substrate 1 . The compensation film may be a quarter wavelength. Film (λ/4 film). Figure 4b shows a cross-sectional view of the transflective liquid crystal display panel l along line 4_4 of Figure 3. Figure 4b is different from Figure 4a, and the fourth half of Figure 4b The trans liquid crystal display panel has no flat layer 16, and the reflective layer 12 and the penetrating electrode 14 are staggered with each other. When the through electrode ι4 is connected to the reflective layer ,, the reflective layer I2 may be a non-conductive high reflection coefficient material such as a multilayer dielectric film (e.g. er didectrfc ftlm). When the penetrating electrode 14 is separated from the reflective layer 12 by a segment distance or by an insulating film, the reflective layer 12 may be a conductive high reflectance material such as a chain, a silver-alloy, and the reflective layer 12 is not connected to a potential. Figure 5 is a plan view of the pixel of the second half-ply liquid shut-off panel according to the second real one. Fig. 6a is a schematic cross-sectional view taken along line 6-6 of Fig. 5. Referring to FIG. 5 and the figure, the transflective liquid crystal display panel comprises an array substrate and an opposite substrate (opposing oil surface e) 2 separated from the array substrate S2. The array substrate includes a substrate, a number 0773-A30419TWF(5.0) 8 1272423## line (DL), a plurality of scanning lines (sl), a reflective layer 12, a penetrating electrode 14 in the same layer as the reflective layer, A storage capacitor (st〇rage capacit〇1) Cst, and a planarization layer formed between the storage capacitor c and the reflective layer 12. A common electrode is disposed under the upper substrate 20, and the liquid crystal layer 30 is sandwiched between the penetrating electrode 14 and the common electrode 22. A plurality of scanning lines (SL) extend along the X-axis, and a plurality of signal lines (DL) extend across the γ-axis to define a plurality of pixels. One pixel includes a penetration region τ and a reflection region R. The penetrating electrode 14 is disposed on the penetration region τ of the substrate 1 . Referring to FIG. 5 and the figure, the penetrating electrode 14 may be comb-shaped and include a plurality of slits located in the reflecting region R (the butterfly is further divided into a plurality of discontinuous piercings). The electrode block i4a, the reflective layer i2 (the oblique line portion surrounded by the solid line) is disposed on the reflective region R of the substrate 10 and is not connected to the potential. The reflective layer 12 includes a plurality of reflective layer portions 12a located in the corresponding regions of the slit 14b. The storage capacitor Cst of the oblique line portion surrounded by the broken line and a switching device (not shown, such as a thin film transistor) are disposed under the reflective layer 12. The description of the dog is like a case, and the invention is described with reference to Fig. 6a. The feature is that the reflective layer 12 is not an electrode, that is, it does not have a potential (ie, a non-halogen electrode). The penetrating region T has a vertical electric field E1, and the reflecting region has a transverse electric field (marginal electric field) E2. Therefore, when a voltage is applied, the penetrating region The liquid crystal u of τ is controlled by 耵, and the liquid crystal L2 of the reflection area R is controlled by E2. Therefore, the equivalent birefringence change of the liquid crystal of the reflection area R is smaller than that of the liquid crystal of the tooth attack area T, and the nTeffD is better. Lower, ^ and the cell gap d can be adjusted to make the equivalent of the reflection region r The shot change is reduced to Δη/2. Therefore, the total retardation change of the reflection region R, (ΔηΑΜχίΙ, becomes opposite to the total retardation Anxd of the penetration region 结果. The resulting reflection region r and the penetration region The light efficiency of τ is substantially equal. Figure 6b is another cross-sectional view along line 6-6 of Figure 5. The difference between Figure 6b and Figure 在于 is that the arrangement of the reflective layer is different, and the penetration in Figure 6a The electrode 14 is in the same layer as the reflective layer 12. However, in Fig. 6b, the reflective layer 12 is located below the penetrating electrode 14, but the reflective layer portion 12& is still disposed at the opposite position of the slit 14b. Although in the previous embodiment, The storage capacitor Cst is a separate component under the reflective block 12a', and the storage capacitor Cst can also be made with the reflective block i2a. For example, the storage capacitor Cst can have a 〇773-A30419TWF(5.0) 9 1272423-reflecting surface, and its size The size can correspond to the size of the slit between two adjacent penetrating electrodes, but does not necessarily require the exact same size. The computer simulation uses the liquid crystal Μ1Χ-6882 (Δε=-4, Δη=0·0988) for optical operation. 12 is the paper reflex, the width of the j block 12a Wr 4μπι. The penetrating electrode 14 is tantalum (indium tin oxide), and the width of the penetrating electrode block Ma is 4 μm. The cell gap is 4 μιη. The reflectance of the liquid crystal display panel of the 4th drawing of the brother 7 (re£[ ecti〇I1 rati〇) relative diagram} diagram of the relationship between the transmission and the transmission ratio versus voltage. Figure 8 is a block diagram of the transflective liquid crystal display device of the present invention. Half-transparent LCD panel! It is connected to the controller 2 to form a transflective liquid crystal display. Control 2 includes circuitry (not shown) driven by the source and gate to control the transflective LCD panel 1 to provide an image consistent with the input. Fig. 9 is a block diagram of an electronic device incorporating the transflective liquid crystal display device 3 of Fig. 8. The input device 4 is connected to the controller 2 to form an electronic device. The input device 4 can include a microprocessor-like device that will control the image to provide an image. The electronic device may be a portable device such as a PDA (Electronic Digital Assistant), a notebook computer, a tablet computer ([7] zero (four), a mobile phone, a display screen device, or a non-portable device such as a desktop computer. The reflective layer 12 in the transflective liquid crystal display of the present invention is not an electrode, and the reflective area = transverse electric field gamma! fleld). Therefore, the equivalent birefringence of the liquid crystal in the reflection zone & lion is small and the total delay variation of the reflection zone R (t〇talreiardati〇nch soft) will also become smaller. The result is roughly equal to the light efficiency of the penetrating zone. Thus, the transflective liquid (4) of the present invention exhibits maximum light efficiency in both the reflective region R and the penetrating region. The invention has been disclosed in the preferred embodiments as above, but it is not intended to limit the invention, and the technique of 'the heart' can be used to change the spirit and the heart of the present day. The scope of the invention is defined by the scope of the appended claims. 0773-A30419TWF(5.0) 10 1272423 [Simple description of the drawing] The first drawing is a schematic cross-sectional view of a transflective liquid crystal display which conventionally uses a single crystal cell gap (ceu gap). The relationship between the reflection ratio of the reflection ratio of the device and the voltage and the transmission ratio with respect to the voltage. Figure 2a is a cross-sectional view of a conventional double-cell gap transflective liquid crystal display. Fig. 2b is a graph showing the relationship between the reflection ratio and the voltage of the device of Fig. 2a and the transmission ratio with respect to the voltage. Fig. 3 is a plan view of a pixel of a transflective liquid crystal display panel according to a third embodiment of the present invention. Figure 4a is a schematic cross-sectional view taken along line 4-4 of Figure 3. Brother 4b is a cross-sectional view of another cross-section of line 4-4 of Figure 3. Fig. 5 is a plan view showing a panel of a transflective liquid crystal display panel according to a second embodiment of the present invention. Fig. 6a is a schematic cross-sectional view taken along line 6-6 of Fig. 5. Figure 6b is another cross-sectional view of the 6-6 line of the 5th figure. Fig. 7 is a graph showing the relationship between the reflection ratio of the liquid crystal display panel of Fig. 4b and the transmission ratio and the transmission ratio with respect to voltage. Figure 8 is a block diagram of a transflective liquid crystal display device of the present invention. Figure 9 is a block diagram of an electronic device of the present invention. [Main component symbol description] - Penetration zone ~ T; Reflective house cell; Cell gap ~ d; Vertical electric field ~ El 0773-A30419TWF (5.0) 11 1272423 Transverse electric field (marginal electric field) ~ E2; Scan line ~ SL, Relative substrate ~20; lower substrate ~200; common electrode ~22,220; storage capacitor ~Cst; reflective layer ~12; penetrating electrode ~14,140; width ~Wt; half-through transflective LCD panel ~1; Controller ~ 2; semi-transflective liquid crystal display device ~ 3; input device ~ 4; signal line ~ DL; substrate ~ 10; upper substrate ~ 100; liquid crystal layer ~ 300; liquid crystal layer ~ 30; 14a reflection block ~12a; slit ~14b; width ~W,; electronic device ~5. 0773-A30419TWF(5.0) 12