TWI271490B - Micro-structure of a light guide plate - Google Patents

Micro-structure of a light guide plate Download PDF

Info

Publication number
TWI271490B
TWI271490B TW94136092A TW94136092A TWI271490B TW I271490 B TWI271490 B TW I271490B TW 94136092 A TW94136092 A TW 94136092A TW 94136092 A TW94136092 A TW 94136092A TW I271490 B TWI271490 B TW I271490B
Authority
TW
Taiwan
Prior art keywords
light
guide plate
light guide
microstructure
light source
Prior art date
Application number
TW94136092A
Other languages
Chinese (zh)
Other versions
TW200716909A (en
Inventor
Jee-Gong Chang
Yu-Bin Fang
Chi-Feng Lin
Original Assignee
Nat Applied Res Lab Nat C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Lab Nat C filed Critical Nat Applied Res Lab Nat C
Priority to TW94136092A priority Critical patent/TWI271490B/en
Application granted granted Critical
Publication of TWI271490B publication Critical patent/TWI271490B/en
Publication of TW200716909A publication Critical patent/TW200716909A/en

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The present invention provides the micro-structure of a light guide plate. This structure is a LCD (liquid crystal display) used in an adverse light module. The light source is on the side of the light-directing plate. The micro-structure that is triangular pyramid shaped and sticks out from the bottom surface is installed on the bottom surface of the light-directing plate. One side of it is an adverse light surface and the other two sides are light reflector surfaces. The adverse light surface is perpendicular to the bottom surface of the light-directing plate, facing and close to the light source. Those two light reflector surfaces are inclined to the bottom surface of the light-directing plate and are facing the light surface of the light-directing plate and away from the light source. Reflecting the light through the reflector surface to the top can enhance the light intensity of light-directing plate. Changing the arrangement of the micro-structure can improve the visual effect of having uniform light intensity.

Description

1271490 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種導光板之微結構,係能增加導光板 之輝度之三角錐形之微結構者。 【先前技術】 請參考第一圖,係為習知導光板1之微結構2之示意圖 ’係以餘刻方式在光滑的導光板1之底面12上產生具有粗 φ 糙表面的微結構2,光線50射入微結構2的表面即產生散射 的反射光線51或折射光線52。當散射光線51入射導光板1 之出光面11之入射角度小於臨界角,則射出導光板1之出 光面11 ;若入射角度大於臨界角度,則光線51作全反射回 % ' 導光板1内並繼續傳遞。 ~ 第二圖係解釋第三(a)圖之座標,第三(a)圖係為從 習知導光板1之出光面11之出光強度雷達圖。橫座標表示 水平角度(Harizontal angle, HA),角度的移動從出光 # 面11之法線方向13,轉向與燈源4垂直方向14 ;縱座標表 示垂直角度(Vertical angle,VA),角度的移動從出光 面11之法線方向13,轉向與燈源4平行方向15。第三(a )圖中’每個封閉曲線代表出光強度(intensity )值, 其定義為單位立體角之光通量,此圖有10條封閉曲線,代 表10個等級的出光強度。由第三(a )圖可知,從習知導 光板1出光之出光強度分佈近似藍勃遜分佈(Lambertian , distribution),亦即在第三(a)圖上產生圓形的封閉曲 、線,出光強度呈現餘弦函數分佈。將出光強度換算成輝度 1271490 值,即輝度在各方向上均為等值。 睛參閱第三(b)圖,係習知導光板1之出光面11之出光 5度立體圖。此出光強度分佈近似球狀,亦即接近藍勃遜 刀佈’此圖可觀視出光強度在各角度或方向上的變化。 另’美國專利第6746129號與第6894740號揭露之微結 構均為曼形錐體,且菱形錐體之前二相鄰斜面係面對光源 ’入射光在二相鄰斜面連續反射而出光,其中第6746129 號搭配點光源而將微結構佈設於導光板,而第689474〇號 則搭配線形光源,該案並揭露在線光源的二端加設點光源 之設計。 整體而έ ’菱形錐體構造較複雜,且實際上,四相鄰 : 斜面中,靠近光源之二相鄰斜面之效果不大。 、 【發明内容】 而’本發明之目的即在於提供一種導光板之微結構, 係設置在導光板之底面,其形狀係從導光板底面向外突出 之三角錐構造’以有效提升光線往導光板之出光面射出, 益增進導光板之輝度。 本發明實例之導光板之微結構係設於導光板之底 面,且係從導光板之底面向外突出之三角錐形狀,該三 角錐包含一非光反射面與二光反射面,其中非光反射面 垂直於導光板底面,且非光反射面係面對光源,並較靠 近光源’光反射面傾斜於導光板底面,而光反射面係面 對導光板出光面,且較遠離光源。 其中’一光反射面相交且其交線為其於導光板上的 1271490 指向二前述指向均與光源射出光線的方向平行。 杜,、,—光反射面相交且其交線為其於導光板上的 指向,而前述的指向均非完 出光=: 行,但傾向與光源料光線的方向平彳^線的方向千 其二光板上的排列方式係規則排列。 Z 光板上的排列方式係亂數排列。1271490 IX. Description of the Invention: [Technical Field] The present invention relates to a microstructure of a light guide plate which is a triangular pyramid structure capable of increasing the brightness of a light guide plate. [Prior Art] Please refer to the first figure, which is a schematic diagram of the microstructure 2 of the conventional light guide plate 1 which produces a microstructure 2 having a rough φ rough surface on the bottom surface 12 of the smooth light guide plate 1 in a residual manner. The light 50 is incident on the surface of the microstructure 2 to produce a scattered reflected light 51 or a refracted light 52. When the incident angle of the scattered light 51 incident on the light-emitting surface 11 of the light guide plate 1 is smaller than the critical angle, the light-emitting surface 11 of the light guide plate 1 is emitted; if the incident angle is greater than the critical angle, the light 51 is totally reflected back to the inside of the light guide plate 1 and Continue to pass. ~ The second figure explains the coordinates of the third (a) figure, and the third (a) figure shows the light intensity radar chart from the light exit surface 11 of the conventional light guide plate 1. The abscissa indicates the horizontal angle (HA), and the angular movement is from the normal direction 13 of the light exit surface 11 to the vertical direction 14 of the light source 4; the vertical coordinate indicates the vertical angle (VA), the angular movement From the normal direction 13 of the light exit surface 11, it is turned to the direction 15 parallel to the light source 4. In the third (a) diagram, each closed curve represents a light intensity value, which is defined as the luminous flux per unit solid angle. This figure has 10 closed curves representing the light intensity of 10 levels. It can be seen from the third (a) diagram that the light intensity distribution from the conventional light guide plate 1 is similar to the Lambertian distribution, that is, a circular closed curve and a line are generated on the third (a) diagram. The light intensity exhibits a cosine function distribution. The light intensity is converted into a luminance of 1271490, that is, the luminance is equal in all directions. Referring to the third (b) figure, it is a 5 degree perspective view of the light exiting surface 11 of the light guide plate 1. This light intensity distribution is approximately spherical, that is, close to the blue knives. This figure shows the change in light intensity at various angles or directions. The microstructures disclosed in U.S. Patent Nos. 6,746,129 and 6,894,740 are both whit-shaped cones, and the two adjacent slanting faces of the diamond-shaped cone face the light source 'incident light continuously reflected on the two adjacent slopes, and the first No. 6746129 is equipped with a point light source to lay the microstructure on the light guide plate, and No. 689474 is equipped with a linear light source. The case also discloses the design of the two-end point light source of the online light source. The overall έ 菱 diamond cone structure is more complicated, and in fact, four adjacent: in the slant surface, the effect of the two adjacent slopes close to the light source is not significant. SUMMARY OF THE INVENTION [The present invention is to provide a light guide plate microstructure, which is disposed on the bottom surface of the light guide plate, and its shape is a triangular pyramid structure protruding outward from the bottom surface of the light guide plate to effectively enhance the light guide. The light exit surface of the light plate is emitted to enhance the brightness of the light guide plate. The microstructure of the light guide plate of the example of the present invention is disposed on the bottom surface of the light guide plate and is a triangular pyramid shape protruding outward from the bottom surface of the light guide plate. The triangular cone includes a non-light reflection surface and a two-light reflection surface, wherein the non-light The reflective surface is perpendicular to the bottom surface of the light guide plate, and the non-light reflecting surface faces the light source, and is closer to the light source than the light source. The light reflecting surface faces the light emitting surface of the light guide plate and is far away from the light source. Wherein a light reflecting surface intersects and its intersection line is 1271490 on the light guide plate. The two directions are parallel to the direction in which the light source emits light. Du,,,—the light reflecting surfaces intersect and their intersection is the direction on the light guide plate, while the aforementioned directions are not finished light=: lines, but tend to be in the direction of the light of the light source material. The arrangement on the two light plates is regularly arranged. The arrangement on the Z-ray plate is arranged in random numbers.

易於害m明之微結構,構造簡單而導光方向明碟, 易於事域擬與設計佈局,較易㈣成本與品質。 【實施方式】 閱第四(a)® ’係本發明實例之微結獅應用於導 光板1A之*4®。導紐1A包含複數微結制,設置在導 光板1A之底面12上,其形狀餘導光板u之底面12向外突 出之三角缝構造’可有效提升光線,使光線射出導光板 1A之出光面12,增進導光板丨八之輝度。 第四(b )則係本發明實例之微結構6分佈於導光板i a 之第一實施例圖,微結構6排列係規則排列,而所有微結 構6之指向7完全與線性光源4發出之光線平行。線性光源4 發出之光線進入導光板1A’產生南均勻亮度的面型出光。 請參閱第五(a)〜五(d)圖,其係本發明實例之微結構6 之構造示意圖,並分別為俯視圖、仰視圖、上視圖與侧視 圖。微結構6係三角錐狀構造,包括一非光反射面601與二 光反射面602、603,非光反射面601係垂直於導光板1A之 底面12A,該非光反射面601面對光源4且較靠近光源4 ;二 光反射面602、603係傾斜於導光板1A之底面12A,該二光 7 1271490 反射面602、603面對導光板以之出光面11A且較遠離光源4 。光反射面602、603具有改變光線在導光板以行進的能力 ’當光線進入到微結構6時,光反射面602、603將光線反 射至上方,增加導光板1A的輝度。 請參閱第五(c)、(d)圖,其中二光反射面6〇2、603 與導光板1A之底面12A相連的底邊61ι、612所夾之角度石 ,以及二光反射面602、β〇3相連之稜邊613與導光板1A之 底面12A所夾之角度0,這兩個角度冷、0可改變光反射 • 面602、603之傾斜’最影響光線射向上方之強度分佈。 其中,二光反射面602、603相連之稜邊613即微結構6 之指向7[參見第四(b)圖]。 • 請參閱第六圖,此圖係光線5射入微結構6之光線傳遞 示意圖。光線5射入光反射面602後,反射到另一光反射面 603,由光反射面603反射往上方射出。同理,光線5射入 光反射面603後,再經光反射面6〇2射至上方。角度Θ影響 φ 光反射面602、603之上下方向(Z軸方向)傾斜,影響光 線強度在HA上之變化;角度冷影響光反射面602、603之左 右方向(Y軸方向)傾斜,影響光線強度在VA上之變化。 請參閱第七圖,係以角度/5、0為參數,光線射入微 結構6後之出光強度分佈雷達圖。本發明人以本發明之實 例作為設計之模型,找出最適當的角度/5、0,在導光板 1A之出光面11 a上得到南出光強度分佈。設計參數中’角 度/5分別為30度、40度、50度、60度,角度0分別為10 度、20度、30度、40度,本發明人以ASAP光學軟體模擬上 1271490 述參數,得出角度沒係50度、60度,角度0係30度時有高 出光強度分佈,可參閱第八圖,光線集中往法線方向13 上射出,亦即在在法線方向13上(VA=0度、ΗΑ=0度)出光 強度值最高。角度0 =10度時,光線在VA=60度處集中,可 參閱第九圖。角度0=20度時,光線集中在VA=60度,HA= ±30〜40度一帶,出光強度有分岔的分佈產生,可參閱第十 圖。由此可知,角度/3、0的改變影響到導光板1A之出光 面11A之出光強度分佈。 ® 至於本發明實例之微結構6於導光板1A之佈列,則請 參見第四(b)圖,係本發明實例之微結構6分佈於導光板1A 之第一實施例圖,其排列係規則排列,且微結構6之指向7 與線性光源4發出之光線平行。線性光源4發出之光線進入 導光板1A,產生高均勻性亮度的面型光源。 請參閱第十一圖,係本發明實例之微結構6分佈於導 光板1B之第二實施例。微結構6排列係規則排列,而所有 φ 微結構6之指向7非完全與線性光源4發出之光線平行,但 整體來講,微結構6指向7有傾向平行光線。線性光源4發 出之光線進入導光板1B,產生高均勻性亮度的面型光源。 請參閱第十二圖,係本發明實例之微結構6分佈於導 光板1C之第三實施例。微結構6排列係亂數排列,而微結 構6之指向7與線性光源4發出之光線平行。線性光源4發出 之光線進入導光板1C,產生高均勻性亮度的面型光源。 請參閱第十三圖,係本發明實例之微結構6分佈於導 光板1D之第四實施例。微結構6排列係亂數排列,而所有 1271490 ^ 微結構6之指向7非完全與線性光源4發出之光線平行,但 * 整體來講,微結構6指向7有傾向平行光線。線性光源4發 出之光線進入導光板1D,產生高均勻性亮度的面型光源。 除了上述四個實施例採用線性光源,如冷陰極管,作 為光源外,已可用複數點狀光源如發光二極體作為光源, 其微結構排列及指向大致與前述之實施例相同。 【圖式簡單說明】 第一圖係為習知導光板微結構之示意圖。 • 第二圖係習知導光板之出光面出光示意圖[亦係說明第三 圖之座標軸]。 第三(a)圖係習知導光板之出光面出光強度雷達圖。 : 第三(b)圖係習知導光板之出光面出光強度立體圖。 : 第四(a)圖係為本發明實例之微結構應用於導光板之側 視圖。 第四(b)圖係為本發明實例之微結構應用於導光板之仰 φ 視圖[兼本發明實例之微結構分佈於導光板之第一實施 例]0 第五(a)圖係為本發明實例之微結構之俯視示意圖。 第五(b)圖係為本發明實例之微結構之仰視示意圖。 第五(c)圖係為本發明實例之微結構之上視示意圖。 第五(d)圖係為本發明實例之微結構之側視示意圖。 第六(a)圖係為光線在本發明實例之微結構傳遞行為之 立體示意圖。 ’ 第六(b)圖係為光線在本發明實例之微結構傳遞行為之 1271490 上視不意圖。 弟六(C )圖係為光線在本發明實例之微結構傳遞行為< 側視示意圖。 第七圖係為以角度谷、0為參數’光線射入本發明實例 之微結構後之出光強度分佈雷達圖。 ' 第八圖係為以々=50度、0 =30度為參數,光線射入本發 明實例之微結構後之出光強度立體圖。 第九圖係為β =40度、θ=10度為參數,光線射入本發明 ® 實例之微結構後之出光強度立體圖。 第十圖係為万=60度、Θ =20度為參數,光線射入本發明 實例之微結構後之出光強度立體圖。 : 第十一圖係為本發明之微結構分佈於導光板之第二實施 . 例圖。 第十二圖係為本發明之微結構分佈於導光板之第三實施 例圖。 φ 第十三圖係為本發明之微結構分佈於導光板之第四實施 例圖。 【主要元件符號說明】 卜ΙΑ、1Β、1C、1D導光板 11、 11Α出光面 12、 12Α底面 13 出光面之法線方向 14 與燈源垂直方向 15 與燈源平行方向 11 1271490 μ 2 微結構 ' 3 反射片 4 線性光源 5 光線 50 入射光線 51 反射光線 ' 52 折射光線 6 微結構 ® 601非光反射面 602、603 光反射面 611、612 底邊 : 613 稜邊 : β 光反射面與底邊之夾角 Θ 二光反射面之稜邊與底面之夾角 7 指向It is easy to harm the structure of the micro-structure, simple structure and light guide direction, easy to map and design layout, easier (four) cost and quality. [Embodiment] The fourth (a)®' is a micro-knot of the present invention applied to the *4® of the light guide plate 1A. The guide 1A includes a plurality of micro-junctions, which are disposed on the bottom surface 12 of the light guide plate 1A, and the triangular slit structure of the shape of the bottom surface 12 of the light guide plate u protrudes effectively to enhance the light, so that the light is emitted from the light-emitting surface of the light guide plate 1A. 12, to enhance the brightness of the light guide plate. The fourth (b) is a first embodiment of the microstructure 6 of the present invention distributed over the light guide plate ia. The microstructures 6 are arranged in a regular arrangement, and the directions 7 of all the microstructures 6 are completely combined with the light emitted by the linear light source 4. parallel. The light emitted from the linear light source 4 enters the light guide plate 1A' to produce a uniform surface light having a uniform brightness in the south. Please refer to the fifth (a) to fifth (d) drawings, which are schematic views of the structure of the microstructure 6 of the present invention, and are a plan view, a bottom view, a top view and a side view, respectively. The microstructure 6 has a triangular pyramidal structure, and includes a non-light reflecting surface 601 and two light reflecting surfaces 602 and 603. The non-light reflecting surface 601 is perpendicular to the bottom surface 12A of the light guiding plate 1A, and the non-light reflecting surface 601 faces the light source 4 and The light-reflecting surfaces 602 and 603 are inclined to the bottom surface 12A of the light guide plate 1A. The two-light 7 1271490 reflective surfaces 602 and 603 face the light-emitting surface 11A and are farther away from the light source 4 . The light reflecting surfaces 602, 603 have the ability to change the light traveling on the light guide plate. When the light enters the microstructure 6, the light reflecting surfaces 602, 603 reflect the light upward, increasing the brightness of the light guiding plate 1A. Please refer to the fifth (c) and (d) diagrams, wherein the two light reflecting surfaces 6〇2, 603 are angled with the bottom edges 61, 612 connected to the bottom surface 12A of the light guide plate 1A, and the two light reflecting surfaces 602, The angle θ between the edge 613 connected to the β〇3 and the bottom surface 12A of the light guide plate 1A is cold, 0 can change the light reflection, and the inclination of the faces 602 and 603 can influence the intensity distribution of the light upward. The edge 613 connected to the two light reflecting surfaces 602 and 603 is the pointing 7 of the microstructure 6 [see the fourth (b) diagram]. • Refer to the sixth diagram, which is a diagram of the light transmission of the light 5 into the microstructure 6. The light 5 enters the light reflecting surface 602, is reflected to the other light reflecting surface 603, and is reflected by the light reflecting surface 603 to be emitted upward. Similarly, the light 5 enters the light reflecting surface 603 and is then incident above the light reflecting surface 6〇2. The angle Θ affects the inclination of the upper and lower directions (Z-axis direction) of the φ light reflecting surfaces 602 and 603, and affects the change of the light intensity on the HA; the angle cold affects the left and right direction (the Y-axis direction) of the light reflecting surfaces 602 and 603, and affects the light. The change in intensity on VA. Please refer to the seventh figure, which is based on the angles /5 and 0, and the light intensity distribution radar image after the light is incident on the microstructure 6. The inventors used the example of the present invention as a design model to find the most appropriate angle /5, 0, and obtained a south light intensity distribution on the light exit surface 11 a of the light guide plate 1A. In the design parameters, 'angle/5 is 30 degrees, 40 degrees, 50 degrees, 60 degrees, respectively, and angle 0 is 10 degrees, 20 degrees, 30 degrees, 40 degrees, respectively. The inventors simulated the parameters of 1271490 with ASAP optical software. The angle is not 50 degrees, 60 degrees, and the angle 0 is 30 degrees. There is a high light intensity distribution. See the eighth figure. The light is concentrated on the normal direction 13 and is in the normal direction 13 (VA). =0 degrees, ΗΑ=0 degrees) The light intensity value is the highest. When the angle is 0 = 10 degrees, the light is concentrated at VA = 60 degrees, see Figure 9. When the angle is 0=20 degrees, the light is concentrated at VA=60 degrees, and HA=±30~40 degrees. The light intensity is distributed by the distribution of the light. See the tenth figure. From this, it can be seen that the change in the angle /3, 0 affects the light intensity distribution of the light exit surface 11A of the light guide plate 1A. As for the arrangement of the microstructures 6 of the present invention in the arrangement of the light guide plate 1A, please refer to the fourth (b) diagram, which is a first embodiment of the microstructures 6 of the present invention distributed over the light guide plate 1A. The rules are arranged and the pointing 7 of the microstructure 6 is parallel to the light emitted by the linear light source 4. The light emitted from the linear light source 4 enters the light guide plate 1A to produce a surface light source of high uniformity brightness. Referring to Figure 11, a second embodiment of the microstructure 6 of the present invention is distributed over the light guide plate 1B. The arrangement of the microstructures 6 is regularly arranged, and the orientations 7 of all the φ microstructures 6 are not completely parallel to the rays emitted by the linear light source 4, but overall, the microstructures 6 are directed at 7 with a tendency to parallel rays. The light emitted from the linear light source 4 enters the light guide plate 1B to produce a surface light source of high uniformity brightness. Referring to Fig. 12, a third embodiment of the microstructure 6 of the present invention is distributed over the light guide plate 1C. The microstructures 6 are arranged in a random number, and the pointing 7 of the microstructures 7 is parallel to the light emitted by the linear light source 4. The light emitted from the linear light source 4 enters the light guide plate 1C to produce a surface light source of high uniformity brightness. Referring to Fig. 13, a fourth embodiment of the microstructure 6 of the present invention is distributed over the light guide plate 1D. The microstructures 6 are arranged in a random number, and all of the 1271490^ microstructures 6 are not exactly parallel to the light emitted by the linear source 4, but * overall, the microstructures 6 point to 7 with a tendency to parallel rays. The light emitted from the linear light source 4 enters the light guide plate 1D to produce a surface light source of high uniformity brightness. In addition to the above four embodiments using a linear light source, such as a cold cathode tube, as a light source, a plurality of point light sources such as light emitting diodes can be used as the light source, and the microstructure arrangement and orientation thereof are substantially the same as those of the foregoing embodiments. [Simple description of the drawings] The first figure is a schematic diagram of a conventional light guide plate microstructure. • The second figure is a schematic diagram of the light exiting the light guide surface of the conventional light guide plate [also indicating the coordinate axis of the third figure]. The third (a) diagram is a radar image of the light exiting intensity of the conventional light guide plate. : The third (b) diagram is a perspective view of the light output intensity of the light guide surface of the conventional light guide plate. The fourth (a) diagram is a side view of the microstructure of the present invention applied to the light guide plate. The fourth (b) diagram is the elevation φ view of the microstructure of the present invention applied to the light guide plate [the first embodiment in which the microstructure of the present invention is distributed on the light guide plate] 0 (a) A top plan view of the microstructure of the inventive example. The fifth (b) diagram is a bottom view of the microstructure of the present invention. The fifth (c) diagram is a top view of the microstructure of the example of the present invention. The fifth (d) diagram is a side view of the microstructure of the example of the invention. The sixth (a) diagram is a perspective view of the transmission behavior of light in the microstructure of the present invention. The sixth (b) diagram is based on the fact that the light is on the 1271490 of the microstructural transfer behavior of the inventive example. The sixth (C) diagram is a schematic diagram of the transmission behavior of light in the example of the present invention. The seventh figure is a radar image of the light intensity distribution after the light of the example of the present invention is incident on the angle valley and 0 as the parameter 'light. The eighth figure is a perspective view of the light intensity after the light is incident on the microstructure of the example of the present invention with 々=50 degrees and 0=30 degrees as parameters. The ninth graph is a perspective view of the light intensity after the light is incident on the microstructure of the present invention ® by using β = 40 degrees and θ = 10 degrees as parameters. The tenth figure is a perspective view of the light intensity after the light is incident on the microstructure of the example of the present invention, with 10,000 = 60 degrees and Θ = 20 degrees as parameters. The eleventh figure is the second embodiment of the microstructure of the present invention distributed on the light guide plate. Fig. 12 is a view showing a third embodiment in which the microstructure of the present invention is distributed on the light guide plate. Fig. 13 is a view showing a fourth embodiment in which the microstructure of the present invention is distributed on the light guide plate. [Description of main component symbols] Dimensions, 1Β, 1C, 1D light guide plates 11, 11 Α light surface 12, 12 Α bottom surface 13 The normal direction of the light exit surface 14 is perpendicular to the light source 15 and the light source parallel direction 11 1271490 μ 2 Microstructure ' 3 Reflector 4 Linear light source 5 Light 50 Incident light 51 Reflected light ' 52 Refracted light 6 Microstructure ® 601 Non-light reflecting surface 602, 603 Light reflecting surface 611, 612 Bottom side: 613 Edge: β Light reflecting surface and bottom The angle between the edges of the two light reflecting surfaces and the bottom surface 7 points

1212

Claims (1)

1271490 、 十、申請專利範圍: ~ 1. 一種導光板之微結構,其中導光板包括上面與侧 面,導光板側面設有光源,並導光板之上面為出光面’ 出光面之相對面為底面,而其微結構係設於導光板之底 面,且係從導光板之底面向外突出之三角錐形狀,該三 角錐包含一非光反射面與二光反射面,其中非光反射面 垂直於導光板底面,且非光反射面係面對光源,並較靠 近光源,光反射面傾斜於導光板底面,而光反射面係面 • 對導光板出光面,且較遠離光源。 2.如申請專利範圍第1項所述之導光板之微結構, 其中二光反射面相交之棱邊為其於導光板上的指向,而 : 前述指向均與光源射出光線的方向平行。 . 3.如申請專利範圍第1項所述之導光板之微結構, 其中二光反射面相交之稜邊為其於導光板上的指向,而 前述的指向均非完全與光源射出光線的方向平行,但傾 φ 向與光源射出光線的方向平行。 4. 如申請專利範圍第1項所述之導光板之微結構, 其中微結構於導光板上的排列方式係規則排列。 5. 如申請專利範圍第1項所述之導光板之微結構, 其中微結構於導光板上的排列方式係亂數排列。 131271490, X. Patent application scope: ~ 1. A microstructure of a light guide plate, wherein the light guide plate includes an upper surface and a side surface, a light source is disposed on a side surface of the light guide plate, and an upper surface of the light guide plate is a light-emitting surface, and an opposite surface of the light-emitting surface is a bottom surface. The microstructure is disposed on the bottom surface of the light guide plate and is a triangular pyramid shape protruding outward from the bottom surface of the light guide plate. The triangular cone includes a non-light reflecting surface and a two-light reflecting surface, wherein the non-light reflecting surface is perpendicular to the guiding surface. The bottom surface of the light plate, and the non-light reflecting surface faces the light source, and is closer to the light source, the light reflecting surface is inclined to the bottom surface of the light guiding plate, and the light reflecting surface is the light emitting surface of the light guiding plate and is far away from the light source. 2. The microstructure of the light guide plate according to claim 1, wherein the edges of the two light reflecting surfaces intersect each other on the light guide plate, and: the foregoing directions are parallel to the direction in which the light source emits light. 3. The microstructure of the light guide plate according to claim 1, wherein the edges of the two light reflecting surfaces intersect each other on the light guide plate, and the foregoing directions are not completely opposite to the direction in which the light source emits light. Parallel, but the tilt φ is parallel to the direction in which the light is emitted from the light source. 4. The microstructure of the light guide plate according to claim 1, wherein the arrangement of the microstructures on the light guide plate is regularly arranged. 5. The microstructure of the light guide plate according to claim 1, wherein the arrangement of the microstructures on the light guide plate is arranged in random numbers. 13
TW94136092A 2005-10-17 2005-10-17 Micro-structure of a light guide plate TWI271490B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94136092A TWI271490B (en) 2005-10-17 2005-10-17 Micro-structure of a light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94136092A TWI271490B (en) 2005-10-17 2005-10-17 Micro-structure of a light guide plate

Publications (2)

Publication Number Publication Date
TWI271490B true TWI271490B (en) 2007-01-21
TW200716909A TW200716909A (en) 2007-05-01

Family

ID=38435200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94136092A TWI271490B (en) 2005-10-17 2005-10-17 Micro-structure of a light guide plate

Country Status (1)

Country Link
TW (1) TWI271490B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664369B2 (en) * 2011-03-15 2015-02-04 オムロン株式会社 Surface light source device
US9575237B2 (en) 2012-12-24 2017-02-21 Radiant Opto-Electronics Corporation Light guide element and light source device using the light guide element

Also Published As

Publication number Publication date
TW200716909A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
US9752750B2 (en) Method of manufacturing light flux controlling member
JP4152605B2 (en) Light guide plate, surface light source device, and liquid crystal display
TWI344043B (en) Surface light source device
US7131764B2 (en) Backlight apparatus
CN102099715B (en) Optical sheet, surface light source device, and transmissive display device
JP4649553B2 (en) Light guide plate and liquid crystal display device having the same
TWM352000U (en) Optic lens emitting light from both lateral sides
TW200925730A (en) Diffusion sheet
TW201025661A (en) Side view LED (light emitting diode) module
WO2009044520A1 (en) Light diffusion sheet and liquid crystal display device
WO2009044521A1 (en) Light diffusion sheet and liquid crystal display device
US9052424B2 (en) Backlight module
WO2007138908A1 (en) Surface illuminant, and display device
TW201629588A (en) Contrast enhancement sheet and display device comprising the same
TWI421549B (en) Light-guiding plate and backlight module
WO2004079408A1 (en) Optical deflector element and light source device
TW201122583A (en) Light guide plate and backlight module
TW200846780A (en) Illumination system and display device
TWI453507B (en) Light source module
TWI271490B (en) Micro-structure of a light guide plate
TWI282021B (en) Micro-structure dot of light guide plate
US11131883B2 (en) Planar lighting device
JP2010140769A (en) Lens for illumination, light emitting device, surface light source, and liquid crystal display device
JP6853405B2 (en) Planar lighting device
JPH10255529A (en) Directive planar light source

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees