TWI270839B - Liquid crystal display system with lamp feedback and method for controlling power to cold cathode fluorescent lamp - Google Patents

Liquid crystal display system with lamp feedback and method for controlling power to cold cathode fluorescent lamp Download PDF

Info

Publication number
TWI270839B
TWI270839B TW94102201A TW94102201A TWI270839B TW I270839 B TWI270839 B TW I270839B TW 94102201 A TW94102201 A TW 94102201A TW 94102201 A TW94102201 A TW 94102201A TW I270839 B TWI270839 B TW I270839B
Authority
TW
Taiwan
Prior art keywords
cold cathode
cathode fluorescent
fluorescent lamp
switch
transformer winding
Prior art date
Application number
TW94102201A
Other languages
Chinese (zh)
Other versions
TW200537407A (en
Inventor
Yung-Lin Lin
Da Liu
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/776,417 external-priority patent/US6804129B2/en
Priority claimed from US10/870,750 external-priority patent/US7394209B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW200537407A publication Critical patent/TW200537407A/en
Application granted granted Critical
Publication of TWI270839B publication Critical patent/TWI270839B/en

Links

Classifications

    • Y02B20/204

Abstract

A liquid crystal display system and CCFL power converter circuit is provided using a high-efficiency zero-voltage-switching technique that eliminates switching losses associated with the power MOSFETs. An optimal sweeping-frequency technique is used in the CCFL ignition by accounting for the parasitic capacitance in the resonant tank circuit. Additionally, the circuit is self-learning and is adapted to determine the optimum operating frequency for the circuit with a given load. An over-voltage protection circuit can also be provided to ensure that the circuit components are protected in the case of open-lamp condition.

Description

,1270839 ▼ 九、發明說明: 【發明所屬之技術領域】 、本發明係關於直流至交流功率轉換器電路。更明確地 說本發明提供了一種高效控制器電路,該控制器電路使 用零電屢切換技術來調整至負載的功率。本發明一般應用 於驅動—個或多個冷陰極螢光燈(CCFL)的電路,但是,本 發明所屬技術領域人員可以得知,本發明可以應用於任何 需要高效率和精確功率控制的負載。 【先前技術】 圖1描述了一個傳統冷陰極螢光燈(CCFL)電源系統1〇。該 系統大體包括一電源12,一冷陰極螢光燈((:(:^10驅動電路 16控制器14,一回授迴路18,和與LCD面板20相關聯 的一個或多個冷陰極螢光燈(CCFL)。電源12提供驅動電路 16直流電壓,並由控制器14透過電晶體M1控制。驅動電路 _ 16疋一自谐振電路,其為一已知的羅伊電路 circuit)。本質上,驅動電路16是一個自振盪直流至交流轉 換器’其諧振頻率由電感器L1和電容(^所決定,川至^斗 指定變壓器繞組和繞組的匝數。在工作中,電晶體()1和(^2 交替地導通並分別切換在繞組N1和N2上的輸入電壓。若電 曰曰體Q1導通,則輸入電壓加在繞組N1上。具有相對應極性 的電壓將被置於另一個繞組上。繞組N4的感應電壓使電晶 體Q2的基極為正,並且電晶體φ由集極端和射極端之間的 微小的電壓降導通。繞組N4的感應電壓也使電晶體q2保持 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 在截止狀態。而電晶體Q1導通,直到變壓器TX1磁心中的 磁通量達到飽和為止。 飽和時,電晶體Q1的集極端的電壓迅速上升(至由基極電 路所決定的數值),且變壓器中的感應電壓迅速下降。電晶 體Q1被遠拉離飽和狀態,且VCE上升,引起繞組N1上的電 壓更進一步下降。基極驅動的損耗將造成電晶體Q1截止, 這樣接著又使鐵心中的磁通量略微下降並且在繞組N4中產 生一電流使電晶體Q2導通。N4的感應電壓使電晶體Q1保持 在飽和導通狀態,直至鐵心在反方向飽和,且發生一類似 的反向操作,以完成切換循環。 儘管冷陰極螢光燈驅動電路16由相對少的元件構成,但 其適當的工作取決於電晶體和變壓器間非線性複雜的交互 作用。另外,電容C1、電晶體Q1和Q2的變化(典型誤差為 35%)不允許驅動電路16用於並聯變壓器裝置,因為驅動電 路16的任何複製都將會產生額外、不希望的工作頻率,該 工作頻率可能在某些諧波處產生諧振。當應用於冷陰極榮 光燈(CCFL)負載時,該電路在冷陰極螢光燈(CCFL)中產生 明顯的、不期望的,,差頻(Beat)”效應。即使誤差幾乎符合, 但因為驅動電路16工作在自諧振模式,其"差頻(Beat)”效應 不能被移除’因為任何該電路的複製將有其自身特有的操 作頻率。 在美國專利第5,430,641號、第5,619,402號、第5 615 〇93 號、第5,8 18,172號中可以找到一些其他的驅動系統。這此 參考文獻均具有低效率,兩級功率轉換,變頻操作,和/咬 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 與負載有相關性的缺點。另外,當負載包含冷陰極螢光燈 (CCFL)和組件時,會引入本質電容,從而影響冷陰極螢光 燈(CCFL)本身的阻抗。為了有效地設計一適當操作的電 路,該電路設計必須考慮到用於驅動冷陰極螢光燈(CcFL) 負载的本質阻抗。此類作法不僅耗時、昂貴,並且當處理 不同負載時也很難產生一最佳的轉換器設計。因此,需要 克服這些缺點並提供一電路解決方案,該電路具有高效 率、冷陰極螢光燈(CCFL)的可靠點燈、與負載無關的功率 調節和單一頻率的功率轉換的特點。 【發明内容】 本發明提供了一種液晶顯示系統,該系統包含:一液晶 顯示面板;一用來照明該液晶顯示面板的冷陰極螢光燈; 一麵合至該冷陰極螢光燈的次級變壓器繞組,其提供電流 給該冷陰極螢光燈;一耦合至該次級變壓器繞組的初級變 壓器繞組,其提供磁通量給該次級變壓器繞組;一搞合至 該初級變麼器繞組的開關,其允許電流流經該初級變壓器 繞組;一耦合至該冷陰極螢光燈的回授控制迴路電路,其 接收一表示提供至該冷陰極螢光燈功率的回授信號,並在 僅當該回授信號大於一預定的臨界值時,控制傳送至該冷 陰極螢光燈的功率。 在另一實施例中,該液晶顯示系統包含:一液晶顯示面 板’一用來照明該液晶顯示面板的冷陰極螢光燈;一耦合 至該冷陰極螢光燈的次級變壓器繞組,其提供電流給該冷 94102201-00UC3CIP1 tw SPEC (amended) (02 950623).doc ·Ί · .1270839 陰極螢光燈,一耦合至該次級變壓器繞組的初級變壓器繞 組’其提供磁通量給該次級變壓器繞組;一耦合至該初級 變壓器繞組的開關,其允許電流流經該初級變壓器繞組; 一耦合至該冷陰極螢光燈的回授控制迴路電路,其接收一 來自該冷陰極螢光燈的回授信號,當該回授信號表示為燈 開路(open_lamp)狀態時,減小提供至該冷陰極螢光燈的功 率〇 在又一實施例中,該液晶顯示系統包含··一液晶顯示面 板;一用來照明液晶顯示面板的冷陰極螢光燈;一耦合至 該冷陰極螢光燈的次級變壓器繞組,其提供電流給冷陰極 螢光燈,一麵合至該次級變壓器繞組的初級變壓器繞組, 其提供磁通量給該次級變壓器繞組;一耦合至該初級變壓 器繞組的第一開關,其允許電流沿著一第一方向流經該初 級變壓器繞組;一耦合至該初級變壓器繞組的第二開關, 其允許電流沿著一第二方向流經該初級變壓器繞組;一耦 Φ 合至該初級變壓器繞組及第一開關的第三開關,當第三開 關和第一開關之間存在一重疊狀態時,第一開關提供電流 、、口該初級變壓器繞組;和一耦合至該冷陰極螢光燈的回授 控制迴路電路,其接收一來自該冷陰極螢光燈的回授信 號’並通過保持該第三開關和該第一開關之間的一最小重 疊,使該冷陰極螢光燈保持一預定的最小功率。 本發明也提供了一液晶顯示系統中控制提供給冷陰極螢 光燈的功率的方法,該方法包含下列步驟:提供一脈衝信 號、’、。電曰a體作為一初級變壓器繞組的一導通路徑;產生一 麵劃011C3CIP1 ^ SPEC㈣n蝴〇2 9驗物 1270839 來自於耦合至一次級變壓器繞組的冷陰極螢光燈的回授信 號,該信號表示在該冷陰極螢光燈所處的電性狀態;接收 來自該冷陰極螢光燈的回授信號;和僅當該回授信號表示 該冷陰極螢光燈點燈時,調節提供給該冷陰極螢光燈的功 率。 本專業技術人員將會知道,雖然以下的具體實施方式將 以較佳實施例和使用方法作為參考加以說明,但並不意味 著本發明被局限於這些較佳實施例和使用方法中。更正確 地說本發明具有較廣泛的範圍,並且只被隨附的申請專 利範圍所限定和闞明。 本發明的其他特性和優點將在以下的具體實施方式中闞 明’參考附圖,其中相同部分用相同編號描述。 【實施方式】 雖然並不希望為實例所限定,但以下的詳細說明將參考 _ 具有冷陰極螢光燈(CCFL)的顯示幕作為本發明電路的負載 來進仃。然而,明顯地,本發明並不限於僅驅動一個或多 個冷陰極螢光燈(CCFL),本發明更應該廣泛地理解為一個 獨立於有特定應用負載的功率轉換器電路及方法。 總而s之,本發明提供電路,其使用回授信號和脈衝信 號調整兩對開關的導通時間,可控制地將功率傳送至負 載。當一對開關被可控制地導通時,其導通時間重疊,而 功率將沿著由該對開關所定義的導通路徑通過一變壓器傳 送至負載。同樣地,當另一對開關被可控制地導通,使得1,270839 ▼ IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a DC to AC power converter circuit. More specifically, the present invention provides a highly efficient controller circuit that uses zero-switching techniques to adjust the power to the load. The present invention is generally applicable to circuits that drive one or more cold cathode fluorescent lamps (CCFLs), but those skilled in the art will appreciate that the present invention can be applied to any load that requires high efficiency and precise power control. [Prior Art] Fig. 1 depicts a conventional cold cathode fluorescent lamp (CCFL) power supply system. The system generally includes a power source 12, a cold cathode fluorescent lamp ((:: 10 drive circuit 16 controller 14, a feedback loop 18, and one or more cold cathode fluorescent lights associated with LCD panel 20) Lamp (CCFL) The power supply 12 provides a DC voltage to the drive circuit 16 and is controlled by the controller 14 through the transistor M1. The drive circuit is a self-resonant circuit, which is a known Roy circuit circuit. Essentially, The drive circuit 16 is a self-oscillating DC to AC converter whose resonant frequency is determined by the inductor L1 and the capacitor (^, which specifies the number of turns of the transformer winding and winding. In operation, the transistor () 1 and (^2 alternately turns on and switches the input voltages on windings N1 and N2 respectively. If the body Q1 is turned on, the input voltage is applied to the winding N1. The voltage with the corresponding polarity will be placed on the other winding. The induced voltage of winding N4 makes the base of transistor Q2 extremely positive, and transistor φ is turned on by a small voltage drop between the collector and emitter terminals. The induced voltage of winding N4 also keeps transistor q2 94102201-0011C3CIP1 tw SPEC (amended) (02 950623) .doc 1270839 is in the off state. The transistor Q1 is turned on until the magnetic flux in the core of the transformer TX1 is saturated. When saturated, the voltage at the collector terminal of the transistor Q1 rises rapidly (to the value determined by the base circuit), and The induced voltage in the transformer drops rapidly. The transistor Q1 is pulled away from saturation and the VCE rises, causing the voltage on the winding N1 to drop further. The loss of the base drive will cause the transistor Q1 to turn off, which in turn causes the core to be in the core. The magnetic flux drops slightly and a current is generated in winding N4 to turn on transistor Q2. The induced voltage of N4 keeps transistor Q1 in a saturated conduction state until the core is saturated in the opposite direction, and a similar reverse operation occurs to complete Switching Cycles Although the cold cathode fluorescent lamp driving circuit 16 is composed of relatively few components, its proper operation depends on the nonlinear and complex interaction between the transistor and the transformer. In addition, the capacitance C1, the transistors Q1 and Q2 vary. (typical error is 35%) The drive circuit 16 is not allowed to be used in a parallel transformer arrangement because any copy of the drive circuit 16 is An additional, undesired operating frequency will be generated that may resonate at certain harmonics. When applied to a cold cathode glory (CCFL) load, the circuit is generated in a cold cathode fluorescent lamp (CCFL) Obvious, undesirable, beat effect. Even if the error is almost consistent, because the drive circuit 16 operates in self-resonant mode, its "Beat" effect cannot be removed' because of any The reproduction of the circuit will have its own unique operating frequency. Some other drive systems can be found in U.S. Patent Nos. 5,430,641, 5,619,402, 5,615,93, 5,8, 18,172. These references are all inefficient, two-stage power conversion, variable frequency operation, and /bit 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 Disadvantages associated with load. In addition, when the load contains a cold cathode fluorescent lamp (CCFL) and components, an intrinsic capacitance is introduced, which affects the impedance of the cold cathode fluorescent lamp (CCFL) itself. In order to efficiently design a properly operated circuit, the circuit design must take into account the intrinsic impedance used to drive the cold cathode fluorescent lamp (CcFL) load. This type of approach is not only time consuming, expensive, but also difficult to produce an optimal converter design when handling different loads. Therefore, there is a need to overcome these shortcomings and provide a circuit solution that is characterized by high efficiency, reliable lighting of cold cathode fluorescent lamps (CCFLs), load independent power regulation, and single frequency power conversion. SUMMARY OF THE INVENTION The present invention provides a liquid crystal display system comprising: a liquid crystal display panel; a cold cathode fluorescent lamp for illuminating the liquid crystal display panel; and a secondary to the cold cathode fluorescent lamp a transformer winding that supplies current to the cold cathode fluorescent lamp; a primary transformer winding coupled to the secondary transformer winding that provides magnetic flux to the secondary transformer winding; a switch that engages the primary transformer winding, The current is allowed to flow through the primary transformer winding; a feedback control loop circuit coupled to the cold cathode fluorescent lamp receives a feedback signal indicative of the power supplied to the cold cathode fluorescent lamp, and only if When the signal is greater than a predetermined threshold, the power delivered to the cold cathode fluorescent lamp is controlled. In another embodiment, the liquid crystal display system includes: a liquid crystal display panel 'a cold cathode fluorescent lamp for illuminating the liquid crystal display panel; a secondary transformer winding coupled to the cold cathode fluorescent lamp, which is provided The current is given to the cold 94102201-00UC3CIP1 tw SPEC (amended) (02 950623).doc · Ί · .1270839 cathode fluorescent lamp, a primary transformer winding coupled to the secondary transformer winding 'which provides magnetic flux to the secondary transformer winding a switch coupled to the primary transformer winding that allows current to flow through the primary transformer winding; a feedback control loop circuit coupled to the cold cathode fluorescent lamp that receives a feedback from the cold cathode fluorescent lamp No., when the feedback signal is expressed as an open_lamp state, reducing the power supplied to the cold cathode fluorescent lamp. In still another embodiment, the liquid crystal display system comprises a liquid crystal display panel; a cold cathode fluorescent lamp for illuminating a liquid crystal display panel; a secondary transformer winding coupled to the cold cathode fluorescent lamp, which supplies current to the cold cathode fluorescent lamp, one side a primary transformer winding coupled to the secondary transformer winding, which provides magnetic flux to the secondary transformer winding; a first switch coupled to the primary transformer winding that allows current to flow through the primary transformer winding in a first direction; a second switch coupled to the primary transformer winding, the current is allowed to flow through the primary transformer winding in a second direction; a coupling Φ to the primary transformer winding and a third switch of the first switch, when the third switch And when there is an overlap state with the first switch, the first switch provides current, the primary transformer winding; and a feedback control loop circuit coupled to the cold cathode fluorescent lamp, receiving a cold cathode fluorescent The feedback signal ' of the light lamp' maintains the cold cathode fluorescent lamp at a predetermined minimum power by maintaining a minimum overlap between the third switch and the first switch. The present invention also provides a method of controlling the power supplied to a cold cathode fluorescent lamp in a liquid crystal display system, the method comprising the steps of: providing a pulse signal, '. The electric 曰 a body acts as a conduction path of a primary transformer winding; generates a 011C3CIP1 ^ SPEC (four) n butterfly 〇 2 9 inspection 1270839 a feedback signal from a cold cathode fluorescent lamp coupled to the primary transformer winding, the signal represents An electrical state of the cold cathode fluorescent lamp; receiving a feedback signal from the cold cathode fluorescent lamp; and adjusting to provide the cold only when the feedback signal indicates that the cold cathode fluorescent lamp is lit The power of the cathode fluorescent lamp. It will be apparent to those skilled in the art that the following description of the preferred embodiments and methods of use are not intended to limit the invention. The invention is to be construed as being limited by the scope of the appended claims. Other features and advantages of the present invention will be described in the following detailed description with reference to the accompanying drawings. [Embodiment] Although it is not intended to be limited by the examples, the following detailed description will be referred to as a load of the circuit of the present invention with reference to a display screen having a cold cathode fluorescent lamp (CCFL). However, it will be apparent that the invention is not limited to driving only one or more cold cathode fluorescent lamps (CCFLs), and the invention should be broadly understood to be a power converter circuit and method that is independent of the particular application load. In summary, the present invention provides a circuit that uses a feedback signal and a pulse signal to adjust the on-time of two pairs of switches to controllably transfer power to the load. When a pair of switches are controllably turned on, their on-times overlap and power is transferred to the load through a transformer along the conduction path defined by the pair of switches. Similarly, when another pair of switches is controllably turned on,

94102201-0011C3CEP1 tw SPEC (amended) (02 950623).doc Q .1270839 '導通時間重疊時,功率沿著該另一對開關所定義的導通 路仏通過變壓器被輸送至負载。因此,藉由有選擇地導通 控制開關間的重疊,本發明可以精確地控制傳送至 〜定負载的功率。另外’本發明包含過電流和過電壓保 ;蒦電路It電路在短路或者開路的情況下中止至負載的功 率。並且,此處所描述的可控制開關拓撲結構使得電路能 在,負載無關下,並使用一與變壓器配置的譜振效應無關 的單卫作頻率下而工作。這些特性將在以下參考附圖討 零 論。 圖2所示的電路圖顯示出本發明的移相、全橋、零電壓切 換功率轉換器的較佳實施例。實質上,圖2所示電路包含·· -個電源12;複數個開關8〇,其被安排為對角線排列的開 關對’定義交替導通路徑;驅動每—個開關的驅動電路5〇; 產生方波脈衝至驅動電路5〇的掃頻器22,·一變壓器 TX1(有—由變壓器TX1的—次側和電容⑴斤定義的相關諧 ⑩振槽電路)和-負載。較佳的,本發明還包含一重疊回授控 制迴路40,該迴路控制每一對開關中的至少一對的導通時 間,由此允許可控制之功率傳送至負載。 電源12施加至該系統。起初,該電源產生一偏壓/基準信 號30,供控制電路(在回授控制迴路4〇中)之用。較佳為一掃 頻器22產生一工作週期為5〇%的脈衝信號,其以一較高頻 率開始,並以一預定速率和預定步驟向下掃頻(即一可<變脈 衝寬度的方波信號)。掃頻器22較佳為該領域中已知的可程 式頻率產生器。(來自掃頻器22)脈衝信號9〇被傳送至驅 •10- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 動電路(B—Drive)(其驅動開關B,即控制開關b的閘極),並 被傳送至A」驅動電路(A一Drive),該電路產生一互補脈衝信 號92和一斜坡(Ramp)信號26。該互補脈衝信號92與脈衝信 號90相差大約180度,斜坡信號26與脈衝信號大約相差90 度,如以下所述。斜坡信號26較佳為一鋸齒信號,如圖所 示。斜坡信號26將通過比較器28與誤差放大器32的輸出信 號24(這裏稱作CMP信號)相比較,由此產生信號94。比較器 28的輸出信號94同樣地為一被傳送至c—驅動電路 (C一Drive)的工作週期為50%的脈衝信號,用以觸發開關 一C(Switch一C)的導通,其隨後該信號又決定開關B與開關C 之間,和開關A與開關D之間的重疊量。其互補信號(相差約 為180度)通過D—驅動電路(D-Drive)施加至開關d。本發明 所屬技術領域人員可以知道驅動電路_ A至驅動電路D的 電路分別耗合至開關A至開關D的控制線(例如閘極),如在 此所述,允許每一個開關能夠可控制地導通。通過調整開 關B、C和A、D之間的重疊量來完成燈電流調節。換句話說, 是開關對導通狀態下的重疊量決定了轉換器中處理的功率 量。因此,開關B與開關C,和開關A與開關D在此被稱為重 疊(overlapping)開關。 雖然並不希望被此實施例中的實例所侷限,但B驅動電 路較佳由圖騰柱(totem pole)電路,普通低阻抗運算放大器 電路’或射極隨搞器電路所構成。C—驅動電路有著相似的 構造。由於A一驅動電路和D一驅動電路都不是直接接地(即浮 接),所以這些驅動電路較佳由昇帶電路(b〇〇t_strap circuit) 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 或本領域已知的其他高側(high_side)驅動電路構成。另外, 如上所述,A一驅動電路和1)_驅動電路包含一反相器,該反 相器用來分別反轉來自於B—驅動電路和C—驅動電路的信 號(即相位)。 通過一零電壓切換技術達到高效率工作。四個金屬氧化 物半V體(MOSFET)(開關A至開關D)80在其本質(intrinsic) 二極體(D1至D4)導通後導通,這在變壓器/電容(TX1/C14& 置中提供了能量的電流流動路徑,由此確保當這些開關導 通時,它們上面的電壓為零。由於這樣的受控制操作,其 切換損耗可被最小化並保持了高效率。 圖2a至2f係顯示重疊開關80之較佳切換操作時序圖。開 關C在開關B和C同時導通的某一時段内斷開(如圖2f)。當開 關C斷開後,槽中電流(參考圖2)先流過開關D中的本質二極 體D4(如圖2e)、變壓器的初級側、電容C1、和開關B,因此 使得電容C1和變壓器中的電壓和電流諧振,作為開關 開關C導通時能量傳遞的結果(如圖2f)。注意此狀況必須出 現,因為在變壓器初級側電流方向的突變將違反法拉第定 律。因此,在開關c斷開時電流必須流經本質二極體D4。 本質二極體D4導通後,開關D才閉合導通。同樣地,開關B 斷開(圖2a),在開關A導通前電流傳送至與開關a相關聯的 本質二極體D1(圖2e)。同樣地,開關D被斷開(圖2句,現在 電流從開關A,經過電容以、變壓器初級側和本質二極體 D3。開關C在本質二極體D3導通後導通(圖2e)。開關B在開 關A斷開後導通,這允許本質二極體D2在開關B導通前先被 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -12- •1270839 導通。注意是呈對角的開關B、C和A、D的導通時間的重疊 決定輸送至變壓器的能量,如圖2f所示。 在此實施例中,圖2b顯示出了僅當開關A導通時才產生斜 坡信號26。因此,產生斜坡信號26的驅動電路一a較佳包含 一個定電流產生器電路(未顯示出),該電路包含有一適當時 間常數的電容,用來產生斜坡信號。為此目的,利用一基 準電流(未顯示出來)實現電容充電,且該電容接地(通過例 _ 如一電晶體開關),這樣放電速率超出充電速率,因此產生 鋸齒斜坡L號26。當然,如上所述,這可以透過積分該脈 衝信號90來實現,因此,可以使用一積分器電路(例如,運 算放大器和電容)來形成斜坡信號26。 在點燈過程中,在兩個呈對角的開關之間(即在開關A、 D和B、C之間)產生一預定的最小重疊。這產生一由輸入至 包括電容ci、變壓器、電容C2、電容〇和冷陰極螢光燈 (CCFL)負載之槽電路的最小能量。注意負載可以是電阻性 φ 和/或電容性的。驅動頻率開始於一預定的較高頻率,直到 趨近槽電路和由變壓器次級側所反映的等效電路的諧振頻 率,大量的能量被傳送至連接有冷陰極螢光燈(CCFL)的負 載。由於匕在點燈前的高阻抗特性,冷陰極螢光燈(ccfl) 文到來自於提供給初級側能量的高電壓的影響。此電壓足 以使冷陰極螢光燈(CCFL)點燈。當冷陰極螢光燈(CCFL)阻 抗下降至其正常工作值(例如1〇〇κ歐姆至13〇κ歐姆),且基 於最小重疊工作提供給初級侧的能量將不再足以維持冷陰 極螢光燈(CCFL)的穩態工作。比較器28的輸出開始調整其 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -13- 1270839 功能,以用來增加該重疊。是故比較器28輸出的大小決定 了重疊的量。例如: 參考圖2b、2c和圖2的回授控制迴路40,重要的是注意 到,當比較器28判定斜坡信號26(由驅動電路_A產生)與 CMP信號24(由誤差放大器32產生)的值相等時,開關C導 通。如圖2b中的交叉點36所示。為了防止短路,開關A、B 和C、D絕對不能同時導通。通過控制CMP信號的位準,開 關A、D和B、C之間的重疊時間調節輸送至變壓器的能量。 為了調整輸送至變壓器的能量(和由此調節輸送至冷陰極 螢光燈(CCFL)負載的能量),通過控制誤差放大器的CMP信 號24,開關C和D相關於開關A和B做時移(time-shifted)。由 時序圖可知,如果來自比較器28的輸出而進入開關C和D的 驅動脈衝,通過增加CMP信號的位準而右移,那麼就會實 現開關A和D、B和C之間重疊的增加,因而使輸送至變壓器 的能量增加。實際上,這相應於較高燈電流工作 (higher-lamp current operation)。相反地,開關 C和 D的驅動 脈衝左移(減少CMP信號)將使傳送的能量減少。94102201-0011C3CEP1 tw SPEC (amended) (02 950623).doc Q .1270839 'When the on-time overlaps, the power is routed through the transformer to the load along the conduction path defined by the other pair of switches. Therefore, the present invention can accurately control the power delivered to the fixed load by selectively turning on the overlap between the control switches. Further, the present invention includes overcurrent and overvoltage protection; the circuit It circuit suspends power to the load in the event of a short circuit or an open circuit. Moreover, the controllable switch topology described herein allows the circuit to operate under load independent and with a single-chip frequency that is independent of the spectral response of the transformer configuration. These characteristics will be discussed below with reference to the drawings. The circuit diagram shown in Figure 2 shows a preferred embodiment of the phase shifted, full bridge, zero voltage switching power converter of the present invention. In essence, the circuit shown in FIG. 2 includes a power supply 12; a plurality of switches 8A arranged to define an alternate conduction path for the diagonally arranged switch pairs; driving the drive circuit 5 of each switch; A sweeper 22 is generated which generates a square wave pulse to the drive circuit 5, a transformer TX1 (having an associated harmonic 10-slot circuit defined by the secondary side of the transformer TX1 and the capacitor (1) jin) and a load. Preferably, the present invention also includes an overlay feedback control loop 40 that controls the conduction time of at least one of each pair of switches, thereby allowing controllable power to be delivered to the load. A power source 12 is applied to the system. Initially, the power supply generates a bias/reference signal 30 for use by the control circuitry (in the feedback control loop 4). Preferably, a frequency sweeper 22 generates a pulse signal having a duty cycle of 5〇%, which starts at a higher frequency and sweeps down at a predetermined rate and a predetermined step (ie, a square that can be changed in pulse width). Wave signal). Sweeper 22 is preferably a programmable frequency generator known in the art. (from the frequency sweeper 22) The pulse signal 9〇 is transmitted to the drive •10- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 Dynamic circuit (B-Drive) (which drives switch B, ie control switch b The gate is transmitted to the A" drive circuit (A-Drive) which produces a complementary pulse signal 92 and a ramp signal 26. The complementary pulse signal 92 differs from the pulse signal 90 by approximately 180 degrees, and the ramp signal 26 is approximately 90 degrees out of phase with the pulse signal, as described below. Ramp signal 26 is preferably a sawtooth signal as shown. Ramp signal 26 will be compared by comparator 28 to output signal 24 (referred to herein as a CMP signal) of error amplifier 32, thereby producing signal 94. The output signal 94 of the comparator 28 is likewise a pulse signal transmitted to the c-drive circuit (C-Drive) with a duty cycle of 50% for triggering the conduction of the switch C (Switch-C), which then The signal again determines the amount of overlap between switch B and switch C, and between switch A and switch D. Its complementary signal (approximately 180 degrees out of phase) is applied to switch d through a D-drive circuit (D-Drive). Those skilled in the art will appreciate that the circuits of drive circuit_A to drive circuit D respectively consume control lines (e.g., gates) from switch A to switch D, as described herein, allowing each switch to be controllably Turn on. Lamp current regulation is accomplished by adjusting the amount of overlap between switches B, C and A, D. In other words, the amount of overlap in the on-state of the switch determines the amount of power processed in the converter. Thus, switch B and switch C, and switch A and switch D are referred to herein as overlapping switches. Although not wishing to be limited by the examples in this embodiment, the B drive circuit is preferably constructed of a totem pole circuit, a conventional low impedance operational amplifier circuit or an emitter follower circuit. The C-drive circuit has a similar construction. Since the A-drive circuit and the D-drive circuit are not directly grounded (ie, floated), these drive circuits are preferably implemented by a buck circuit (b〇〇t_strap circuit) 94102201-0011C3CIP1 tw SPEC (amended) (02 950623). Doc 1270839 or other high-side drive circuits known in the art are constructed. Further, as described above, the A-drive circuit and the 1)-drive circuit include an inverter for inverting signals (i.e., phases) from the B-drive circuit and the C-drive circuit, respectively. High efficiency operation is achieved through a zero voltage switching technique. Four metal oxide half V bodies (MOSFETs) (switch A to switch D) 80 are turned on after their intrinsic diodes (D1 to D4) are turned on, which is provided in the transformer/capacitor (TX1/C14& The current flow path of the energy, thereby ensuring that when these switches are turned on, the voltage across them is zero. Due to such controlled operation, the switching losses can be minimized and high efficiency is maintained. Figures 2a through 2f show overlap The preferred switching operation timing diagram of the switch 80. The switch C is turned off during a certain period in which the switches B and C are simultaneously turned on (Fig. 2f). When the switch C is turned off, the current in the slot (refer to Fig. 2) flows first. The intrinsic diode D4 in switch D (Fig. 2e), the primary side of the transformer, the capacitor C1, and the switch B, thus causing the capacitor C1 to resonate with the voltage and current in the transformer as a result of energy transfer when the switch C is turned on. (Figure 2f) Note that this condition must occur because a sudden change in the direction of the current on the primary side of the transformer will violate Faraday's law. Therefore, the current must flow through the intrinsic diode D4 when the switch c is open. The essential diode D4 is turned on. After the switch D is closed Similarly, switch B is turned off (Fig. 2a), and current is transferred to the intrinsic diode D1 associated with switch a (Fig. 2e) before switch A is turned on. Similarly, switch D is turned off (Fig. 2) Now the current flows from switch A, through the capacitor, the primary side of the transformer, and the intrinsic diode D3. Switch C turns on after the intrinsic diode D3 turns on (Figure 2e). Switch B turns on after switch A is turned off, which allows the essence Diode D2 is turned on by 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -12- •1270839 before switch B is turned on. Note that the on-time switches B, C, and A, D are on time. The overlap determines the energy delivered to the transformer, as shown in Figure 2f. In this embodiment, Figure 2b shows that the ramp signal 26 is generated only when the switch A is turned on. Thus, the drive circuit a that produces the ramp signal 26 is preferred. A constant current generator circuit (not shown) is included, the circuit including a capacitor having an appropriate time constant for generating a ramp signal. For this purpose, a reference current (not shown) is used to charge the capacitor, and the capacitor is grounded (by example _ such as a battery The body switch) such that the discharge rate exceeds the charge rate, thus producing a sawtooth ramp L No. 26. Of course, as described above, this can be achieved by integrating the pulse signal 90, so an integrator circuit (eg, an operational amplifier and Capacitor) to form the ramp signal 26. During the lighting process, a predetermined minimum overlap is produced between the two diagonal switches (ie between switches A, D and B, C). This produces an input. The minimum energy to the tank circuit including the capacitor ci, transformer, capacitor C2, capacitor 〇, and cold cathode fluorescent lamp (CCFL) load. Note that the load can be resistive φ and / or capacitive. The drive frequency starts at a predetermined higher frequency until the resonant frequency of the equivalent circuit reflected by the tank circuit and the secondary side of the transformer is approached, and a large amount of energy is transferred to the load connected to the cold cathode fluorescent lamp (CCFL). . Due to the high impedance characteristics of the cesium before lighting, the cold cathode fluorescent lamp (ccfl) is affected by the high voltage supplied to the primary side energy. This voltage is sufficient to illuminate the cold cathode fluorescent lamp (CCFL). When the cold cathode fluorescent lamp (CCFL) impedance drops to its normal operating value (eg 1 〇〇 ohm to 13 〇 ohms), the energy supplied to the primary side based on the minimum overlap operation will no longer be sufficient to maintain cold cathode fluorescence Steady state operation of the lamp (CCFL). The output of comparator 28 begins to adjust its 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -13- 1270839 function to increase the overlap. Therefore, the size of the output of comparator 28 determines the amount of overlap. For example: Referring to Figures 2b, 2c and feedback control loop 40 of Figure 2, it is important to note that when comparator 28 determines ramp signal 26 (generated by drive circuit_A) and CMP signal 24 (generated by error amplifier 32) When the values are equal, the switch C is turned on. This is shown as intersection 36 in Figure 2b. In order to prevent short circuit, switches A, B and C, D must not be turned on at the same time. The energy delivered to the transformer is adjusted by controlling the level of overlap of the switches A, D and B, C by controlling the level of the CMP signal. In order to adjust the energy delivered to the transformer (and thus the energy delivered to the cold cathode fluorescent lamp (CCFL) load), switches C and D are time shifted with respect to switches A and B by controlling the CMP signal 24 of the error amplifier ( Time-shifted). As can be seen from the timing diagram, if the drive pulse from the output of the comparator 28 into the switches C and D is shifted to the right by increasing the level of the CMP signal, an increase in overlap between the switches A and D, B and C is achieved. Thus, the energy delivered to the transformer is increased. In fact, this corresponds to a higher-lamp current operation. Conversely, shifting the drive pulses of switches C and D to the left (reducing the CMP signal) will reduce the amount of energy transferred.

為此目的,誤差放大器32比較回授信號FB和一基準電壓 REF。回授信號FB為通過檢測電阻Rs的電流值之量測,其 表示通過負載20的總電流。基準電壓REF是一表示理想負 載情況的信號,例如通過負載的期望電流。在正常工作中, REF=FB 〇然而,若負載狀態被故意地偏移(off set),例如 來自一相關於LCD面板顯示器的調光(dimmer)開關,則基準 電壓REF的值會相應地增加/減少。該比較值據此產生CMP 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -14- 1270839 信號。CMP信號的值反映了負載狀態和/或一内偏壓,並且 由REF和FB之間的差值(即REF-FB)來實現。 為了保護負載和電路在負載端不處於燈開路狀態(例 如’正常工作下冷陰極螢光燈(CCFL)開路狀態),回授信號 FB較佳與一基準值(未顯示出且與上述基準電壓ref信號 不同)在電流檢測比較器42中相比較,其輸出定義開關38的 狀態,如下所述。此基準值可以是可程式的,和/或為使用 者可定義的,並較佳反映出系統所允許的最小或最大電流 (例如,可以額定用於個別元件,特別是用於冷陰極螢光燈 (CCFL)負载的)。若回授信號FB與基準信號的值在允許的範 圍内(正常工作),則電流檢測比較器的輸出為1(或高電 位)。這允許CMP信號流經開關38,電路如上述操作,以傳 送功率至負載。然而,若回授信號FB和基準信號的值在預 定範圍之外(開路或短路狀態),則電流檢測比較器的輸出為 〇(或低電位),禁止CMP信號流經開關38。(當然,逆過程可 以實現,其中開關在一低狀態下觸發)。直到電流檢測比較 器指示允許電流流經檢測電阻RS,才由開關38(未顯示出) 提供最小電壓Vmin並傳送至比較器28。因此,開關38包含 用於當檢測電流為0時、可適當地選擇可程式電壓vmin。再 次參考圖2b,此工作的效果是CMP信號直流值降至額定或 最小值(即CMP=Vmin),這樣變壓器TX1就不會出現高電壓 狀態。因此,交叉點36被左移,由此降低了互補開關之間 的重疊量(在交叉點36開關C導通)。同樣地,當檢測值為〇(或 其他表示開路狀態的預設值)時,電流檢測比較器42被連接 94102201-00HC3CIP1 tw SPEC (amended) (02 950623).doc 1270839 至頻率產生器22 ’以關閉頻率產生器22。cmp信號被回授 至保護電路60。若冷陰極螢光燈(CCFL)在工作中被移去(開 路狀態),即關閉掃頻器22。 為了保護電路不處於過壓狀態,本實施例較佳包含保護 電路60 ’其工作操作如下述(對通過電流檢測比較器42的過 電流保護的描述如上所述)。保護電路6〇包含一保護比較器 62,其將CMP信號與一由負載2〇導出的電壓信號66相比 較。較佳是電壓信號由如圖2所示的分壓電容C2及C3(亦即 • 與負載20並聯)所導出。在燈開路狀態(open-lamp condition) 下,掃頻器持續掃頻,直到〇vp信號66達到臨界值。〇vp k號66取自輸出的分壓電容C2&C3,用以檢測變壓器τχι 的輸出電壓。為了簡化分析,這些電容同時也代表等效負 載電容的總電容。臨界值為一基準值,而且該電路被設計 成使變壓器次級側的電壓大於最小點燈電壓(例如Lcd面 板所而要的電壓),而小於變壓器的額定電壓。當〇VP信號 φ 超出臨界值時,掃頻器停止掃頻。同時,電流檢測比較器 42在檢測電阻心上檢測不到信號。因此,把在開關38輸出 仏號24處的信號設定在最小值,那麼開關A和D、B和C之間 的重疊為最小。較佳為一旦OVP信號超出臨界值時,計時 器64開始工作,因而啟動一暫停(time-out)序列的初始化。 該暫停的週期較佳按照負載要求(例如LCD顯示面板的冷 陰極螢光燈(CCFL))加以設計,但也可設定為某些可程式的 值。一旦達到暫停,則驅動脈衝無效,因而提供轉換器電 路的安全工作輸出。即,保護電路60提供一充足電壓以使 94102201.0011C3CIP1 tw SPEC (amended) (02 950623).doc . 16 . 1270839 該燈點燈’右該燈未被連接至轅 w 俊主褥換益,則在一定時間後被 關閉,因此可以避免在輪屮虑士 叛出處有錯誤的高電壓。由於未點 燈與燈開路狀恶類似,故這一 p性卩目θ 又4 #又時間是必要的。 圖3和3a-3f描繪了本發明吉、★ /一 个贫月置机/父流電路的另一較佳實施 例。在此實施例中,電路類仞於固 頰似於圖2及2a_2f所提供的方式工For this purpose, the error amplifier 32 compares the feedback signal FB with a reference voltage REF. The feedback signal FB is a measure of the current value through the sense resistor Rs, which represents the total current through the load 20. The reference voltage REF is a signal representative of the ideal load condition, such as the desired current through the load. In normal operation, REF=FB However, if the load state is intentionally offset, such as from a dimmer switch associated with an LCD panel display, the value of the reference voltage REF will increase accordingly. /cut back. This comparison value accordingly produces a CMP 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -14- 1270839 signal. The value of the CMP signal reflects the load state and/or an internal bias voltage and is implemented by the difference between REF and FB (i.e., REF-FB). In order to protect the load and the circuit from being in an open state of the load at the load end (for example, 'Cold cathode fluorescent lamp (CCFL) open state under normal operation), the feedback signal FB is preferably a reference value (not shown and compared with the above reference voltage) The ref signal is different) compared to the current sense comparator 42 whose output defines the state of the switch 38 as described below. The reference value can be programmable, and/or user definable, and preferably reflects the minimum or maximum current allowed by the system (eg, can be rated for individual components, particularly for cold cathode fluorescent light). Light (CCFL) load). If the value of the feedback signal FB and the reference signal is within the allowable range (normal operation), the output of the current sense comparator is 1 (or high potential). This allows the CMP signal to flow through switch 38, which operates as described above to transfer power to the load. However, if the values of the feedback signal FB and the reference signal are outside the predetermined range (open or shorted state), the output of the current detecting comparator is 〇 (or low), and the CMP signal is prohibited from flowing through the switch 38. (Of course, the inverse process can be implemented where the switch is triggered in a low state). The minimum voltage Vmin is supplied by switch 38 (not shown) to the comparator 28 until the current sense comparator indicates that the allowable current flows through the sense resistor RS. Therefore, the switch 38 is included for appropriately selecting the programmable voltage vmin when the detected current is zero. Referring again to Figure 2b, the effect of this operation is that the DC value of the CMP signal drops to the nominal or minimum value (i.e., CMP = Vmin) so that the transformer TX1 does not experience a high voltage state. Therefore, the intersection 36 is shifted to the left, thereby reducing the amount of overlap between the complementary switches (the switch C is turned on at the intersection 36). Similarly, when the detected value is 〇 (or other preset value indicating an open state), the current detecting comparator 42 is connected to 94102201-00HC3CIP1 tw SPEC (amended) (02 950623).doc 1270839 to the frequency generator 22' The frequency generator 22 is turned off. The cmp signal is fed back to the protection circuit 60. If the cold cathode fluorescent lamp (CCFL) is removed during operation (open state), the frequency sweeper 22 is turned off. In order to protect the circuit from an overvoltage condition, the present embodiment preferably includes a protection circuit 60' which operates as follows (described above for overcurrent protection by current sense comparator 42). The protection circuit 6A includes a protection comparator 62 that compares the CMP signal with a voltage signal 66 derived from the load 2〇. Preferably, the voltage signal is derived from voltage divider capacitors C2 and C3 (i.e., in parallel with load 20) as shown in FIG. In the open-lamp condition, the sweeper continues to sweep until the 〇vp signal 66 reaches a critical value. 〇vp k#66 is taken from the output voltage divider capacitor C2&C3 to detect the output voltage of the transformer τχι. To simplify the analysis, these capacitors also represent the total capacitance of the equivalent load capacitor. The threshold is a reference value and the circuit is designed such that the voltage on the secondary side of the transformer is greater than the minimum lighting voltage (e.g., the voltage required by the Lcd panel) and less than the rated voltage of the transformer. When the 〇VP signal φ exceeds the critical value, the sweeper stops sweeping. At the same time, the current detecting comparator 42 does not detect a signal on the sense resistor. Therefore, by setting the signal at the output signal 24 of the switch 38 to the minimum value, the overlap between the switches A and D, B and C is minimized. Preferably, once the OVP signal exceeds the threshold, timer 64 begins to operate, thereby initiating a time-out sequence initialization. The pause period is preferably designed according to load requirements (such as the cold cathode fluorescent lamp (CCFL) of the LCD display panel), but can also be set to some programmable value. Once the pause is reached, the drive pulse is inactive, thus providing a safe working output of the converter circuit. That is, the protection circuit 60 provides a sufficient voltage to make 94102201.0011C3CIP1 tw SPEC (amended) (02 950623).doc . 16 . 1270839 The lamp lights 'right' is not connected to 辕w 俊 褥,, It is turned off after a certain period of time, so it is possible to avoid the wrong high voltage at the turn of the ruling. Since the unlit lamp is similar to the open circuit of the lamp, this p-spot θ and 4 # are time-necessary. Figures 3 and 3a-3f depict another preferred embodiment of the present invention, a / / a lean-month machine / parent flow circuit. In this embodiment, the circuit type is similar to that provided in Figures 2 and 2a_2f.

作然而本實施例還包含了 _用來控制掃頻器^的鎖相迴 路(PLL)70’和一用來定時輸入c一驅動電路的信號的正反器 電路72。通過時序圖可以理解,若通過增加⑽信號的大 小使開關C和D的ϋ動脈衝右移5〇%,就可以實現開關八和 D、Β和C之間重璺的增加,從而增加輸送至變壓器的能量。 實際上,這相應於較高燈電流的工作(若有需要,則可如上 所述手動增加REF電壓)。相反地,開關C*D的驅動脈衝的 左移(通過降低CMP信號)減少了被輸送的能量。鎖相迴路7〇 在正常工作下保持回授電流(經檢測電阻Rs)和槽電流(經變 壓|§ TX1 /電谷C1)之間的相位關係,如圖3所示。鎖相迴路 (PLL)70較佳包含來自槽電路(電容(^和變壓器τχι初級側) 輸入信號、信號98和檢測電阻RS(上述的FB信號)。一旦冷 陰極螢光燈(CCFL)被點燈、且通過檢測電阻RS檢測冷陰極 螢光燈(CCFL)中的電流,就啟動鎖相迴路(PLL)70,其鎖定 燈電流和初級諧振槽(電容C1和變壓器初級側)電流之間的 相位。即,鎖相迴路(PLL)是因像溫度作用、機械配置的任 何本質本質變化而調節掃頻器22的頻率,所說的機械配置 如轉換器與LCD面板之間的接線、以及影響電容值和電感 值的燈與LCD面板的金屬底盤之間的距離。該系統較佳保 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 持諧振槽電路和流經檢測電阻Rs的電流(負載電流)之間的 相位差180度。因此,不管是特定負載狀態和/或諳振槽電 路的工作頻率,該系統都可以找到一最佳工作點。 圖3回授迴路的工作類似於上述對圖2的說明。然而,如 圖3b所示,此實施例通過正反器電路72對(:一驅動電路輸出 的啟動#號進行計時。例如,在正常工作中,誤差放大界 32的輸出將通過控制開關38(如上所述)而饋送,其結果為輸 出信號24。通過比較器28和正反器電路72得到開關a和〇、 B和C之間某一重疊量,正反器電路72驅動開關c和d(D-驅 動電路產生C一驅動電路的互補信號)。這爲冷陰極螢光燈 CCFL(顯示面板)負載提供了穩態工作。考慮到正常工作時 移去冷陰極螢光燈CCFL (顯示面板),CMp信號增大至誤差 放大器輸出的邊界值(rail 〇f 〇utput),並立即觸發保護電 路。此功能在點燈時被禁止。 簡要地參考圖3a-3f,在此實施例中,通過c一驅動電路和 D一驅動電路交替地觸發開關D作為正反器電路72的工 作結果。如圖3b,正反器每次觸發,因而初始化驅動電 路(且相對地初始化D一驅動電路)。另外時序則如上述參考 圖2a-2f,以相同的方式工作。 現參考圖4a-4f,模擬圖2或3的輸出電流。例如,圖乜顯 示在21V輸入時,當掃頻器接近75.7 KHz(0.5 us重疊)時, 輸出達到1.67 KVp_p。若冷陰極螢光燈(CCFL)需要33〇〇 Vp-p點燈,則此電壓不足以給冷陰極螢光燈(CcFL)點燈。 當頻率降至如68 KHz時,最小重疊在輸出處產生約3.9 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc .1270839 KVp-p,這足以點燈冷陰極螢光燈(CCFL)。如圖4b所示。 在此頻率,重疊增加至1.5 us,則使得輸出約ι·9 KVp-p用 來運行130 K歐姆的燈阻抗。這在圖4C中已經顯示出。如另 一個實例,圖4d顯示出了在輸入電壓為7 v時的工作。在71β4 KHz時,在點燈前,輸出為750 Vp-p。當頻率降低時,輸出 電壓增加直到點燈為止。圖4e顯示出68.5 KHz時,輸出達 到3500 Vp-p。冷陰極螢光燈(CCFL)電流的調節通過調節重 豐來完成’並在點燈後支持130 K歐姆的阻抗。冷陰極螢光 燈(CCFL)的電壓對於660 Vrms燈來說現在為ι·9 KVp_p。這 也如圖4f所示。雖然未顯示出,圖3的電路模擬以類似的方 式進行。 應注意的是第一和第二實施例的差別(即,圖3中加入正 反器和鎖相迴路(PLL))將不會影響到在圖4a_4f中提出的整 體工作參數。然而,決定加入鎖相迴路(PLL)是考慮在電路 中所產生的非理想阻抗,且可以作為圖2中所顯示的電路的 替代電路而加入。同時,加入正反器允許了除去上述的定 電流電路。 因此,很明顯地提供了一高效率可適型的直流/交流轉換 器電路,#滿足在此提出的目標。對於本發明所屬技術領 域人員,很明顯,可以進行一些修改。例如,雖然本發明 已經描述使用MOSFET作為開關的作用,本發明所屬技術 領域人貝可以知道整個電路可以使用BJT電晶體,或任何類 型電晶體的组合,包含MOSFET和BJT加以構建。其他修改 也是可能的。例如與驅動電路一B和驅動電路—D關聯的驅動 議训樣⑽朽 tw SPEC (咖nded) (〇2 95〇623)如 •1270839 電路可以由共集極電路組成,因為相關聯的電晶體接地, 因此不會出現浮接狀態。這裏所述的鎖相迴路(PLL)較佳為 本發明所屬技術領域中已知的普通鎖相迴路(PLL)7〇,經過 適當地修改用以接收輸入信號和產生控制信號,如上所 述。脈衝產生器22較佳為一脈寬調變電路(pWM)或頻寬調 變電路(FWM),兩者都為本發明所屬技術領域中所熟知 的。同樣地’保濩電路60和計時器由已知電路構成並加以 適當修改,並以如此所述進行工作。 圖5描述了本發明液晶顯示系統的一實施例。液晶顯示系 統500包含薄膜電晶體顯示幕5〇1。薄膜電晶體顯示幕5〇1 耦合至行驅動器502。行驅動器502控制在薄膜電晶體顯示 幕501上的行。薄膜電晶體顯示幕5〇1也耦合至列驅動器 503。列驅動器503控制在薄膜電晶體顯示幕5〇1上的列。行 驅動器502和列驅動器503耦合至時序控制器5〇4。時序控制 器504控制行驅動器502和列驅動器503的時序。時序控制器 504耦合至視頻信號處理器505。視頻信號處理器5〇5處理視 頻信號。在另一實施例中,視頻信號處理器5〇5可以為一定 標器裝置。 薄膜電晶體顯示幕501由顯示照明系統599照明。顯示照 明系統599包含冷陰極螢光燈562。冷陰極螢光燈562耦合至 次級變壓器繞組560。次級變壓器繞組56〇為冷陰極螢光燈 5 62挺供電流。次級變壓器繞組5 60麵合至初級變壓器繞組 5 18。初級變壓器繞組5 18為次級變壓器繞組5 6 〇提供磁通 量。初級變壓器繞組5 18耦合至開關532。開關532允許電流 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -20- 1270839 流經初級變壓器繞組518。初級變壓器繞組518也輕合至開 關512。開關512允許電流經過初級變壓器繞組518。開關532 和開關512耦合至控制器550。控制器550提供脈衝信號,用 來控制開關532和開關512之切換。值得注意的是,在此描 述的任何控制器均可作為控制器550。同樣值得注意的是, 在此描述的任何顯示照明系統均可替代顯示照明系統599。 圖6描述了本發明一實施例之液晶顯示系統。液晶顯示系 統600包含薄膜電晶體顯示幕601。薄膜電晶體顯示幕 耦合至行驅動器602。行驅動器602控制在薄膜電晶體顯示 幕601上的行。薄膜電晶體顯示幕601也耦合至列驅動器 603。列驅動器603控制在薄膜電晶體顯示幕601上的列。行 驅動器602和列驅動器603耦合至時序控制器6〇4。時序控制 器604控制行驅動器602和列驅動器603的時序。時序控制器 604耦合至視頻信號處理器605。視頻信號處理器6〇5處理視 頻信號。視頻信號處理器605耦合至視頻解調器 (dem〇dulat〇r)606。視頻解調器606解調視頻信號。視頻解 調器606耦合至調諳器(tunei〇607。調諧器6〇7為視頻解調器 606提供視頻信號。調諳器607把液晶顯示系統6〇〇調整到一 特定頻率。視頻解調器606也耦合至微控制器6〇8。調諧器 607也耦合至音頻解調器611。音頻解調器611解調來自調諧 器607的音頻信號。音頻解調器611耦合至音頻信號處理器 610。音頻佗號處理器610處理來自音頻解調器611的音頻俨 旎。音頻仏號處理器610耦合至音頻放大器6〇9。音頻放大 器609放大來自音頻信號處理器61〇的音頻信號。 94102201-0011C3CIP1 tw SPEC (amended) (〇2 950623) d〇( -21 - 1270839 薄膜電晶體顯示幕601由顯示照明系統699照明。顯示照 明系統699包含冷陰極螢光燈662。冷陰極螢光燈662耦合至 次級變壓器繞組660。次級變壓器繞組66〇為冷陰極螢光燈 662提供電流。次級變壓器繞組66〇耦合至初級變壓器繞組 618。初級變壓器繞組61 8為次級變壓器繞組66〇提供磁通 量。初級變壓器繞組618耦合至開關632。開關632允許電流 流經初級變壓器繞組618。初級變壓器繞組6丨8也|馬合至開 關612。開關612允許電流經過初級變壓器繞組618。開關632 籲 和開關612耦合至控制器650。控制器650提供脈衝信號,用 來控制開關632和開關612的切換。值得注意的是,在此描 述的任何控制器可作為控制器650。同樣值得注意的是,在 此描述的任何顯示照明系統可以替代顯示照明系統699。 圖7描述了本發明一實施例之液晶顯示系統。液晶顯示系 統700包含圖形適配器(Graphics Adaptor)790。液晶顯示系 統700也可以包含上述和圖5中所示的液晶顯示系統5〇〇的 $ 部件,或上述和圖6中顯示的液晶顯示系統600的部件。圖 形適配器(Graphics Adaptor)790耦合至一視頻信號處理 器,該視頻信號處理器505可以是上述和圖5中所示的視頻 信號處理器505,或上述和圖6中所示的視頻信號處理器 605。 圖形適配器(Graphics Adaptor)790耦合至晶片組核心邏 輯791。晶片組核心邏輯791在與其相連的裝置之間傳輸資 料。晶片組核心邏輯791也耦合至微處理器792。微處理器 792處理資料,包括視頻資料。晶片組核心邏輯791也麵合 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -22- J270839 至記憶體793。記憶體793可為隨機存取記憶體,並提供資 料的短期儲存。晶片組核心邏輯791也耦合至硬碟機794。 硬碟機794提供資料的長期儲存。晶片組核心邏輯791也叙 合至光碟機795。光碟機795從CD-ROM或DVD-ROM取出資 料。 ' 參考圖8,描述了本發明開關模式冷陰極螢光燈(CcFL) 電源電路100的一實施例。本發明是一開關模式電源,為冷 陰極螢光燈(CCFL)提供能量。此電源把一直流(DC)低電壓 轉換為一交流(AC)高電壓,並提供給冷·陰極螢光燈(CcFL)。 開關模式電源電路包含一第一開關,此開關含有源極、 汲極和閘極。第一開關的汲極連接至升壓(step_up)變壓器 的初級繞組。此升壓變壓器的次級繞組的匝數至少是初級 繞組阻數的20倍,較佳為50至150倍。第一開關的源極連接 至一電源。 一第二開關也含有源極、汲極和閘極。第二開關的汲極 同時連接至第一開關的汲極和變壓器初級繞組的一端。第 二開關的源極連接至一電源的接地基準。初級繞組含有一 第二端,此第二端連接至一個二電容分壓器的中點。這樣, 這兩個開關串聯,近似地均分電源的輸入電壓。這兩個電 容串聯後與電源兩端相連。 一控制電路傳送控制信號至第一和第二開關,以18〇度相 移交替導通開關。當第一開關導通時,一電流以一參考正 向流經第一開關和變壓器的初級繞組。當第二開關導通 時,此電流以反向流經變壓器的初級繞組,並流經第二開 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -23· .1270839 關。 變壓器從兩個方向被驅動,使得掃動(swing)於鐵心的磁 通量用於與變壓器相關的磁滯曲線中的兩個象限。這樣可 以減少變壓器鐵心的大小,從而節省了變壓器的成本。However, the present embodiment also includes a phase-locked loop (PLL) 70' for controlling the frequency sweeper and a flip-flop circuit 72 for timing the input of the signal of the c-drive circuit. It can be understood from the timing diagram that if the pulse of the switches C and D is shifted to the right by 5〇% by increasing the size of the (10) signal, the increase of the overlap between the switches VIII and D, Β and C can be realized, thereby increasing the delivery to The energy of the transformer. In effect, this corresponds to the operation of the higher lamp current (if necessary, the REF voltage can be manually increased as described above). Conversely, the left shift of the drive pulse of switch C*D (by reducing the CMP signal) reduces the amount of energy being delivered. Phase-locked loop 7〇 Maintains the phase relationship between the feedback current (via sense resistor Rs) and the tank current (transformed |§ TX1 / valley C1) under normal operation, as shown in Figure 3. The phase locked loop (PLL) 70 preferably includes input signals from the tank circuit (capacitor (^ and transformer τχ primary side), signal 98, and sense resistor RS (the FB signal described above). Once the cold cathode fluorescent lamp (CCFL) is clicked The lamp, and the current in the cold cathode fluorescent lamp (CCFL) is detected by the sense resistor RS, and a phase-locked loop (PLL) 70 is activated which locks between the lamp current and the primary resonant tank (capacitor C1 and transformer primary side) current. Phase. That is, the phase-locked loop (PLL) regulates the frequency of the sweeper 22 due to any fundamental changes in temperature, mechanical configuration, such as the wiring between the converter and the LCD panel, and the effects. The distance between the lamp of the capacitance value and the inductance value and the metal chassis of the LCD panel. The system is better to protect the current of the resonant tank circuit and the voltage flowing through the detecting resistor Rs. 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 The phase difference between the (load currents) is 180 degrees. Therefore, the system can find an optimum operating point regardless of the specific load state and/or the operating frequency of the tank circuit. Figure 3 The feedback loop works similarly. The above description of Fig. 2. However, as shown in Fig. 3b, this embodiment is timed by the flip-flop circuit 72 (the start # of a drive circuit output is counted. For example, in normal operation, the error amplification boundary 32 The output will be fed through control switch 38 (described above), which results in output signal 24. A certain amount of overlap between switch a and 〇, B and C is obtained by comparator 28 and flip-flop circuit 72, positive and negative. The circuit 72 drives the switches c and d (the D-drive circuit produces a complementary signal to the C-drive circuit). This provides steady-state operation for the cold cathode fluorescent lamp CCFL (display panel) load, taking into account the cold during normal operation. Cathode Fluorescent Lamp CCFL (Display Panel), the CMp signal is increased to the boundary value of the error amplifier output (rail 〇f 〇utput), and the protection circuit is triggered immediately. This function is disabled when lighting. Refer briefly to Figure 3a- 3f, in this embodiment, the switch D is alternately triggered by the c-drive circuit and the D-drive circuit as the result of the operation of the flip-flop circuit 72. As shown in FIG. 3b, the flip-flop is triggered each time, thereby initializing the drive circuit (and Initialize D relatively The drive circuit). The other timings operate in the same manner as described above with reference to Figures 2a-2f. Referring now to Figures 4a-4f, the output current of Figure 2 or 3 is simulated. For example, Figure 乜 shows the frequency sweep at 21V input. When the device is close to 75.7 KHz (0.5 us overlap), the output reaches 1.67 KVp_p. If the cold cathode fluorescent lamp (CCFL) requires 33〇〇Vp-p lighting, this voltage is not enough to give the cold cathode fluorescent lamp (CcFL) point. When the frequency drops to 68 KHz, the minimum overlap produces about 3.9 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc .1270839 KVp-p at the output, which is enough to light the cold cathode fluorescent lamp (CCFL). ). As shown in Figure 4b. At this frequency, the overlap is increased to 1.5 us, which causes the output ι·9 KVp-p to operate the lamp impedance of 130 K ohms. This has been shown in Figure 4C. As another example, Figure 4d shows the operation at an input voltage of 7 v. At 71β4 KHz, the output is 750 Vp-p before lighting. When the frequency is reduced, the output voltage increases until it lights up. Figure 4e shows an output of 3500 Vp-p at 68.5 KHz. The regulation of the cold cathode fluorescent lamp (CCFL) current is accomplished by adjusting the weight and supporting an impedance of 130 K ohms after lighting. The voltage of the cold cathode fluorescent lamp (CCFL) is now ι·9 KVp_p for the 660 Vrms lamp. This is also shown in Figure 4f. Although not shown, the circuit simulation of Figure 3 proceeds in a similar manner. It should be noted that the difference between the first and second embodiments (i.e., the addition of a flip-flop and a phase-locked loop (PLL) in Figure 3) will not affect the overall operating parameters set forth in Figures 4a-4f. However, the decision to add a phase-locked loop (PLL) is to consider the non-ideal impedance generated in the circuit and can be added as an alternative to the circuit shown in Figure 2. At the same time, the addition of the flip-flop allows the removal of the constant current circuit described above. Therefore, it is apparent that a highly efficient and adaptable DC/AC converter circuit is provided, which satisfies the objectives set forth herein. It will be apparent to those skilled in the art to which the invention pertains that modifications may be made. For example, although the present invention has been described as using a MOSFET as a switch, it is known in the art to which the entire circuit can be constructed using a BJT transistor, or a combination of any type of transistor, including a MOSFET and a BJT. Other modifications are also possible. For example, the driving training example associated with the driving circuit B and the driving circuit - D (10) tw s SPEC (Cai nded) (〇 2 95 〇 623) such as • 1270839 circuit can be composed of a common collector circuit because of the associated transistor Grounded, so there is no floating state. The phase-locked loop (PLL) described herein is preferably a conventional phase-locked loop (PLL) 7〇 known in the art to which the present invention pertains, suitably modified to receive input signals and generate control signals, as described above. Pulse generator 22 is preferably a pulse width modulation circuit (pWM) or a bandwidth modulation circuit (FWM), both of which are well known in the art to which the present invention pertains. Similarly, the 'keeping circuit 60' and the timer are constructed of known circuits and modified as appropriate, and operate as described. Figure 5 depicts an embodiment of a liquid crystal display system of the present invention. The liquid crystal display system 500 includes a thin film transistor display screen 5〇1. The thin film transistor display screen 5〇1 is coupled to the row driver 502. Row driver 502 controls the rows on thin film transistor display 501. The thin film transistor display screen 〇1 is also coupled to the column driver 503. The column driver 503 controls the columns on the thin film transistor display screen 5〇1. Row driver 502 and column driver 503 are coupled to timing controller 5〇4. The timing controller 504 controls the timing of the row driver 502 and the column driver 503. Timing controller 504 is coupled to video signal processor 505. The video signal processor 5〇5 processes the video signal. In another embodiment, video signal processor 5〇5 may be a director device. The thin film transistor display screen 501 is illuminated by a display illumination system 599. Display illumination system 599 includes a cold cathode fluorescent lamp 562. Cold cathode fluorescent lamp 562 is coupled to secondary transformer winding 560. The secondary transformer winding 56 is a cold cathode fluorescent lamp 5 62 for current supply. The secondary transformer winding 5 60 is fused to the primary transformer winding 5 18 . The primary transformer winding 5 18 provides magnetic flux to the secondary transformer winding 56 〇. Primary transformer winding 5 18 is coupled to switch 532. Switch 532 allows current 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -20- 1270839 to flow through primary transformer winding 518. Primary transformer winding 518 is also lightly coupled to switch 512. Switch 512 allows current to pass through primary transformer winding 518. Switch 532 and switch 512 are coupled to controller 550. Controller 550 provides a pulse signal for controlling the switching of switch 532 and switch 512. It is worth noting that any of the controllers described herein can function as controller 550. It is also worth noting that any of the display illumination systems described herein can be substituted for display illumination system 599. Figure 6 depicts a liquid crystal display system in accordance with one embodiment of the present invention. The liquid crystal display system 600 includes a thin film transistor display screen 601. A thin film transistor display is coupled to row driver 602. Row driver 602 controls the rows on thin film transistor display 601. Thin film transistor display screen 601 is also coupled to column driver 603. The column driver 603 controls the columns on the thin film transistor display screen 601. Row driver 602 and column driver 603 are coupled to timing controller 6〇4. The timing controller 604 controls the timing of the row driver 602 and the column driver 603. Timing controller 604 is coupled to video signal processor 605. The video signal processor 6〇5 processes the video signal. Video signal processor 605 is coupled to a video demodulator 606. Video demodulator 606 demodulates the video signal. The video demodulator 606 is coupled to a tuner (tunei 〇 607. The tuner 6 7 provides a video signal to the video demodulator 606. The tuner 607 adjusts the liquid crystal display system 6 to a particular frequency. Video demodulation The 606 is also coupled to the microcontroller 6. 8 The tuner 607 is also coupled to an audio demodulator 611. The audio demodulator 611 demodulates the audio signal from the tuner 607. The audio demodulator 611 is coupled to an audio signal processor. 610. The audio horn processor 610 processes the audio 来自 from the audio demodulator 611. The audio horn processor 610 is coupled to the audio amplifier 6-1. The audio amplifier 609 amplifies the audio signal from the audio signal processor 61 94. -0011C3CIP1 tw SPEC (amended) (〇2 950623) d〇 (-21 - 1270839) The thin film transistor display screen 601 is illuminated by the display illumination system 699. The display illumination system 699 includes a cold cathode fluorescent lamp 662. The cold cathode fluorescent lamp 662 Coupled to secondary transformer winding 660. Secondary transformer winding 66A provides current to cold cathode fluorescent lamp 662. Secondary transformer winding 66 is coupled to primary transformer winding 618. Primary transformer winding 61 8 is secondary The transformer winding 66 is provided with a magnetic flux. The primary transformer winding 618 is coupled to a switch 632. The switch 632 allows current to flow through the primary transformer winding 618. The primary transformer winding 6丨8 is also coupled to the switch 612. The switch 612 allows current to pass through the primary transformer winding 618. Switch 632 is coupled to switch 612 to controller 650. Controller 650 provides a pulse signal for controlling the switching of switch 632 and switch 612. It is noted that any of the controllers described herein can function as controller 650. It should be noted that any of the display illumination systems described herein may be substituted for display illumination system 699. Figure 7 depicts a liquid crystal display system in accordance with an embodiment of the present invention. Liquid crystal display system 700 includes a graphics adapter (Graphics Adaptor) 790. Liquid crystal display system The 700 may also include the components of the liquid crystal display system 5 shown above and shown in Figure 5, or the components of the liquid crystal display system 600 described above and shown in Figure 6. The Graphics Adaptor 790 is coupled to a video signal processing. The video signal processor 505 can be the video signal as described above and shown in FIG. The 505, or the video signal processor 605 described above and illustrated in Figure 6. A Graphics Adaptor 790 is coupled to the Chipset Core Logic 791. The Chipset Core Logic 791 transfers data between devices connected thereto. Core logic 791 is also coupled to microprocessor 792. Microprocessor 792 processes the data, including video material. The chipset core logic 791 also meets 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -22- J270839 to memory 793. Memory 793 can be a random access memory and provides short term storage of information. Chipset core logic 791 is also coupled to hard disk drive 794. Hard disk drive 794 provides long term storage of data. Chipset core logic 791 is also incorporated into optical disk drive 795. The optical disk drive 795 extracts data from a CD-ROM or a DVD-ROM. Referring to Figure 8, an embodiment of a switch mode cold cathode fluorescent lamp (CcFL) power supply circuit 100 of the present invention is depicted. The present invention is a switch mode power supply that provides energy to a cold cathode fluorescent lamp (CCFL). This power supply converts a constant current (DC) low voltage into an alternating current (AC) high voltage and supplies it to a cold cathode fluorescent lamp (CcFL). The switch mode power supply circuit includes a first switch having a source, a drain and a gate. The drain of the first switch is connected to the primary winding of the step-up transformer. The secondary winding of the step-up transformer has a number of turns of at least 20 times the number of primary windings, preferably 50 to 150 times. The source of the first switch is connected to a power source. A second switch also contains a source, a drain and a gate. The drain of the second switch is simultaneously connected to the drain of the first switch and one end of the primary winding of the transformer. The source of the second switch is connected to the ground reference of a power supply. The primary winding has a second end that is coupled to the midpoint of a two-capacitor voltage divider. Thus, the two switches are connected in series to approximately equalize the input voltage of the power supply. These two capacitors are connected in series and connected to both ends of the power supply. A control circuit transmits a control signal to the first and second switches to alternately turn the switches on at 18 degrees. When the first switch is turned on, a current flows through the first switch and the primary winding of the transformer in a forward direction. When the second switch is turned on, this current flows in the reverse direction through the primary winding of the transformer and through the second open 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -23. .1270839. The transformer is driven in both directions such that the magnetic flux swept to the core is used in two quadrants in the hysteresis curve associated with the transformer. This reduces the size of the transformer core, which saves the cost of the transformer.

兩個電容組成了 一電容分壓器,連接至變壓器初級繞組 的-端。當每-個開關導通時,兩個電容被流經變壓器初 級繞組的電流充電或放電。#第_開關導通時,電流為第 -電容放電的同時為第二個電容充電,且在第一開關斷 開、連接在第二開關的本質二極體導通時,該電流被重置。 當第二開關導通時,流經變壓器初級繞組的電流反向。隨 著此電流流動方向,第一電容被充電,第二電容被放電。 在第二開關被斷開後,電流經由第一開關的本質二極體得 以恢復。若開關在他們的本質二極體導通時導通,那麼開 關基本上是在零電壓時導通。此零電壓切換技術使開關的 切換損耗降到最低。因此,功率轉換器的效率得到提高。 電源電路100包含一控制器150, 一第一開關112, 一第二 開關132,和一變壓器120,並連接至電源274用來為一負載 (例如平板顯示器中的冷陰極螢光燈(CCFL) 162,該平板顯 不is可以為&quot;液晶顯不)提供功率。 第一開關112可為一 N通道金屬氧化物半導體場效應電晶 體(MOSFET)閘控開關,並包含一汲極丨14,該汲極連接至 升壓變壓器12 0的初級繞組11 8的一端。初級繞組11 $的第一 端125連接至第一電容124和第二電容126的接點上。第一開 關112的源極128連接至電源274的接地基準。第二開關132 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -24- 1270839 可為P通道MOSFET閘控開關。p通道開關132的汲極也連接 至第一開關112的汲極114。第一開關U2和第二開關132都 分別包含本質二極體134和136。開關132和112的閘極138和 閘極152連接至控制器150的輸出端。 升壓變壓器120的次級繞組160連接至冷陰極螢光燈 (CCFL)162。與先月丨】技術羅伊電路(R〇yer circuit)中變壓器 採用的飽和磁芯的非線性磁導率相比,升壓變壓器12〇中會 形成一個有著線性磁導率的磁芯,該磁芯在電源電路1 〇〇 工作時未飽和。升壓變壓器120的匝數比至少為20:1,且通 常在50:1至150:1的範圍内。 升壓變壓器120的次級繞組16〇與串聯的兩個電容163、 164並聯。電容163、164構成一分壓器,用來檢測升壓變壓 器120的次級繞組160的電壓,並將初級繞組丨丨8的矩形波變 換為近似正弦波提供給冷陰極螢光燈(CCFL)負載162。在正 常工作下’電壓檢測1 86總是被開關1 70重置,該開關170 由流經冷陰極螢光燈(CCFL) 162的電流控制。開關17〇的功 能將在下面詳述。 控制器150可為一脈寬調變控制器,其提供第一閘極驅動 信號152至第一開關112的閘極152,並提供一第二閘極驅動 信號138至開關132的閘極138。除了為開關112、132提供驅 動#號以外,控制器15 0還提供其他功能,例如兩個用於冷 陰極螢光燈(CCFL)點燈和正常工作的截然不同的頻率。在 控制150中的開燈(lamp-on)識別電路250用於判定冷陰極 螢光燈(C C F L) 16 2是否被點免’以判定兩個頻率中哪一個被 -25- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 輸出。在冷陰極螢光燈(CCFL)162點燈時,開燈信號252不 被設置(de-asserted),並表示不被點亮之冷陰極螢光燈 (CCFL) 162其電路上是開路。基於開燈信號252,振盪器254 處得到一第一頻率。點燈之後檢測到一流經冷陰極螢光燈 (CCFL)162的電流。因此,開燈信號252被設置(asserted), 代表冷陰極螢光燈(CCFL)被點燈。在振盪器254輸出處得到 一第二頻率。應注意到,開燈信號252也決定低頻脈寬調變 (PWM)電路258的輸出信號256。在點燈過程中,輸出信號 256不會干擾提供至冷陰極螢光燈(CCFL)162的波形,並可 得到一平滑的點燈電壓。換句話說,在開燈信號252被設置 之前,輸出信號256不會影響輸出控制邏輯286。 控制器150還包含燈電流和電壓檢測和控制功能。燈電流 通過感測電阻1 82被檢測到。檢測值1 84通過一比較器(例如 控制開關112和132導通時間的誤差放大器230)與基準信號 212相比。電容分壓器藉由電容163和164檢測燈電壓值。電 壓檢測信號186通過一比較器232和基準信號214相比較。比 較器232的輸出信號234決定數位時鐘計時電路236的啟 動。在時鐘計時電路236啟動之後過一段時間(例如一至兩 秒),若輸出信號234仍然沒被設置,時鐘計時電路236的輸 出信號238將使保護電路240被設置,以停止開關112和132 的工作。該時段是用來為冷陰極螢光燈(CCFL) 162提供一點 燈時間(例如一至兩秒)。振盪器254為電源電路100的工作提 供了兩個頻率,一較高頻率用於點燈,一較低頻率用於正 常工作。較高頻率可以比較低頻率高出20%到30%。較低頻 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -26- 1270839 率可為如圖4b所示的68 KHz,或如圖4e所示的65.8 KHz, 或低於這兩個頻率的任一頻率值。 低頻脈寬調變電路258用以產生輸出信號256,以調變傳 送至燈的能量,從而實現亮度控制。輸出信號256的頻率較 佳在150 Hz至400 Hz範圍内。開燈識別電路250接收燈電流 檢測信號184,其輸出開燈信號252被設置用來識別冷陰極 螢光燈(CCFL)負載162的存在或點燈的完成。保護電路240 接收表示冷陰極螢光燈(CCFL)162存在的開燈信號252,表 _ 示在冷陰極螢光燈(CCFL)162檢測電流存在的輸出信號 260 ’和表示燈開路狀態的暫停的輸出信號238。因此,當 冷陰極螢光燈(CCFL·) 162出現燈開路、過電流、過壓狀態, 或在電壓輸入接腳130發生欠壓時,保護電路240的輸出信 號262被設置,以停止開關112和132的工作。 控制器150包含連接至將電路電性接地(circuit gr〇un(j)的 接地接腳272,和一連接至一直流電壓源的電壓輸入接腳 _ 130。在控制器150中,電壓輸入接腳130連接至一基準/偏 壓(Ref/Bias)電路210,該電路產生不同的基準信號212、214 等,供内部用途。電壓輸入接腳130也連接至一欠壓鎖定電 路(under-voltage lock-out circuit)220和輸出驅動器 222。當 提供至電壓輸入接腳130的電壓超過一臨界值時,欠壓鎖定 電路220的輸出信號224致能(enable)控制器150的休息(rest) 運作。另一方面,若電壓輸入接腳130處的電壓小於臨界值 時,輸出信號224將停止控制器150的休息)運作。 冷陰極螢光燈(CCFL)工作時,冷陰極螢光燈(ccFL)的亮 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -27- -1270839 度控制功能和燈開路的功能實質上是互補的。有利的是, 兩個信號168和186可被多工傳輸,使得在控制器15〇的一輸 入接腳284處同時接收到信號168和186。此實施降低了控制 器150的成本。 控制器150的時鐘接腳276連接至振盪器254,該振盪器連 接一電谷278至電路的接地端,或一電阻280至電壓輸入接 腳130,以在時鐘接腳276處提供一時鐘信號(較佳為一斜坡 信號)。 有利的是,在本發明中,電源電路1〇〇利用與控制器15〇 最少的連接數實現了最多的功能,來驅動冷陰極螢光燈 (CCFL)負載。該電源的工作如下所述。 將直流(DC)電壓VIN施加於電源電路1〇〇。一旦電壓輸入 接腳130處的電壓輸入超過欠壓鎖定電路22〇所設定的臨界 值’控制器150開始工作。基準/偏壓電路21〇為控制器150 中的其他電路產生基準電壓。 由於冷陰極螢光燈(CCFL)162未被點燈,且沒有來自冷陰 極螢光燈(CCFL)負載162的電流回授信號184,振盪器254 產生一較高頻率脈衝信號。輸出驅動器222輸出脈寬調變驅 動信號152和138,分別給開關112和132。電容216被逐漸充 電,這樣輸出信號260的電壓隨著時間逐漸增加。因為輸出 信號260處的電壓隨著時間逐漸增加,所以驅動信號138和 152的脈寬逐漸增加。因此,傳送至升壓變壓器120和負載 162的功率也逐漸增加。電容124和126的設計使得通過每個 電容的電壓約為輸入電壓的一半。在第一個半週期裏,開 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc •28- ,1270839 ‘ 關132導通,一電流從電源、經開關132流至初級繞組118。 然後該電流流入電容12 6,並包含磁化電流和負載反射電流 (reflected load current)。當電容 126充電時,電容 124放電。 當開關132斷開時,初級繞組118的電流繼續以同樣方向流 動。本質二極體134使該電流繼續流通。開關132導通後, 開關112以約180度導通。電源提供電流經過電容124流至初 級繞組118,沿相反的方向經過第一開關U2流至基準電路 接地接腳272。該電流(包含磁化電流和負載反射電流)沿著 _ 反向流動。與此同時,當電容126放電時,電容124充電。 當第一開關112斷開,本質二極體136支持電流在初級繞組 118中的繼續流動。在第一開關Π2導通後,開關132以約180 度導通。開關繼續週期性地工作。因此,初級繞組11 8的電 • 壓實質上為一矩形波。 圖9描述了不同端點處的波形。圖9(a)顯示出了在輸出接 腳152處的驅動波形。圖9(b)顯示出了輸出接腳138處相應的 籲 驅動波形。注意開關112和132的開關導通時間差180度。當 然,開關132可改用N通道裝置。在此情況下,驅動信號138 的邏輯被翻轉,用以表示開/關(ΟΝ/OFF)驅動信號。圖9(c) 顯示出了第二端125處的電壓波形。疊加在直流電壓(輸入 電壓VIN的一半)上的小漣波表示電容126的充電和放電。輸 入電壓VIN減去第二端125處的電壓得到一相似波形,該波 形代表電谷124的電壓’該電壓也有一疊加在二分之一輸入 電壓上的小漣波。圖9(d)顯示出第一開關汲極114處的電 壓’而圖9(f)顯示出了流經初級繞組丨丨8的電流。注意,當 -29- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -1270839 開關132在tl處導通時,114處的電壓接近vin。初級繞組 118的電流以一基準正向流動,以使電容126充電,同時使 電容124放電。因此,電容126處的電壓增加(正斜率)。在時 間t2處,開關132斷開。初級繞組118處的電流繼續以同樣 方向流動,但呈減小的趨勢。本質二極體134使該電流繼續 流通,直到電流在t3時減小至零。在t2至^的時段内,很顯 然114處的電壓接近於零。由於電流以同樣的方向流動,電 容126處的電壓仍然增加。在t3後瞬間,由於初級繞組118 的反向磁動勢,一小電流以反向流動,本質二極體丨36導通, 114的電壓到達VIN加上本質二極體136的順向壓降。在時間 t4,第一開關112導通。114電壓下降至接近於零,而初級 繞組118的電流增加’但方向相反。當電容124被充電時, 電容126放電。因此,電容126的電壓減少(負斜率)。開關112 在時間t5時斷開,本質二極體13 6導通,電流繼續流動。當 初級繞組118的電流達到零時,本質二極體ι36停止導通。 與此同時’小電流以基準正向流動。換句話說,由於本質 二極體134導通,所以II4處的電壓接近於零。工作情況繼 續,直至在時間t7下一週期開始,該處開關132再次導通。 升壓變壓器120從兩個方向上被驅動,這樣最大化地利用了 磁通量掃動(swing),以提供功率給冷陰極螢光燈(CCFL)負 載。升壓變壓器120,輸出電容163、164和所有與變壓器12〇 一次側電路相關的本質反應元件構成一槽電路。該槽電路 選出與初級繞組118處出現的矩形波相關的較高諧波成 份,並在冷陰極螢光燈(CCFL)162處產生一整形的、近似正 -30- 94102201.00UC3CIP1 tw SPEC (amended) (02 950623).doc 1270839 弦的波形。如圖9(e)所示。注意,基於次級繞組160的本質 元件和負載162,波形172就圖9(a)-9(d)和圖9(f)所示的波形 而言可能擁有不同的相移。波形172處的電壓被電容163和 164分壓。因此,電容163和164有兩種目的。一個目的是用 於電壓檢測186,另一個目的是用於波形整形。 當冷陰極螢光燈(CCFL)162連接時,通過冷陰極螢光燈 (CCFL)162的電流量被感測電阻182檢測到。檢測到的信號 184被饋送至一電流放大器230,該放大器在其輸出信號260 _ 處連接有補償電容216。輸出信號260與一來自振盪器254 的信號進行比較,並產生一輸出至輸出控制邏輯286,以決 定開關112和132的導通時間。一種調節傳送至負載的功率 的方法是將一指令信號168提供至控制器150的輸入接腳 284。輸入接腳284處的信號通過低頻脈寬調變電路25 8被轉 換成一低頻脈衝信號,傳送至輸出控制邏輯286,由此輸出 驅動器222輸出接腳138及152以該低頻脈波信號調變,從而 ⑩ 有效地控制傳送至冷陰極螢光燈(CCFL) 162的能量。 點燈期間,冷陰極螢光燈(CCFL) 162作為一阻抗無限大的 元件連接至電源電路100。同樣,在此期間,冷陰極螢光燈 (CCFL) 162通常要求一預定的導通電壓。包含電容163和丨64 的電源電路100檢測冷陰極螢光燈(CCFL)162的電壓。由 此’該預定導通電壓在電壓檢測信號i 86處被按比例確定, 並傳送至控制器150的輸入接腳284,用於電壓調節。開燈 識別電路250產生一開燈信號252,該信號表示冷陰極螢光 燈(CCFL)162沒有導通。輸出信號234被設置,啟動數位時 -31 - 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc ,1270839 • 鐘計時電路236。同樣,開燈信號252命令振盪器254產生一 適合冷陰極螢光燈(CCFL) 162點燈的較高頻率。在此期間, 冷陰極螢光燈(CCFL) 162處的電壓被調節為預定值。輸出信 號234被設置後約一兩秒鐘,數位時鐘計時電路236產生一 輸出信號238。若冷陰極螢光燈(CCFL)162在輸出信號238 被設置之前點燈,那麼冷陰極螢光燈(CCFL) 162如上一段落 所述繼續工作。若冷陰極螢光燈(CCFL)162未被點燈(損 壞,未連接或連接鬆動),設置輸出信號238啟動保護電路 Φ 240。保護電路240的輸出信號262,用來停止輸出驅動器222 的工作,所以開關112和132被斷開。由於冷陰極螢光燈 (CCFL) 162在此期間未被點燈、沒有功率傳送至冷陰極螢光 • 燈(CCFL)162,因此功率控制指令信號168自然對電源的工 • 作不起作用。換句話說,當電源電路100實現冷陰極螢光燈 (CCFL)162點燈功能時,停止對調節至冷陰極螢光燈 (CCFL)162的功率的亮度控制。同樣,在正常工作中,開關 170重置電壓檢測信號186,所以該信號不影響冷陰極螢光 ® 燈(CCFL)的亮度控制。因此,多路傳輸功能減少了接腳的 數量,這樣,節省了控制器150和電源電路的成本。 振盪器254經電容278連接至基準電路的接地端,或經電 阻280連接至輸入電壓,以產生脈衝信號。當電容278連接 至電路接地端時,振盪器254源給(source)電流至電容278, 也吸收(sink)來自電容278的電流。當電阻280連接至輸入電 壓時,振盪器254吸收來自電壓輸入和電阻280的電流。吸 收和產生(sink-and-source)電流或只吸收(sink-only)電流的 -32- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 特性使得可以區分調節傳送至冷陰極螢光燈(CCFL) 162功 率的不同控制模式。對於線性模式,為了區分如先前所述 的低頻脈寬調變模式,功率控制指令信號168命令並調節傳 送至冷陰極螢光燈(CCFL) 162的功率,使該功率的傳送無須 通過低頻脈寬調變電路25 8。當振盪器25 4連接電阻280至電 壓輸入時,指令信號168流經輸入接腳284,然後流經低頻 脈寬調變電路258以產生/重寫一基準信號212至放大器 230。指令信號168因而直接控制電流回授信號184的大小, 調節通過冷陰極螢光燈(CCFL) 162的電流。在這種工作模式 下,282處的信號切斷低頻脈寬調變電路258,並允許輸入 接腳284的信號饋送導通。因此,將電阻280或電容278連接 至振盪器254不僅產生脈衝信號,還決定了冷陰極螢光燈 (CCFL)負載162功率調節的控制模式(或在線性控制模式 下,或在低頻脈寬調變模式下)。這樣的設計降低了控制器 150周圍所使用的元件的數目,卻大大提高了設計者的靈活 性。 如上所述,相應於本發明的電源電路100的第一開關U2 和第二開關132由控制器150所控制,並交替導通,因此電 流交替地以第一方向和第二方向流經冷陰極螢光燈 (CCFL)162,且電源電路1〇〇將直流電源轉換為交流功率, 為冷陰極螢光燈(CCFL)162提供功率。 因此,本發明所屬技術領域人員閱讀上述披露之後將會 發現本發明的各種修改和/或替代應用,這些修改和/或替代 應用並不脫離本發明的精神和範圍情況。所以,下列·申請 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -33 - •1270839 n 專利範圍旨在解釋包含所有在本發明精神和範圍内的修改 或替代應用。 ’ 本發明所屬技術領域人員將會發現的其他電路,和所有 k些修改受限於在本發明的精神和範圍,且僅由附加的申 請專利範圍限定。 【圖式簡單說明】 _ 圖1所示為傳統的直流/交流轉換器電路; 圖2所示為本發明直流/交流轉換器電路的一較佳實施例; 圖2a-2f所示為圖2電路的典型時序圖; 圖3所示為本發明直流/交流轉換器電路的另一較佳實施 例; 圖3a-3f所示為圖3電路的典型時序圖; 圖4a-4f所示為圖2和圖3所示電路的模擬圖; 圖5所示為本發明液晶顯示系統的一實施例; 0 圖6所示為本發明液晶顯示系統的一實施例; 圖7所示為本發明液晶顯示系統的一實施例; 圖8所示為本發明液晶顯示系統的顯示照明系統的一實施 例;和 圖9所示為本發明液晶顯示系統的一實施例中的波形。 【圖式主要元件符號說明】 A/B/C/D 開關 C1/C2/C3 電容 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -34- 1270839The two capacitors form a capacitive divider that is connected to the - terminal of the primary winding of the transformer. When each switch is turned on, the two capacitors are charged or discharged by the current flowing through the primary winding of the transformer. When the #第_ switch is turned on, the current is charged for the second capacitor while the first capacitor is discharged, and the current is reset when the first switch is turned off and the essential diode connected to the second switch is turned on. When the second switch is turned on, the current flowing through the primary winding of the transformer is reversed. As this current flows, the first capacitor is charged and the second capacitor is discharged. After the second switch is turned off, current is recovered via the intrinsic diode of the first switch. If the switches are turned on when their essential diodes are turned on, then the switches are essentially turned on at zero voltage. This zero voltage switching technique minimizes the switching losses of the switch. Therefore, the efficiency of the power converter is improved. The power circuit 100 includes a controller 150, a first switch 112, a second switch 132, and a transformer 120, and is coupled to the power source 274 for use as a load (eg, a cold cathode fluorescent lamp (CCFL) in a flat panel display). 162, the tablet can not provide power for &quot;liquid crystal display. The first switch 112 can be an N-channel metal oxide semiconductor field effect transistor (MOSFET) gating switch and includes a drain 丨 14 connected to one end of the primary winding 187 of the step-up transformer 120. The first end 125 of the primary winding 11 $ is coupled to the junction of the first capacitor 124 and the second capacitor 126. The source 128 of the first switch 112 is coupled to the ground reference of the power source 274. The second switch 132 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -24- 1270839 can be a P-channel MOSFET gate switch. The drain of the p-channel switch 132 is also coupled to the drain 114 of the first switch 112. The first switch U2 and the second switch 132 both include the intrinsic diodes 134 and 136, respectively. Gate 138 and gate 152 of switches 132 and 112 are coupled to the output of controller 150. The secondary winding 160 of the step-up transformer 120 is coupled to a cold cathode fluorescent lamp (CCFL) 162. Compared with the nonlinear magnetic permeability of the saturation core used in the transformer in the R〇yer circuit, a magnetic core with linear magnetic permeability is formed in the step-up transformer 12〇. The core is not saturated when the power circuit 1 is operating. The step-up transformer 120 has a turns ratio of at least 20:1 and is typically in the range of 50:1 to 150:1. The secondary winding 16A of the step-up transformer 120 is connected in parallel with the two capacitors 163, 164 in series. Capacitors 163, 164 form a voltage divider for detecting the voltage of secondary winding 160 of step-up transformer 120 and converting the rectangular wave of primary winding 丨丨8 into an approximately sinusoidal wave for supply to a cold cathode fluorescent lamp (CCFL). Load 162. Under normal operation, voltage detection 1 86 is always reset by switch 1 70, which is controlled by the current flowing through the cold cathode fluorescent lamp (CCFL) 162. The function of switch 17〇 will be detailed below. The controller 150 can be a pulse width modulation controller that provides a first gate drive signal 152 to the gate 152 of the first switch 112 and a second gate drive signal 138 to the gate 138 of the switch 132. In addition to providing the drive ## for the switches 112, 132, the controller 150 provides other functions, such as two distinct frequencies for cold cathode fluorescent lamp (CCFL) lighting and normal operation. A lamp-on identification circuit 250 in control 150 is used to determine if the cold cathode fluorescent lamp (CCFL) 16 2 is clicked to 'determine which of the two frequencies is -25- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 Output. When the cold cathode fluorescent lamp (CCFL) 162 is turned on, the light-on signal 252 is de-asserted and indicates that the cold cathode fluorescent lamp (CCFL) 162, which is not illuminated, is open on the circuit. Based on the turn-on signal 252, a first frequency is obtained at the oscillator 254. The current of the first-class cold cathode fluorescent lamp (CCFL) 162 was detected after lighting. Therefore, the light-on signal 252 is asserted, indicating that the cold cathode fluorescent lamp (CCFL) is lit. A second frequency is obtained at the output of the oscillator 254. It should be noted that the light-on signal 252 also determines the output signal 256 of the low frequency pulse width modulation (PWM) circuit 258. During the lighting process, the output signal 256 does not interfere with the waveform supplied to the cold cathode fluorescent lamp (CCFL) 162 and a smooth lighting voltage is obtained. In other words, the output signal 256 does not affect the output control logic 286 until the turn signal 252 is set. Controller 150 also includes lamp current and voltage detection and control functions. The lamp current is detected by the sense resistor 182. The detected value 184 is compared to the reference signal 212 by a comparator (e.g., an error amplifier 230 that controls the on-time of switches 112 and 132). The capacitive voltage divider senses the lamp voltage value by capacitors 163 and 164. The voltage detection signal 186 is compared by a comparator 232 and a reference signal 214. The output signal 234 of the comparator 232 determines the activation of the digital clock timing circuit 236. After a period of time (e.g., one to two seconds) after the clock timing circuit 236 is activated, if the output signal 234 is still not set, the output signal 238 of the clock timing circuit 236 will cause the protection circuit 240 to be set to stop the operation of the switches 112 and 132. . This period is used to provide a little lamp time (e.g., one to two seconds) for the cold cathode fluorescent lamp (CCFL) 162. Oscillator 254 provides two frequencies for the operation of power supply circuit 100, a higher frequency for lighting and a lower frequency for normal operation. Higher frequencies can be 20% to 30% higher than lower frequencies. The lower frequency 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -26- 1270839 rate can be 68 KHz as shown in Figure 4b, or 65.8 KHz as shown in Figure 4e, or lower than these two frequencies Any frequency value. The low frequency pulse width modulation circuit 258 is operative to generate an output signal 256 to modulate the energy delivered to the lamp to effect brightness control. The output signal 256 has a frequency preferably in the range of 150 Hz to 400 Hz. The turn-on identification circuit 250 receives a lamp current detection signal 184 whose output turn-on signal 252 is set to identify the presence of a cold cathode fluorescent lamp (CCFL) load 162 or the completion of lighting. The protection circuit 240 receives a turn-on signal 252 indicating the presence of a cold cathode fluorescent lamp (CCFL) 162, the output signal 260' indicating the presence of a current in the cold cathode fluorescent lamp (CCFL) 162 and a pause indicating the open state of the lamp. Output signal 238. Therefore, when the cold cathode fluorescent lamp (CCFL·) 162 has an open lamp, an overcurrent, an overvoltage condition, or an undervoltage occurs at the voltage input pin 130, the output signal 262 of the protection circuit 240 is set to stop the switch 112. And 132 work. The controller 150 includes a ground pin 272 that is electrically connected to the circuit (circuit gr〇un(j), and a voltage input pin _130 that is connected to the DC voltage source. In the controller 150, the voltage input is connected. The pin 130 is coupled to a reference/bias (Ref/Bias) circuit 210 which produces different reference signals 212, 214, etc. for internal use. The voltage input pin 130 is also coupled to an undervoltage lockout circuit (under-voltage). The lock-out circuit 220 and the output driver 222. When the voltage supplied to the voltage input pin 130 exceeds a threshold, the output signal 224 of the undervoltage lockout circuit 220 enables the rest operation of the controller 150. On the other hand, if the voltage at the voltage input pin 130 is less than the threshold, the output signal 224 will stop the rest of the controller 150. When the cold cathode fluorescent lamp (CCFL) is working, the cold cathode fluorescent lamp (ccFL) is bright. 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -27- -1270839 degree control function and function of lamp open circuit It is complementary. Advantageously, the two signals 168 and 186 can be multiplexed such that signals 168 and 186 are simultaneously received at an input pin 284 of the controller 15A. This implementation reduces the cost of the controller 150. The clock pin 276 of the controller 150 is coupled to an oscillator 254 that connects a valley 278 to the ground of the circuit, or a resistor 280 to the voltage input pin 130 to provide a clock signal at the clock pin 276. (preferably a ramp signal). Advantageously, in the present invention, the power supply circuit 1 实现 utilizes the least number of connections to the controller 15 to achieve the most functions to drive the cold cathode fluorescent lamp (CCFL) load. The operation of this power supply is as follows. A direct current (DC) voltage VIN is applied to the power supply circuit 1〇〇. Once the voltage input at voltage input pin 130 exceeds the critical value set by undervoltage lockout circuit 22, controller 150 begins operation. The reference/bias circuit 21A generates a reference voltage for the other circuits in the controller 150. Since the cold cathode fluorescent lamp (CCFL) 162 is not lit and there is no current feedback signal 184 from the cold cathode fluorescent lamp (CCFL) load 162, the oscillator 254 produces a higher frequency pulse signal. Output driver 222 outputs pulse width modulation drive signals 152 and 138 to switches 112 and 132, respectively. Capacitor 216 is gradually charged such that the voltage of output signal 260 gradually increases over time. Since the voltage at the output signal 260 gradually increases with time, the pulse widths of the drive signals 138 and 152 gradually increase. Therefore, the power transmitted to the step-up transformer 120 and the load 162 is also gradually increased. Capacitors 124 and 126 are designed such that the voltage across each capacitor is approximately one-half of the input voltage. In the first half cycle, open 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc • 28- , 1270839 ‘Off 132 is turned on, a current flows from the power supply, through switch 132 to primary winding 118. This current then flows into capacitor 12 6 and contains the magnetizing current and the reflected load current. When capacitor 126 is charged, capacitor 124 is discharged. When switch 132 is open, the current of primary winding 118 continues to flow in the same direction. The intrinsic diode 134 allows the current to continue to circulate. After the switch 132 is turned on, the switch 112 is turned on at about 180 degrees. The power supply provides current through capacitor 124 to primary winding 118 and in the opposite direction through first switch U2 to reference circuit ground pin 272. This current (including magnetizing current and load reflected current) flows in the opposite direction of _. At the same time, when capacitor 126 is discharged, capacitor 124 is charged. When the first switch 112 is open, the intrinsic diode 136 supports continued flow of current in the primary winding 118. After the first switch Π2 is turned on, the switch 132 is turned on at about 180 degrees. The switch continues to work periodically. Therefore, the voltage of the primary winding 11 8 is substantially a rectangular wave. Figure 9 depicts the waveforms at the different endpoints. Figure 9(a) shows the drive waveform at output pin 152. Figure 9(b) shows the corresponding drive waveform at output pin 138. Note that the switch-on time difference between switches 112 and 132 is 180 degrees. Of course, switch 132 can be replaced with an N-channel device. In this case, the logic of the drive signal 138 is inverted to indicate an on/off (ΟΝ/OFF) drive signal. Figure 9(c) shows the voltage waveform at the second end 125. A small chopped wave superimposed on the DC voltage (half of the input voltage VIN) represents the charging and discharging of the capacitor 126. The input voltage VIN minus the voltage at the second terminal 125 results in a similar waveform that represents the voltage of the valley 124. The voltage also has a small ripple superimposed on one-half of the input voltage. Figure 9(d) shows the voltage at the first switching drain 114 and Figure 9(f) shows the current flowing through the primary winding 丨丨8. Note that when -29- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -1270839 switch 132 is turned on at tl, the voltage at 114 is close to vin. The current of primary winding 118 flows in a forward direction to charge capacitor 126 while discharging capacitor 124. Therefore, the voltage at capacitor 126 increases (positive slope). At time t2, switch 132 is open. The current at the primary winding 118 continues to flow in the same direction, but tends to decrease. The intrinsic diode 134 continues to circulate this current until the current decreases to zero at t3. During the period from t2 to ^, it is apparent that the voltage at 114 is close to zero. Since the current flows in the same direction, the voltage at capacitor 126 still increases. Immediately after t3, due to the reverse magnetomotive force of the primary winding 118, a small current flows in the opposite direction, the intrinsic diode 丨36 conducts, and the voltage of 114 reaches VIN plus the forward voltage drop of the intrinsic diode 136. At time t4, the first switch 112 is turned on. The voltage drops to near zero and the current in primary winding 118 increases 'but the direction is reversed. When capacitor 124 is charged, capacitor 126 is discharged. Therefore, the voltage of the capacitor 126 is reduced (negative slope). The switch 112 is turned off at time t5, the intrinsic diode 13 6 is turned on, and the current continues to flow. When the current of the primary winding 118 reaches zero, the intrinsic diode ι 36 stops conducting. At the same time, a small current flows in the forward direction. In other words, since the intrinsic diode 134 is turned on, the voltage at II4 is close to zero. The operation continues until the next cycle begins at time t7, where switch 132 is again turned "on". The step-up transformer 120 is driven in two directions, thus maximizing the use of magnetic flux swipe to provide power to the cold cathode fluorescent lamp (CCFL) load. The step-up transformer 120, the output capacitors 163, 164, and all of the intrinsic reactive components associated with the transformer 12's primary side circuit form a slot circuit. The slot circuit selects a higher harmonic component associated with the rectangular wave appearing at the primary winding 118 and produces a shaped, approximately positive - 30 - 10102201.00 UC3 CIP1 tw SPEC (amended) at the cold cathode fluorescent lamp (CCFL) 162. (02 950623).doc 1270839 The waveform of the string. As shown in Figure 9(e). Note that based on the intrinsic components of the secondary winding 160 and the load 162, the waveform 172 may have different phase shifts for the waveforms shown in Figures 9(a)-9(d) and 9(f). The voltage at waveform 172 is divided by capacitors 163 and 164. Therefore, capacitors 163 and 164 serve two purposes. One purpose is for voltage detection 186 and another is for waveform shaping. When the cold cathode fluorescent lamp (CCFL) 162 is connected, the amount of current passing through the cold cathode fluorescent lamp (CCFL) 162 is detected by the sense resistor 182. The detected signal 184 is fed to a current amplifier 230 which is coupled with a compensation capacitor 216 at its output signal 260 _ . Output signal 260 is compared to a signal from oscillator 254 and produces an output to output control logic 286 to determine the on time of switches 112 and 132. One method of adjusting the power delivered to the load is to provide a command signal 168 to the input pin 284 of the controller 150. The signal at input pin 284 is converted to a low frequency pulse signal by low frequency pulse width modulation circuit 258 and passed to output control logic 286, whereby output driver 222 output pins 138 and 152 are modulated by the low frequency pulse signal. Thus, 10 effectively controls the energy delivered to the cold cathode fluorescent lamp (CCFL) 162. During lighting, a cold cathode fluorescent lamp (CCFL) 162 is connected to the power supply circuit 100 as an element of infinite impedance. Also, during this time, the cold cathode fluorescent lamp (CCFL) 162 typically requires a predetermined turn-on voltage. A power supply circuit 100 including capacitors 163 and 丨 64 detects the voltage of the cold cathode fluorescent lamp (CCFL) 162. Thus, the predetermined turn-on voltage is scaled at voltage detection signal i 86 and passed to input pin 284 of controller 150 for voltage regulation. The light-on identification circuit 250 generates an on-light signal 252 indicating that the cold cathode fluorescent lamp (CCFL) 162 is not conducting. The output signal 234 is set to start the digit -31 - 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc , 1270839 • Clock timing circuit 236. Similarly, the light-on signal 252 commands the oscillator 254 to produce a higher frequency suitable for cold cathode fluorescent lamp (CCFL) 162 lighting. During this time, the voltage at the cold cathode fluorescent lamp (CCFL) 162 is adjusted to a predetermined value. Approximately one or two seconds after the output signal 234 is set, the digital clock timing circuit 236 produces an output signal 238. If the cold cathode fluorescent lamp (CCFL) 162 is turned on before the output signal 238 is set, the cold cathode fluorescent lamp (CCFL) 162 continues to operate as described in the previous paragraph. If the cold cathode fluorescent lamp (CCFL) 162 is not lit (damaged, unconnected or loosely connected), the output signal 238 is set to activate the protection circuit Φ 240. The output signal 262 of the protection circuit 240 is used to stop the operation of the output driver 222, so the switches 112 and 132 are turned off. Since the cold cathode fluorescent lamp (CCFL) 162 is not lit during this time and no power is being delivered to the cold cathode fluorescent lamp (CCFL) 162, the power control command signal 168 naturally does not contribute to the operation of the power supply. In other words, when the power supply circuit 100 implements the cold cathode fluorescent lamp (CCFL) 162 lighting function, the brightness control of the power adjusted to the cold cathode fluorescent lamp (CCFL) 162 is stopped. Similarly, in normal operation, switch 170 resets voltage detection signal 186, so this signal does not affect the brightness control of the Cold Cathode Fluorescent Lamp (CCFL). Therefore, the multiplex function reduces the number of pins, thus saving the cost of the controller 150 and the power supply circuit. Oscillator 254 is coupled to the ground of the reference circuit via capacitor 278 or to the input voltage via resistor 280 to generate a pulse signal. When capacitor 278 is coupled to circuit ground, oscillator 254 sources current to capacitor 278 and also sinks current from capacitor 278. When resistor 280 is coupled to the input voltage, oscillator 254 sinks current from voltage input and resistor 280. -32- 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc 1270839 Features that make it possible to distinguish between regulation and delivery to cold cathode fluorescence Lamp (CCFL) 162 power control modes. For the linear mode, in order to distinguish the low frequency pulse width modulation mode as previously described, the power control command signal 168 commands and regulates the power delivered to the cold cathode fluorescent lamp (CCFL) 162 so that the transmission of the power does not have to pass the low frequency pulse width. Modulation circuit 25 8. When the oscillator 25 is coupled to the resistor 280 to the voltage input, the command signal 168 flows through the input pin 284 and then through the low frequency pulse width modulation circuit 258 to generate/rewrite a reference signal 212 to the amplifier 230. The command signal 168 thus directly controls the magnitude of the current feedback signal 184 to regulate the current through the cold cathode fluorescent lamp (CCFL) 162. In this mode of operation, the signal at 282 cuts off the low frequency pulse width modulation circuit 258 and allows the signal feed of the input pin 284 to conduct. Therefore, connecting resistor 280 or capacitor 278 to oscillator 254 not only produces a pulse signal, but also determines the control mode of the cold cathode fluorescent lamp (CCFL) load 162 power regulation (either in linear control mode or at low frequency pulse width modulation). In the variable mode). Such a design reduces the number of components used around the controller 150, but greatly increases the flexibility of the designer. As described above, the first switch U2 and the second switch 132 corresponding to the power supply circuit 100 of the present invention are controlled by the controller 150 and alternately turned on, so that the current alternately flows through the cold cathode fire in the first direction and the second direction. A light (CCFL) 162, and the power circuit 1 converts the DC power to AC power to provide power to the Cold Cathode Fluorescent Lamp (CCFL) 162. Therefore, various modifications and/or alternatives of the inventions will be apparent to those skilled in the <RTIgt; Therefore, the following application 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -33 - 1270839 n The patent scope is intended to be interpreted as encompassing all modifications or alternatives within the spirit and scope of the invention. Other circuits that will be discovered by those skilled in the art, and all modifications may be limited by the spirit and scope of the invention, and only by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional DC/AC converter circuit; FIG. 2 shows a preferred embodiment of the DC/AC converter circuit of the present invention; FIG. 2a-2f shows FIG. A typical timing diagram of a circuit; Figure 3 shows another preferred embodiment of the DC/AC converter circuit of the present invention; Figures 3a-3f show a typical timing diagram of the circuit of Figure 3; Figures 4a-4f show a diagram 2 and a schematic diagram of the circuit shown in FIG. 3; FIG. 5 is a view showing an embodiment of the liquid crystal display system of the present invention; FIG. 6 is a view showing an embodiment of the liquid crystal display system of the present invention; An embodiment of a display system; Fig. 8 shows an embodiment of a display illumination system of a liquid crystal display system of the present invention; and Fig. 9 shows a waveform of an embodiment of the liquid crystal display system of the present invention. [Graphic main component symbol description] A/B/C/D switch C1/C2/C3 capacitor 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -34- 1270839

FB 回授信號 N1/N2/N3/N4 回授繞組 Q1/Q2 電晶體 REF 基準電壓 Rs 檢測電阻 TXl 變壓器 10 CCFL電源系統 12 電源 14 控制器 16 驅動電路 18 回授迴路 20 LCD面板/負載 22 掃頻器/頻率產生器/脈衝產生器 24 輸出信號/CMP信號 26 斜坡信號 28 比較器 30 偏壓/基準信號 32 誤差放大器 36 交叉點 38 開關 40 回授控制迴路 42 電流檢測比較器 50 驅動電路 60 保護電路 62 保護比較器 64 計時器 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -35- 1270839 66 OVP信號 70 鎖相迴路(PLL) 72 正反器電路 80 開關 90 脈衝信號 92 互補脈衝信號 94 信號 98 信號 100 電源電路 112 開關 114 汲極 118 初級繞組 120 變壓器 124 電容 125 第二端 126 第二電容 128 源極 130 電壓輸入接腳 132 開關 134/136 本質二極體 138/152 輸出接腳/閘極/ 150 控制器 160 次級繞組 162 冷陰極螢光燈(( 163/164 電容 168 信號 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -36 1270839FB feedback signal N1/N2/N3/N4 feedback winding Q1/Q2 transistor REF reference voltage Rs detection resistance TXl transformer 10 CCFL power system 12 power supply 14 controller 16 drive circuit 18 feedback circuit 20 LCD panel / load 22 sweep Frequency/Frequency Generator/Pulse Generator 24 Output Signal/CMP Signal 26 Ramp Signal 28 Comparator 30 Bias/Reference Signal 32 Error Amplifier 36 Intersection 38 Switch 40 Feedback Control Loop 42 Current Sense Comparator 50 Drive Circuit 60 Protection circuit 62 protection comparator 64 timer 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -35- 1270839 66 OVP signal 70 phase-locked loop (PLL) 72 flip-flop circuit 80 switch 90 pulse signal 92 complementary pulse Signal 94 Signal 98 Signal 100 Power Circuit 112 Switch 114 Datum 118 Primary Winding 120 Transformer 124 Capacitor 125 Second End 126 Second Capacitor 128 Source 130 Voltage Input Pin 132 Switch 134/136 Intrinsic Diode 138/152 Output Foot / Gate / 150 Controller 160 Secondary winding 162 Cold Cathode Fluorescent Lamp (( 163/164 Capacitor 16 8 signal 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -36 1270839

170 開關 172 波形 182 感測電阻 184 檢測值/燈電流檢測信號/電流回授信 號 186 電壓檢測/電壓檢測信號 210 基準/偏壓電路 212/214 基準信號 216 電容 220 欠壓鎖定電路 222 輸出驅動器 224/234/238 輸出信號 230 放大器 232 比較器 236 時鐘計時電路 240 保護電路 250 開燈識別電路 252 開燈信號 254 振盪器 256 輸出信號 258 低頻脈寬調變電路 260 輸出信號 262 輸出信號 272 接地接腳 274 電源 276 時鐘接腳 94102201-0011C3CIP1 tw SPEC (amended) (02 950629).doc -37- 1270839170 Switch 172 Waveform 182 Sense Resistor 184 Detected Value / Lamp Current Detect Signal / Current Feedback Signal 186 Voltage Detect / Voltage Detect Signal 210 Reference / Bias Circuit 212 / 214 Reference Signal 216 Capacitor 220 Undervoltage Lockout Circuit 222 Output Driver 224/234/238 Output signal 230 Amplifier 232 Comparator 236 Clock timing circuit 240 Protection circuit 250 Light-on identification circuit 252 Light-on signal 254 Oscillator 256 Output signal 258 Low-frequency pulse width modulation circuit 260 Output signal 262 Output signal 272 Ground Pin 274 Power Supply 276 Clock Pin 94102201-0011C3CIP1 tw SPEC (amended) (02 950629).doc -37- 1270839

278 電容 280 電阻 284 輸入接腳 286 輸出控制邏輯 500/600/700 液晶顯不系統 501/601 薄膜電晶體顯不幕 502/602 行驅動器 503/603 列驅動器 504/604 時序控制器 505/605 視頻信號處理器 512/612 開關 518/618 初級變壓器繞組 532/632 開關 550/650 控制器 560/660 次級變壓器繞組 562/662 冷陰極螢光燈(CCFL) 599/699 顯示照明系統 605 視頻信號處理器 606 視頻解調器 607 調諧器 608 微控制器 609 音頻放大器 611 音頻信號處理器610 611 音頻解調器 790 圖形適配器(Graphics Adaptor) 791 晶片組核心邏輯 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -38- 1270839 792 微處理器 793 記憶體 794 硬碟機 795 光碟機 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -39-278 Capacitor 280 Resistor 284 Input Pin 286 Output Control Logic 500/600/700 LCD Display System 501/601 Thin Film Transistor 502/602 Line Driver 503/603 Column Driver 504/604 Timing Controller 505/605 Video Signal Processor 512/612 Switch 518/618 Primary Transformer Winding 532/632 Switch 550/650 Controller 560/660 Secondary Transformer Winding 562/662 Cold Cathode Fluorescent Lamp (CCFL) 599/699 Display Lighting System 605 Video Signal Processing 606 Video Demodulator 607 Tuner 608 Microcontroller 609 Audio Amplifier 611 Audio Signal Processor 610 611 Audio Demodulator 790 Graphics Adaptor 791 Chipset Core Logic 94102201-0011C3CIP1 tw SPEC (amended) (02 950623 ).doc -38- 1270839 792 Microprocessor 793 Memory 794 Hard Disk Drive 795 Optical Disk Player 94102201-0011C3CIP1 tw SPEC (amended) (02 950623).doc -39-

Claims (1)

.1270839 十、申請專利範圍: 1 · 一種液晶顯不糸統,包括: 一液晶顯不面板; 一照明該液晶顯示面板的冷陰極螢光燈; 一次級變壓器繞組,其耦合至該冷陰極螢光燈,為該 冷陰極螢光燈提供電流; 一初級變壓器繞組,其耦合至該次級變壓器繞組,為 該次級變壓器繞組提供磁通量; _ 一第一開關’其麵合至該初級變壓器繞組,允許電流 流經該初級變壓器繞組;和 一麵合至該冷陰極螢光燈的回授控制迴路,該回授控 制迴路接收一表示傳送至該冷陰極螢光燈的功率的回授 信號,當且僅當該回授信號高於一預定臨界值時,控制 提供給該冷陰極螢光燈的功率。 2.1270839 X. Patent application scope: 1 · A liquid crystal display system comprising: a liquid crystal display panel; a cold cathode fluorescent lamp for illuminating the liquid crystal display panel; a secondary transformer winding coupled to the cold cathode fluorescent light a light lamp for supplying current to the cold cathode fluorescent lamp; a primary transformer winding coupled to the secondary transformer winding to provide magnetic flux to the secondary transformer winding; _ a first switch 'faced to the primary transformer winding Allowing a current to flow through the primary transformer winding; and a feedback control loop coupled to the cold cathode fluorescent lamp, the feedback control loop receiving a feedback signal indicative of the power delivered to the cold cathode fluorescent lamp, The power supplied to the cold cathode fluorescent lamp is controlled if and only if the feedback signal is above a predetermined threshold. 2 •如申請專利範圍第1項的液晶顯示系統,更進一步包括: 一輸入電壓源,其耦合至該開關,為該開關提供電流。 如申請專利範圍第2項的液晶顯示系統,其中該輸入電壓 源、為一電源供應裝置。 如申請專利範圍第2項的液晶顯示系統,更進一步包括: 一耗合至該初級變壓器繞組和接地電位的第一電容; 和 一輕合至該初級變壓器繞組和該輸入電壓源的第二電 容。 如申請專利範圍第1項的液晶顯示系統,其中若該回授信 • 1270839 號不高於一預定臨界值時,該回授控制迴路使該冷陰極 螢光燈保持一預定的最小功率。 6·如申睛專利範圍第5項的液晶顯示系統,更進一步包括: 一第二開關,其耦合至該初級變壓器繞組,以允許電 流以反向流經該初級變壓器繞組;和 一第二開關,其耦合至該初級變壓器繞組和該第一開 關,當該第三開關和該第一開關之間存在一重疊狀態 時,為該初級變壓器繞組提供電流。 7·如申請專利範圍第6項的液晶顯示系統,其中該回授控制 迴路通過保持該第三開關和該第一開關之間的一最小重 疊,使該冷陰極螢光燈保持該預定的最小功率。 8·如申請專利範圍第〖項的液晶顯示系統,更進一步包括: 一電壓檢測器,其耦合至該冷陰極螢光燈,以檢測該 冷陰極螢光燈的電壓。 9·如申請專利範圍第8項的液晶顯示系統,更進一步包括: 一電壓保護電路,其耦合至該電壓檢測器,當該冷陰 極螢光燈的該電壓超過一預定臨界值時,用以減小傳送 至該冷陰極螢光燈的功率。 10.如申請專利範圍第9項的液晶顯示系統,更進一步包括: 一什時器,其耦合至該電壓保護電路,以提供一暫停 時段。 Π · —種液晶顯示系統,包括: 一液晶顯示面板; 一照明該液晶顯示面板的冷陰極螢光燈; .1270839 一次級變壓器繞組,其耦合至該冷陰極螢光燈,為該 冷陰極螢光燈提供電流; 一初級變壓器繞組’其輕合至該次級變壓器繞組,為 該次級變壓器繞組提供磁通量; 一第一開關,其耦合至該初級變壓器繞組,以允許電 流流經該初級變壓器繞組;和• The liquid crystal display system of claim 1, further comprising: an input voltage source coupled to the switch to provide current to the switch. The liquid crystal display system of claim 2, wherein the input voltage source is a power supply device. The liquid crystal display system of claim 2, further comprising: a first capacitor consuming the primary transformer winding and the ground potential; and a second capacitor coupled to the primary transformer winding and the input voltage source . The liquid crystal display system of claim 1, wherein the feedback control loop maintains the cold cathode fluorescent lamp at a predetermined minimum power if the feedback signal No. 1270839 is not higher than a predetermined threshold. 6. The liquid crystal display system of claim 5, further comprising: a second switch coupled to the primary transformer winding to allow current to flow in the reverse direction through the primary transformer winding; and a second switch And coupled to the primary transformer winding and the first switch to provide current to the primary transformer winding when there is an overlap between the third switch and the first switch. 7. The liquid crystal display system of claim 6, wherein the feedback control loop maintains the cold cathode fluorescent lamp at the predetermined minimum by maintaining a minimum overlap between the third switch and the first switch power. 8. The liquid crystal display system of claim 1, further comprising: a voltage detector coupled to the cold cathode fluorescent lamp to detect the voltage of the cold cathode fluorescent lamp. 9. The liquid crystal display system of claim 8, further comprising: a voltage protection circuit coupled to the voltage detector, when the voltage of the cold cathode fluorescent lamp exceeds a predetermined threshold The power delivered to the cold cathode fluorescent lamp is reduced. 10. The liquid crystal display system of claim 9, further comprising: a timing device coupled to the voltage protection circuit to provide a pause period. A liquid crystal display system comprising: a liquid crystal display panel; a cold cathode fluorescent lamp that illuminates the liquid crystal display panel; .1270839 a secondary transformer winding coupled to the cold cathode fluorescent lamp, the cold cathode fluorescent lamp a light lamp provides current; a primary transformer winding 'slightly coupled to the secondary transformer winding to provide magnetic flux to the secondary transformer winding; a first switch coupled to the primary transformer winding to allow current to flow through the primary transformer Winding; and 一輕合至該冷陰極螢光燈的回授控制迴路,該回授控 制迴路接收一來自該冷陰極螢光燈的回授信號,當該回 授信號表示一燈開路(open lamp)狀態時,減少提供給該 冷陰極螢光燈的功率。 12. 如申請專利範圍第u項的液晶顯示系統,其中該回授信 號表示該冷陰極螢光燈的電壓,且當該電壓超過一預定 臨界值時’表示該燈開路狀態。 13. 如申凊專利範圍第12項的液晶顯示系統,其中當該電壓 超過-預定臨界值時,該回授控制迴路使該冷陰極發光 燈保持一預定最小功率。 14·如申請專利範圍第13項的液晶顯示系統,更進一步包括: 一第二開關,其耦合至該初級變壓器繞組,以允許 流以反向流經該初級變壓器繞組;和 一第三開Μ ’其輕合至該初級變壓器繞組和該第一 關’當該第三開關和該第一開關之間存在一重疊狀 時’為該初級變壓器繞組提供電流。 15·如申請專利範圍第14項的液晶顯示系統,丨中該回授 制迴路通過保持該第三開關和該第一開關之間的一最 1270839 重疊,使該冷陰極螢光燈保持該預定的最小功率。 16·如申請專利範圍第u項的液晶顯示系統,其中該回授信 號表示該冷陰極螢光燈的電壓,且當該電壓超過一預定 臨界值達一預定時段時,表示該燈開路狀態。 17.如申請專利範圍第u項的液晶顯示系統,更進一步包括·· 一耦合至該初級變壓器繞組和接地電位的第一電容; 和 一耦合至該初級變壓器繞組和一電壓輸入的第二電 容。 18·如申請專利範圍第η項的液晶顯示系統,更進一步包括: 一耦合至該開關的輸入電壓源,為該開關提供電流。 19·如申請專利範圍第丨丨項該的液晶顯示系統,其中該輸入 電壓源為一電源供應裝置。 20·如申請專利範圍第丨丨項的液晶顯示系統,其中該回授信 號表示流經該冷陰極螢光燈的電流,且當該電流低於一 預定臨界值時,表示該開燈狀態。 21· —種液晶顯示系統,包括: 一液晶顯示面板; 一照明該液晶顯示面板的冷陰極螢光燈; 一次級變壓器繞組,其耦合至該冷陰極螢光燈,為該 冷陰極螢光燈提供電流; 一初級變壓器繞組,其耦合至該次級變壓器繞組,為 該次級變壓器繞組提供磁通量; 一第一開關,其耦合至該初級變壓器繞組,允許電流 -1270839 以—第一方向流經該初級變壓器繞組; 一第二開關,其耦合至該初級變壓器繞組,允許電流 以一第二方向流經該初級變壓器繞組; —第二開關,其耦合至該初級變壓器繞組和該第一開 關,當該第三開關和該第一開關之間存在一重疊狀態 時,為該初級變壓器繞組提供電流;和 一麵合至該冷陰極螢光燈的回授控制迴路,該回授控 鲁制迴路接收一來自該冷陰極螢光燈的回授信號,且通過 保持該第二開關和該第一開關之間的一最小重疊,來保 持該冷陰極螢光燈的一預定的最小功率。 22·如申請專利範圍第21項的液晶顯示系統,更進一步包括: 一輸入電壓源,其耦合至該第一開關和該第二開關, 為該第一開關和該第二開關提供電流。 23·如申請專利範圍第22項的液晶顯示系統,其中該輸入電 壓源為一電源供應裝置。 φ 24· —種控制液晶顯示系統冷陰極螢光燈功率的方法,該方 法包含下列步驟: 提供一脈衝信號給一電晶體,作為一初級變壓器繞組 的一第一導通路徑; 產生一來自於耦合至一次級變壓器繞組的冷陰極螢光 燈的回授信號,該信號表示在該冷陰極螢光燈的一電性 狀態; 接收來自該冷陰極螢光燈的該回授信號;和 僅當該回授信號表示該冷陰極螢光燈點燈時,調節提 • 1270839 供給該冷陰極螢光燈的功率。 25. 26. 27. 28. 如中請專利範圍第24項的方法,其中該回授信號表示跨 越該冷陰極螢光燈之電壓,及當該電壓低於一預定臨界 值時,表示該冷陰極螢光燈之點燈。 如申請專利範圍第24項的方法,其中該回授信號表示通 過該冷陰極螢光燈之電流,及在該電流高於一預定臨界 值時’表示該冷陰極螢光燈之點燈。 如申晴專利範圍第24項的方法,更包含下列步驟: 當該回授信號表示非點燈時,保持至該冷陰極螢光燈 之功率之一預定最小值。 如申凊專利範圍第27項的方法,更包含下列步驟: 提供一第二脈衝信號給一第二電晶體,作為該初級變 壓器繞組的一第二導通路徑; 提供一第三脈衝信號給一第三電晶體,作為該初級變 壓器繞組的該第一導通路徑; 保持在該第一電晶體與該第三電晶體之間之一最小重 疊量。 如申睛專利範圍第24項的方法,更包含下列步驟: 當該回授信號於一預定時間區間表示非點燈時,切斷 至該冷陰極螢光燈之功率。 29.Lightly coupled to a feedback control loop of the cold cathode fluorescent lamp, the feedback control loop receiving a feedback signal from the cold cathode fluorescent lamp, when the feedback signal indicates an open lamp state , reducing the power supplied to the cold cathode fluorescent lamp. 12. The liquid crystal display system of claim U, wherein the feedback signal indicates a voltage of the cold cathode fluorescent lamp, and when the voltage exceeds a predetermined threshold, indicates that the lamp is in an open state. 13. The liquid crystal display system of claim 12, wherein the feedback control loop maintains the cold cathode illuminating lamp at a predetermined minimum power when the voltage exceeds a predetermined threshold. 14. The liquid crystal display system of claim 13, further comprising: a second switch coupled to the primary transformer winding to allow flow to flow in the reverse direction through the primary transformer winding; and a third opening 'It is lightly coupled to the primary transformer winding and the first switch 'when there is an overlap between the third switch and the first switch' to supply current to the primary transformer winding. 15. The liquid crystal display system of claim 14, wherein the feedback loop maintains the cold cathode fluorescent lamp by maintaining a maximum of 1270839 overlap between the third switch and the first switch Minimum power. 16. The liquid crystal display system of claim U, wherein the feedback signal indicates a voltage of the cold cathode fluorescent lamp, and when the voltage exceeds a predetermined threshold for a predetermined period of time, indicating that the lamp is in an open state. 17. The liquid crystal display system of claim 5, further comprising: a first capacitor coupled to the primary transformer winding and a ground potential; and a second capacitor coupled to the primary transformer winding and a voltage input . 18. The liquid crystal display system of claim n, further comprising: an input voltage source coupled to the switch to provide current to the switch. The liquid crystal display system of claim 2, wherein the input voltage source is a power supply device. 20. The liquid crystal display system of claim 3, wherein the feedback signal represents a current flowing through the cold cathode fluorescent lamp, and when the current is below a predetermined threshold, indicating the light-on state. A liquid crystal display system comprising: a liquid crystal display panel; a cold cathode fluorescent lamp that illuminates the liquid crystal display panel; a secondary transformer winding coupled to the cold cathode fluorescent lamp, the cold cathode fluorescent lamp Providing a current; a primary transformer winding coupled to the secondary transformer winding to provide magnetic flux to the secondary transformer winding; a first switch coupled to the primary transformer winding, allowing current -1270839 to flow in a first direction a primary transformer winding; a second switch coupled to the primary transformer winding to allow current to flow through the primary transformer winding in a second direction; a second switch coupled to the primary transformer winding and the first switch, Providing a current to the primary transformer winding when there is an overlapping state between the third switch and the first switch; and a feedback control loop coupled to the cold cathode fluorescent lamp, the feedback control loop Receiving a feedback signal from the cold cathode fluorescent lamp, and by maintaining a minimum weight between the second switch and the first switch Stacked to maintain a predetermined minimum power of the cold cathode fluorescent lamp. 22. The liquid crystal display system of claim 21, further comprising: an input voltage source coupled to the first switch and the second switch to provide current to the first switch and the second switch. 23. The liquid crystal display system of claim 22, wherein the input voltage source is a power supply device. Φ 24· A method for controlling the power of a cold cathode fluorescent lamp of a liquid crystal display system, the method comprising the steps of: providing a pulse signal to a transistor as a first conduction path of a primary transformer winding; generating a coupling from a feedback signal to the cold cathode fluorescent lamp of the primary transformer winding, the signal indicating an electrical state of the cold cathode fluorescent lamp; receiving the feedback signal from the cold cathode fluorescent lamp; and only when The feedback signal indicates that the power supplied to the cold cathode fluorescent lamp is adjusted by the 1270839 when the cold cathode fluorescent lamp is turned on. 25. 26. The method of claim 24, wherein the feedback signal indicates a voltage across the cold cathode fluorescent lamp, and when the voltage is below a predetermined threshold, indicating the cold The lighting of the cathode fluorescent lamp. The method of claim 24, wherein the feedback signal indicates a current through the cold cathode fluorescent lamp, and when the current is above a predetermined threshold, indicates that the cold cathode fluorescent lamp is lit. The method of claim 24, wherein the method further comprises the step of: maintaining a predetermined minimum value of the power to the cold cathode fluorescent lamp when the feedback signal indicates non-lighting. The method of claim 27, further comprising the steps of: providing a second pulse signal to a second transistor as a second conduction path of the primary transformer winding; providing a third pulse signal to the first a tri-electrode as the first conduction path of the primary transformer winding; maintaining a minimum amount of overlap between the first transistor and the third transistor. The method of claim 24, further comprising the step of: cutting off the power to the cold cathode fluorescent lamp when the feedback signal indicates non-lighting for a predetermined time interval. 29.
TW94102201A 2004-02-11 2005-01-25 Liquid crystal display system with lamp feedback and method for controlling power to cold cathode fluorescent lamp TWI270839B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/776,417 US6804129B2 (en) 1999-07-22 2004-02-11 High-efficiency adaptive DC/AC converter
US10/870,750 US7394209B2 (en) 2004-02-11 2004-06-16 Liquid crystal display system with lamp feedback

Publications (2)

Publication Number Publication Date
TW200537407A TW200537407A (en) 2005-11-16
TWI270839B true TWI270839B (en) 2007-01-11

Family

ID=35038637

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94102201A TWI270839B (en) 2004-02-11 2005-01-25 Liquid crystal display system with lamp feedback and method for controlling power to cold cathode fluorescent lamp

Country Status (2)

Country Link
CN (1) CN1667458B (en)
TW (1) TWI270839B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508145B2 (en) 2004-10-18 2013-08-13 Beyond Innovation Technology Co., Ltd. DC/AC inverter
TWI462649B (en) * 2011-07-11 2014-11-21 Beyond Innovation Tech Co Ltd Apparatus for driving fluorescent lamp
TWI571038B (en) * 2012-07-16 2017-02-11 崇貿科技股份有限公司 A regulation circuit having output cable compensation for power converters

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737642B2 (en) 2004-10-18 2010-06-15 Beyond Innovation Technology Co., Ltd. DC/AC inverter
JP2008016365A (en) * 2006-07-07 2008-01-24 Sanken Electric Co Ltd Discharge tube lighting device
CN101166388B (en) * 2006-10-20 2012-02-08 群康科技(深圳)有限公司 Backlight lamp tube short circuit and open circuit protection circuit
KR101342961B1 (en) * 2007-03-26 2013-12-18 삼성디스플레이 주식회사 Inverter, back-light assembly having the inverter and display apparatus having the back-light assembly
CN101389173B (en) * 2007-09-10 2012-08-15 台达电子工业股份有限公司 Current monitoring system for florescent lamp and controlling method thereof
CN101765266A (en) * 2008-12-26 2010-06-30 立锜科技股份有限公司 Driving control circuit for light-emitting component and method thereof
DE102010042020A1 (en) * 2010-10-06 2012-04-12 Osram Ag Circuit and method for controlling a lamp
TWI452809B (en) * 2011-03-08 2014-09-11 Green Solution Tech Co Ltd Full-bridge driving controller and full-bridge converting circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875103A (en) * 1995-12-22 1999-02-23 Electronic Measurements, Inc. Full range soft-switching DC-DC converter
US5930121A (en) * 1997-03-14 1999-07-27 Linfinity Microelectronics Direct drive backlight system
US6114814A (en) * 1998-12-11 2000-09-05 Monolithic Power Systems, Inc. Apparatus for controlling a discharge lamp in a backlighted display
US6320329B1 (en) * 1999-07-30 2001-11-20 Philips Electronics North America Corporation Modular high frequency ballast architecture
JP2002175891A (en) * 2000-12-08 2002-06-21 Advanced Display Inc Multi-lamp type inverter for backlight
KR100451928B1 (en) * 2002-03-08 2004-10-08 삼성전기주식회사 Single stage converter of CCFL inverter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508145B2 (en) 2004-10-18 2013-08-13 Beyond Innovation Technology Co., Ltd. DC/AC inverter
TWI462649B (en) * 2011-07-11 2014-11-21 Beyond Innovation Tech Co Ltd Apparatus for driving fluorescent lamp
US8901821B2 (en) 2011-07-11 2014-12-02 Beyond Innovation Technology Co., Ltd. Apparatus for driving fluorescent lamp
TWI571038B (en) * 2012-07-16 2017-02-11 崇貿科技股份有限公司 A regulation circuit having output cable compensation for power converters

Also Published As

Publication number Publication date
TW200537407A (en) 2005-11-16
CN1667458A (en) 2005-09-14
CN1667458B (en) 2012-09-26

Similar Documents

Publication Publication Date Title
TWI270839B (en) Liquid crystal display system with lamp feedback and method for controlling power to cold cathode fluorescent lamp
US7394209B2 (en) Liquid crystal display system with lamp feedback
US7920390B2 (en) DC-AC converter, controller IC therefor, and electronic apparatus utilizing such DC-AC converter
US7881084B2 (en) DC/AC cold cathode fluorescent lamp inverter
US7515445B2 (en) High-efficiency adaptive DC/AC converter
TWI308848B (en) Current-mode driver
US7515446B2 (en) High-efficiency adaptive DC/AC converter
EP0802702B1 (en) Higher-efficiency cold-cathode fluorescent lamp power supply
JP4094408B2 (en) DC-AC converter, control circuit, control device, and controller IC thereof
JP4546498B2 (en) Mixed mode DC / AC inverter
BRPI0612333A2 (en) electronic ballast having a cat-ear return energy
JP2004350444A (en) Dc-ac conversion device and ac power supply method
JP2004208396A (en) Dc-ac converter, and controller ic thereof
JP2010283998A (en) Resonance inverter driving method using zero-current switching and pulse width modulation of arbitrary frequency
TW200920188A (en) Inverter, control circuit and method thereof, and light emitting apparatus using them
WO2004051835A1 (en) Dc/ac converter and its controller ic
JP2008289319A (en) Discharge tube power supply system and semiconductor integrated circuit
KR20020060842A (en) High efficiency adaptive dc/ac converter
JP2006004918A (en) Liquid crystal display system with lamp feedback
Han et al. Mixed mode excitation and low cost control IC for electronic ballast
JPH10106782A (en) Discharge lamp lighting device and lighting system
JP2001016873A (en) Power supply equipment
JPH0613188A (en) Electric discharge lamp lighting device
KR20010057869A (en) FET gate drive circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees