1271905 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於高功率雷射系統,該系統包含對低 功率主雷射主動鎖定之高功率主伺服雷射振盪器,以及特 別是摻雜稀土族元素高功率雙包層光纖之混合初級伺服雷 射振盪器。 【先前技術 雖然包含低功率主雷射鎖定注入至初級(伺服)雷射振 盪器之高功率雷射系統為已知的,該雷射系統使用固態(即 固體雷射晶體)增益介質雷射晶體通常為長的,約為6〇mm, 以及直控為小的,約為1· 6咖,以及以Brewster角度切割,其 產生具有狹窄光學孔徑之晶體。在雷射晶體中熱透鏡作用 以及雷射晶體狹窄孔徑導致共振腔保持為短的通常約為5〇 ant規定。共振腔fcav自由頻譜範圍因而相當長,遠長於注 入一鎖定所需要之電-光調變器調變頻率f㈣(約為十倍)。 該固態雷射系統並不提供受限繞射之輸出,特別是當 在高功率下按比例操作時。除此,在高功率下導致之光學 雙折射性(由於高熱應力所致)產生模不穩定,以及去偏極 :在這些型式雷射系統中固態(晶體)雷射介質具有散熱問 題,其中晶體吸收一些泵運能量以及經由熱量溢失,因而使 雷射效率較差以及在高輸出功率下難以穩定操作。當在高 功率操作下通常已知熱應力將導致熱透鏡化形成,產生偏 差,以及晶體破裂。這些熱效應在透鏡系統輸出頻譜及模 特性產生不穩定性。 一,狗使用上述所說明鎖定注入雷射系統以產生第二或 更高諧波頻率之光線,其使用適當相匹配頻率之轉換器晶 體。例如,在198nm深紫外線(DUV)波長之光線可藉由波長 l〇64nm紅外線之光線及244^波長之紫外線的合併頻率形 成而產生。不過在鞋生深料線方法巾,人們必需考慮 1271905 ^員,捧變器晶體之*學損壞。該損壞主要產生於同時出 =外狀紫外線情況。此將限制頻率轉變器晶體在光學 她開始前之操作時氣其導致轉變效率嚴重的損失。 例如,-個工業雷射製造商已揭示出當198砸深紫外線 200由1064砸内腔紅外線漏功率及244砸紫外線 60(kW功率產生時在頻率轉變器晶體(αΒ〇)上任何一點最1271905 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to high power laser systems that include a high power main servo laser oscillator that actively locks low power main lasers, and particularly doped A hybrid primary servo laser oscillator of a rare earth element high power double-clad fiber. [Prior Art Although a high power laser system incorporating a low power main laser lock injection into a primary (servo) laser oscillator is known, the laser system uses a solid state (ie solid laser crystal) gain medium laser crystal Usually long, about 6 mm, and the direct control is small, about 1.6 coffee, and cut at the Brewster angle, which produces a crystal with a narrow optical aperture. The thermal lens action in the laser crystal and the narrow aperture of the laser crystal cause the cavity to remain short, typically about 5 〇 ant. The resonant cavity fcav free spectral range is therefore quite long, much longer than the electro-optical modulator modulation frequency f(4) (about ten times) required to inject a lock. The solid state laser system does not provide a limited diffraction output, especially when operating at high power for proportional operation. In addition, optical birefringence (due to high thermal stress) causes mode instability and depolarization at high power: solid-state (crystal) laser media have heat dissipation problems in these types of laser systems, among which crystals It absorbs some of the pumping energy and overflows through heat, thus making lasers less efficient and difficult to operate stably at high output power. It is generally known that thermal stresses at high power operation will result in thermal lensing, deflection, and crystal cracking. These thermal effects create instability in the output spectrum and mode characteristics of the lens system. First, the dog uses the lock described above to inject the laser system to produce a second or higher harmonic frequency that uses a properly matched frequency converter crystal. For example, light having a deep ultraviolet (DUV) wavelength of 198 nm can be produced by a combined frequency of a wavelength of infrared light having a wavelength of 144 nm and a wavelength of ultraviolet light of 244 wavelengths. However, in the shoe deep-line method towel, people must consider the damage of the 1271905 ^ member, the crystal of the transformer. This damage is mainly caused by the simultaneous appearance of external ultraviolet light. This will limit the frequency converter crystals from causing a significant loss of conversion efficiency during the optics before the start of the optics. For example, an industrial laser manufacturer has revealed that when 198 砸 deep UV 200 is emitted by 1064 砸 lumen infrared leakage power and 244 砸 UV 60 (kW power is generated at any point on the frequency converter crystal (αΒ〇)
j作,為7〇小時。為了增加雷射系統總使用壽命,頻 率轉變器晶體在操作70*時後必需橫向地偏移至另外一點 。因而在頻率機器晶體必需完全地替換前,需要大約1〇〇 個標定位置以提高使用壽命超過5〇〇〇小時,。同樣地,另外 :個雷射製造商亦報導當頻率機器晶體使用來由522nm 基本波長290W内腔功率產生第二譜振波長(266nm)時在26& nm 3W功率大小下操作時數為3小時。 【發明内容】 本發明一項係關於高功率雷射系統,該系統包含:主雷 射,以及初級伺服雷射振盪器,其包含由摻雜稀土族元素光 、截戶斤構成之共振腔,該初級飼服雷射振盡器被鎖定至主雷 射,其中共振腔提供超過1W光學功率之輸出。在一些實施 例中輸出為超過50W,及100W,以及150W之光學功率。 與依據本發明一項實施例,在摻雜稀土族元素光纖内光 學路徑長度為大於初級伺服雷射振盪器内被動光學路徑長 依據本發明一項實施例,共振腔包含相位調變器,該調 ,器^夠延伸出至少一部份摻雜稀土族元素光纖以鎖‘光 學訊號頻率,以及相位調變器功能作為模濾波器。 依據本發明一項實施例,換雜稀土族元素光输為 偏極之光纖。依據本發明另一項實施例,摻雜稀元: 光纖為單偏極光纖。 依據本發明一些實施例,共振腔包含第二諧波產生器 1271905 。依據本發明之雷射系統能夠提供婁欠個優點:高輸出功率 ,例如為數百瓦特,輸出為高頻譜純度以及穩定操作,同時 亦具有精緻之優點,以及對光學損壞為高度抵抗性。 本發明其他特性及優點將揭示於下列詳細說明中,熟 • 知此技術者能夠經由說明書部份了解,或藉由實施下列詳 細說明書,申睛專利範圍及附圖所揭示之内容而明暸。 人們了解先前一般性說明以及下列本發明實施例詳細 說明只在於提供概念或架構以了叙申請專利範圍所揭示本 發明之原理及特性。附圖在於更進一步了解本發明,以及 在此加入作為參考之用。附圖顯示出本發明不同的實施例 ,,以及隨同說明書作為說明本發明之原理及操作。 ' 【實施方式】 ’、 • 參考圖1A,其顯示出範例性雷射系統1〇之光學及電子 示意圖丨其包含低功率主雷射12及高功率伺服雷射振盪器 14(亦稱為初級雷射振盡器),該雷射振盪器包含主動介質, 一段摻雜,土族元素之光纖16。所謂振盪器表示高功率伺 服雷射振盪裔14能夠獨立地產生於其自已同調雷射輸出而 不需要來自主雷射12之輸入,如同當其並不鎖定注入於主 雷射12情況。當主動鎖定注入未達成時,高功率伺服雷射 參振盈^之頻譜線頻帶寬度將為寬廣的,例如當使用摻雜Yb 光纖時可寬達20nm。當達成主動鎖定注入時,高功率伺服 雷射振盪器將變為相當狹窄例如為1〇pm寬度。因而主動鎖 定注入由伺服雷射振盪器14提供高輸出功率,同時保持主 ; 雷射12頻譜特性。在該實施例中高功率伺服雷射14包含摻 雜Yb之雙包層光纖(dcf)18。在該及一些範例性實施例中, " 雷射14輸出為超過50W,及100W,以及150W之光學功率。例 如主動鎖定注入可藉由回授線路達成,其適當地改變初級 伺服雷射振盪器14振盪腔内之光學路徑長度。在該實施例 中,雷射14主動地鎖定注入於單頻率主雷射12,其使用人們 1271905 所熟知的Pound-Drever-Hall(PDH)鎖定技術。當主動地鎖 定注入時,伺服雷射14之波長與主雷射12波長相同。主雷 射12及伺服雷射14之鎖定注入組件所標示1064nm的操作波 長只是代表性範例,以及主雷射12及伺服雷射14能夠各別 ' 地在Yb發射整個頻帶1020nm至1180nm範圍内調整。主雷射 12之低功率單頻率輸出經由電一光調變器(E〇M)2〇傳氣其 由驅動器20a驅動。在電-光調變器(e〇m)20產生兩個側邊 頻帶B,其與載波頻率A分離頻率差值為,該載波頻率相 當於主雷射丨2之光學頻率,參閱圖1Β。每一側邊頻帶Β與載 波頻率Α間之頻率差值等於電-光調變器(ΕΟΜ)20之驅動頻 * 率。部份反射之反射鏡22投射部份主雷射14輸出光線至光 感測器24。光感測器24之電子輸出與驅動器2〇a發出之參 、 考電子訊號混合,該驅動器使用雙平衡之混合器26。在混 合器26輸出中高頻率部份由電子濾波器28所過濾、。在濾波 器28輸出處之電子訊號導入至積分組件3〇,該組件包含快 速積为為30a及緩積分器3〇b。在該實施例中,快速積分 器30a之電子輸出導引至相位調變器32之快速反應區段版 。同樣地,緩慢反應區段32b電子輸出導引至相位調變器32 之緩^區段32b。混合器26,濾波器28,積分組件30及相位 φ 調/變器32共同地形成回授單元34。相位調變器32通常藉由 冷卻及黏接一段摻雜稀土族光纖16於一個壓電圓柱體(並9 未顯示出)製造出,以及優先地藉由冷卻及連接兩段惨雜稀 土族元素之光纖至兩個分離壓電圓柱體32a,娜。壓電圓 , 柱體32a直徑小於壓電圓柱體32直徑,以及因而作為快速相 位調變器(同時較大直徑之壓電圓柱體32b作為緩慢相位 ,、變器)。可加以變化,壓電圓柱體32a可由兩個壓電半圓柱 體之晶片組(並未顯示出)替代。光纖16之光學長度( 率η與成何長度之乘積)藉由電子訊號驅動兩個壓電濟 32a及32b加以調變。例如光學路徑長度能夠藉由拉伸(壓 1271905 縮)捲繞於壓電圓柱體四週光纖區段而增加(或減小)。光 學路徑長度變化相當於初級飼服雷射振盪器14振蓬腔3 光學相位調變。 當雷射14自由運行波長(即當初級飼服雷射振盈器μ •並不鎖主雷射12)接近主雷射12波長注入於回授&元 34之鎖定範圍内,相位改變之適當訊號及大小在相位調變 器32處產生與主雷射12及飼服雷射14之波長相匹配。 在實施例中,雷射14包含具有功率增益及光學路徑長 度n=bd2之摻雜稀土族元素光纖16(主動光纖),其中化為光 纖有效折射率以及也為光纖之實際長度。主動光纖之光學 攀路徑長度大於共#腔内被動分導引波之光學路徑長度 Σηΐίώί,其中nii為沿著被動光學路徑之光學介質有效折 射率,以及du為沿著該被動路徑介質之距離或厚度。光學 路徑長度Eniidli儘可能地保持為最小,以及選擇該實施 例雷射系統10之共振腔36總光學路徑ΐχΐ^ΣηΛ+Π2ώ) 使得共振腔自由頻譜範圍L能夠仍然至少為5ΜΗζ,相對 應總光學路徑長度L約為60m。除此,在該實施例中,選擇光 學路徑長度L使得共振腔36之自由頻譜範圍並不等於電一光 调變裔20之調變頻率^。更特別地,在該實施例中該雷 • 射系統更進一步包含EOM耦合至EOM驅動器以及該共振腔之 長度L將使得f^fcav,其中f㈣為腦驅動器之頻率以及 fcav為共振腔之空間,即訊號模間距離(不存在EOM),其由 初級飼服雷射振盪器之共振腔長度決定。優先地長度L為 大於0· 25m,以及更優先地大於im。 摻雜Yb光纖18之雙包層構造能夠使泵運雷射38做高光 學功率之多模輸出(例如980nm泵)耦合至光纖18之内包層 。該耦合能夠由泵運訊號混合器40容易地達成。980nm泵 運光線藉由重疊波導引至光纖18之摻雜Yb心蕊耦合至内包 層,以及能夠在摻雜Yb心蕊中光線發射(i〇2〇nm至1180nm範 第9 頁 .1271905 圍内)產生光學功率增益。亦能夠使用其他方式之泵運雷 射光纖18,例如藉由使用V-溝槽或稜鏡進行側邊泵運,以及 藉由使用雙色反射鏡進行端部泵運。 ’ ^在該實施例中,摻雜Yb光纖18作為雙重功能,即作為光 學功率增益介質,以及作為光學相位元件,其能夠藉由壓電 圓柱體32a及32b加以調變。j, for 7 hours. In order to increase the total life of the laser system, the frequency converter crystal must be laterally offset to another point after operation 70*. Thus, before the frequency machine crystal must be completely replaced, approximately 1 标 of the calibration position is required to increase the service life by more than 5 hrs. Similarly, another laser manufacturer reported that when the frequency machine crystal is used to generate a second spectral wavelength (266 nm) from a cavity power of 522 nm at a fundamental wavelength of 290 nm, the operating time is 3 hours at 26 & nm 3W power. . SUMMARY OF THE INVENTION The present invention relates to a high power laser system, comprising: a main laser, and a primary servo laser oscillator comprising a resonant cavity composed of a rare earth element-doped light and a cut-off pin. The primary feed laser horn is locked to the main laser, where the resonant cavity provides an output of more than 1 watt of optical power. In some embodiments the output is over 50W, and 100W, and 150W of optical power. In accordance with an embodiment of the invention, the optical path length in the doped rare earth element fiber is greater than the passive optical path length in the primary servo laser oscillator. According to an embodiment of the invention, the resonant cavity includes a phase modulator, The device is configured to extend at least a portion of the rare earth doped fiber to lock the 'optical signal frequency, and the phase modulator function as a mode filter. According to an embodiment of the invention, the light of the rare earth element is exchanged as a polarized fiber. According to another embodiment of the present invention, the doped thin element: the optical fiber is a single polarized optical fiber. According to some embodiments of the invention, the resonant cavity includes a second harmonic generator 1271905. The laser system according to the present invention is capable of providing advantages such as high output power, for example, hundreds of watts, high output purity and stable operation, as well as exquisite advantages and high resistance to optical damage. Other features and advantages of the invention will be apparent from the description and appended claims. It is to be understood that the foregoing general description and the following description of the embodiments of the invention The drawings are to further understand the present invention and are incorporated herein by reference. The drawings illustrate various embodiments of the invention, and are in the 'Embodiment' ', Refer to Figure 1A, which shows an optical and electronic schematic of an exemplary laser system, including a low power main laser 12 and a high power servo laser oscillator 14 (also known as a primary A laser oscillator comprising an active medium, a section of doped, earth elemental fiber 16. The so-called oscillator indicates that the high power servo laser oscillating 14 can be independently generated from its own coherent laser output without requiring input from the main laser 12 as if it were not locked into the main laser 12. When the active lock injection is not achieved, the bandwidth of the spectral line of the high-power servo laser will be broad, for example, up to 20 nm when using a doped Yb fiber. When active lock injection is achieved, the high power servo laser oscillator will become quite narrow, for example 1 pm wide. Thus the active lock injection is provided by the servo laser oscillator 14 with high output power while maintaining the main; laser 12 spectral characteristics. In this embodiment the high power servo laser 14 comprises a double clad fiber (dcf) 18 doped with Yb. In these and some exemplary embodiments, " laser 14 output is more than 50W, and 100W, and 150W of optical power. For example, active lock injection can be achieved by a feedback line that appropriately changes the optical path length within the oscillating cavity of the primary servo laser oscillator 14. In this embodiment, the laser 14 is actively locked into the single frequency main laser 12, which uses the Pound-Drever-Hall (PDH) locking technique known to those in 1271905. When the injection is actively locked, the wavelength of the servo laser 14 is the same as the wavelength of the main laser 12 . The operating wavelength of 1064 nm indicated by the locking injection assembly of the main laser 12 and the servo laser 14 is only a representative example, and the main laser 12 and the servo laser 14 can be individually adjusted within the range of 1020 nm to 1180 nm of the Yb transmission. . The low power single frequency output of the main laser 12 is transmitted via an electric-to-optical modulator (E〇M) 2〇 which is driven by the driver 20a. In the electro-optical modulator (e〇m) 20, two sidebands B are generated which differ from the carrier frequency A by a frequency difference which corresponds to the optical frequency of the main laser ,2, see Fig. 1A. The frequency difference between each sideband Β and the carrier frequency 等于 is equal to the drive frequency of the electro-optical modulator (ΕΟΜ) 20. The partially reflective mirror 22 projects a portion of the main laser 14 output light to the light sensor 24. The electronic output of the photo sensor 24 is mixed with the reference electronic signal from the driver 2A, which uses a double balanced mixer 26. The high frequency portion of the output of the mixer 26 is filtered by the electronic filter 28. The electronic signal at the output of the filter 28 is directed to an integrating component 3, which contains a fast product of 30a and a slow integrator 3〇b. In this embodiment, the electronic output of the fast integrator 30a is directed to the fast response section of the phase modulator 32. Similarly, the electronic output of the slow reaction section 32b is directed to the buffer section 32b of the phase modulator 32. The mixer 26, the filter 28, the integral component 30 and the phase φ modulator/mutator 32 collectively form the feedback unit 34. The phase modulator 32 is typically fabricated by cooling and bonding a section of the doped rare earth fiber 16 to a piezoelectric cylinder (not shown), and preferentially cooling and joining the two rare earth elements. The fiber is connected to two separate piezoelectric cylinders 32a, Na. The piezoelectric circle, the diameter of the cylinder 32a is smaller than the diameter of the piezoelectric cylinder 32, and thus serves as a fast phase modulator (while the larger diameter piezoelectric cylinder 32b acts as a slow phase, transformer). Alternatively, the piezoelectric cylinder 32a can be replaced by a two piezoelectric semi-cylindrical wafer set (not shown). The optical length of the optical fiber 16 (the product of the rate η and the length) is modulated by the electronic signal driving the two piezoelectric dies 32a and 32b. For example, the optical path length can be increased (or decreased) by stretching (pressing 1271905) around the fiber section around the piezoelectric cylinder. The optical path length change is equivalent to the optical phase modulation of the primary feeding laser oscillator 14 vibrating cavity 3. When the laser 14 free running wavelength (ie when the primary feeding laser oscillator μ • does not lock the main laser 12) close to the main laser 12 wavelength injected into the locking range of the feedback & element 34, the phase changes The appropriate signal and magnitude are produced at phase modulator 32 to match the wavelengths of main laser 12 and feed laser 14. In an embodiment, the laser 14 comprises a doped rare earth element fiber 16 (active fiber) having a power gain and an optical path length n = bd2, which is converted to the effective refractive index of the fiber and also the actual length of the fiber. The optical path length of the active fiber is greater than the optical path length of the passive partial guided wave in the total cavity, where nii is the effective refractive index of the optical medium along the passive optical path, and du is the distance along the passive path medium or thickness. The optical path length Eniidli is kept as small as possible, and the total optical path of the resonant cavity 36 of the laser system 10 of this embodiment is selected to be 至少^ΣηΛ+Π2ώ) so that the resonant cavity free spectral range L can still be at least 5 ΜΗζ, corresponding to the total optical The path length L is approximately 60 m. In addition, in this embodiment, the optical path length L is selected such that the free spectral range of the resonant cavity 36 is not equal to the modulation frequency of the electro-optical variable 20. More particularly, in this embodiment the lightning system further comprises an EOM coupled to the EOM driver and the length L of the resonant cavity will be f^fcav, where f(d) is the frequency of the brain driver and fcav is the space of the resonant cavity, That is, the distance between the signals (no EOM), which is determined by the length of the cavity of the primary feeding laser oscillator. The priority length L is greater than 0·25 m, and more preferably greater than im. The double-clad construction of the doped Yb fiber 18 enables a multimode output (e.g., a 980 nm pump) that pumps the laser 38 to high optical power to be coupled to the inner cladding of the fiber 18. This coupling can be easily achieved by the pump signal mixer 40. The 980 nm pumping light is coupled to the inner cladding by the doped Yb core guided by the overlapping wave to the optical fiber 18, and is capable of emitting light in the doped Yb core (i〇2〇nm to 1180nm, pp. 9.1271905) Internal) produces optical power gain. Other ways of pumping the laser fiber 18 can also be used, for example, by side pumping using V-grooves or turns, and by end pumping by using a two-color mirror. In this embodiment, the doped Yb fiber 18 functions as a dual function, i.e., as an optical power gain medium, and as an optical phase element, which can be modulated by the piezoelectric cylinders 32a and 32b.
除此,快速壓電圓柱體32a較小直徑能夠促使相位調變 器3士當摻雜Yb雙包層光纖18之心蕊支撐較高階模時作(光 學)模遽波器之額外功能。摻雜稀土族元素光纖之心蕊 直徑,九則對入射光線之光纖端面耦合效率越高。不過了 當心蕊直徑較大時,例如為15微米或更大,則較高階模將支 _’捲繞光纖18於魏圓柱體跏以及 32b上以作為相位調變亦能夠使較高階模輕射出光纖之 心蕊。在光纖18 _高階模傳播細抑制0呈度決 模與較高階模間之不同弯曲損耗。因而在該實光土 學相= 膽㈣簡偶杜的顯挪而使魏加^。 杈相匹配絲組件42,例如轴織物細y或望遠In addition, the smaller diameter of the fast piezoelectric cylinder 32a can cause the phase modulator 3 to perform an additional function of the (optical) mode chopper when the core of the doped Yb double-clad fiber 18 supports the higher order mode. The core diameter of the rare earth-doped fiber is nine, and the coupling efficiency of the fiber end face of the incident light is higher. However, when the diameter of the core is large, for example, 15 micrometers or more, the higher order mode will wind the optical fiber 18 on the Wei cylinder and 32b as phase modulation, and the higher order mode can be lightly emitted. The core of the fiber. In the fiber 18 _ high-order mode propagation, the fine-suppression 0-degree difference between the modulus and the higher-order mode is different. Therefore, in the real light soil phase = biliary (four) simple even Du's display to make Wei Jia ^.杈 Matching wire assembly 42, such as a shaft fabric fine y or telephoto
Yb雙⑽光纖18,以及由3 f ΐίΐΐί。適^偏極蝴絲元件44可選擇性地加 於先ΐ高於low以及最優先地高於5〇ί=ΐ輸 3 為反射鏡46。在 ίΐί中ιΓ1度反射之反射鏡48反射光線(在逆時鐘方ΐ )哭合器46。在該實施例中輸"輸出耦合 且抗匹配原理以與共雛以; 份光一後由輪==6=射二Γ 第10 頁 1271905 光纖18,該光纖使用模相匹配光學元件,例如為顯微鏡之物 鏡42。使用部份反射鏡22以引離1%,2%光線離開輸入一輸出 耦合器46至光感測器24。 由於儘可能地減少内部損耗為重要的,在模匹配光學 元件42界面處之反射損耗藉由在共振腔36内使用光線波長 之抗反射塗膜而減為最低。 當光纖18心蕊直徑為較大例如大於1〇微米,優先地大 於15微米以及最優先地模面積大於15〇平方微米時,將非常 南内腔功率聚焦至小直徑光纖心蕊内亦能夠使損壞減為最 低。 ® 摻雜稀土族元素光纖16加入伺服雷射14作為增益介質 將緩和自行聚焦以及由於非光纖種類固態雷射介質產生相 關熱學上問題。當主雷射進行調整時,加入摻雜稀土族元 素光纖介質(例如摻雜Yb光纖18)亦促使鎖定注入伺服雷射 14可調整之顯著優點。不像光纖雷射,非光纖之固態高功 率雷射系統受限於波長可調整性。脈衝飼服雷射14有可能 被動地鎖定注入於主雷射12,因而改善其頻譜精確性。 除此,摻雜稀土族元素光纖18亦能夠為保持偏極種類 或單偏極種類。當使用保持偏極光纖時,在輸入一輸出搞合 _ 器46處以及共振腔36内之光線偏極性為穩定的。相對地, 當使用單偏極光纖時,在輸入-輸出耦合器46處以及共振腔 36内之光線偏極性為線性偏極的。該單偏極摻雜稀土族元 素光纖揭示於例如2005年7月21日申請之美國第2005-0158 006號專利申清案中,該專利發明人為joQhyyjj K〇h; Christine Louise Tennent; Donnell Thaddeus Walton;Yb dual (10) fiber 18, as well as by 3 f ΐίΐΐί. The deflector element 44 can be selectively applied to the mirror 46 above the first and the first and the highest. In the ίΐί, the mirror 48 of the Γ1 degree reflection reflects the light (in the opposite clock) and cries the device 46. In this embodiment, the output is coupled and the anti-matching principle is used in conjunction with the merging; the light is followed by the wheel ==6 = the second axis of the optical fiber 18, which uses a mode matching optical component, for example Objective lens 42 of the microscope. A partial mirror 22 is used to divert 1%, 2% of the light exits the input-output coupler 46 to the photosensor 24. Since it is important to reduce internal loss as much as possible, the reflection loss at the interface of the mode matching optical element 42 is minimized by using an anti-reflective coating film of the wavelength of light in the cavity 36. Focusing the very southern lumen power into the small-diameter fiber core can also be achieved when the diameter of the fiber 18 is greater than, for example, greater than 1 μm, preferably greater than 15 μm, and the most preferential mode area is greater than 15 μm. Damage is reduced to a minimum. The addition of a rare earth-doped fiber 16 to the servo laser 14 as a gain medium mitigates self-focusing and the associated thermal problems associated with non-fiber type solid-state laser media. The addition of a doped rare earth element fiber medium (e.g., doped Yb fiber 18) also contributes to the significant advantage of the lockable injection servo laser 14 when the main laser is adjusted. Unlike fiber lasers, non-fiber solid state high power laser systems are limited by wavelength adjustability. The pulsed feed laser 14 has the potential to passively lock the injection into the main laser 12, thereby improving its spectral accuracy. In addition, the rare earth doped fiber 18 can also be of a polarization type or a single polarization type. When the polarization-maintaining fiber is used, the polarization of the light at the input-output _ _ 46 and the cavity 36 is stable. In contrast, when a single polarization fiber is used, the polarization of the light at the input-output coupler 46 and within the cavity 36 is linearly polarized. The single-polar-polar doped rare earth element fiber is disclosed in, for example, US Patent Application No. 2005-0158 006, filed on Jul. 21, 2005, the patent inventor is joQhyyjj K〇h; Christine Louise Tennent; Donnell Thaddeus Walton ;
Ji Wang以及Luis Alberto Zenteno。因而,該實施例雷射 系統一項主要優點為在伺服雷射14中光纖能夠作一項,多 項功能,(1)光學增益介質,(2)保持偏極波導路徑,(3)^極 波導路徑,⑷光學相位調變器,以及⑸光學雙折射性調變 第11 頁 1271905 益/控制益(當適當地捲繞於槳狀物上以形成波板以及適各 地加以旋轉)。 ^ 押鎖疋注入方式主要優點在於低功率主雷射12頻譜純度 (單頻率操作)以及穩疋性以南精確度轉移至高功率飼服雷 -射14,其將具有非常寬廣波長頻譜(例如為2〇nm),其藉由長 的共振腔之多縱向模特性相關之不穩定性達成(例如光纖 長度為40m)。该鎖定注入方式消除或減小内腔頻率選擇裳 置之例如使用例如etal〇n之内腔頻率選擇裝置以及例如隔 離态之方向選擇裝置,其將產生高内腔損耗。除此,當非常 咼内腔光學功率(例如數百瓦)循環於共振腔36内時,該裝 •置在性能七將變差或將損壞。在高功率長共振腔長度伺服 雷射14中單向操作達成於相同方向如同主雷射光線藉由輸 入-輸出I禺合器46耦合進入祠服雷射14,而不需要光學隔離 器。 除此’猎由捲繞長的光纖於小直徑墨電圓柱體上(通常 小於3英吋)加入光纖16作為增益介質導致精緻雷 的投射點)。 熟知此技術者了解其他鎖定技術例如Hansch—Caii丨laud 技術,無調變干涉儀傾斜鎖定方式(加入較小程度複雜度) • 在此亦可適用,對圖la所顯示光學及電子方式作適當變化。 本發明另外一個實施例包含在高功率伺服雷射14内同 時發生内腔光學頻率轉變,同時被鎖定注入至主雷射12以 及產生可見光,紫外線以及深紫外線或其中間波長。當達 ,鎖定注入晚該同時發生頻率轉變以及產生新的波長可 藉由具有近紅外線例如l〇64nm之高内腔光學功率拌隨高頻 譜純度以及穩定性而達成。 j 2顯示出範例性雷射系統1〇之光學及電子示意圖,其 包含高功率伺服雷射14鎖定注入至主雷射12。同時發生頻 率轉換,同時基模輻射再循環於共振腔36中保持對主雷射 第12 頁 β 1271905 12為鎖定注入。如同先前實施例,雷射14包含(主動)光學 增赶介質,一段摻雜稀土族元素光纖16。該實施例之雷射 14類似於圖la所顯示情況,但是包含額外的光學頻率轉換 為50。光學頻率轉換器5〇可包含晶體,例如三删g复叙(lb〇) 酸鈦氧鉀(KTP);週期性極性KTP(PPKTP);週期性極性鈮 酸鐘(PPLN);摻雜週期性極性鈮酸鐘之氧化鎂(_: ppjj); 摻雜週期性極性化學計算量鈮酸鐘之氧化鎂(Mg〇: psplt),· 或其他相相匹配之適當晶體。週期性極性晶體亦可加^於 波導,使得較長相互作用長度變為可能的。當波長又光學 _ 輪射進入該第二諧振產生器晶體時,部份光能被轉變為具 有原先訊號波長;I之倍頻以及一半波長的光學訊號。例如 假如波長為l〇64nm光學訊號進入該晶體,由頻率轉換器5〇 提供之部份最終光線具有532nm波長。 、抑 可加以變化,頻率轉變處理過程可藉由使用Raman效應 進行。/列如,例如鎢酸鋇(Μα)晶體能夠使用作為Raman、 轉交器,其由l〇64nm基本波長產生118〇面第一 stokes波長 。在相同方式延伸情況中,能夠使用相同的晶體以產生較 高Stokers階。在另外一個相同頻率轉變方式之延伸包含 首先使用例如碘酸鐘(U 1〇3)晶體之Raman轉變器以產生 • 1156nm第一 Stokes波長,其隨後藉由三硼酸鋰(LiB3〇5)晶 體轉變為578nm第二諧振波長。 在由1064nm基本波長輸出產生532nm之輸出中,該實施 例反射鏡48a傳送大部份观服光線,因而提供532nm雷射輸 出,;將反射大部份1064nm光線朝向反射鏡妨。如同在 先前範例中,依據理論光學阻抗相匹配原理選擇輸入一輸出 麵合器傳送以與共振腔合併内部損耗相匹配,其包含由於 頻率轉變器處理過程所導致之基本輻射損耗。例如,假如 在共振腔中損耗為5%,則反射鏡46傳送率應該為5%。 模相匹配光學元件伽及44a被最佳化以包含頻率轉變 第13 頁 * 1271905 器晶體50加入之功效。通常由晶體加入之光學雙折射性必 需使偏極組件再定向於偏極控制光學元件44a内,同時將基 本波長光線聚焦至晶體5〇内將規定模相匹配特性之轉變ς 促使不同的光線搞合進入光纖18。 m f 圖3顯示出另外一個範例性雷射系統10之光學及電子 、 元件,該系統包含高功率初級伺服雷射振盡器14鎖定注入 至主雷射12。如先前實施例中所示,雷射14包含一段摻雜 稀土族元素光纖16作為主動介質。該實施例之雷射丨/類似 於圖2所顯示情況,但是光學頻率轉變器50位於反射鏡48與 46之,,以及緊鄰於反射鏡48。範例性雷射系統10包含額” • 外與弟二雷射相關之第二共振腔52。第二共振腔52與雷射 之14初級共振腔36共用一段共同路徑以延伸頻率轉換至第 二諧振波長例如為354· 6nm。由於離開光學頻率轉變器5〇, 在初級波長;I (例如為l〇64nm)下光線以及在第二諧振波長 (1/2又,例如為532nm)光線傳播朝向第二頻率轉變器54(在 該範例中,其中第三諧波晶體產生354· 6nm)。在該實施例 中第二頻率轉變器54為三硼酸鋰(LBO)晶體。 在該範例性實施例中,第二雷射或耦合器之第二雷射 腔52亦包含三個反射鏡56a,56b,及56c。輸入-輸出搞合器 ⑩ 56a為部份反射鏡,透射率約為1%至10%,其選擇來在第二讀 振波長(532nm)下與第二共振腔52内部損耗相匹配。輸入一 輸出耦合器56a亦為二色性反射鏡,其強烈地透射i〇64nm及 354· 6nm波長下光線,以及高度反射532nm波長之光線。由 • 於投射於反射鏡56c上,532nm光線反射朝向反射鏡56a。因 而,532nm光線再循環於第二共振腔52中。反射鏡56c連接 , 至壓電板56’ c,以及其位置藉由施加於壓電板56, c之電子 訊號加以調變。改變反射鏡56位置將改變第二共振腔52之 雷射腔長度。 在反射鏡56a處之反射光線(第二諧振波長)以及遺漏 * 1271905 光線(弟一諧振波長,在經由共振腔52繞一圈後離開反射鏡 56a)下光學地干涉以及對Hansch-Coui 1 laud伺服組件62提 入光線。更特別地,Hansch-Couilland伺服組件62包 含四分之一波板58a,偏極光束分裂器58b,兩個光感測器 58c,電子減除器58d以及包含積分器60之回授線路而&成 , Hansch-Coui 1 land伺服組件62 〇來自伺服組件62之積分誤 差訊號回授至壓電板56, c。 ' ^' 斤當Hansch-Coui 1 land伺服組件保持共振腔52為與來自 第二諧振晶體50之532nm輸入輻射線共振時,532nm光束共 _ 振於第_共振腔52内。在初級共振腔36(即初級伺服雷射 振盪器共振腔)内之l〇64nm光線以及與第二共振腔52共振 之532nm光線混合於晶體54中,其相位相匹配由1〇64咖及 532nm光線進行力口總頻率以產生354· 5nm。二色性反身$鏡( 共振分離器)64由初級共振腔36之1064nm光束及线漏出第 二共振腔52反射鏡56b之殘餘532nm光線分離出354· 6nm光 線。傳送通過二色性反射鏡64之1〇64咖光束運行朝向反射 鏡46,其導引i〇64nm光束朝向模相匹配光學元件42及摻雜 稀土族元素之光纖18。 卜至少一個第二共振腔之光學組件例如一個反射鏡56c _ 無法與初級共振腔共用共同路徑。因而,至少一段第二雷 ,腔並不位於初級共振腔内(即其不在初級飼服雷射振盪 器共振腔内)。在該範例中,反射鏡56c適當地連結至壓電 種類之促動器56’ c以及為可移動的。 —第二共振腔52能夠為例如閉合三角形共振腔,如圖3所 示,或蝶形領結共振腔(並未顯示出),兩種型式支持單向傳 播,但疋並不支持雙向操作如在線性或折疊-L或V型共振腔 (並未顯示出)。 需要指出第二共振腔與初級共振腔(即初級飼服雷射 振盪器14之共振腔)共用之共同内共振腔路徑產生減小投 第15 頁 1271905 射面積非常精細的雷射系統。對於一些應用,其中非重疊 初級以及弟二共振腔變為必需的或其中精細度對雷射為重 要的,依據底下鎖定注入内腔諧振產生之光學操作亦能夠 加以使用以及相當於圖3實施例。Ji Wang and Luis Alberto Zenteno. Thus, a major advantage of the laser system of this embodiment is that the fiber can be used as one, multiple functions in the servo laser 14, (1) optical gain medium, (2) maintaining a polar waveguide path, and (3) a polar waveguide. Path, (4) Optical Phase Modulator, and (5) Optical Birefringence Modulation 1107905 Benefit/Control Benefit (when properly wound on the paddle to form a wave plate and rotate as appropriate). ^ The main advantage of the lock-in 疋 injection method is that the low power main laser 12 spectral purity (single frequency operation) and the south of the stability are transferred to the high power feed Ray-ray 14 which will have a very wide wavelength spectrum (for example 2〇nm), which is achieved by the long-term model-dependent instability of long resonant cavities (eg, fiber length 40m). The lock injection mode eliminates or reduces the lumen frequency selection, for example using a lumen frequency selection device such as etal〇n and a direction selection device such as an isolation state, which will result in high lumen loss. In addition, when very 咼 lumen optical power (e.g., hundreds of watts) is circulated in the resonant cavity 36, the device will deteriorate or will be damaged in performance seven. The one-way operation in the high power long cavity length servo laser 14 is achieved in the same direction as the main laser beam is coupled into the servo laser 14 by the input-output I coupler 46 without the need for an optical isolator. In addition to this, the stalk is made by winding a long fiber onto a small-diameter ink-electric cylinder (usually less than 3 inches) into the fiber 16 as a gain medium resulting in a projected point of the fine thunder). Those skilled in the art are aware of other locking techniques such as Hansch-Caii丨laud technology, tilt-locking mode without modulation interferometer (adding less complexity). Also applicable here, appropriate for the optical and electronic modes shown in Figure la Variety. Another embodiment of the invention includes intracavity optical frequency transitions occurring simultaneously within the high power servo laser 14 while being locked into the main laser 12 and producing visible light, ultraviolet light, and deep ultraviolet light or intermediate wavelengths thereof. When the lock is injected, the simultaneous frequency shift and the generation of a new wavelength can be achieved by mixing high-intensity optical power with near-infrared rays such as l〇64 nm and high-frequency spectral purity and stability. j 2 shows an optical and electronic schematic of an exemplary laser system including a high power servo laser 14 lock injection into the main laser 12. At the same time, frequency conversion occurs while the fundamental mode radiation is recirculated in the resonant cavity 36 to maintain a positive injection of the primary laser. As with the previous embodiment, the laser 14 comprises an (active) optical entanglement medium, a length of doped rare earth element fiber 16. The laser 14 of this embodiment is similar to that shown in Figure la, but includes an additional optical frequency conversion of 50. The optical frequency converter 5〇 may comprise a crystal, such as a triple-deleted (lb〇) potassium titanate (KTP); a periodic polarity KTP (PPKTP); a periodic polar tantalum clock (PPLN); doping periodicity Magnesium oxide of polar bismuth clock (_: ppjj); doped with periodic polar stoichiometry of bismuth acid citrate (Mg 〇: psplt), or other phase matching appropriate crystal. Periodic polar crystals can also be applied to the waveguide, making longer interaction lengths possible. When the wavelength is optically _ into the second resonant generator crystal, part of the light energy is converted into an optical signal having the original signal wavelength; I multiplying and half wavelength. For example, if a wavelength of l 〇 64 nm optical signal enters the crystal, a portion of the final ray provided by the frequency converter 5 具有 has a wavelength of 532 nm. It can be changed, and the frequency conversion process can be performed by using the Raman effect. / Columns such as, for example, lanthanum tungstate (Μα) crystals can be used as Raman, a transponder that produces a 118-th order first stokes wavelength from a fundamental wavelength of 10 〇 64 nm. In the same way extension, the same crystal can be used to produce a higher Stokers step. An extension of another mode of the same frequency involves first using a Raman converter such as a iodine clock (U 1 〇 3) crystal to produce a first Stokes wavelength of 1156 nm, which is subsequently converted by a lithium triborate (LiB3 〇 5) crystal. It is the second resonant wavelength of 578 nm. In an output that produces 532 nm from a 1064 nm fundamental wavelength output, the embodiment mirror 48a transmits most of the observed light, thereby providing a 532 nm laser output; the majority of the 1064 nm light is reflected toward the mirror. As in the previous example, the input-output combiner transmission is selected in accordance with the theoretical optical impedance matching principle to match the internal cavity loss of the cavity, which includes the fundamental radiation loss due to the frequency converter process. For example, if the loss in the resonant cavity is 5%, the mirror 46 should have a transfer rate of 5%. The mode matching optical component gamma 44a is optimized to include frequency transitions. Page 13 * 1271905 The effect of the crystal 50 addition. The optical birefringence usually added by the crystal must reorient the polarized component into the polarization controlling optical element 44a, while focusing the fundamental wavelength of light into the crystal 5〇 will dictate the transition of the matching characteristics of the mode ς urging different rays Enter the fiber 18. m f Figure 3 shows the optical and electronic components of another exemplary laser system 10 that includes a high power primary servo laser oscillating device 14 for locking injection into the main laser 12. As shown in the previous embodiment, the laser 14 comprises a length of doped rare earth element fiber 16 as the active medium. The laser 该 of this embodiment is similar to that shown in Fig. 2, but the optical frequency converter 50 is located at the mirrors 48 and 46, and in close proximity to the mirror 48. The exemplary laser system 10 includes a second resonant cavity 52 associated with the second laser. The second resonant cavity 52 shares a common path with the primary resonant cavity 36 of the laser to extend the frequency to the second resonant cavity. The wavelength is, for example, 354·6 nm. Due to leaving the optical frequency converter 5〇, the light is transmitted at the primary wavelength; I (for example, l〇64 nm) and at the second resonant wavelength (1/2, for example, 532 nm). A two frequency converter 54 (in this example, wherein the third harmonic crystal produces 350.6 nm). In this embodiment the second frequency converter 54 is a lithium triborate (LBO) crystal. In this exemplary embodiment The second laser cavity 52 of the second laser or coupler also includes three mirrors 56a, 56b, and 56c. The input-output combiner 10 56a is a partial mirror with a transmittance of about 1% to 10 %, which is selected to match the internal loss of the second resonant cavity 52 at the second read wavelength (532 nm). The input-output coupler 56a is also a dichroic mirror that strongly transmits i 〇 64 nm and 354· Light at a wavelength of 6 nm, and light that is highly reflective at a wavelength of 532 nm. On the mirror 56c, the 532 nm light is reflected toward the mirror 56a. Thus, the 532 nm light is recirculated in the second resonant cavity 52. The mirror 56c is connected to the piezoelectric plate 56'c, and its position is applied to the piezoelectric plate. The electronic signal of 56, c is modulated. Changing the position of the mirror 56 will change the length of the laser cavity of the second resonant cavity 52. The reflected light at the mirror 56a (second resonant wavelength) and the missing * 1271905 light (different The resonant wavelength optically interferes with leaving the mirror 56a after one revolution through the resonant cavity 52 and illuminates the Hansch-Coui laud servo assembly 62. More specifically, the Hansch-Couilland servo assembly 62 contains a quarter. The wave plate 58a, the polarizing beam splitter 58b, the two photo sensors 58c, the electronic subtractor 58d, and the feedback line including the integrator 60, and the Hansch-Coui 1 land servo assembly 62 are from the servo assembly. The integral error signal of 62 is fed back to the piezoelectric plate 56, c. ' ^' jin when the Hansch-Coui 1 land servo assembly maintains the resonant cavity 52 for resonance with the 532 nm input radiation from the second resonant crystal 50, the 532 nm beam _ vibration in the first _ resonance 52. The 〇64 nm light in the primary resonant cavity 36 (ie, the primary servo laser oscillator cavity) and the 532 nm light that resonates with the second resonant cavity 52 are mixed in the crystal 54 with phase matching by 1〇64. The coffee and 532 nm light are used to generate a total frequency of the force to produce 354.5 nm. The dichroic reflex mirror (resonance splitter) 64 leaks from the 1064 nm beam and line of the primary cavity 36 to the residual 532 nm of the second cavity 52 mirror 56b. Light rays of 354·6 nm were separated. The 1 〇 64 coffee beam transmitted through the dichroic mirror 64 is directed toward the mirror 46, which directs the i 〇 64 nm beam toward the mode matching optical element 42 and the rare earth doped fiber 18. The optical components of at least one of the second resonant cavities, such as a mirror 56c_, cannot share a common path with the primary resonant cavity. Thus, for at least one second ram, the cavity is not located within the primary resonant cavity (i.e., it is not within the resonant cavity of the primary feed laser oscillator). In this example, mirror 56c is suitably coupled to piezoelectric type actuator 56'c and is movable. - The second resonant cavity 52 can be, for example, a closed triangular resonant cavity, as shown in Figure 3, or a bow-tie resonant cavity (not shown), both types supporting one-way propagation, but do not support bidirectional operation such as online Sexual or folded-L or V-type resonant cavity (not shown). It is noted that the common internal cavity path shared by the second resonant cavity and the primary resonant cavity (i.e., the resonant cavity of the primary feeding laser oscillator 14) produces a laser system with a very fine firing area. For some applications where non-overlapping primary and dipole resonators become necessary or where fineness is important for lasers, optical operations resulting from the underlying lock-injection cavity resonance can also be used and are equivalent to the embodiment of FIG. .
圖4顯示出另外一個範例性雷射系統1〇之光學及電子 示意圖,其包含高功率伺服雷射14鎖定注入於主雷射12。 如先前實施例所說明,雷射14包含一段摻雜稀土族元素光 纖16作為主動介質。該實施例雷射14類似於圖3所顯示情 況,但是第二諧振產生器(晶體54)以第四諧振產生器(晶體 66)替代玻璃片移動感測器。並不使用抗反射塗膜^ 轉變器(晶體66)以及偏極器68上如圖4所示,晶體54銥夠以 Brewster歧切割,以及以類似於圖3戶斤顯示 ^ 準。先前對圖3作為產生第三譜撕綱Han漆c〇uil = 伺服組件62同樣地適用於產生圖4之第四諧振。晶體66(第 四諧振產生器)為相位相匹配以轉換入射之第二譜振光線 例如532nm光線為266nm之第四諧波。產生266nm之光線由 初級共振腔36中内腔刪咖光線分離出以及532光線 振於第二共難心。 尤綠^、 一立圖5顯不出另外一個範例性雷射系統1〇之光學及電子 示意圖,其包含高功率伺服雷射14鎖定注入 _4 光 該實施例雷射14類似於圖3及4所顯示 刖弟一共振腔52包含額外的第三光學頻率轉變 ί、=第五譜振頻率之光線,其啟始鎖定注二中射田之射 __施例之雷射系 置於第二共触52内接續第一非線性晶 ΐ波長iilC内)之另外一個非線性晶體7〇a產生基 本波長為1〇64咖紅外線之第五譜振加喊射輻射線,該非 第16 頁 1271905 線性晶體產生第三諧振或第四諧振。當晶體7〇a為相位相 匹配以產生基本波長l〇64nm之第三諧波共振於初級雷射腔 36中,晶體70b為相位相匹配以由在第二共振腔52共振第二 諧振532nm光線及由晶體7〇a所產生第三諧波之加總頻率而 產生第五諧波。當晶體70a為相位相匹配以產生基本波長 1064nm第四諧波以共振於初級共振腔36中,晶體7〇b為相位 相匹配以由共振於初級共振腔36之1〇64nm基本波長光線以 及由晶體70a產生第四諧波之加總頻率而產生第五諧波。 該構造一項有趣的特性為第五諧波光線之頻譜寬度能 夠藉由改變相對於初級共振腔36長度l之第二共振腔52長 度L加以改變由單一頻率改變為多軸向模操作。例如,較 長弟一共振腔52可支撐超過一個軸向模,所有這些轴向模 落於初級共振腔36之單頻率光線的線頻帶寬度内。 在圖3,4及5中所顯示雷射系統為非常精細雷射系統之 實施例,每一情況中第二共振腔52與初級共振腔36共用部 份共振腔。 可加以變化,例如圖5中所顯示雷射系統1〇並不使用產 生雙折射性相位相匹配諧振如同利用一個晶體(圖3中54或 圖4中66)或兩個光學晶體(圖5中術及7此)達成,該雷射系 ❿ 統在晶體中使用自相相匹配{^棚如頻率偏移以產生所需要 波長之光束。當第二共振腔内第一非線性介質產生Raman 偏移頻率偏離(a)在初級共振腔36中共振之内腔l〇64nm光 線,以及⑹在第二共振腔52中共振之内腔532nm光線,或 (c)1064nm及532nm内腔光束如上述(a)及(b)所說明,其將 產生非常新穎的雷射系統。該Raman偏移頻率方式能夠利 用廣泛頻率(光學波長)。當選擇反射鏡56a,56b及56c具有 適當的塗膜以再循環(a)偏離l〇64nm光線之Raman偏移波長 ,以及⑹第工譜振532nm光線以及偏離i〇64nm以及532nm波 長之Raman偏移光線時,Raman偏移光線能夠共振於第二共 第17 頁 1271905 振腔52内。Raman偏移光線再藉由適當二色性反射鏡64b由 1964nm以及殘餘532nm光線分離出。 在圖5第二共振腔52中第二晶體70b能夠為相位相匹配 以將由弟一共振腔52第一晶體70a所產生任何Raman偏移光 線與1064nm基本波長光線或第二諧波光線532nm混合。 圖3,4及5所顯示伺服組件之相同光感測線路及電子示 意圖在此適用於產生Raman偏移光線或其與1〇64服及/或 532nra光線混合。 圖6顯示出雷射系統1〇,其使用合併操作兩個各別鎖定 _ 注入初級雷射振盛器15a及15b。兩個初級雷射振盪器15a 及15b具有兩個不同的啟始基本波長分別為例如976nm及 l〇64nm。除此,並無任何光學增益介質在其中之外部共振 腔74放置於兩個初級共振腔脱及15b以產生共振於976nm 初級雷射振盪器15a之第四諧振244nm光線。該合併系統更 進一步說明於底下。 初級雷射振邊器15a產生488nm之光學輸出,976nm共振 基本波長光線之第二諧波於初級伺服共振腔36a内。晶體 72再將976nm光線轉變為488nm光線。主雷射12a操作於976 nm波長下,及泵運雷射38a操作於915nm波長下。泵運合併 • 器40合併915nm波長之泵運光線以及976服共振波長。初級 雷射腔15a使用電-光調變器21,PDF伺服積分線路34以及相 位調變器32鎖定注入於主雷射i2a,如先前所說明。 初級雷射振盡器15a之488nm輸出入身ί於外部共振腔74 ,第二諧振產生器晶體82放置於其中。晶體82將共振内腔 488nm光線轉變為244nm。244nm光線輸出再藉由二色性彎 曲反射鏡78b由共振腔74内共振488nm光線加以分離。雷射 腔74使用Hansch-Coui 1 laud伺服組件62保持入射488nm光 線為共振。來自伺服組件62之回授訊號回授至連接至反射 鏡76b之壓電促動器76, b。選擇性偏極器80可加入於雷射 第18 頁 1271905 腔内作為Hansch-Couillaud分析之操作。 由74共振腔發出244nm光線輸出經由二色性反射鏡働 再注入至初級雷射振盪器15b之共振腔36b内。共振腔36b 共振於1064nra,該波長拌隨進入244nm光線84入射至:體86 。晶體86混合l〇64nm及244nm兩種波長以產生198nm光線。 =4nm光線並不共振於初級共振腔内。初級共振腔舰 ,由使用先前所說明鎖定注入PDH技術對操作於lOMnm主 ^射12保持為共振。二色性反射鏡勸及他在膽姗下為 局度反射性以及在244nra及198nm下為透明的。二色性反射 鏡22a由l〇64nm或244nm殘餘光線分離出i98nm光線。 亡述所說明及示意性地顯示於圖6中本發明實施例一 項非常顯著之優點在於將實質地減少對非線性光學頻率轉 變器晶體之光學損壞。該優點藉由增加内腔紅外線例如為 1064nm功率以及同時地以及相對地減少輸入/内紫外線例 如為244nm功率達成,因而維持i98nm輸出深紫外線功率值 。例如k咼紅外線功率兩倍同時降低紫外線功率兩倍將提 供相同大小之198nm波長輸出功率,但是避免使αΒ〇晶體86 損壞。當紅外線功率大於紫外線功率時,該觀念有益於深 I外線波長功率與紫外線波長之功率線性相關,以及晶體 # 86中已知的損壞之機制。在我們範例中,内腔(圖6中初級 伺服雷射振盪器15b之共振腔36b)紅外線(例如1〇64nm波長 )功>率優先範圍為大於500W以及紫外線(例如244nm波長)功 率範圍為小於600mW。優先地,内腔紅外線功率優先範圍為 大於2000W以及紫外線功率範圍為小於i5〇mw。 熟知此技術者了解本發明能夠作各種變化及改變而並 1 不會脫離本發明之精神及範圍。因而本發明各種變化及改 變均含蓋於下列申請專利範圍及同等物範圍内。 【圖式簡單說明】 第一圖Δ為依據本發明實施例之雷射系統示意圖。 第19頁Figure 4 shows an optical and electronic schematic of another exemplary laser system including a high power servo laser 14 locked into the main laser 12. As explained in the previous embodiment, the laser 14 comprises a length of doped rare earth element fiber 16 as the active medium. The laser 14 of this embodiment is similar to that shown in Figure 3, but the second resonant generator (crystal 54) replaces the glass sheet moving sensor with a fourth resonant generator (crystal 66). Without using the anti-reflective coating film (crystal 66) and the polarizer 68 as shown in Fig. 4, the crystal 54 is cut by the Brewster, and is similar to the figure shown in Fig. 3. Previously, FIG. 3 was applied as a third spectrally creased Han lacquer 〇uil = servo component 62 to produce the fourth resonance of FIG. The crystal 66 (fourth resonance generator) is phase matched to convert the incident second spectral ray, for example, the 532 nm ray is the fourth harmonic of 266 nm. The generation of 266 nm light is separated from the inner cavity of the primary cavity 36 and the 532 light is undone.尤绿^,一立图5 shows an optical and electronic schematic diagram of another exemplary laser system, which includes a high power servo laser 14 lock injection _4 light. The embodiment laser 14 is similar to FIG. 3 and 4 shows that the resonant cavity 52 contains an additional third optical frequency shift ί, = the fifth spectral frequency of the light, which starts to lock the second shot of the shot field __ the laser system of the example is placed The other non-linear crystal 7〇a of the second contact crystal 52 in the first nonlinear crystallength wavelength iilC generates a fifth spectrum and a shattering radiation line having a fundamental wavelength of 1〇64 coffee infrared, the non-page 16 1271905 The linear crystal produces a third or fourth resonance. When the crystal 7〇a is phase matched to generate a third harmonic of the fundamental wavelength l〇64 nm, the crystal 70b is phase matched to resonate the second resonant 532 nm light in the second resonant cavity 52. And generating a fifth harmonic by the summing frequency of the third harmonic generated by the crystal 7〇a. When the crystal 70a is phase matched to produce a fourth harmonic of a fundamental wavelength of 1064 nm to resonate in the primary resonant cavity 36, the crystal 7〇b is phase matched to be reflected by the primary resonant cavity 36 by 1 〇 64 nm of fundamental wavelength light and by Crystal 70a produces a summed frequency of fourth harmonics to produce a fifth harmonic. An interesting feature of this configuration is that the spectral width of the fifth harmonic ray can be changed from a single frequency to a multi-axial mode operation by varying the length L of the second resonant cavity 52 relative to the length l of the primary resonant cavity 36. For example, the longer cavity-resonant cavity 52 can support more than one axial mode, all of which are within the line frequency width of the single frequency ray of the primary resonant cavity 36. The laser system shown in Figures 3, 4 and 5 is an embodiment of a very fine laser system, in each case the second resonant cavity 52 shares a partial resonant cavity with the primary resonant cavity 36. It can be varied, for example, the laser system shown in Figure 5 does not use a birefringent phase-matched resonance as with one crystal (54 in Figure 3 or 66 in Figure 4) or two optical crystals (Figure 5 And 7)), the laser system uses self-phase matching in the crystal, such as frequency shift to generate a beam of the desired wavelength. When the first nonlinear medium in the second resonant cavity produces a Raman offset frequency deviation (a) the inner cavity of the primary resonant cavity 36 resonates with the x 〇 64 nm light, and (6) the inner cavity of the second resonant cavity 52 532 nm of the light , or (c) 1064 nm and 532 nm lumen beams as described in (a) and (b) above, which will result in a very novel laser system. The Raman offset frequency mode can utilize a wide range of frequencies (optical wavelengths). When the selective mirrors 56a, 56b and 56c have appropriate coating films to recycle (a) the Raman offset wavelength deviating from the 〇64 nm ray, and (6) the plasmon 532 nm ray and the Raman offset from the i 〇 64 nm and 532 nm wavelengths. When the light is shifted, the Raman offset light can resonate in the second chamber, 1271905. The Raman shifted light is then separated by 1964 nm and residual 532 nm light by a suitable dichroic mirror 64b. The second crystal 70b can be phase matched in the second resonant cavity 52 of Fig. 5 to mix any Raman offset light generated by the first crystal 70a of the resonant cavity 52 with the 1064 nm fundamental wavelength light or the second harmonic light 532 nm. The same light sensing circuitry and electronic schematics of the servo assemblies shown in Figures 3, 4 and 5 are here adapted to produce Raman shifted light or mixed with 1 〇 64 and/or 532 nra light. Figure 6 shows a laser system 1 〇 which uses a combined operation to inject two separate _ injection primary laser stimulators 15a and 15b. The two primary laser oscillators 15a and 15b have two different starting fundamental wavelengths of, for example, 976 nm and 16 64 nm, respectively. In addition, there is no optical gain medium in which the external resonant cavity 74 is placed in the two primary resonant cavity strips 15b to produce a fourth resonant 244 nm light that resonates at the 976 nm primary laser oscillator 15a. The combined system is further described below. The primary laser edger 15a produces an optical output of 488 nm, and the second harmonic of the 976 nm resonant fundamental wavelength light is within the primary servo cavity 36a. Crystal 72 then converts 976 nm light into 488 nm light. The main laser 12a operates at a wavelength of 976 nm and the pumped laser 38a operates at a wavelength of 915 nm. Pumping and Combining • Unit 40 combines pump light at 915 nm wavelength with 976 resonant wavelength. The primary laser cavity 15a is electrically injected into the main laser i2a using an electro-optical modulator 21, a PDF servo integral line 34 and a phase modulator 32, as previously explained. The 488 nm output of the primary laser oscillating device 15a is placed in an external resonant cavity 74 in which the second resonant generator crystal 82 is placed. Crystal 82 converts the resonant cavity 488 nm light to 244 nm. The 244 nm light output is separated by the 488 nm light from the resonant cavity 74 by the dichroic curved mirror 78b. The laser cavity 74 uses the Hansch-Coui 1 laud servo assembly 62 to maintain the incident 488 nm line of resonance. The feedback signal from the servo assembly 62 is fed back to the piezoelectric actuators 76, b connected to the mirror 76b. The selective polarizer 80 can be added to the laser as an operation of the Hansch-Couillaud analysis in the 1271905 cavity. The 244 nm light output from the 74 resonant cavity is reinjected into the resonant cavity 36b of the primary laser oscillator 15b via the dichroic mirror 働. Resonant cavity 36b resonates at 1064 nra, which is incident on body 86 as it enters 244 nm ray 84. Crystal 86 is mixed with two wavelengths of 64 nm and 244 nm to produce 198 nm light. The =4 nm light does not resonate in the primary resonant cavity. The primary resonant cavity vessel is kept resonant by operating the lOMnm primary radiation 12 by using the previously described locking injection PDH technique. The dichroic mirror persuaded him to be partially reflective under cholestasis and transparent at 244 nra and 198 nm. The dichroic mirror 22a separates i98 nm light from residual light of 10 〇 64 nm or 244 nm. A very significant advantage of the embodiment of the invention illustrated and schematically illustrated in Figure 6 is that the optical damage to the nonlinear optical frequency converter crystal will be substantially reduced. This advantage is achieved by increasing the internal cavity infrared, e.g., 1064 nm power, and simultaneously and relatively reducing the input/inner ultraviolet, e.g., 244 nm power, thereby maintaining the i98 nm output deep ultraviolet power value. For example, k 咼 infrared power twice and reduced UV power twice will provide the same size of 198 nm wavelength output power, but avoid damage to the α Β〇 crystal 86. When the infrared power is greater than the ultraviolet power, the concept is beneficial for the linear correlation between the depth of the outer line wavelength power and the ultraviolet wavelength, and the known mechanism of damage in crystal #86. In our example, the inner cavity (resonant cavity 36b of the primary servo laser oscillator 15b in Fig. 6) has an infrared (e.g., 1 〇 64 nm wavelength) work priority range of more than 500 W and an ultraviolet (e.g., 244 nm wavelength) power range of Less than 600mW. Preferably, the intracavity infrared power preferential range is greater than 2000 W and the ultraviolet power range is less than i5 〇 mw. It will be apparent to those skilled in the art that the present invention is capable of various modifications and changes. Various changes and modifications of the invention are intended to be included within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The first diagram Δ is a schematic diagram of a laser system in accordance with an embodiment of the present invention. Page 19