TWI271560B - Dual-ARROW Mach-Zehnder interferometric sensors - Google Patents

Dual-ARROW Mach-Zehnder interferometric sensors Download PDF

Info

Publication number
TWI271560B
TWI271560B TW94105593A TW94105593A TWI271560B TW I271560 B TWI271560 B TW I271560B TW 94105593 A TW94105593 A TW 94105593A TW 94105593 A TW94105593 A TW 94105593A TW I271560 B TWI271560 B TW I271560B
Authority
TW
Taiwan
Prior art keywords
optical waveguide
double
resonant
mach
sensing
Prior art date
Application number
TW94105593A
Other languages
Chinese (zh)
Other versions
TW200630654A (en
Inventor
Shih-Hsin Hsu
Yang-Tung Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW94105593A priority Critical patent/TWI271560B/en
Publication of TW200630654A publication Critical patent/TW200630654A/en
Application granted granted Critical
Publication of TWI271560B publication Critical patent/TWI271560B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Mach-Zehnder interferometer (MZI) sensors based on dual ARROW (antiresonant reflecting optical waveguide) are proposed for chemical and/or biochemical sensing. The sensor consists of three sections. The first and third sections are coupling dual ARROW structures for splitting and recombining light waves. The second section, the sensing section, is a decoupled dual ARROW. By adjusting the degree of structural symmetry to control the coupling behavior of the dual ARROW, integrated optical interferometric sensors without any bending structures are realized.

Description

1271560 九、發明說明: 【發明所屬之技術領域】 積體光學感測^件(integrated optical sensors )因具有感測靈 破度(sensitivity)尚、體積小、不受電磁干擾(eiectromagnetic mterference :EMI)影響等特性,近年來益加廣泛應用於化學與生 化感測二而藉由運用標準1C製程技術,積體光學感測元件不僅提 •供了在單-晶片上多種感測元件同時進行多項檢測的可能性,也 深具將光學與電子元件積體化以組成智慧型感測系統(smart sensors system)的潛*力以,2]。 ® 在夕種光车感測架構中,干涉式感測器(interferometric sensors)如麥克森(Michelson)、法布里珀羅(Fabry_P6r〇t)、馬 赫,德(Mach]Zehnder)等型式的干涉架構,因係檢測光波於通 過感測區域所獲致之相位變化(phase change),本質上具有較高 的感測靈敏度而廣為各界採用,其中又以馬赫任德式最受歡迎, j的原因便在於其設計和製作簡單,且參考臂(論⑽eann) 的存在也有助於補償共模效應(c〇mm〇n_m〇(jee^ect) p-5]。 【先前技術】 傳統的積體化(integrated)馬赫任德干涉器(Mach_Zehnder =f?meter,MZI)通常包含兩㈣對t的分絲(sp驗)與 ^Gnfne0 ’兩者由—對彼此分離而互不影響的單模直線 〆 ¥ (single-mode straight waveguide)相連,依 J:分光、人氺哭 略區分_稱式γ型分叉(symmetn(;、4ttK:n为 所^禺口态(dlrectlonalcoupler)等兩種型式,分別如圖一、圖二 f ^ (coherentlight 的邱八至兩通道,其中一通道(感測臂,sensing arm) 离匕作用區域,1nteraCtl°n腦)暴露於外在環境一段距 用長度,mteractlonlength),而另一通道(參考臂)則盥外 衣兄隔絕。傳播於感測臂的感測光波(sensing wave)於作用、長 5 1271560 用,隨外在環境變化產生了,1271560 IX. Description of the invention: [Technical field to which the invention pertains] Integrated optical sensors have sensitivity, small volume, and no electromagnetic interference (eiectromagnetic mterference: EMI). Influencing and other characteristics, in recent years, it has been widely used in chemical and biochemical sensing. By using standard 1C process technology, integrated optical sensing components are not only provided for simultaneous detection of multiple sensing elements on a single-wafer. The possibility of deep integration of optical and electronic components to form a smart sensor system, 2]. In the evening light sensor sensing architecture, interferometric sensors such as Michelson, Fabry_P6r〇t, Mach, Zehnder, etc. The architecture, because it detects the phase change of the light wave through the sensing area, has a high sensing sensitivity in nature and is widely used by all walks of life, among which Mach Rende is the most popular, j. The design and fabrication are simple, and the presence of the reference arm (on (10)eann) also helps to compensate for the common mode effect (c〇mm〇n_m〇(jee^ect) p-5]. [Prior Art] Traditional integration The integrated Mach_Zehnder = f?meter (MZI) usually contains two (four) pairs of t-filaments (sp test) and ^Gnfne0 'by - single-mode straight lines that are separated from each other without affecting each other. ¥ (single-mode straight waveguide) connected, according to J: splitting light, human crying slightly distinguishing _ γ type bifurcation (symmetn (;, 4ttK: n is the 禺 禺 禺 ( ( ( ( ( ( ( ( ( ( dl dl dl dl dl dl dl dl dl Figure 1 and Figure 2 f ^ (Cochentlight's Qiu Ba to two links One of the channels (sensing arm) is separated from the sputum area, the 1nteraCtl°n brain is exposed to the external environment for a distance length, mteractlonlength), and the other channel (reference arm) is isolated from the outer coat. The sensing wave of the sensing arm is used for the action, length 5 1271560, and the external environment changes.

- K^neffL Ο) 上,。n mode)而散逸至周遭;但對具有方向旲錢赶馬=繼=以=量:;以散ί 正規化(normalized)輸出光能量可表示成·· '、 ^/^〇 =sin2(A^/2) (2) ^/Po = cos2 (Δ^/2) (3) 其:Λ)為輸入光能量。由於前述之相位變化對應於外在環境光學 ^生貝(如折射率)的改變,便可藉由量測輸出光能量的變化, 偵測外在環境的改變。 木- K^neffL Ο), on. n mode) and dissipate to the surrounding; but the direction of the money to catch the horse = success = = = amount:; to ί normalized output light energy can be expressed as · · ', ^ / ^ 〇 = sin2 (A ^/2) (2) ^/Po = cos2 (Δ^/2) (3) Its: Λ) is the input light energy. Since the aforementioned phase change corresponds to the change of the external environment optical (such as the refractive index), the change of the external light environment can be detected by measuring the change of the output light energy. wood

從上述討論與干涉式感測器的工作原理可以得知,感測臂的 作用長度愈長,感測光波與外在環境的交互作用愈明顯,相位變 化也愈大,感測靈敏度便愈高,但感測元件的尺寸也會隨之增大; 另二方面,為確保連接分光、合光器的兩直線型波導彼此獨立互 不影響,兩波導間須保有相當寬廣之間距,以致於積體化馬赫任 德干涉式感測器往往需要相當長的彎折結構(bending structure) 來達成將光訊號一分為二或二合為一。因此,兩直線型波導之間 距與不易縮短的彎折結構,都限制了傳統積體化馬赫任德干涉式 感測裔進一步微小化或提高感測靈敏度的能力。 6 1271560 【發明内容】 的限_赫_干涉式‘職在微縮方面 ’ ARRQW)域健干涉錢測器[6], 須Ϊ^ΐίϊίΐ懦性來控制其輕合行為’達成小巧且不 在環产二^_二、冓之積體化馬赫任德干涉式感測器,以谓測外 在以(即待測物)的折射率變化,供化學與生化感測之用。 廣泛ϊίΓ=光=導結構m,近十餘棟經 伊扁认 匕被互具有許多獨特的優點,如··低損乾單 料輸人ί輸出光纖彈性地選擇光波導多層結構的厚 達到最高的輸入或輸㈣合效率―ut 抗^此外,由兩平行抗諧振反射光波導組成的雙 ί=ΐ f ΐ、A腦W) ’又可彈性地設計兩個波導間 ’ f而得以設計出遠聽合11 (麵Gte eG_)。 ‘丈歼九,又抗諧振反射光波導架構之方向搞合器的最高 ⑽y),可由波導結構之對稱性 ί以ί ΐ 2外側隔離層的厚度來控制),其最高-合效率可 I的範圍内。本發明即利用此—原理,設計出以 又抗3自振反射光波導為基本架構的馬赫任德干涉式感測器。 可葬反射光波導馬赫任德干涉式感測器, 了心,控制取外側隔離層的厚度,調整波導結構之對稱性,以形 ί;ϊίίί目:ΐ測區域及一合光區域。其中,分光區域及合 具有尚對稱性,使雙抗諧振反料波導於此兩區域 合效率;而感灌域之結構具有極低之對稱性,使雙 几°白振反射光波導於感測區域内之最高耗合效率趨近於〇。 上述之雙抗諧振反射光波導馬赫任德干涉式感測器中,其結 ^由上,下分別為―第—低折射率隔離m折射率隔離 ^、二弟一抗諧振反射光波導核心層(上核心層,uppercore)、一 弟^折射率隔離層、一第二低折射率隔離層、一第三高折射率 隔離層、一第二抗諧振反射光波導核心層(下核心層,lower c〇re)、 1271560 隔離層,與一基底 第四高折射率隔離層、一第三低折射率 【實施方式】 如η本:Γ仅?抗諸振反射光波導馬赫任德干涉式成測哭的社構 如圖二所不,本f上為—具有兩 構 波導,其多層結構包含最外側之低雙光 離層、第-抗諧振反射光波導核心層一 f隔 光波導核、第二抗諧振反射 層,與一基底::υ乍i理二ti ?力f、—低折射率隔離 感測區域及合光區域等:個心' A、ff Y分為分光區域、 構,僅最外嶋 則杲不鉍人Ν Ύ馬口為(3—dB couPler)之用;而感測區域 ST? 當輸入光波由分光區域之任一核心層導 tl/析TE=具有爾 能尸二)被㊅效率激發駐導後續光波的傳播,其模 i:G=i4:iis:lbution)如圖四(a)所示,其餘模態 ^口傳輸相耗遇问於财兩者,或因無法被有效激發,苴影變 ^政。由於分光區域具有高度對稱的結構,其最高搞合效暴相當 妾f 10G%,經過半個-合長度的傳播後,能量被平均分配至兩^ 心層,並由此進入感測區域。 於感測區域内,因其最外側隔離層被完全剝離,成為不對 ^又抗諧振尽射光波導(最高耦合效率趨近於〇),於兩核心層内 傳播之光波便彼此獨立、互不影響,其模態場分布如圖四(b)所 ΐΐ傳播於ί測?(上核心層)白勺感測光波之模態場分布與 在環丨兄接近,藉由衣減波(evanescentwave)與待測物的交互作 用,使其專效折射率隨待測物光學性質(如折射率)的變化而發 生改變;而傳播於參考臂(下核心層)的參考光波(referencewav:) 8 1271560 因遠=測物’職乎不受待測物變化的影響。 生出能量隨相位變化呈正弦或^,自兩通賴峨干涉產 德1式感測器同樣有兩輸出通i 馬赫任 監視輸入光能量變化之用。葬旦二,出先犯虿之和遷可作為 與傳統之積體化馬赫任待千涉々 。 譜振反射光波導馬赫任彳声干二^則f相較,本發明之雙抗 結構,提供進-步將元^微〔不僅能免去相當長的彎折 敏度或輸出A麵合條件的^求,3卜^同的感樹靈 擇=厚度與材料折射率的②= 所選 出相位變均,並侧出待^物光能量的變化,可萃取 本發明之雔/士比挺^ 叹吓広所篇的厫測元件。 例係針i水巾ί 德干涉式感測器的實施 率為1.46,厚戶則宏A 4 曰僧卞句―乳化石Sl〇2),其折射 “比f’為μΐΏ,以便能與單模光纖高效率輕合。且 人依據抗咕振條件(antires〇nan 。 低折射率_層外其餘^ 除取外側局/ 振反射光波導核心、層騎率,雙抗諧 〇.6328 μηι,選定之卜? it n ?如本貫施例之工作波長為 率為L46,層,為亡氧化矽⑽2),其折射 Λ 4/7 . D1 ί . \2Ί 1- _ g + Λ 一 、η. V J J Vlnjdg) -fe) •fe + l), 込二〇,1,2, ··· d. — ⑷ ,中定的雙抗諧振反射光波導核 寺?至於最外側高/低折射率隔離層的厚i, ;i〇〇〇i^ 近00/°者,而在不耦合的感測區域,最外側低折射率隔離層須完 1271560 =除為G),且最外 削減,以進一步破壞結構之對 潛的尽度也須適當 提升感測光波與待測物的交互作用。取回耦a效率趨近於0,並From the above discussion and the working principle of the interferometric sensor, it can be known that the longer the action length of the sensing arm, the more obvious the interaction between the sensing light wave and the external environment, the larger the phase change, the higher the sensing sensitivity. However, the size of the sensing element will also increase. On the other hand, in order to ensure that the two linear waveguides connecting the splitting and the combiner do not affect each other independently, the two waveguides must have a relatively wide spacing, so that the product is accumulated. The Mach Rende interferometric sensor often requires a relatively long bending structure to achieve the splitting of the optical signal into two or two. Therefore, the distance between the two linear waveguides and the bending structure that is not easy to shorten limit the ability of the conventional integrated Mach Rende interferometric sensing to further miniaturize or improve the sensing sensitivity. 6 1271560 [Summary of the invention] The limit _ _ _ interferometric 'in the miniaturization 'ARRQW) domain health interference money detector [6], Ϊ ^ ΐ ϊ ϊ ΐ懦 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 ' ' ' ' ' ' ' ' ' ' ' Two ^ _ two, 冓 积 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马Widely ϊ Γ Γ = light = guide structure m, nearly ten buildings through the Yi flat 匕 匕 have many unique advantages, such as · · low loss dry single material input ί output fiber elastically select the thickness of the optical waveguide multilayer structure to the highest The input or input (four) combined efficiency - ut anti-in addition, the two parallel anti-resonant reflected optical waveguide composed of double ί = ΐ f ΐ, A brain W) 'and elastically designed between the two waveguides 'f can be designed Far listen to 11 (face Gte eG_). 'Zhang Jiujiu, the highest (10) y of the direction of the anti-resonant reflective optical waveguide architecture, can be controlled by the symmetry of the waveguide structure ί ΐ 2 the thickness of the outer isolation layer), the highest-integral efficiency can be Within the scope. The present invention utilizes this principle to design a Mach Rende interferometric sensor with a three-phase self-oscillation reflected optical waveguide as a basic structure. The Mach Rende interferometric sensor can be buried and reflected, and the thickness of the outer isolation layer is controlled to adjust the symmetry of the waveguide structure to form a ΐ ί ί ί ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ Wherein, the splitting region and the joint have a symmetry, so that the double anti-resonant anti-waveguide is combined in the two regions; and the structure of the sensing region has a very low symmetry, so that the double-magnitude white-reflecting optical waveguide is sensed The highest efficiency in the region is approaching 〇. In the above-mentioned double anti-resonant reflective optical waveguide Mach Rende interferometric sensor, the upper and lower sides are respectively - the first - low refractive index isolation m refractive index isolation ^, the second generation of the anti-resonant reflective optical waveguide core layer (upper core layer, upper core), a younger ^ refractive index isolation layer, a second low refractive index isolation layer, a third high refractive index isolation layer, a second anti-resonant reflective optical waveguide core layer (lower core layer, lower C〇re), 1271560 isolation layer, and a base fourth high refractive index isolation layer, a third low refractive index [embodiment], such as η: Γ only, anti-vibration reflection optical waveguide Machrend interferometric measurement The crying community is shown in Figure 2, which has a two-structure waveguide, and its multilayer structure includes the outermost low double optical separation layer, the first anti-resonant reflective optical waveguide core layer, and the f-interlaced optical waveguide core. The second anti-resonant reflective layer, and a substrate:: υ乍i 二 ti ti force f, - low refractive index isolation sensing region and light combining region, etc.: heart 'A, ff Y is divided into a light splitting region, structure, only The outermost 嶋 杲 杲 杲 Ύ Ύ Ύ Ύ ( 3 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; When the input light wave is guided by any core layer of the spectroscopic region tl / TE TE = have Erneng corpse 2) is stimulated by six efficiency to propagate the subsequent light wave, its mode i: G = i4: iis: lbution) As shown in (a), the rest of the modality of the transmission phase is both inquiring about the money, or because it cannot be effectively activated. Since the spectroscopic region has a highly symmetrical structure, its maximum effect is equivalent to 10f 10G%. After half-length propagation, the energy is evenly distributed to the two core layers and thus enters the sensing region. In the sensing region, because the outermost isolation layer is completely stripped, it becomes an anti-resonant and perfect optical waveguide (the highest coupling efficiency approaches 〇), and the light waves propagating in the two core layers are independent of each other and do not affect each other. The modal field distribution is as shown in Fig. 4(b). The modal field distribution of the sensing light wave transmitted by the 上? (upper core layer) is close to that of the ring 丨, by evanescentwave and The interaction of the measured object changes its specific refractive index with the change of the optical properties (such as the refractive index) of the test object; and the reference light wave propagated to the reference arm (lower core layer) (referencewav:) 8 1271560 = The measurement 'work' is not affected by changes in the test object. The generated energy is sinusoidal or ^ with phase change, and the two-way sensor is also used to monitor the input light energy change. In the second day of the burial, the sin of the sin and the sin of the sin. The spectrally-reflected optical waveguide Mach Ren 彳 彳 二 ^ ^ ^ f f f f f f f f f f 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Seeking, 3 Bu^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^厫 The test components of the article. The implementation rate of the needle-shaped water towel ί de-interferometer sensor is 1.46, and the thickness of the household is A 4 haiku-emulsion stone S1〇2), and the refractive index is “μ”, so that it can be combined with single mode. The fiber is highly efficient and light-weighted, and the person is based on the anti-shock condition (antires〇nan. Low refractive index _ layer outside the ^ removal of the outer office / vibration reflection optical waveguide core, layer ride rate, double anti-harmonic 〇.6328 μηι, selected卜? It n ? If the operating wavelength of the present example is L46, the layer is dead yttrium oxide (10) 2), its refractive Λ 4/7 . D1 ί . \2Ί 1- _ g + Λ one, η. VJJ Vlnjdg) -fe) •fe + l), 込二〇,1,2, ··· d. — (4) , Zhongding double anti-resonant reflective optical waveguide nuclear temple? As for the outermost high/low refractive index isolation layer The thickness i, ;i〇〇〇i^ is close to 00/°, and in the uncoupled sensing region, the outermost low refractive index isolation layer must be 1271960 = divided into G), and the outermost cut to further destroy The appropriateness of the structure to the potential must also appropriately improve the interaction between the sensing light wave and the object to be tested. The efficiency of the coupling a is close to 0, and

依據前述說明,本發明勤^土每A 任德干涉式感測器的各層為光波導馬赫 折射率為I332 ;最外側低折射率為311 I—,境〕3〇的 321 ^ I 為一氧化矽,折射率】.46 ;高折射率p離呙:去上 乳化石夕,折射率⑽;低折射率 『【CM層34、為氮 =高,率隔離層%為氮氧化‘折^ 為一氧化矽’折射率146 ;高折射率卩5籬 下祆、層 f f 2·00,·低折射率隔離層313為二氧化同石夕,曰折射匕石夕,折 底35的折射率為3.85。 折射率1.46,矽基 昆从上核心層331與下核心層332的厚度已撰宏Λ 4 々 絲件謂:崎射 率34f==4322的厚度為_陶;高折射 耦合效率分析的結果(圖2 i4八τ巧最外側隔離層,依據 離層311的厚卢A j μ " ^^刀先、a光區域内,低折射率隔 議,丨v、^、t度為U3脚,南折射率隔離層321的厚度為0.116 率隔離層311^尸率;於感測區域内,低折 i文率低於〇.〇1%。基於上述結構參數,分光、合 σ”勺長度為4.06 mm,感測區域的長度(即作用|A 15麵,元件總長度為23.12 mm。 P作用長度幻為 所得播分析(―卿也 兩通道輸出来,光能置^及户2與待測物折射率變化之關係圖, 之和Ρι+Ρ2低於1係因部分能量於不連續界面 化之,㈣ί或祕ΐ損耗模態。圖七為相位變化與待測物變 度、二ΐ ί黑色實線之斜率即為本較佳實施例之感測靈敏 “伽' 2輯6鼻於水中環境(折射率U32)的感測靈敏度約為 (π)从一般相位檢測方法的相位解析度(phase res〇luti〇n) ίο 1271560 約為0·01·(2π),本實施例可偵測出小至1.48χ10_5的折射率變化。 【檢索資料】 1. R V. Lambeck, "Integrated opto-chemical sensors/9 Sensors and Actuators B, vol. 8, pp. 103-116, 1992. 2. B. J. Luff,R. D. Harris,J. S· Wilkinson,R. Wilson,and D. J. Schiffrin, “Integrated-optical directional coupler biosensor,’’(9户/. vol. 21,pp. 618-620, Apr. 1996.According to the foregoing description, each layer of the A-Rite interferometric sensor of the present invention has an optical waveguide Mach refractive index of I332; the outermost low refractive index is 311 I-, and the environment is 3〇 of 321 ^ I for oxidation.矽, refractive index]. 46; high refractive index p 呙: go to the emulsified stone, refractive index (10); low refractive index "[CM layer 34, nitrogen = high, rate isolation layer% nitrogen oxides]一 矽 'refractive index 146; high refractive index 卩 5 祆 祆, layer ff 2 · 00, · low refractive index isolating layer 313 is the same as the same as the cerium, 曰 匕 匕 夕 , ,, the refractive index of the bottom 35 3.85. The refractive index of 1.46, the thickness of the 核心基昆 from the upper core layer 331 and the lower core layer 332 has been written Acer 4 々 silk pieces said: the thickness of the 34% == 4322 is _ pottery; the result of high refractive coupling efficiency analysis ( Figure 2 i4 eight τ clever outermost isolation layer, according to the thickness of the layer 311 Lu A j μ " ^ ^ knife first, a light region, low refractive index, 丨v, ^, t degrees for the U3 foot, The thickness of the south refractive index isolation layer 321 is 0.116, the isolation layer 311 is corpse rate; in the sensing region, the low-fold i-wen rate is lower than 〇.〇1%. Based on the above structural parameters, the length of the splitting and combining σ" spoon is 4.06 mm, the length of the sensing area (ie, the action|A 15 side, the total length of the component is 23.12 mm. The length of the P action is the resulting broadcast analysis ("Qing also has two channels of output, light energy and household 2 and to be tested The relationship between the refractive index change of the object, the sum Ρι+Ρ2 is lower than 1 due to the partial energy of the discontinuous interface, (4) ί or the secret loss mode. Figure 7 is the phase change and the change of the object to be tested, two ΐ ί The slope of the solid black line is the sensing sensitivity of the preferred embodiment of the "G" 2 series 6 nose in the underwater environment (refractive index U32) is about (π) The phase resolution of the phase detection method (phase res〇luti〇n) ίο 1271560 is about 0·01·(2π), and this embodiment can detect the refractive index change as small as 1.48χ10_5. [Search data] 1. R V. Lambeck, "Integrated opto-chemical sensors/9 Sensors and Actuators B, vol. 8, pp. 103-116, 1992. 2. BJ Luff, RD Harris, J. S. Wilkinson, R. Wilson, and DJ Schiffrin, "Integrated-optical directional coupler biosensor,'' (9 households/. vol. 21, pp. 618-620, Apr. 1996.

3. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, and J. Greve, uThe realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” iSewsors vol· 40, pp· 147-153, May 1997. 4· B· J. Luff,J· S· Wilkinson,J· Piehler,U· Hollenbach,J. Ingenhoff,and N. Fabricius, “Integrated optical Mach-Zehnder biosensors,” J. Lightwave TechnoL, vol. 16, pp. 583-592, Apr. 1998. 5. F. Prieto, B. Sepiiulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga,“Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications/5 Sensors and Actuators B, vol. 92? pp. 151-158, July 2003. 6. S.-H. Hsu and Y.-T. Huang, UA novel Mach-Zehnder interferometer based on dual ARROW structures for sensing applications/9 The Eighth International Symposium on Contemporary Photonics Technology (CPT2005), Tokyo, Japan,Jan. 2005. 7. M. A. Duguay, Y. Kokubun, T. L. Koch9 and L. Pfeiffer, uAntiresonant reflecting optical waveguides in Si〇2-Si multilayer structures,” 尸 Lett,, vol. 49, pp. 13-15, Jan. 1986. 8. Y.-H. Chen and Y.-T. Huang, ''Coupling efficiency analysis and control of dual antiresonant reflecting optical waveguides,” 7fec/mo/.,vol. 14, pp. 1507-1513, June 1996. 1271560 【圖式簡單說明】3. EF Schipper, AM Brugman, C. Dominguez, LM Lechuga, RPH Kooyman, and J. Greve, uThe realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” iSewsors vol· 40, pp· 147-153, May 1997. 4· B· J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensors,” J. Lightwave TechnoL, vol. 16 , pp. 583-592, Apr. 1998. 5. F. Prieto, B. Sepiiulveda, A. Calle, A. Llobera, C. Dominguez, and LM Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications /5 Sensors and Actuators B, vol. 92? pp. 151-158, July 2003. 6. S.-H. Hsu and Y.-T. Huang, UA novel Mach-Zehnder interferometer based on dual ARROW structures for sensing applications /9 The Eighth International Symposium on Contemporary Photonics Technology (CPT2005), Tokyo, Japan, Jan. 2005. 7. MA Duguay, Y. Kokubun, TL Koch9 and L. Pfeiffer, uAntiresonant reflecting Optical waveguides in Si〇2-Si multilayer structures,” 尸Lett,, vol. 49, pp. 13-15, Jan. 1986. 8. Y.-H. Chen and Y.-T. Huang, ''Coupling efficiency Analysis and control of dual antiresonant reflecting optical waveguides,” 7fec/mo/., vol. 14, pp. 1507-1513, June 1996. 1271560 [Simplified illustration]

Si 對稱式γ型分叉分光、合光器之馬赫任德干涉 】測“的示意圖有方向耦合器式分光、合光器之馬赫任德干涉式 :㊁明之雙抗譜振反射光波導馬赫㈣ 圖圖四⑷為分絲域内兩主要橫向電場(TE)_之模§場分布 】四⑹為感寵域内兩主要橫 θ, u 之模態場分布 圖五為最高耦合效率與最外 ,六為正規化輪出光能待二之關係圖; 圖七為相位變化與待測物折以 【主要元件符號說明】 30 ··感測環境 311 312 313 321 322 331 332 341 342 35 ^一低折射率隔離層 低折射率隔離層 ^二低折射率隔離層 折射率隔離層 第四高折射率隔離層 上核心層 下核心層 f士j折射率隔離層 第三高折射率隔離層 基底Si symmetrical γ-type bifurcation splitting, Mach Rende interference of the combiner] "The schematic diagram of the directional coupler type splitting, the Mach Rende interferometer of the combiner: Erming's double-resistance spectral reflection optical waveguide Mach (4) Figure 4 (4) shows the distribution of the two major transverse electric fields (TE) in the splitting domain. The four (6) is the two main transverse θ in the sense domain, and the modal field distribution of u is the highest coupling efficiency and the outermost. Figure 7 shows the relationship between the phase change and the object to be tested. Figure 7 shows the phase change and the object to be tested. [Main component symbol description] 30 · Sensing environment 311 312 313 321 322 331 332 341 342 35 ^ A low refractive index Isolation layer low refractive index isolation layer ^ two low refractive index isolation layer refractive index isolation layer fourth high refractive index isolation layer upper core layer lower core layer fjj refractive index isolation layer third high refractive index isolation layer substrate

Claims (1)

1271560 十、申請專利範圍: 1· 一種雙抗證振反射光波導馬赫任德干涉式感測器,其包含右一 雙抗諧振反射光波導,該雙抗諧振反射光波導係藉由不 隔離層厚度,以形成一分光區域、一感測區域及一合光區域。 2· 範圍第1項所述之雙抗諧振反射光波導馬赫任德千 汐式感測裔,其中該分光區域及該合光區域之外隔離層$ 大於該感測區域之外隔離層厚度。 予又你 3· 專利範圍第1項所述之雙抗諧振反射光波導馬赫任择干 ^式感測器,其中該分光區域及該合光區域之結構係具^ 稱性’使该雙抗諧振反射光波導於此兩區域内具有高搞合效率、。 4· 圍第1項所述之雙抗諧振反射光波導馬赫任德干 々式感測裔,其中該感測區域之結構具有低對稱性传“ 諧振反射光波導於此感測區域内具有mu性使。亥雙抗 5.範f 雙抗諧振反射光波導馬赫任德干 中献光區域及該合光區域之長度係等於該雙 U辰反射光波導之耦合長度(coupiingiength)的一半。 範圍第1項所述之雙抗諧振反射光波導馬赫任德干 Ϊ令該雙抗諧振反射光波導係設計成只容許兩個 杈心(mode)犯被有效率激發並具有低傳輸損耗。 7· ΚΪίί1範f Ϊ 2所述之雙抗諧振反#光波導馬赫任德干 含-二低率隔闕、一第一高折射率隔離•、一上核2 射率隔離層、一第二低折射率隔離層、-第三 厂下核心層、—第四高折射率隔離層、一第 一低折射率隔離層,與一基底。 8· 7f所述之雙抗諧振反射光波*馬赫任德干 率及尺寸係可與—光纖匹配(她^), 之輸或輸出耦合效率(mput/output coupling efficiency )。 9·如申請專概_ 7顧述之雙抗雜反射紐導馬赫任德干 13 1271560 ίίί測中之該第—低折射率隔離層的厚 區域“ 射率隔離層之厚度設計為使得該感測 10. 圍j ! ^所述之雙抗諧振反射光波導馬赫任押 中f分光區域及該合光區域之各隔離 又糸由抗咱振备、件(antlres〇nance c—)決定。 圍H項所述之雙抗諧振反射光波導馬赫任押 石^式感測心其中該上核心層與該下核心層之材料^❻ 12. ,圍甘第乂項所述之雙抗諧振反射光波導馬赫任押 綠減縣料職之各低ϊϊΐ' 干涉iSS圍/中:亥苎射光波導馬赫任德1271560 X. Patent application scope: 1. A double-anti-vibration reflection optical waveguide Mach Rende interferometric sensor, which comprises a right double anti-resonant reflective optical waveguide, the double anti-resonant reflective optical waveguide is separated by a non-isolated layer The thickness is formed to form a light splitting region, a sensing region, and a light combining region. 2. The dual anti-resonant reflective optical waveguide of the first aspect of the present invention, wherein the isolation layer $ is larger than the isolation layer outside the sensing region. The double-anti-resonant reflective optical waveguide Mach optional dry-type sensor according to the first aspect of the patent scope, wherein the light-splitting region and the structure of the light-combining region are symmetrical to make the double-resistance The resonant reflected optical waveguide has high integration efficiency in the two regions. 4. The double-anti-resonant reflective optical waveguide of the first embodiment, the Mach Rende dry-type sensing, wherein the structure of the sensing region has a low symmetry transmission. The resonant reflective optical waveguide has a mu property in the sensing region. The double anti-resonance 5. Fan f double anti-resonant reflected optical waveguide Mach Rende dry in the light-receiving area and the length of the combined light-emitting area is equal to half of the coupling length of the double-U-reflecting optical waveguide (coupiingiength). The double anti-resonant reflected optical waveguide Mach Rende Cognac designed the double anti-resonant reflective optical waveguide system to allow only two modes to be efficiently excited and have low transmission loss. 7· ίίί1 范f Ϊ 2 The double anti-resonant anti-reflection optical waveguide Mach Rende dry-containing - two low-rate isolation, a first high refractive index isolation, an upper nuclear 2 radiance isolation layer, a second low refractive index isolation layer, - the third plant a lower core layer, a fourth high refractive index isolation layer, a first low refractive index isolation layer, and a substrate. The double anti-resonant reflected light wave *Mach Rende dry rate and size described in 8·7f can be matched with the fiber ( She ^), lose or lose Coupling efficiency (mput/output coupling efficiency) 9·If the application is specific _ 7 Gu Shuzhi double anti-reflective guide Mach Rendegan 13 1271560 ίίί measured the thick area of the first low-refractive-index isolation layer The thickness of the layer is designed such that the sensing 10. The double anti-resonant reflective optical waveguide described in the M. ah, the f-light splitting region and the isolation of the combined light region are further protected by an anti-vibration device, antlres 〇nance c—) decided. The double-anti-resonant reflective optical waveguide described in item H, Mach Ren's stone sensing type, wherein the upper core layer and the lower core layer are made of material 12. The double anti-resonant reflection described in the article Optical waveguide Mach Ren's green reduction county's various low-level jobs' Interference iSS surrounding / middle: Haiyin optical waveguide Mach Rende 1414
TW94105593A 2005-02-24 2005-02-24 Dual-ARROW Mach-Zehnder interferometric sensors TWI271560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94105593A TWI271560B (en) 2005-02-24 2005-02-24 Dual-ARROW Mach-Zehnder interferometric sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94105593A TWI271560B (en) 2005-02-24 2005-02-24 Dual-ARROW Mach-Zehnder interferometric sensors

Publications (2)

Publication Number Publication Date
TW200630654A TW200630654A (en) 2006-09-01
TWI271560B true TWI271560B (en) 2007-01-21

Family

ID=38435239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94105593A TWI271560B (en) 2005-02-24 2005-02-24 Dual-ARROW Mach-Zehnder interferometric sensors

Country Status (1)

Country Link
TW (1) TWI271560B (en)

Also Published As

Publication number Publication date
TW200630654A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
Sun et al. High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide
Nambiar et al. Grating-assisted fiber to chip coupling for SOI photonic circuits
Misiakos et al. All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor
Zabelin et al. Self-collimating photonic crystal polarization beam splitter
CN101696933B (en) Resonance interference composite structure and cursor effect-based optical waveguide sensor
Na et al. Efficient broadband silicon-on-insulator grating coupler with low backreflection
Ahn et al. Fiber-optic waveguide coupled surface plasmon resonance sensor
JP6194789B2 (en) Optical waveguide device
Carroll et al. Optimizing polarization-diversity couplers for Si-photonics: reaching the− 1dB coupling efficiency threshold
JP2020508471A (en) Integrated plasmophotonic biosensor and method of use
Xu et al. Chen
Nakazawa et al. Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR
Liu et al. Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide
JP6300437B2 (en) Optical waveguide device
CN105928903B (en) Based on cascade optical resonator optical sensor
CN104949938B (en) A kind of Mach based on cursor effect once moral modulation type resonator sensor
Zheng et al. Optical proximity communication using reflective mirrors
Gao et al. Dual-optofluidic waveguide in-line fiber biosensor for real-time label-free detection of interferon-gamma with temperature compensation
Zhang et al. Efficiency enhanced grating coupler for perfectly vertical fiber-to-chip coupling
Ji et al. Wavelength-polarization multiplexer for routing and detection of surface plasmon polaritons based on plasmonic gratings
Bruck et al. Sensitivity and design of grating-assisted bimodal interferometers for integrated optical biosensing
Holmes et al. Bend monitoring and refractive index sensing using flat fibre and multicore Bragg gratings
Shi et al. Bovine serum albumin detection using side-hole fiber sensors
Singaravelu et al. Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits
TWI271560B (en) Dual-ARROW Mach-Zehnder interferometric sensors

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees