TWI272188B - A fluid injection apparatus and fabrication method thereof - Google Patents

A fluid injection apparatus and fabrication method thereof Download PDF

Info

Publication number
TWI272188B
TWI272188B TW95111934A TW95111934A TWI272188B TW I272188 B TWI272188 B TW I272188B TW 95111934 A TW95111934 A TW 95111934A TW 95111934 A TW95111934 A TW 95111934A TW I272188 B TWI272188 B TW I272188B
Authority
TW
Taiwan
Prior art keywords
fluid
structure layer
layer
sidewall structure
ejection device
Prior art date
Application number
TW95111934A
Other languages
Chinese (zh)
Other versions
TW200738474A (en
Inventor
Yi-Zhi Hong
Guang-Ren Shen
Wei-Lin Chen
Original Assignee
Benq Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benq Corp filed Critical Benq Corp
Priority to TW95111934A priority Critical patent/TWI272188B/en
Application granted granted Critical
Publication of TWI272188B publication Critical patent/TWI272188B/en
Publication of TW200738474A publication Critical patent/TW200738474A/en

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Nozzles (AREA)

Abstract

A fluid injection apparatus is disclosed. A sidewall structure layer comprising an opening is disposed on a substrate. A top structure layer comprising a nozzle is disposed on the sidewall structure layer to form a chamber corresponding to the opening, wherein the portion of the top structure layer corresponding to the opening is an arc bending downward. A manifold is disposed in the substrate, connecting the chamber.

Description

1272188 . 九、發明說明: - 【發明所屬之技術領域】 - 本發明係有關於一種流體喷射裝置及其製造方法,且 特別是有關於一種微流體喷射裝置及其製造方法。 【先前技術】 微流體喷射裝置近來已廣泛地運用於資訊產業,例如 喷墨印表機或類似設備中。隨著微系統工程(micro system φ engineering)的逐步開發,此種流體喷射裝置逐漸有其他眾 多領域之應用,例如燃料喷射系統(fuel injection system)、 細胞篩選(cell sorting)、藥物釋放系統(drug delivery — system)、喷印光刻技術(print lithography)及微喷射推進系 統(micro jet propulsion system)等。 - 第1圖顯示一種習知的流體喷射裝置100,請參照第1 " 圖,其以一矽基底102作為本體,且在矽基底102上形成 ❿ 一流體腔壁104。將噴孔蓋106貼合於流體腔壁104,以形 成一流體腔(chamber) 108,其中流體腔壁104和噴孔蓋106 的結合可統稱為結構層,此外,其亦在結構層上形成噴孔 (nozzle)llO,以供流體112喷出,且在基底102之另一側 進行圖形化步驟,以形成一連接流體腔之流體通道 (manifold)l 14 ° 然而,習知技術流體噴射裝置之剖面為矩形之流體腔 108容易在流體腔108之邊角產生擾流,造成流體112流 0535-A21281 TWF(N2);A05587; WAYNE 5 1272188 動之不穩定,進而影響流體喷射裝置100之運作。 - 【發明内容】 _ 根據上述問題,本發明之目的為提供一種流體喷射裝 置及其製造方法,其構成流體腔之上蓋部分和侧壁結構層 間具有較平滑接面,可減少流體於流體腔流動時在邊角處 產生之擾流,因此可增加流體於流體腔流動之穩定性,而 改善流體喷射裝置之可靠度和穩定性。 Φ 本發明提供一種流體喷射裝置,包括一流體腔及一流 體通道,流體腔包括侧壁結構層及具有喷孔之上蓋結構 層,覆蓋於侧壁結構層上,以形成一流體腔,其中侧壁結 構層與上蓋結構層之夾角大於90°,另外,流體通道與流體 腔連通,以供應流體於流體腔。. — 此外,本發明所提供之流體喷射裝置包括下列元件。 ' 一侧壁結構層位於基底上,其中側壁結構層包括一開口。 • 一具有喷孔之上蓋結構層覆蓋於侧壁結構層上,以於開口 ~ 處形成一流體腔,其中其中該流體腔之上表面包括不同曲 ~ 面之圓弧表面。一流體通道位於基底内以與流體腔連通。 本發明提供一種流體喷射裝置之製造方法。首先,提 供一基底,形成包括一開口之側壁結構層於基底上,其後, 形成一圖形化之犧牲層於開口中,加熱圖形化之犧牲層, 以使圖形化之犧牲層形成一圓弧表面。後讀,形成一上蓋 結構.層於犧牲層及側壁結構層上,定義上蓋結構層,以形 0535-A21281TWF(N2);A05587;WAYNE 6 1272188 . 成一喷孔。接著,於相對於上蓋結構層之基底的另一面, • 形成一流體通道,並移除犧牲層,以形成一流體腔。 " 【實施方式】 以下將以實施例詳細說明做為本發明之參考,且範例 ’ 係伴隨著圖示說明之。在圖示或描述中,相似或相同之部 分係使用相同之圖號。在圖示中,實施例之形狀或是厚度 " 可擴大,以簡化或是方便標示。圖示中各元件之部分將以 • 分別描述說明之,值得注意的是,圖中未繪示或描述之元 件,可以具有各種熟習此技藝之人士所知的形式,舉例來 說,本發明以下實施例並未特別說明本發明流體之驅動元 件及驅動方式,本發明可應用任何熟習此技藝之人士所知 之流體驅動元件及驅動方式,例如熱驅動氣泡(thermal driven bubble) 〇 ' 第2A圖〜第21圖係揭示本發明一實施例流體喷射裝置 ❿ 之製造流程。首先,請參照第2A圖,提供一基底200,基 底200可包括矽.、破璃和/或其它材料所組成,較佳者,基 底200係為一矽基底,其後,形成一致動元件202於基底 200上,此致動元件202係用以驅動流體喷射裝置之流體, 本發明不限制於特定之致動元件,其可以為加熱元件、壓 電元件(piezoelectric actuator)或是其它可用以驅動流體之 元件。 ' 0535-A21281 TWF(N2);A05587; WAYNE 7 1272188 接下來,請參照第2B圖,形成一側壁結構層204(或 . 稱為流體腔壁)定義出流體腔之預定位置。在本發明之一實 一 施例中,侧壁結構層204包括一開口 206 ’暴露出致動元 件202,其中,此開口 206係用以定義出喷孔區230、流體 ' 入口區234及連通兩者之中段區232的位置。侧壁結構層 204可為例如光阻或是聚合物等高分子所組成,在本發明 之較佳實施例中,側壁结構層204係為例如聚醯亞胺 φ (Polyimide)之負光阻所組成,更.佳者,側壁結構層204係 為疏水性材料所組成,且較佳者侧壁結構層204之厚度可 介於10-40μπι。側壁結構層204可以例如進行旋轉塗佈或 是沉積的方法,再進行微影,蝕刻步驟形成。以聚醯亞胺 所組成側壁結構層204為例,可先塗佈聚醯亞胺於基底200 ^ .和致動元件202上,其後,進行一曝光及顯影步驟圖形化 " 侧壁結構層204,以形成可定義出流體腔位置之侧壁結構 • 層204,此外,形成側壁結構層204中之圖形化步驟亦可 採用壓印或是雷射蝕刻的方法。 接下來,請參照第2C圖,可對侧壁結構層204進行一 加熱步驟,以使侧壁結構層204產生熔融狀態,而形成傾 斜侧壁208,上述加熱步驟之溫度和時間可依照侧壁結構 層204之材料和傾斜側壁208之傾斜角度而決定,較佳者, 加熱步驟之溫度大體上大於側壁結構層204之玻璃轉換溫 0535-A21281 TWF(N2);A05587;WAYNE 8 1272188 度(Glass TransitionTemperature)。舉例來說,以負光阻之侧 - 壁結構層204為例,在喷孔區域之傾斜侧壁208之傾斜角 - 度可介於 50°〜80°間,加熱步驟之温度可介於 80。€〜140QC,而製程時間可介於120秒〜360秒之間。由於 • 上述開口 206於喷孔區域係由具有傾斜側壁208之側壁結 構層204形成,因此,開口 206之頂部水平截面積較底部 水平截面積大。 • 接下來,請參照第2D圖,以例如旋轉塗佈法形成一 犧牲層210於側壁結構層204上及侧壁結構層之開口 206 中,犧牲層210可為例如光阻或聚合物等高分子材料所組 成,在本發明之較佳實施例中,犧牲層210係為例如正光 阻或是負光阻之感光性高分子,且較佳者犧牲層210之厚 度可介於5-25μπι。需注意的是,犧牲層210和侧壁結構層 • 204之蝕刻選擇比較佳大於10,以於後續步驟定義犧牲層 • 210時,不致對侧壁結構層204造成太大損傷,較佳者, 侧壁結構層204係為負光阻所組成,而犧牲層210係為正 光阻所組成。 接著,請參照第2E圖,圖形化犧牲層210,以使圖案 化後之犧牲層210a在後續加熱步驟中在水平方向侷限於 上述開口 206内,但在加熱之前,犧牲層210之高度則可 能高於或低於側壁結欉層<204 ,另外,圖案化後之犧牲層 0535-A21281TWF(N2);A05587;WAYNE 9 1272188 _ 210a之水平截面積可依產品需要或是製程條件決定,例 ^ 如,圖案化後之犧牲層210a之水平面積可介於上述開口之 ^ 頂部截面積和底部截面積之間,或者,圖案化後之犧牲層 210a之水平面積可小於上述第二面積。 ’ 接下來,請參照第2F圖,加熱圖案化後之犧牲層 210a(或可稱為熱回流步驟),以使開口 206中之犧牲層210a 產生一圓弧表面212(亦即三維曲面),而較佳者,圓孤表面 • 212係為一向下彎曲之圓弧,例如,參考第3圖,開口 206 在噴孔區上的犧牲層呈球形表面,而在流體入口處上的犧 牲層則由於其寬度變化係隨著接近流體通道而趨寬,因 ^ 此,犧牲層之上表面中心區域越趨平坦,而僅在其兩侧邊 緣構成圓弧表面,至於連通喷孔區與流體入口之流體腔中 間段,則形成一具有圓弧頂部表面之通道區。 上述加熱步驟之温度需可使犧牲層210a產生融熔狀 ® 態,而形成圓弧表面212,較佳者,加熱步驟之溫度大於 犧牲層210a之玻璃轉換溫度,而加熱後之犧牲層210a之 圓弧表面212的邊緣不超過該開口 206。在本發明之一較 佳實施例中,上述加熱步驟之溫度係介於110〜16(^C之 間,而侧壁結構層204之表面能較佳低於犧牲層210a之表 面能,以使上述加熱步驟後,犧牲層210a之圓弧表面212 和侧壁結構層20¾於開口 206H孔區域處之侧、壁208有 0535-A21281 TWF(N2);A05587; WAYNE 10 1272188 例如大於90°之較大的接觸角θ,較佳者,犧牲層210a之 . 圓弧表面212和侧壁結構層204於開口 206中喷孔區域處 - 之侧壁208之接觸角Θ係介於90°〜150°,更佳者,接觸角 Θ係介於110°〜130°,又另外,接觸角Θ可介於120°〜130°。 ^ 後續,請參照第2G圖,形成一隔絕層214於犧牲層 210a和侧壁結構層204上,以防止後續形成之結構層和犧 牲層210a或是側壁結構層204產生互融,隔絕層214可以 鲁 是例如物理沉積方法形成之金屬,例如金、鈦,或是高分 子所組成,隔絕層214之厚度不需太厚,其可約介於 Ο.ΐμπι〜3μπι之間。可供選擇的,可選擇材料使侧壁結構層 _ 204和後續形成之結構層不易產生互融,如此,可省略隔 絕層214。 ' 接下來,形成一上蓋結構層216於隔絕層214上,其 ; 位於噴孔區域處則稱為喷孔蓋,上蓋結構層216可為例如 ® 光阻之具有感光特性之高分子或是例如聚合物之非感光特 性之高分子所組成,後續,以微影蝕刻、壓印或是雷射蝕 刻的方法圖形化上蓋結構層216,以形成一喷孔218至暴 露隔絕層214。此外,上蓋結構層216亦可以由金屬或是 其它材料所組成,由電鍍方式直接形成含有喷孔之上蓋結 構層。 接下來,以例如微影飯刻的方法圖、形化基底之相對於 0535-A21281TWF(N2);A05587;WAYNE 11 1272188 結構層204、216之另一面,形成流體通道(於此截面未繪 • 示),以供應流體至流體腔,然而,本發明不限於此,形成 - 流體通道之方法可採用任何熟習此技藝人士所知的方法。 接下來,請參照第2H圖,經由喷孔218,以例如乾蝕 刻或是濕蝕刻方法,移除喷孔218中的隔絕層214,後續, 以例如濕#刻方法、去除劑(stripper)或是電漿灰化的方法 移除犧牲層210a,然而,本發明不限於此,犧牲層210a _ 亦可在後續步驟流體通道形成之後,經由流體通道以例如 濕姓刻方法、去除劑(stripper)或是電漿灰化的方法移除 之。在此需注意的是,由於上述步驟形成之犧牲層210a於 . 喷孔區域、中間段及流體入口分別具有不同曲度之圓弧表 面2.12,因此,在移除犧牲層210a之後,所形成之流體腔 220之上蓋部分222亦具有圓弧表面,易言之,上蓋222 亦具有向下彎曲之圓弧表面,此外,上蓋222和侧壁結構 _ .層204位於開口中喷孔區處之侧壁208有例如大於90°之較 大的夾角Θ,較佳者,上蓋部分222和側壁結構層204於 開口中喷孔區域之側壁208之夾角係介於90°〜150°,更佳 者,夾角Θ係介於110°〜130°,又另外,夾角Θ介於120°〜130。 第3圖係為本發明一實施例流體喷射裝置之立體圖, 第2H圖係為沿第3圖Ι-Γ剖面線之剖面圖,第21圖係為 沿第3圖ΙΙ4Γ剖面線之剖面圖1第不圖係| 0535-A21281TWF(N2);A05587;WAYNE 12 I2?2l88 - 剖面線之剖面圖,以下將參照第3圖、第2H圖、第圖 和第4圖詳細說明本發明之結構,流體腔22〇包括一位於 噴孔218周圍之喷孔區230,鄰接於流體通道29 <流體 , 入〇區234及位於噴孔區230和流體入口 234區間之中严 - 區232,由於犧牲層21〇a有經例如加熱之熱回流處理,在 、 本發明上述方法形成之流體腔220在上蓋部分s ζ具有圓 .弧表面,其中在喷孔區23〇,由於流體腔22〇在接近喷孔 8周圍之上蓋部分222由於在四周圍均和流體腔2叩之 侧壁208有較大夹角θ,因此形成一類似於球面之表面, 此外,流體腔220之介於喷孔區230至流體入口區234之 .中段區232,由於只有兩侧之上蓋部分222由於和流體腔 220之侧壁208有較大夾角㊀,例如11〇◦〜13〇。,因此形成 - 有圓弧頂部表面之通道,又另外,流體腔220在鄰接流體 _ 通道224之流體入口區234處,由於其水平截面積趨寬, 流體入口區234之流體腔220大部分之頂部為一曲度平坦 . 之表面,而僅在鄰接流體腔壁208處形成一曲面,夾角例 如為110。〜130〇。 由於本發明之較佳實施例中,流體腔220自流體入口 區234至喷孔區230處之上蓋部分216和流體腔壁208間 皆具有較大央角,因此可減少流體於流體腔220流動時, 在流體腔邊角產生擾流,而可增力σ流體於流體腔220流動 0535- A21281TWF(N2);A05587;WAYNE 13 1272188 之穩定性,以改善流體喷射裝置之可靠度和穩定性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。1272188. IX. Description of the Invention: - Technical Field of the Invention - The present invention relates to a fluid ejection device and a method of manufacturing the same, and more particularly to a microfluid ejection device and a method of fabricating the same. [Prior Art] Microfluid ejection devices have recently been widely used in the information industry, such as ink jet printers or the like. With the gradual development of micro system φ engineering, such fluid ejection devices are increasingly used in many other fields, such as fuel injection systems, cell sorting, drug delivery systems (drug). Delivery — system), print lithography, and micro jet propulsion system. - Figure 1 shows a conventional fluid ejection device 100. Referring to Figure 1 , a substrate 102 is used as the body, and a fluid chamber wall 104 is formed on the substrate 102. The orifice cover 106 is attached to the fluid chamber wall 104 to form a fluid chamber 108, wherein the combination of the fluid chamber wall 104 and the orifice cover 106 can be collectively referred to as a structural layer, and in addition, it also forms a spray on the structural layer. A nozzle 11O is provided for the fluid 112 to be ejected, and a patterning step is performed on the other side of the substrate 102 to form a fluid manifold connecting the fluid chambers. However, the prior art fluid ejecting apparatus The fluid chamber 108 having a rectangular cross section is susceptible to turbulence at the corners of the fluid chamber 108, causing fluid 112 to flow 0535-A21281 TWF(N2); A05587; WAYNE 5 1272188 to be unstable, thereby affecting the operation of fluid ejection device 100. SUMMARY OF THE INVENTION According to the above problems, an object of the present invention is to provide a fluid ejection device and a method of fabricating the same that constitute a smooth junction between a cap portion of a fluid chamber and a sidewall structure layer, which can reduce fluid flow in a fluid chamber. The turbulence generated at the corners thus increases the stability of fluid flow in the fluid chamber and improves the reliability and stability of the fluid ejection device. Φ The present invention provides a fluid ejection device comprising a fluid chamber and a fluid passage, the fluid chamber comprising a sidewall structure layer and a cover structure layer having a spray hole covering the sidewall structure layer to form a fluid chamber, wherein the sidewall structure The angle between the layer and the upper cover structure layer is greater than 90°. In addition, the fluid passage communicates with the fluid chamber to supply fluid to the fluid chamber. In addition, the fluid ejection device provided by the present invention includes the following elements. A sidewall structure layer is on the substrate, wherein the sidewall structure layer includes an opening. • A cover structure layer having an orifice covering the sidewall structure layer to form a fluid chamber at the opening ~, wherein the upper surface of the fluid chamber includes a curved surface of a different curved surface. A fluid passage is located within the substrate to communicate with the fluid chamber. The present invention provides a method of manufacturing a fluid ejection device. First, a substrate is provided to form a sidewall structure layer including an opening on the substrate, and thereafter, a patterned sacrificial layer is formed in the opening, and the patterned sacrificial layer is heated to form a patterned sacrificial layer to form an arc surface. After reading, an upper cover structure is formed. The layer is formed on the sacrificial layer and the sidewall structure layer, and the upper cover structure layer is defined to form an orifice of 0535-A21281TWF (N2); A05587; WAYNE 6 1272188. Next, on the other side of the substrate relative to the upper cover structure layer, a fluid passage is formed and the sacrificial layer is removed to form a fluid chamber. [Embodiment] The following is a detailed description of the embodiments, and the examples are accompanied by the illustrations. In the illustration or description, similar or identical parts use the same drawing number. In the drawings, the shape or thickness of the embodiment can be expanded to simplify or facilitate labeling. Portions of the various elements in the figures will be described separately, and it is noted that elements not shown or described in the figures may be in a variety of forms known to those skilled in the art, for example, the present invention The embodiment does not specifically describe the driving element and the driving method of the fluid of the present invention, and the present invention can be applied to any fluid driving element and driving method known to those skilled in the art, such as a thermally driven bubble 第 'Fig. 2A The Fig. 21 is a view showing a manufacturing flow of the fluid ejecting apparatus 一 according to an embodiment of the present invention. First, referring to FIG. 2A, a substrate 200 is provided. The substrate 200 may comprise a ruthenium, a glaze, and/or other materials. Preferably, the substrate 200 is a ruthenium substrate, and thereafter, the alignment element 202 is formed. On the substrate 200, the actuating element 202 is used to drive the fluid of the fluid ejection device, and the invention is not limited to a particular actuating element, which may be a heating element, a piezoelectric actuator or other fluid that can be used to drive the fluid. The components. '0535-A21281 TWF(N2); A05587; WAYNE 7 1272188 Next, referring to FIG. 2B, forming a sidewall structure layer 204 (or referred to as a fluid chamber wall) defines a predetermined position of the fluid chamber. In one embodiment of the present invention, the sidewall structure layer 204 includes an opening 206' that exposes the actuating element 202, wherein the opening 206 is used to define the orifice area 230, the fluid 'inlet area 234, and the communication. The location of the middle section 232. The sidewall structure layer 204 may be composed of a polymer such as a photoresist or a polymer. In a preferred embodiment of the present invention, the sidewall structure layer 204 is a negative photoresist such as polyimide φ (Polyimide). Preferably, the sidewall structure layer 204 is composed of a hydrophobic material, and preferably the sidewall structure layer 204 may have a thickness of 10-40 μm. The sidewall structure layer 204 can be formed, for example, by spin coating or deposition, followed by lithography, etching. For example, the sidewall structure layer 204 composed of polyimine may be coated with polyimine on the substrate 200 and the actuating member 202, and then subjected to an exposure and development step patterning " sidewall structure The layer 204 is formed to define a sidewall structure layer 204 that defines the location of the fluid cavity. Further, the patterning step in forming the sidewall structure layer 204 may also be performed by embossing or laser etching. Next, referring to FIG. 2C, a heating step may be performed on the sidewall structure layer 204 to cause the sidewall structure layer 204 to be in a molten state to form the inclined sidewall 208. The temperature and time of the heating step may be in accordance with the sidewall. The material of the structural layer 204 and the angle of inclination of the inclined sidewalls 208 are determined. Preferably, the temperature of the heating step is substantially greater than the glass transition temperature of the sidewall structure layer 2035-A21281 TWF(N2); A05587; WAYNE 8 1272188 degrees (Glass TransitionTemperature). For example, taking the side-wall structure layer 204 of the negative photoresist as an example, the angle of inclination of the inclined sidewall 208 in the nozzle region may be between 50° and 80°, and the temperature of the heating step may be between 80 and 80. . €~140QC, and the process time can be between 120 seconds and 360 seconds. Since the opening 206 is formed in the orifice region by the sidewall formation layer 204 having the sloped sidewalls 208, the top horizontal cross-sectional area of the opening 206 is larger than the bottom horizontal cross-sectional area. • Next, referring to FIG. 2D, a sacrificial layer 210 is formed on the sidewall structure layer 204 and the opening 206 of the sidewall structure layer by, for example, spin coating. The sacrificial layer 210 may be, for example, a photoresist or a polymer. In the preferred embodiment of the present invention, the sacrificial layer 210 is a photosensitive polymer such as a positive photoresist or a negative photoresist, and preferably the sacrificial layer 210 may have a thickness of 5-25 μm. It should be noted that the etching selectivity of the sacrificial layer 210 and the sidewall structure layer 204 is preferably greater than 10, so that when the sacrificial layer 210 is defined in the subsequent step, the sidewall structure layer 204 is not damaged too much, preferably, The sidewall structure layer 204 is composed of a negative photoresist, and the sacrificial layer 210 is composed of a positive photoresist. Next, referring to FIG. 2E, the sacrificial layer 210 is patterned such that the patterned sacrificial layer 210a is limited in the horizontal direction to the opening 206 in the subsequent heating step, but the height of the sacrificial layer 210 may be before heating. Above or below the sidewall crucible layer < 204, in addition, the horizontal cross-sectional area of the patterned sacrificial layer 0535-A21281TWF (N2); A05587; WAYNE 9 1272188 _ 210a can be determined according to product requirements or process conditions, for example For example, the horizontal area of the patterned sacrificial layer 210a may be between the top cross-sectional area and the bottom cross-sectional area of the opening, or the horizontal area of the patterned sacrificial layer 210a may be smaller than the second area. Next, referring to FIG. 2F, the patterned sacrificial layer 210a (or may be referred to as a thermal reflow step) is heated to cause the sacrificial layer 210a in the opening 206 to create a circular arc surface 212 (ie, a three-dimensional curved surface). Preferably, the circular orbital surface 212 is a downwardly curved arc. For example, referring to Fig. 3, the sacrificial layer of the opening 206 on the orifice area has a spherical surface, and the sacrificial layer at the fluid inlet is Since the width variation is widened as it approaches the fluid passage, the center area of the upper surface of the sacrificial layer becomes flatter, and only the arcuate surfaces are formed on both side edges thereof, as for the communication of the orifice area and the fluid inlet. In the middle section of the fluid chamber, a passage region having a circular top surface is formed. The temperature of the heating step is such that the sacrificial layer 210a is in a molten state to form a circular arc surface 212. Preferably, the temperature of the heating step is greater than the glass transition temperature of the sacrificial layer 210a, and the heated sacrificial layer 210a is The edge of the arcuate surface 212 does not exceed the opening 206. In a preferred embodiment of the present invention, the temperature of the heating step is between 110 and 16, and the surface energy of the sidewall structure layer 204 is preferably lower than the surface energy of the sacrificial layer 210a. After the above heating step, the circular arc surface 212 of the sacrificial layer 210a and the side wall structural layer 205a are on the side of the opening area of the opening 206H, and the wall 208 has 0535-A21281 TWF (N2); A05587; WAYNE 10 1272188, for example, greater than 90°. The large contact angle θ, preferably, the sacrificial layer 210a. The arcuate surface 212 and the sidewall structure layer 204 are at the orifice area of the opening 206 - the contact angle of the sidewall 208 is between 90° and 150°. More preferably, the contact angle Θ is between 110° and 130°, and in addition, the contact angle Θ can be between 120° and 130°. ^ Subsequently, please refer to the 2G figure to form an isolation layer 214 on the sacrificial layer 210a. And the sidewall structure layer 204 to prevent the subsequently formed structural layer from intermingling with the sacrificial layer 210a or the sidewall structure layer 204, and the isolation layer 214 may be a metal formed by, for example, physical deposition, such as gold or titanium, or The composition of the polymer, the thickness of the insulating layer 214 does not need to be too thick, and it may be about Ο.ΐμπ Between ι and 3 μm. Alternatively, the material may be selected such that the sidewall structure layer _204 and the subsequently formed structural layer are less likely to be intermingled. Thus, the isolation layer 214 may be omitted. Next, an upper cover structure layer 216 is formed. The insulating layer 214 is called a nozzle cover, and the upper cover structure layer 216 can be a polymer having a photosensitive property such as a photoresist or a non-photosensitive polymer such as a polymer. After the composition, the upper cover structure layer 216 is patterned by photolithography etching, embossing or laser etching to form an ejection hole 218 to expose the isolation layer 214. Further, the upper cover structure layer 216 may also be made of metal or other. The material consists of directly forming a cover structure layer containing the nozzle hole by electroplating. Next, the base layer is formed by a method such as lithography, and the base layer is opposite to the 0535-A21281TWF (N2); A05587; WAYNE 11 1272188 structural layer. The other side of 204, 216 forms a fluid passage (not shown in this section) to supply fluid to the fluid chamber. However, the invention is not limited thereto, and the method of forming the fluid passage may be any A method known to those skilled in the art. Next, referring to FIG. 2H, the isolation layer 214 in the injection hole 218 is removed through the injection hole 218 by, for example, dry etching or wet etching, followed by, for example, wet# The sacrificial layer 210a is removed by a method of etching, stripper or plasma ashing. However, the invention is not limited thereto, and the sacrificial layer 210a may also be wetted via a fluid channel, for example, after the subsequent step of fluid channel formation. The method of surname engraving, stripper or plasma ashing is removed. It should be noted that, since the sacrificial layer 210a formed by the above steps has a circular arc surface 2.12 of different curvatures in the nozzle hole region, the intermediate portion and the fluid inlet, respectively, after the sacrificial layer 210a is removed, the formed layer is formed. The upper cover portion 222 of the fluid chamber 220 also has a circular arc surface. In other words, the upper cover 222 also has a circular curved surface that is curved downward. Further, the upper cover 222 and the side wall structure _. The layer 204 is located at the side of the opening in the opening area. The wall 208 has a larger angle Θ greater than 90°. Preferably, the angle between the upper cover portion 222 and the sidewall structure layer 204 in the sidewall 208 of the orifice region in the opening is between 90° and 150°, and more preferably, The angle Θ is between 110° and 130°, and the angle Θ is between 120° and 130 degrees. 3 is a perspective view of a fluid ejection device according to an embodiment of the present invention, wherein FIG. 2H is a cross-sectional view taken along line 第-Γ of FIG. 3, and FIG. 21 is a cross-sectional view taken along line 3 of FIG. No. Fig. | 0535-A21281TWF(N2); A05587; WAYNE 12 I2?2l88 - a cross-sectional view of a hatching, the structure of the present invention will be described in detail below with reference to FIG. 3, FIG. 2H, FIG. The fluid chamber 22 includes an orifice region 230 located around the orifice 218 adjacent to the fluid passage 29 < fluid, inlet region 234 and intermediate portion 232 between the orifice region 230 and the fluid inlet 234, due to sacrifice The layer 21A has a heat reflow treatment by, for example, heating, and the fluid chamber 220 formed by the above method of the present invention has a circular arc surface in the upper cover portion s ,, wherein in the orifice region 23, since the fluid chamber 22 is close to The upper cover portion 222 around the nozzle hole 8 has a larger angle θ with the side wall 208 of the fluid chamber 2 在, thereby forming a surface similar to a spherical surface. Further, the fluid chamber 220 is disposed between the nozzle hole region 230. To the middle section 232 of the fluid inlet zone 234, since only the upper side cover portion 222 is due to There is a large angle between the side wall 208 of the fluid chamber 220, for example, 11 〇◦ 13 〇. Thus, a channel having a circular arc top surface is formed, and in addition, the fluid chamber 220 is adjacent to the fluid inlet region 234 of the fluid channel 224, and the fluid chamber 220 of the fluid inlet region 234 is mostly due to its horizontal cross-sectional area being widened. The top portion is a flat surface having a curvature, and a curved surface is formed only adjacent to the fluid chamber wall 208 at an angle of, for example, 110. ~130〇. Because of the preferred embodiment of the present invention, the fluid chamber 220 has a large central angle between the upper cover portion 216 and the fluid chamber wall 208 from the fluid inlet region 234 to the orifice region 230, thereby reducing fluid flow in the fluid chamber 220. At the same time, a spoiler is generated at the corner of the fluid chamber, and the σ fluid can be energized in the fluid chamber 220 to flow the stability of 0535-A21281TWF(N2); A05587; WAYNE 13 1272188 to improve the reliability and stability of the fluid ejection device. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

0535-A21281TWF(N2);A05587;WAYNE 14 1272188 【圖式簡單說明】 . 第.1圖顯示一種習知之單石化的流體喷射裝置。 - 第2A圖〜第21圖係揭示本發明一實施例流體喷射裝置 之製造流程。 第3圖係為本發明一實施例流體喷射裝置之立體圖。 第2H圖係為沿第3圖Ι-Γ剖面線之剖面圖。 第21圖係為沿第3圖]ΜΓ剖面線之剖面圖。 • 第4圖係為沿第3圖ΙΙΙ-ΙΙΓ剖面線之剖面圖。 【主要元件符號說明】 102〜珍基底; 106〜喷孔蓋; 110〜喷孔; 114〜流體通道; 202〜致動元件; 206〜開口; 210〜犧牲層; 212〜圓弧表面; 216〜上蓋結構層; 220〜流體腔; 224〜流體通道; 232〜中段區; 100〜流體喷射裝置; 104〜流體腔壁; 108〜流體腔; 112〜流體; 200〜基底; 204〜侧壁結構層; 208〜傾斜侧壁; 210a〜圖案化犧牲層; 214〜隔絕層; 218〜喷孔; 222〜流體腔上蓋部分; 230〜喷孔區; 0535-A21281TWF(N2);A05587;V\/AYNE 15 1272188 234〜流體入口區0535-A21281TWF(N2); A05587; WAYNE 14 1272188 [Simple description of the drawings] Fig. 1 shows a conventional single petrochemical fluid ejection device. - Figs. 2A to 21 are views showing a manufacturing process of a fluid ejecting apparatus according to an embodiment of the present invention. Figure 3 is a perspective view of a fluid ejection device in accordance with one embodiment of the present invention. Figure 2H is a cross-sectional view taken along line 第-Γ of Figure 3. Figure 21 is a cross-sectional view taken along line 第 of Figure 3; • Figure 4 is a cross-sectional view taken along line 第-ΙΙΓ of Figure 3. [Main component symbol description] 102 ~ Jane substrate; 106 ~ orifice cover; 110 ~ orifice; 114 ~ fluid passage; 202 ~ actuating element; 206 ~ opening; 210 ~ sacrificial layer; 212 ~ arc surface; Upper cover structure layer; 220~ fluid chamber; 224~ fluid passage; 232~ middle section; 100~ fluid ejection device; 104~ fluid chamber wall; 108~ fluid chamber; 112~ fluid; 200~ base; 204~ sidewall structure layer 208~ inclined sidewall; 210a~ patterned sacrificial layer; 214~ isolation layer; 218~ orifice; 222~ fluid chamber upper cover portion; 230~ orifice area; 0535-A21281TWF(N2); A05587; V\/AYNE 15 1272188 234~fluid inlet area

0535-A21281TWF(N2);A05587;WAYNE 160535-A21281TWF(N2);A05587;WAYNE 16

Claims (1)

1272188 十、申請專利範圍: 1.一種流體喷射裝置,包括·· 一流體腔,至少由一側壁結構層及一具有喷孔之上蓋 麇 結構層所形成,其中該上蓋結構層覆蓋於該側壁結構層 上,該侧壁結構層與該上蓋結構層之夾角大於90° ;及 " 一流體通道,與該流體腔連通,以供應流體於該流體 ' 腔。 φ 2.如申請專利範圍第1項所述之流體喷射裝置,其中 .該側壁結構層與該上蓋結構層之夾角介於90°〜150°。 3. 如申請專利範圍第1項所述之流體喷射裝置,其中 該側壁結構層與該上蓋結構層之夾角介於110°〜130°。 4. 如申請專利範圍第1項所述之流體喷射裝置,其中 • 該侧壁結構層與該上蓋結構層之夾角介於120°〜130°。 - 5.如申請專利範圍第1項所述之流體喷射裝置,其中 φ 該之流體腔之上壁係為一圓弧形。 ^ 6.如申請專利範圍第1項所述之流體喷射裝置,其中 '該側壁結構層係為傾斜。 7. —種流體喷射裝置,包括: 一基底; 一侧壁結構層,位於該基底上,其中該侧壁結構層包 括一開口; 一具有喷孔之上蓋結構層,覆蓋於該侧壁結構層上, 0535-A21281TWF(N2);A05587;WAYNE 17 1272188 以於該開口處形成一流體腔,其中該流體腔之上表面包括 . 不同曲面之圓弧表面;及 , 一流體通道,位於該基底内以與該流體腔連通。 8. 如申請專利範圍第7項所述之流體喷射裝置,其中 該侧壁結構層之開口處之侧壁係為傾斜。 9. 如申請專利範圍第7項所述之流體喷射裝置,其中 該流體腔包括一位於該喷孔周圍之喷孔區,一鄰接於該流 馨體通道之流體入口區及一位於該噴孔區和該流體入口區間 之中段區,其中: 位於該喷孔區之之流體腔之上蓋結構層大體上具有一 球面之表面; 位於該中段區之之流體腔之上蓋結構層大體上為具有 一圓弧狀頂部之通道;及 ^ 位於該流體入口區之之流體腔之上蓋結構層,除了鄰 • 接該侧壁結構層之開口的侧壁為一曲面,大體上為一平面。 10. 如申請專利範圍第7項所述之流體喷射裝置,其甲 .該側壁結構層係為疏水材料所组成。 11. 如申請專利範圍第7項所述之流體喷射裝置,其中 該侧壁結構層係為光阻或聚合物所組成。 12. 如申請專利範圍第11項所述之流體喷射裝置,其 中該侧壁結構層係為負光阻所組成。 0535-A21281TWF(N2);A05587;WAYNE 18 1272188 ^ 13. —種流體喷射裝置之製造方法,包括·· • 提供一基底; ^ 形成包括一開口之侧壁結構層於該基底上; 形成一圖形化之犧牲層於該開口中; 加熱該圖形化之犧牲層,以使該圖形化之犧牲層形成 一圓弧表面; 形成一上蓋結構層於該犧牲層及該侧壁結構層上; Φ 定義該上蓋結構層,以形成一喷孔; 移除該犧牲層,以形成一流體腔;及 於相對於該上蓋結構層之該基底的另一面,形成一流 . 體通道,連通該流體腔。 14.如申請專利範圍第13項所述之流體喷射裝置之製 造方法,其中在加熱該圖形化之犧牲層之後,於該喷孔位 置之夾角係介於90°〜150°。 ❿ 15.如申請專利範圍第13項所述之流體喷射裝置之製 造方法,其中在加熱該圖形化之犧牲層之後,該侧壁結構 層與該犧牲層之失角係介於11〇°〜13〇% 16. 如申請專利範圍第13項所述之流體喷射裝置之製 造方法,其中加熱該圖形化之犧牲層之溫度大於該犧牲層 之玻璃轉換溫度(Glass Transition Temperature) 〇 17. 如申請專利範圍第13項所述之流體噴射裝置之製 0535-A21281TWF(N2);A05587;WAYNE 19 1272188 造方法,其中該侧壁結構層之表面能低於該犧牲層之表面 能。 18. 如申請專利範圍第13項所述之流體喷射裝置之製 造方法,其中該犧牲層係為高分子材料所組成。 19. 如申請專利範圍第13項所述之流體喷射裝置之製 造方法,其中該侧壁結構層係為負光阻所組成,該犧牲層 係為正光阻所組成。 > 20.如申請專利範圍第19項所述之流體喷射裝置之製 造方法,其中該負光阻係為聚醯亞胺polymide。 21.如申請專利範圍第13項所述之流體喷射裝置之製 , 造方法,尚包括加熱該侧壁結構層,使該侧壁結構層之開 口侧壁傾斜。 0535-A21281 TWF(N2);A05587;WAYNE 201272188 X. Patent application scope: 1. A fluid ejection device comprising: a fluid chamber formed by at least one sidewall structure layer and a cover layer having an orifice above, wherein the upper cover structure layer covers the sidewall structure layer The angle between the sidewall structure layer and the upper cover structure layer is greater than 90°; and " a fluid passage communicating with the fluid chamber to supply fluid to the fluid chamber. The fluid ejection device of claim 1, wherein the sidewall structure layer and the upper cover structure layer are at an angle of between 90° and 150°. 3. The fluid ejection device of claim 1, wherein the sidewall structure layer and the upper cover structure layer are at an angle of between 110° and 130°. 4. The fluid ejection device of claim 1, wherein: the sidewall structure layer and the upper cover structure layer are at an angle of between 120° and 130°. 5. The fluid ejecting apparatus according to claim 1, wherein the upper wall of the fluid chamber has a circular arc shape. 6. The fluid ejecting apparatus of claim 1, wherein the sidewall structure layer is inclined. 7. A fluid ejection device comprising: a substrate; a sidewall structure layer on the substrate, wherein the sidewall structure layer comprises an opening; and a cover structure layer having an orifice covering the sidewall structure layer Upper, 0535-A21281TWF (N2); A05587; WAYNE 17 1272188 to form a fluid chamber at the opening, wherein the upper surface of the fluid chamber comprises a circular arc surface of a different curved surface; and a fluid passage is located in the substrate Communicating with the fluid chamber. 8. The fluid ejecting apparatus according to claim 7, wherein the side wall of the opening of the side wall structural layer is inclined. 9. The fluid ejection device of claim 7, wherein the fluid chamber comprises an orifice region located around the orifice, a fluid inlet region adjacent to the fluid passage and a orifice a region and a middle portion of the fluid inlet interval, wherein: the cover structure layer above the fluid chamber of the orifice region has a substantially spherical surface; and the fluid reservoir above the middle portion has a cover structure layer having substantially one a channel of the arc-shaped top; and a cover structure layer above the fluid chamber of the fluid inlet region, except that the side wall adjacent to the opening of the sidewall structure layer is a curved surface, substantially a plane. 10. The fluid ejecting apparatus according to claim 7, wherein the side wall structural layer is composed of a hydrophobic material. 11. The fluid ejecting device of claim 7, wherein the sidewall structure layer is comprised of a photoresist or a polymer. 12. The fluid ejecting device of claim 11, wherein the sidewall structure layer is comprised of a negative photoresist. 0535-A21281TWF(N2); A05587; WAYNE 18 1272188 ^ 13. A method of manufacturing a fluid ejection device, comprising: providing a substrate; ^ forming a sidewall structure layer including an opening on the substrate; forming a pattern a sacrificial layer in the opening; heating the patterned sacrificial layer to form the patterned sacrificial layer to form a circular arc surface; forming an upper capping layer on the sacrificial layer and the sidewall structure layer; The upper cover structure layer is formed to form a spray hole; the sacrificial layer is removed to form a fluid chamber; and the other side of the base relative to the upper cover structure layer forms a first-class body passage communicating with the fluid chamber. 14. The method of manufacturing a fluid ejection device according to claim 13, wherein after heating the patterned sacrificial layer, the angle between the orifice positions is between 90 and 150. The method of manufacturing a fluid ejection device according to claim 13, wherein after heating the patterned sacrificial layer, the corner structure of the sidewall structure layer and the sacrificial layer is between 11 〇 ° The method of manufacturing a fluid ejection device according to claim 13, wherein the temperature of the patterned sacrificial layer is greater than a glass transition temperature of the sacrificial layer 〇 17. The method of claim 5, wherein the surface energy of the sidewall structure layer is lower than the surface energy of the sacrificial layer. The method of claim 5, wherein the surface energy of the sidewall structure layer is lower than the surface energy of the sacrificial layer. 18. The method of manufacturing a fluid ejection device according to claim 13, wherein the sacrificial layer is composed of a polymer material. 19. The method of fabricating a fluid ejection device according to claim 13, wherein the sidewall structure layer is composed of a negative photoresist, and the sacrificial layer is composed of a positive photoresist. The method of manufacturing a fluid ejecting apparatus according to claim 19, wherein the negative photoresist is a polyimine polymide. 21. The method of fabricating a fluid ejection device of claim 13, further comprising heating the sidewall structure layer to tilt the opening sidewall of the sidewall structure layer. 0535-A21281 TWF(N2);A05587;WAYNE 20
TW95111934A 2006-04-04 2006-04-04 A fluid injection apparatus and fabrication method thereof TWI272188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95111934A TWI272188B (en) 2006-04-04 2006-04-04 A fluid injection apparatus and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95111934A TWI272188B (en) 2006-04-04 2006-04-04 A fluid injection apparatus and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI272188B true TWI272188B (en) 2007-02-01
TW200738474A TW200738474A (en) 2007-10-16

Family

ID=38441171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95111934A TWI272188B (en) 2006-04-04 2006-04-04 A fluid injection apparatus and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI272188B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403420B (en) * 2007-03-12 2013-08-01 Silverbrook Res Pty Ltd Printhead having hydrophobic polymer coated on ink ejection face

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403420B (en) * 2007-03-12 2013-08-01 Silverbrook Res Pty Ltd Printhead having hydrophobic polymer coated on ink ejection face
TWI419794B (en) * 2007-03-12 2013-12-21 Silverbrook Res Pty Ltd Method of fabricating printhead having hydrophobic ink ejection face

Also Published As

Publication number Publication date
TW200738474A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US7325310B2 (en) Method for manufacturing a monolithic ink-jet printhead
JP3009449B2 (en) Method of forming precise through-hole in silicon wafer
US6868605B2 (en) Method of manufacturing a bubble-jet type ink-jet printhead
TWI257902B (en) Ink-jet recording head and method for manufacturing ink-jet recording head
US6692112B2 (en) Monolithic ink-jet printhead
US20060290743A1 (en) Method for manufacturing monolithic ink-jet printhead
JP2002538981A (en) Manufacturing method of thermal bending actuator
JP4195347B2 (en) Inkjet printhead manufacturing method
US7070912B2 (en) Method of manufacturing monolithic inkjet printhead
JP3851814B2 (en) Ink jet print head having hemispherical ink chamber and method of manufacturing the same
US20030030697A1 (en) Bubble-jet type inkjet printhead
TWI252176B (en) Method for manufacturing liquid ejection head
TW200836932A (en) Method of fabricating printhead having hydrophobic ink ejection face
TWI272188B (en) A fluid injection apparatus and fabrication method thereof
US20060061629A1 (en) Inkjet printer head and method of manufacturing the same
TW580436B (en) Ink-jet micro-injector device and fabrication method thereof
TW201103758A (en) Printhead having polymer incorporating nanoparticles coated on ink ejection face
US20100165056A1 (en) Heater Stack In A Micro-Fluid Ejection Device And Method For Forming Floating Electrical Heater Element In The Heater Stack
US20040201650A1 (en) Pattern formation apparatus and manufacturing method thereof
TWI503235B (en) Printhead having polysilsesquioxane coating on ink ejection face
TW200848271A (en) Printhead integrated circuit comprising inkjet nozzle assemblies having connector posts
JP2010280069A (en) Liquid ejection head and method for manufacturing the same
US20020123232A1 (en) High density wafer production method
US20130082028A1 (en) Forming a planar film over microfluidic device openings
JPH03121850A (en) Ink jet printer head and its manufacture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees