TWI270689B - Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same - Google Patents

Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same Download PDF

Info

Publication number
TWI270689B
TWI270689B TW94116697A TW94116697A TWI270689B TW I270689 B TWI270689 B TW I270689B TW 94116697 A TW94116697 A TW 94116697A TW 94116697 A TW94116697 A TW 94116697A TW I270689 B TWI270689 B TW I270689B
Authority
TW
Taiwan
Prior art keywords
lens
optical system
fourier transform
meniscus
group
Prior art date
Application number
TW94116697A
Other languages
Chinese (zh)
Other versions
TW200641397A (en
Inventor
Ji-Yong Zeng
Guo-Fan Jin
Min-Qiang Wang
Ying-Bai Yan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94116697A priority Critical patent/TWI270689B/en
Publication of TW200641397A publication Critical patent/TW200641397A/en
Application granted granted Critical
Publication of TWI270689B publication Critical patent/TWI270689B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

This invention relates to a compact unsymmetrical Fourier transform optical system in an order from an object side to a Fourier transform plane including a first lens group having a negative power, a second lens group having a positive power. The first lens group has a first meniscus lens and a second meniscus lens both having a negative power respectively. The first meniscus lens has a convex surface on the object side and an opposite concave surface. The second meniscus negative power lens has a convex surface on the Fourier transform plane side and an opposite concave surface. The second lens group has of a lens having a positive power, and the lens has a convex surface on the object side. The invention also provides a volume holographic data storage optical system using the unsymmetrical Fourier transform optical system.

Description

1270689 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種傅里葉變換全息攝像之記錄、再現用之傅里葉變換光 學系統。 【先前技術】 a m 作馬二維存儲技術之體全息存儲技術,由於其具有數據存儲密 度大、傳輸速率高及讀出時間短等優點,已成為存儲技術發展之重點。在 體全息存儲系統中,一般採用傅里葉變換光學系統存取數據。 ,典型之體全息存儲光學系統,其包括一前組傅里葉變換鏡頭及一後組 逆傅里葉變換鏡頭兩個鏡頭系統;輸入面,一般為空間光調製器(Spatiai Ught Modulator,SLM),置於前組傅里葉變換鏡頭之前焦面上,平行光入射 到輸^面,衍射光經前組傅里葉變換鏡頭成像在其後焦面上,後焦面也稱 為頻譜面,為記錄介質;而該頻譜面置於後組逆傅里葉變換鏡頭之前焦面 上,頻譜面之頻譜像經後組逆傅里葉變換鏡頭成像在其後焦面上,後&面 也稱輸出面,一般為CCD(Charge-C〇upled Dev㈣或 CMOS(C〇mplememary-Metal-〇xide S咖iconductor Transistor) 〇 ’ 在,全息存儲光學系統中,前組傅里葉變換鏡頭與後組逆傅里葉變換 鏡頭可採用不同之兩個鏡m也可採用同—個鏡頭系統,該鏡頭系統 之正向光路結構作為前組傅里葉變換鏡頭,其逆向光路結構作為後组逆傅 里茱變換鏡頭,該逆向光路結構為其正向光路結構之翻轉。 傅里葉變換鏡麵補光成像之獅,蚊其鏡頭需滿足以 ί蘭像魏位置控制像差;第—對物像共概位置:物在無窮遠, =在别焦面’像在後焦面;第二對物像共輛位置:物在前焦面光閣在 上’像在絲遠處。(2)平行於光軸出射之主総滿足正弦停件.⑶ 消除各種單色像差,達到衍射受限。 ㈣件,⑶ 之隹i使=_高密度資訊存儲,要求傅里葉變換鏡頭具有較短 之…距,為美兩存儲密度,要求增大物面並減小衍射光成 求採用非對稱結構之傅里葉變換光學系統^ '、’ P要 然而’目則非對稱傅里葉變換鏡頭一般採用非對稱之5片以上球面透鏡 1270689 之 =形式,其難以滿繼息存儲技術對傅里輸鏡頭之結構緊凑化 有鑒於此,有必要提供一種非對稱傅里 與备彡 【發明内容】 質較佳等^系統之體全息存儲峨統,其可具有結構較緊凑像 組,其中,該第二ii^ir 具有正光焦度之第二透鏡 二彎月型倉读i if 面相對之一第一彎月型負透鏡及一第 面之一透鏡表面為凸面。 止還鏡該正透鏡之朝向物 該非ί稱條件’另—方面有利於球差及轴外像差校正, 茶篗換先子糸統應滿足約束條件(1)〜(3): 0.1<RlR/f<0.4 ...... (1) •〇*4<R2F/f<-0.1 ...... (2) 0.1<di2/f<0.3 ...... (3) 式中,f:非對稱傅里葉變換光學系統之焦距; •第一彎月型負透鏡之凹面曲率半徑;1270689 IX. Description of the Invention: [Technical Field] The present invention relates to a Fourier transform optical system for recording and reproducing Fourier transform hologram. [Prior Art] A m is a holographic storage technology for two-dimensional storage technology. It has become the focus of storage technology development due to its advantages of large data storage density, high transmission rate and short readout time. In volume holographic storage systems, data is typically accessed using a Fourier transform optical system. a typical volume holographic storage optical system comprising a front group Fourier transform lens and a rear group inverse Fourier transform lens; the input surface, generally a Spatiai Ught Modulator (SLM) , placed on the focal plane of the front group Fourier transform lens, parallel light is incident on the transmission surface, and the diffracted light is imaged on the back focal plane through the front group Fourier transform lens, and the back focal plane is also called the spectrum surface. The recording medium is placed on the focal plane of the back-group inverse Fourier transform lens, and the spectrum of the spectrum surface is imaged on the back focal plane by the post-group inverse Fourier transform lens, and the back & The output surface is generally CCD (Charge-C〇upled Dev (4) or CMOS (C〇mplememary-Metal-〇xide S coffee iconductor Transistor) 在' In the holographic storage optical system, the front group Fourier transform lens and the latter group The inverse Fourier transform lens can use two different mirrors m or the same lens system. The forward optical path structure of the lens system is used as the front group Fourier transform lens, and the reverse optical path structure is used as the rear group inverse Fuli.茱 transform lens, the reverse The structure of the road is the flipping of its forward optical path structure. The lion of the Fourier transform mirror fill light imaging, the lens of the mosquito must meet the control position of the ί 兰 like Wei position; the first - the total position of the object image: the object is infinite Far, = in the other focal plane 'like in the back focal plane; the second pair of objects like the total position: the object in the front focal plane is on the top of the image like 'in the distance of the silk. (2) the main axis parallel to the optical axis Satisfy the sinusoidal stop. (3) Eliminate various monochromatic aberrations and achieve diffraction limitation. (4) Pieces, (3) 隹i makes =_ high-density information storage, requires Fourier transform lens to have a shorter ... distance, for the US two storage Density, it is required to increase the object surface and reduce the diffracted light into a Fourier transform optical system using an asymmetric structure. ^', 'P', however, the asymmetric Fourier transform lens generally uses an asymmetrical spherical surface of more than 5 In the form of the lens 1270689, which is difficult to be full-storage storage technology, the structure of the Fourier lens is compact. In view of this, it is necessary to provide an asymmetric Fourier and the preparation of the system. Holographic storage system, which may have a more compact image group, wherein The second ii^ir has a positive power of the second lens and the second meniscus type read i if the surface is opposite to the first meniscus type negative lens and a first surface of the lens surface is convex. The orientation of the lens is not the same as the condition of 'other', which is beneficial to the spherical aberration and the off-axis aberration correction. The tea buds should satisfy the constraint conditions (1)~(3): 0.1<RlR/f<0.4 (1) •〇*4<R2F/f<-0.1 ...... (2) 0.1<di2/f<0.3 ...... (3) where f : focal length of an asymmetric Fourier transform optical system; • concave radius of curvature of the first meniscus negative lens;

Rzf ·第一芎月型負透鏡之凹面曲率半徑·, p弓眩♦戸^ · ί一彎月型負透鏡與第二彎月型負透鏡之間光軸上之空氣 ° ’、Ρ弟弓月型負透鏡與第二彎月型負透鏡相對之兩個凹面之光軸 上之間距; 二中二Rm大方、條件⑴之上限時正向光路之球差及正弦差向負方向 過刀〜大逆向光路之轴外像差增大。當Rir小於條 下限 上述相反之現象。 ? 1270689 當R2F大於條件(2)之上限時,正向光路之球差、正弦差向正方向增大, 逆向光路之軸外像差增大。當Rw小於條件(2)之下限時,産生與上述相反之 現象。 f上述可知,利用Rm及之變化,可以校正正向光路之球差及正弦 差’當R】r及尺亦在條件⑴及(2)範圍以外任意改變時,正向光路之球差及正 弦差很容易校正,而逆向光路之軸外像差向負或正方向過分增大,此時校 正很=難。當R1R及r2F滿足條件⑴及(2)時,逆向桃之轴外縣可以校正。 當山2大於條件(3)之上限時,正向光路之球差正方向增大,同時正弦差 負方向增大,因此球差與正弦差之分散太大而導致校正因難,並且逆向光 路之軸外縣也難峨正。當dl2小於條件(3)之下限時,纽與上述大於條 件(3)之上限時之相反之現象。如兩側之曲率半徑‘及&在條件⑴及& 阳制下將d〗2減小至大於條件⑶之下限時,有利於逆向 較小數值孔徑較大視場角之光線通過。 ’、 因此,該非對稱傅里葉變換光學系統滿足約束條 較大數飢魏較小郷肖,其娜統具妹錢值孔徑及^ 束條紐好校正場#,該撕_里葉·光料統還應滿足約 η3>1·7..... η3·ϋ2>〇·15 式中,η2 : (4) (5) 第二彎月型負透鏡之材料折射率: 第二透鏡組材料折射率; =中n透鏡組材騎卿%小於 面躺鱗面H㈣貞透麟料騎率„2之差# 之下限¥,逆向光路之場曲較難校正。去 、条件(5) ⑷,並且料_魏·財凸_ 材騎群&滿足條件 叱之差滿樹K5)時,也有利_^差=_透册料折射率 系統如、她,__輸光學 1270689 〇.55<f3/f<〇.9...... (6) 式中,f3:第二透鏡組之焦距; ,中,當第二透鏡組之焦距&大於條件(6)之上限,第二透鏡組分擔之正 ^度過小’逆向_光路之軸外像差較難校正;當第二透鏡組之焦距⑽於條 及正錢組分擔之正繼敬,透鏡表_過大,球差 優選的,所述正透鏡為一雙凸正透鏡。 物側細編—綱第一透鏡組 向該====組為一彎月型正透鏡,該弯月型正透鏡之朝 =譜:二_=㈣,及=== 及-第二彎月細鏡,該相對之·第—彎月型負透鏡 月型負透鏡之凸面朝向頻譜面;該第==面=面:第二弯 朝向物面之一透鏡表面為凸面。 边兄、,且匕括一正透鏡,該正透鏡之 為一方面確保滿足正弦條件一 該前組傅里雜換光料姻滿足約雜件⑴I校正球差_卜像差, 0.1<RiR/f<0.4...... (1) ' -0.4<R2p/f<-〇# 1 ...... (2) 〇*l<d]2/f<0.3...... (3) 式中’f·· ^傅轉變換絲錢n n’f月型負透鏡之凹面曲 第第二月型負透鏡之凹面曲率半二 間隔’亦即第_彎月型負透月型負透鏡之間光軸上之空氣 上之間距·, 透鏡與第二臂月型負透鏡相對之兩個凹面之光軸 9 1270689 束條i(t(5)馳好之校正獅,該前_里葉變減«統還應滿足约 η3>1·7 • · · ♦•鲁 (4) η3-η2>0.15 式中 (5) η2 η3 第二彎月型負透鏡之材料折射率; 第一透鏡組材料折射率; 驗1之絲她,該細#里__ 〇.55<f3/f<〇.9...... (6) 式中’ f3 ··第二透鏡組之焦距; 優選的,所述正透鏡為一雙凸正透鏡。 娜細透― 物峨,臟透_ 統之翻轉=構猶後且逆傅里葉交換光學系統為該前組傅里葉變換光學系 苴壯前技術,本技術方案所提供之非對稱傅里葉變換絲系統, ,域光⑽、狀正向統具機缝值隸及較小視場 逆向光路具有較小數值孔徑及較大視場角;正向光路及逆向光路之 球差、軸外像差及場曲等各種單色像差均能被較好之校正;因此該非對 稱傅^茶變換光學系統之正向光路可用作傅里葉變換,逆向光路可用作逆 傅里葉變換;其可滿足體全息雜縣鮮轉佳 換光學紐之需求。 【實施方式】 下面結合附圖進一步詳細說明本發明之實施例。 第一實施例 如第圖所示,一非對稱傅里葉變換光學系統10,從物面]^到頻諸面 15數起’包括具有負絲度之第_透鏡組及具有較大正光焦度之第二透鏡 10 1270689 組。其中,第一透鏡組由二片凹面相對之一彎月型負透鏡12及一彎月型負 透鏡13組成,該彎月型負透鏡12之凸面朝向物面11,彎月型負透鏡]3之凸 面朝向頻谱面15 ;第二透鏡組由一雙凸正透鏡14組成。該非對稱傅里葉變 換光學系統10之焦距f=5〇mm,物側入射光線(正向光路)之, 視場角2ω=5·72。,頻譜面15側入射光線(逆向光路)之F數F/#=10 ,視場角 2ω:20·72°,波長;ua532^。該非對稱傅里葉變換光學系統1〇之結構參 數詳見表1 ;其中R為從物側數起各透鏡表面之曲率半徑,0為從物側數起各 透鏡表面之綠謂距,n祕侧她各透鏡之對紐長λ=α532μπι之折 射率。 為一方面確保滿足正弦條件,另一方面有利於校正球差及轴外像差, 該非對稱傅里葉變換光學系統1〇應滿足以下約東條件: 〇.l<R]R/f<0.4...... (!) •〇-4<R2F/f<-0.1 ...... (2) 0.1<d】2/f<0.3...... (3) 本實靶例中,R1R =R3=13 82753mm ; R2F=R4=11 8〇158mm ; 山2=d3=6.772233mm ;其滿足條件⑴〜⑶。 優运的’為較好校正場曲,該非對稱傅里葉變換光學系統1〇還應滿足 以下約束條件: ιΐ3>1.7...... (4) n3-n2>0.15...... (5) 本實施例中 ’ n3=l.7643G9 ; n2=1.517591 :其献條件(4)~(5)。 /更優_ ’為確保系統合理之光焦度分配,該非對稱傅里葉變換光學 系統10進一步應滿足約束條件(6): 0.55<f3/f<0.9...... (6) 本實施例中,f3/f=〇.7〇 ;其滿足條件(6)。 、第-圖、m分別為正向光路正弦差及光程差;第四圖、第五圖分 別ί逆向光路正弦差及光程差。從第二圖及第_可以看到無論係正向光 路退係逆向姚正弦差都很,】、,滿足球條件。從第三圖及第五圖可以看 到無論係正向光路還係逆向光路光程差娜小制衍射受限要求。 1270689Rzf · Concave radius of curvature of the first lunar-type negative lens ·, p-bow 戸 戸 ^ · ί The air on the optical axis between the meniscus-type negative lens and the second meniscus-type negative lens ° The distance between the two negative concave lenses and the second meniscus negative lens on the optical axis; the second two Rm generous, the upper limit of the condition (1), the spherical aberration of the positive optical path and the sinusoidal difference to the negative direction The off-axis aberration of the reverse path increases. When Rir is less than the lower limit of the strip, the opposite is true. 1270689 When R2F is greater than the upper limit of condition (2), the spherical aberration and sinusoidal difference of the forward optical path increase in the positive direction, and the off-axis aberration of the reverse optical path increases. When Rw is less than the lower limit of the condition (2), a phenomenon opposite to the above is caused. f As can be seen from the above, by using the change of Rm, the spherical aberration and sine difference of the forward optical path can be corrected. When R and r are arbitrarily changed outside the range of conditions (1) and (2), the spherical aberration and sine of the forward optical path are corrected. The difference is easy to correct, and the off-axis aberration of the reverse path is excessively increased in the negative or positive direction, and the correction is very difficult. When R1R and r2F satisfy the conditions (1) and (2), the reverse axis can be corrected. When the mountain 2 is greater than the upper limit of the condition (3), the positive direction of the spherical aberration of the positive optical path increases, and the negative direction of the sinusoidal difference increases, so the dispersion of the spherical aberration and the sinusoidal difference is too large, resulting in difficulty in correction, and the reverse optical path The off-axis county is also difficult to correct. When dl2 is less than the lower limit of the condition (3), the relationship between the nucleus and the above is greater than the upper limit of the condition (3). If the radius of curvature ‘and &&&&&&&&&&&&&&&&&&&&&&&&&&&& ', therefore, the asymmetric Fourier transform optical system satisfies the constraint bar with a larger number of hunger Wei Xiaoxiao, its Natong with the sister money value aperture and ^ bundle bar New good correction field #, the tear _ Liye light The system should also satisfy about η3>1·7..... η3·ϋ2>〇·15 where η2 : (4) (5) Material refractive index of the second meniscus negative lens: second lens group Material refractive index; = medium n lens group riding Qi% is smaller than face lying scale H (four) 贞 麟 骑 骑 „ „ „ „ „ „ „ „ „ „ „ „ „ 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限 下限And material _Wei _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ F3/f<〇.9 (6) where f3 is the focal length of the second lens group; , wherein, when the focal length of the second lens group & is greater than the upper limit of the condition (6), the second If the lens component is too small, the out-of-axis aberration of the 'reverse _ optical path is difficult to correct; when the focal length (10) of the second lens group is positive and the positive component, the lens table _ is too large, and the spherical aberration is preferred. The positive lens is a double convex Lens. The object side is finely braided—the first lens group is a meniscus positive lens to the ==== group, and the meniscus positive lens is facing the spectrum: two _=(four), and === and - The second meniscus mirror, the convex surface of the relative -th meniscus type negative lens moon type negative lens faces the spectrum surface; the first == face = surface: the second corner faces the object surface, and the lens surface is convex. And including a positive lens, the positive lens ensures that the sinusoidal condition is satisfied on the one hand, and the front set of the sinusoidal light-changing material satisfies about the miscellaneous pieces (1)I corrected spherical aberration _b aberration, 0.1<RiR/f<;0.4...... (1) ' -0.4<R2p/f<-〇# 1 ...... (2) 〇*l<d]2/f<0.3...... (3) where the 'f·· ^ Fu-transformed silk money n n'f month-type negative lens concave curved second-moon type negative lens concave curvature half-two interval 'that is the first _ meniscus type negative month The distance between the air on the optical axis between the negative lenses, the optical axis of the two concave surfaces opposite to the lens and the second arm-shaped negative lens. 1 1270689 bundle i (t(5) calibrated lion, the former _里叶降减« The system should also satisfy about η3>1·7 • · · ♦•Lu (4) η3-η2>0.15 where (5) η2 3 The refractive index of the material of the second meniscus negative lens; the refractive index of the material of the first lens group; the silk of the test 1 , the fine #里__ 〇.55<f3/f<〇.9... (6) where 'f3 ·· the focal length of the second lens group; preferably, the positive lens is a double convex positive lens. Na is fine------------------------------- The Liye exchange optical system is a pre-extension technology of the front group Fourier transform optical system, and the asymmetric Fourier transform silk system provided by the technical solution, the domain light (10), the shape of the positive forward machine seam value The smaller field of view reverse optical path has a smaller numerical aperture and a larger field of view; various monochromatic aberrations such as spherical aberration, off-axis aberration and field curvature of the forward optical path and the reverse optical path can be better corrected; The positive optical path of the asymmetric Fu-Chao transform optical system can be used as the Fourier transform, and the reverse optical path can be used as the inverse Fourier transform; it can meet the requirements of the holographic multiplex county. [Embodiment] Hereinafter, embodiments of the present invention will be described in further detail with reference to the accompanying drawings. In a first embodiment, as shown in the figure, an asymmetric Fourier transform optical system 10, from the object surface to the frequency surface 15, includes a _ lens group having a negative filament and a large positive power. The second lens 10 is a group of 1270689. Wherein, the first lens group is composed of two concave surfaces opposite to one of the meniscus type negative lens 12 and one meniscus type negative lens 13 , and the convex surface of the meniscus type negative lens 12 faces the object surface 11 and the meniscus type negative lens] The convex surface faces the spectral surface 15; the second lens group consists of a double convex positive lens 14. The focal length f = 5 〇 mm of the asymmetric Fourier transform optical system 10, incident light (positive optical path) on the object side, and the angle of view 2ω = 5.72. The F-number of the incident light (reverse optical path) on the side of the spectrum surface 15 is F/#=10, the angle of view is 2ω: 20·72°, and the wavelength is ua532^. The structural parameters of the asymmetric Fourier transform optical system 1 详 are shown in Table 1; where R is the radius of curvature of each lens surface from the object side, and 0 is the green distance of each lens surface from the object side, n secret The refractive index of the pair of her lenses is λ = α532μπι. In order to ensure that the sinusoidal condition is satisfied on the one hand, and to correct the spherical aberration and the off-axis aberration on the other hand, the asymmetric Fourier transform optical system 1 should satisfy the following conditions: 〇.l <R]R/f<0.4 ...... (!) •〇-4<R2F/f<-0.1 ...... (2) 0.1<d]2/f<0.3...... (3) In the target example, R1R = R3 = 13 82753 mm; R2F = R4 = 11 8 〇 158 mm; Mountain 2 = d3 = 6.772233 mm; which satisfies the conditions (1) to (3). For the better correction of the field curvature, the asymmetric Fourier transform optical system 1〇 should also meet the following constraints: ιΐ3>1.7...... (4) n3-n2>0.15..... (5) In the present embodiment, 'n3=l.7643G9; n2=1.517591: conditions (4) to (5). / Better _ 'To ensure a reasonable power distribution of the system, the asymmetric Fourier transform optical system 10 should further satisfy the constraint (6): 0.55 <f3/f<0.9... (6) In the present embodiment, f3/f = 〇.7〇; which satisfies the condition (6). The first graph and m are the positive optical path sinusoidal difference and the optical path difference respectively; the fourth and fifth graphs are respectively ί reverse optical path sinusoidal difference and optical path difference. From the second picture and the _ can be seen, regardless of the forward optical path retreat, the reverse Yao chord difference is very good,], to meet the ball condition. It can be seen from the third and fifth graphs that regardless of the forward optical path, the optical path difference of the reverse optical path is limited by diffraction requirements. 1270689

--------------一丨-40.68527 45.32936 篇雜對_里葉變換光學系統ig之正向光路及逆向光路同 守滿足正弦條件’且達到娜受限要求。因此,其正向光路可作 換’其逆向光路可作逆傅里葉變換;且該非對稱傅 $統1〇 ϊ=ι冓光路結構可分別用作-體全息存二^ 里茱k換先子系統及後組逆傅里葉變換光學系統。 第二實施例 25數I第—非對稱傅里葉變換光學系統2G,從物面21到頻譜面 細ϋ 度之第—透餘及具有較大正就度之第二透鏡 靜二’'第一透鏡組由二片凹面相對之一彎月型負透鏡22及-f月型負 透鏡22之凸面朝向物面21,f月型負透鏡23之凸 :朝向頻獅25 4二透鏡組由—雙凸正透鏡24組成。該非對稱傅 換光學系職之焦跡55mm,物獻射光線(正向光 觸角,觸_人射統(稍光路)之聰純,視場I m ^長Μ532""。該非對稱傅里葉變換光學純20之結構參數詳 iii丄為從物側數起各透鏡表面之曲率半徑,d為從物側數起各透 ^表面之光轴上間距,n為從物側數起各透鏡之對應波長又=〇 532卿之折射 方Μ賴足正弦·,另—方的繼校正球差及軸外像差, 該非對稱傅里葉變換光學系統20應滿足以下約束條件·· 〇·】< Rir/f<(X4 ...... (1) -0.4< R2F/f<-ai ······ (2) (3) 〇.l<d12/f<〇.3 12 Ϊ270689 d 本芦、虼例中,r1r =R3=15 〇836imm ; 129〇65mm ; π&7·469536_ ;其滿足條件⑴〜(3)。 以的’為較好校正場曲,該_麟里葉賴光學线2G還應滿足 以下約束條件: " ^3^1.7..... Π3-η2>0.15 (4) (5) 本實㈣彳中’ n3=L7643Q9 ;如1507225 ;其滿足條件⑷〜(5)。 〇.55<f3/f<〇.9 ⑹ ^實施例巾’._;其騎騎⑹。 逆向光::弦為i向光路正弦差及光程差;圖9、第十圖分別為 向光路正弦«彳M、\;^^及®9可以看雜職正Μ路還係逆 正向光路還係逆向舰看到無論係-------------- 一丨-40.68527 45.32936 The pair of positive-optical-transform optical systems ig's positive and reverse optical paths meet the sinusoidal condition' and meet the Na-restricted requirements. Therefore, the forward optical path can be changed as 'the reverse optical path can be used as the inverse Fourier transform; and the asymmetric Fu 〇ϊ 〇ϊ 〇ϊ 冓 冓 冓 冓 路 可 可 可 换 换 换 换 换 换 换 换 换 换Subsystem and post-group inverse Fourier transform optical system. The second embodiment 25 number I-Asymmetric Fourier transform optical system 2G, from the object surface 21 to the spectral surface fineness - the first and the second lens having a large positive degree The lens group consists of two concave surfaces opposite to one of the meniscus type negative lens 22 and the convex surface of the -f month type negative lens 22 toward the object surface 21, and the convex shape of the f-type negative lens 23: toward the frequency lion 25 4 two lens group by - double The convex positive lens 24 is composed. The asymmetric Fu-changing optical system has a focal spot of 55mm, and the object emits light (positive light tentacles, touches the _man-shot system (slightly light path), the field of view I m ^ 长Μ 532"" The structural parameters of the leaf-transformed optical purity 20 are detailed iii丄, the radius of curvature of each lens surface from the object side, d is the distance on the optical axis of each surface from the object side, and n is the number of lenses from the object side. The corresponding wavelength is again = 〇 532 之 折射 Μ Μ Μ Μ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正<Rir/f<(X4 ...... (1) -0.4<R2F/f<-ai ······· (2) (3) 〇.l<d12/f<〇.3 12 Ϊ 270689 d In this reed and 虼 example, r1r = R3 = 15 〇 836 imm ; 129 〇 65 mm ; π & 7 · 469536 _ ; which satisfies the condition (1) ~ (3). The 'for better correction field curvature, the _ lin The Lie Lai optical line 2G should also satisfy the following constraints: " ^3^1.7..... Π3-η2>0.15 (4) (5) The real (four) '中 'n3=L7643Q9; such as 1507225; Condition (4) ~ (5). 〇.55<f3/f<〇.9 (6) ^Implementation Example towel '._; its riding (6). Reverse light:: The string is the sine difference and the optical path difference of the i-direction optical path; Figure 9 and the tenth figure are the sine of the optical path «彳M, \;^^ and ®9 can Seeing the miscellaneous job, the road is also reversed, and the reverse path is also seen by the reverse ship.

時滿足正弦條件,且、* /▼—茶變換光學純2G之正姑路及逆向光路同 葉變換,其逆向^2衍射纽要求。耻,其正㈣路結構可作傅里 系統20之正㈣作里葉Μ ;頭賴_«變換光學 之前組傅里葉變 換^向光路結構可分卿作-體全息雜光學系統 第三實施二予糸統及後組逆傅里葉變換光學系統。 R(mm) 無窮大 —22.17936 —15.08361 •12.9065 :16.91654 63.07369 —_^8.4945 由上可知’該非對稱傅里 如第十一圖你·; ’、#對稱傅里葉^換光學系統3G,從物面31到頻譜 13 1270689 ’ ι括具有貞歧度之第一透鏡組、具錄纽光焦度之第 及置於第-魏_側之具核小正絲度之第三透鏡組。其中, 第一透鏡組由二片凹面相對之一彎月型負透鏡32及一彎 ^ 型負透鏡32之凸面朝向物面31,f月型負透鏡%之凸面朝^^ 36组成弟組由—雙凸正透鏡%組成,·第三透鏡組由—彎月型正“ 6,且士 :和月型正透鏡36之朝向物面狀—透鏡表㈣凸面。該 傅里葉變換光學系統30之焦距f=4〇mm,物側入射光線(正向光路)之F數 F/#,25,視場角2ω=5.72。,頻譜面側入射光線(逆向光路)之聊細〇, 視,角2ω=2ό ’波長λ=α532μ^。該雜稱傅里葉變換光學祕3()之結構 錄詳見表3 ’·其中,R為從物側數起各透鏡表面之曲率半徑,d為從物側數 起各透鏡表蚊光軸上_,n為從物織起各透鏡之賴波似=α 之折射率。 ^ " 呆滿足正弦條件,另一方面有利於校正球差及軸外像差, 該非對稱傅里葉變換光學系統3〇滿足以下約束條件: 〇.1< R]R/f<0.4......⑴ ~〇-4< R2F /f<-0.1 ...... (2) 0.1<d12/f<0.3...... (3) 本貫施例中,R1R如⑽㈣4mm ; R2f=R6= i2 32391咖; Α2=(^7·182503πιπι ;其滿足條件⑴〜⑶。 優選的,為較好校正場曲,該非對_里_換光料霸還應滿足 以下約束條件: η3>1.7 ……(4) Π3·Π2>0·15...... (5) 本實施例中,㈣.⑽⑽;η2=1 551456 ;其滿足條件(4Μ5)。 更優選的,為確保系統合理之光焦度分配,該非對稱傅里葉變換光學 系統30進一步應滿足約束條件(6): 0.55<f3/f<0.9......⑹ 本實施例中,f3/f=a76 ;其滿足條件(6)。 第十二圖、第十三圖分別為正向光路正弦差及光程差·,針四圖、第 14 1270689 達到衍 一向光路正弦差及光綠。從第十二圖及第如 茲=ΐΓ逆向光路正弦差都很小,滿足正弦條件。從 射受限要^。以看到⑼係正向光路還係逆向光路光程差都很小,The sinusoidal condition is satisfied, and */▼-the tea transforms the optically pure 2G Zhenggu road and the reverse optical path with the same leaf transformation, and the inverse ^2 diffraction threshold is required. Shame, its positive (four) road structure can be used as the Fourier system of the Fourier system (four) for the Liye Μ; the head 赖 _ «transformation optics before the group Fourier transform ^ to the optical path structure can be divided into two - the implementation of the volume holographic hybrid optical system Two pre- and post-group inverse Fourier transform optical systems. R(mm) infinity—22.17936—15.08361 •12.9065 :16.91654 63.07369 —_^8.4945 It can be seen from the above that 'the asymmetric Fuli is the eleventh figure you;; ', #symmetric Fourier^change optical system 3G, from the object 31 to The spectrum 13 1270689 ' includes a first lens group having an indifference degree, a third lens group having a recorded refractive power, and a third lens group having a small nuclear positiveness placed on the first-Wei side. Wherein, the first lens group is composed of two concave surfaces opposite to one of the meniscus type negative lens 32 and one convex type negative lens 32 facing the object surface 31, and the convex surface of the f-type negative lens is formed toward the ^^36 It consists of a double convex positive lens %, a third lens group consisting of a meniscus positive "6, and a slanting face of the positive lens 36 and a lens surface (four) convex surface. The Fourier transform optical system The focal length of 30 is f=4〇mm, the F-number of incident light (positive light path) on the object side is F/#,25, and the angle of view is 2ω=5.72. The incident light on the side of the spectrum side (reverse light path) is fine. , angle 2ω=2ό 'wavelength λ=α532μ^. The structure of the miscellaneous Fourier transform optical secret 3() is shown in Table 3 '· where R is the radius of curvature of each lens surface from the object side, d In order to count from the object side, the optical axis of each lens is _, n is the refractive index of each lens from the object weaving = α. ^ " Stay sine condition, on the other hand, it is good for correcting spherical aberration and For the off-axis aberration, the asymmetric Fourier transform optical system 3〇 satisfies the following constraints: 〇.1<R]R/f<0.4...(1) ~〇-4< R2F /f<-0.1 . ..... (2) 0 .1<d12/f<0.3...... (3) In the present embodiment, R1R is as (10) (four) 4 mm; R2f = R6 = i2 32391 coffee; Α 2 = (^7·182503πιπι; which satisfies the conditions (1) to (3). Preferably, in order to better correct the curvature of field, the non-pair _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the present embodiment, (4). (10) (10); η2 = 1 551456; which satisfies the condition (4Μ5). More preferably, the asymmetric Fourier transform optical system 30 should further satisfy the constraint condition to ensure a reasonable power distribution of the system ( 6): 0.55 <f3/f<0.9 (6) In the present embodiment, f3/f=a76; which satisfies the condition (6). The twelfth and thirteenth drawings are the forward optical paths, respectively. Sinusoidal difference and optical path difference·, pin four figure, 14 1270689 reach the sinusoidal difference and light green of the divergent optical path. From the twelfth picture and the second ΐΓ ΐΓ 向 reverse path, the sine difference is very small, satisfying the sine condition. Restricted to ^. To see that (9) is the positive optical path, the optical path difference of the reverse optical path is very small,

------,.顯 20.01926 ~ wit可知’該傅里葉變換光㈣統3G之正㈣路及逆向光路 正弦條件,且達着贼_求。,其正向光 tin 逆向光料作逆傅里葉魏;域雜㈣ 換光«統及後組·里葉變換光„統。以“系統之歧傅里葉變 第四實施例 “if十六_示’—非對稱傅里葉變換光學系統4G,從物面_頻言並 …二包括具有負光焦度之第—透鏡組、具有較大正光焦度之第二i ΐ二ΐΠ:透鏡組物側之具有較小正光焦度之第三透鏡組。其;, 弟透鏡、.·且由一片凹面相對之一 f月型負透鏡42及 ^ f , f 片正透鏡44組成’該正透鏡44之朝向物面41之一透 鏡表面為凸面’第三透鏡組由—㈣型正透鏡46組成該 之朝向物面41之-透鏡表面為凸面。該非對稱傅里葉變換^隹 ,Ef=44mm,^^^W^f/#=2 2 , ^#^ω=5 ;〇,頻: 面側入射光線㈣光路)之F數F/#=11,視場角2ω=256。 ^ ㈣。該鞠緋編Q之結構輪詳絲& ;財U從物 15 1270689 側數起各透&表面之曲率半;^,d為從物側軸各透絲面之絲上間距, η為從物紐起各透鏡之對應波長λ=α532μηι之折鮮。 為方面雄保滿足正弦條件,另一方面有利於校正球差及 該非對_里»觀料綱滿足町約束餅: 0.1< Rir /f<0.4 ...... (i) -0.4< R2F /f<-0.1 O.kcWMU … 本實施例中 (2) ⑶ Rir :〜=10·06888ππή ; R2F=R6=-i4.21〇65_ ; d12=d5=5.2516mm ;其滿足條件⑴〜⑶。 以下件為秘彳山#曲轉對稱傅里_絲料統⑽還應滿足 Π3>1·7...... (4) ^3~^2>0.15 ...... (5) 中 ’ „3=1·7_9; η2=1551456;其滿秘件(4)〜(5)。 /優選的’為確保系統合理之光焦度分配,該非對稱傅里葉變換光風 糸統40進一步應滿足約束條件(6): 八、先予 0.55<f3/f<〇.9...... (6) 本實施例中,·〇·84 ;其滿足條件⑹。 七圖帛十八圖分別為正向光路正弦差及光程差;第十九圖、m 二工圖&別為逆向光路正弦差及光程差。從第十七圖及第十九圖可= 無論係正向光路還传遂向井故τ抚兰古看到 m2 ί 差都很小,滿^正弦條件。從第十八圖 射受限要求1看到無論係正向光路祕逆向光路光程差都很小,達到衍------,. Display 20.01926 ~ wit knows that the Fourier transform light (four) unified 3G positive (four) road and reverse optical path sine condition, and reached the thief _ seeking. , the forward light tin reverse light material is inverse Fourier Wei; domain miscellaneous (four) light change «the system and the rear group · the inner leaf transform light „ system. The “system of the difference Fourier transform fourth embodiment” if ten Six-indicator--Asymmetric Fourier transform optical system 4G, from the object surface _ frequency and ... two include a lens group with negative power, a second i ΐ two with larger positive power: a third lens group having a smaller positive power on the lens group side; the second lens is formed by a concave surface opposite to the f-type negative lens 42 and the f f positive lens 44 One of the lens faces of the positive lens 44 facing the object surface 41 is a convex surface. The third lens group is composed of a - (four) type positive lens 46 which faces the object surface 41. The lens surface is convex. The asymmetric Fourier transform ^ E, Ef =44mm,^^^W^f/#=2 2 , ^#^ω=5 ;〇,frequency: F-number of face-side incident light (four) optical path F/#=11, field of view 2ω=256. ^ (4) The structure of the 轮 Q Q Q 轮 & &&; 从 从 从 从 从 从 从 从 从 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 η is the correspondence of each lens from the object The wavelength λ=α532μηι is used for the sine condition. On the other hand, it is beneficial to correct the spherical aberration and the non-pair _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (i) -0.4< R2F /f<-0.1 O.kcWMU ... In this embodiment (2) (3) Rir :~=10·06888ππή ; R2F=R6=-i4.21〇65_ ; d12=d5= 5.2516mm; it satisfies the conditions (1)~(3). The following is the secret 彳山# 曲转形傅傅_丝料统(10) should also satisfy Π3>1·7... (4) ^3~^2> 0.15 ...... (5) Medium ' „3=1·7_9; η2=1551456; full of secret parts (4)~(5). /Preferred 'To ensure a reasonable power distribution of the system, the asymmetric Fourier transform light wind system 40 should further satisfy the constraint condition (6): VIII, first 0.55 <f3/f<〇.9... (6) In the present embodiment, 〇·84; which satisfies the condition (6). The seven figure and the eighteenth figure are the positive optical path sinusoidal difference and the optical path difference respectively; the nineteenth figure, the m two-dimensional drawing & are not the reverse optical path sinusoidal difference and the optical path difference. From the seventeenth and the nineteenth figure can be = no matter whether it is the forward light path or not, it is said that the m2 ί difference is very small, full ^ sine condition. From the eighteenth shot limit requirement 1 to see that the optical path difference of the optical path is very small, regardless of the forward optical path.

16 127068916 1270689

由上可知’咸傅里葉變換光學系統40之正肖光路及逆向光路同時滿足 正弦條件I達到彳轉受限要求。因此,其正向光路可作傅里葉變換,其 逆向光路可作逆傅里葉變換;且該非對稱傅里葉變換光轉_之正向光 路]構及逆向_結射分顧作_體全息存儲光學祕之前組傅里葉變 換光學紐錢㈣触葉賴鮮純。 θ另外表5係以上4個實施例對應之光學特性,包括孔徑(f用)'視 場角(2ω)、^贿旧,以及與前面每個條件式對應之數值、It can be seen from the above that the sinusoidal optical path and the reverse optical path of the salty Fourier transform optical system 40 satisfy the sinusoidal condition I at the same time. Therefore, the forward optical path can be Fourier transformed, and the reverse optical path can be inverse Fourier transform; and the asymmetric Fourier transform optical turn _ the positive optical path] and the inverse _ sigma split _ body Holographic storage optical secrets before the group of Fourier transform optical New Zealand (four) touch leaves Lai fresh. θ additionally Table 5 is the optical characteristics corresponding to the above four embodiments, including the aperture (for f), the field of view (2ω), the bribe, and the value corresponding to each of the preceding conditions.

另外 與^對於第一、第二、第三及第四實施例中之各個非對稱傅里 辨入二二可採用其正向光路結構與逆向光路結構之不陳合以組成-白=二槿統:如採用第二實施例非對稱傅里葉變換光學系統之正 傅里葉變換光㈣統,且·第-實關非對稱傅里 葉變 逆向光路結構作為其後組逆傅里葉變換光學系統;或採 稱傅里葉變換光學系統之正向光路結構作為前組傅里葉 第三實_^^ 結構作為後組逆傅里葉變換光學系統等組合 第圖係本發明第一實施例非對稱傅里葉變換光學系統之結構示 圖 意 17 1270689 弦差。 程差 弦差 程差 圖。 正弦差 程差 弦差 程差 圖。 正弦差 第十三圖 光程差。 弟二圓係本發明第—實施例非對稱傅里葉變換光學系統之正向光路正 弟一圖係本毛明弟—貫施例非對稱傅里葉變換光學系統之正向光路光 弟四圖係本發明第—實施例非對稱傅里葉變換光學系統之逆向光路正 第五圖係本發明第—實施例非對稱傅《祕光學系統之逆向光路光 第六圖係本發明第二實施例非對稱傅里葉變換光學系統之結構示意 ^圖係係本發明第二實施例非對稱傅里葉變換光學系統之正向光路 弟八圖係本發明第二實施例非對稱傅里葉變換光學系統之正向光路光 第九圖係本發明第二實施例麵稱傅里葉變換光學系統之逆向光路正 弟十圖係本發明第二實施例非對稱傅里葉變換光學系統之逆向光路光 第十-圖係本發明第三實施例非對稱傅里葉變換光學系統之結構示意 =二圖係本發明第三實施例非對稱傅里葉變換光學系統的正向光路 係本發明第三實施例非對稱傅里葉變換光學系統之正向光路 正弦1切圖係本發·三實施例麵稱傅里葉題光學錢之逆向光路 絲2五®係本發明第三實補賴_里葉變換光學魏之逆向光路 第十謂縣發明第四#關非_傅里葉賴絲緒之結構示意 18 1270689 第十七圖係本發明第四實施例非對稱傳里 正弦差。 葉變換光學系統之正向光路 第十八圖係本發明第四實施例非對稱傳里葉 光程差。 ’、 變換光學系統之正向光路 第十九圖 正弦差。 係本發明第四實關麵_里葉_光學纽之逆向光路 弟二十圖 光程差。 係本發明第四實施例麵_里雜換光學純之逆向光路In addition, with respect to each of the first, second, third, and fourth embodiments, the asymmetric optical path structure and the reverse optical path structure may be combined to form a white-two-turn. The system uses the positive Fourier transform optical (four) system of the asymmetric Fourier transform optical system of the second embodiment, and the first-actual asymmetric asymmetric Fourier transform reverse optical path structure as the subsequent inverse Fourier transform An optical system; or a forward optical path structure called a Fourier transform optical system as a pre-group Fourier third real _^^ structure as a post-group inverse Fourier transform optical system, etc. For example, the structure of the asymmetric Fourier transform optical system is shown in Fig. 17 1270689. The path difference chord difference path difference graph. Sinusoidal difference chord difference path difference graph. Sinusoidal difference Thirteenth diagram Optical path difference. The second optical system of the invention is a positive optical path of the asymmetric Fourier transform optical system of the first embodiment of the present invention. The first optical system of the asymmetric optical path of the asymmetric Fourier transform optical system The fifth embodiment of the reverse optical path of the asymmetric Fourier transform optical system of the first embodiment of the present invention is a second embodiment of the present invention. Structure of a Symmetric Fourier Transform Optical System A schematic diagram of a positive Fourier transform optical system of a second embodiment of the present invention The ninth diagram of the forward optical path light is the reverse optical path of the second embodiment of the present invention, which is called the Fourier transform optical system. The reverse optical path of the asymmetric Fourier transform optical system of the second embodiment of the present invention 10 is a schematic diagram of the structure of the asymmetric Fourier transform optical system of the third embodiment of the present invention. The second embodiment is a third embodiment of the asymmetric optical path system of the asymmetric Fourier transform optical system of the third embodiment of the present invention. Example Asymmetric Fourier transform optical system, the forward optical path sinusoidal 1 cut chart is the same as the third embodiment, the surface is called the Fourier problem optical money, the reverse light path wire 2 5® system, the third real compensation of the invention _ Liye Transformation optics Wei Zhi reverse light path tenth county invention fourth # 关非_傅里叶赖丝绪's structure diagram 18 1270689 The seventeenth embodiment is a fourth embodiment of the invention asymmetric asymmetry sine difference. The forward optical path of the leaf-converting optical system Fig. 18 is an asymmetrical cross-leaf optical path difference of the fourth embodiment of the present invention. ', the positive optical path of the transform optical system. Figure 19 Sinusoidal difference. The fourth real aspect of the invention is _Liye_Optical New Zealand's reverse optical path. According to the fourth embodiment of the present invention, the reverse optical path of the optically pure optical

【主要元件符說說明】 非對稱傅里葉變換光學系統 物面 彎月型負透鏡 雙凸JL透鏡 頻譜面 JL透鏡 10、 20、30、40 11、 21、31、41 12、 13、22、23、32、33、42、43 14、 24、34 15、 25、35、45 44 彎月型正透鏡 46[Major component description] Asymmetric Fourier transform optical system object meniscus type negative lens double convex JL lens spectrum surface JL lens 10, 20, 30, 40 11, 21, 31, 41 12, 13, 22, 23, 32, 33, 42, 43 14, 24, 34 15, 25, 35, 45 44 meniscus positive lens 46

1919

Claims (1)

1270689 十、申請專利範圍·· ].-種非對稱傅里葉變換光學系統,其從物面到頻譜面,包括一 1有負光隹 度之弟-透鏡組及-具有正光焦度之第二透鏡組,其中,該第二透鏡 之—第—彎月型負透鏡及—第二_型負透鏡, 二I二彎月型負透鏡之凸面朝 *本“几二T 透鏡,該正透鏡之朝向物面之-透 ^ Ϊ πΓ 稱傅里葉變換光學系統滿足約束條件⑴〜⑶: U. 1 <K]r/I<U.4 ...... (i) -0.4<R2F/f<-0· 1 0.1<d]2/f<0.3 ··· 式中 (2) (3) f:非對稱傅里葉變換光學系統之焦距; R】r:第一彎月型負透鏡之凹面曲率半徑; R2F •第二彎月型負透鏡之凹面曲率半徑; 隔 山2:第一弯月型負透鏡與第二彆月型負透鏡之間光轴上空氣間 Π3>1·7...... (4) n3*^2>0.15 ...... (5) 式中,η2·第二弯月型負透鏡之材料折射率; 二 % :第二透鏡組材料折射率。 3·如申請專利範項所述傅系 稱傅里葉變換絲_滿足約其中所述非對 〇-55<f3/f<〇.9 ……(6) 式中f3·第二透鏡組之焦距。 糊賴換光學系 5·如申請專利範圍第】證 統,其中所述非對項所述之非對稱傅里葉變換光學系 對%敎錢換絲线觀括—置於該第_透鏡組物 20 1270689 側之具有正光焦度之第三透 6.如申請專利範圍第5項所述對 透鏡_-彎·正細⑽輯里^換姑錢,其巾所述第三 為凸面。谢魏,辦㈣正魏讀向該物面之-透鏡表面 7 —前祕里雜齡學纽及—後組逆 面,包括光學系統’其從物面到‘ 組,其中 一第二彎月型負透鏡,該Η * 3月沒負透鏡及 彎月型_之凸面朝向頻譜:;該第二===鏡該:: ΪΪΪ=^,表面為凸面;該前組傅里葉變換光學系二 0.1<R1R/f<〇e4 ......⑴ *〇.4<R2F/f<-0.1 ...... (2) 0.1<di2/f<0.3 式中,f : (3) f ••前組傅里葉變換光學系統之焦距; Rm:第一彎月型負透鏡之凹面曲率半徑; If ·第二彎月型負透鏡之凹面曲率半徑; 隔 d12 ·第—f月型負透鏡與第二彎月型負透鏡之間光軸上空氣間 8·如申請專利範M7項所述之體全息_光學系統,其中所述前組傅里葉 變換光學糸統滿足約束條件(4)〜(5) ·· Π3>1·7...... (4) η3-η2>0.15 ...... (5) 式中 ,η2 η3 · 第一寫、月型負透鏡之材料折射率·, 第一透鏡組材料折射率。 9·如申請專利範圍第7項所述之體全息存储光學系統,其中所述前組傅里葉 麦換光學乐統滿足約束條件(6): ⑹ 〇.55<f3/f<〇.9 21 1270689 式中’ & ··第二透鏡組之焦距。 10·如申請專利範圍第7項所述之體全息存儲光學系統其中所 i 一雙凸正透鏡。 逐%為 11.如申請專利範圍第7項所述之體全息存儲光學系統,其中所述前 茶變換光學系統還包括一置於該第一透鏡組物側之具有正光焦度之 三透鏡組。 、、、又乐 12气申Γ專Γί圍第11項所述之體全息存儲光學系統,其中所述第三透鏡 ㈣正親,該彎月型正透鏡之朝向該物面之—透 凸面。 13'^Γ^ " 讀絲H騎辑_里葉義光料統之翻 轉結構。1270689 X. Patent application scope ···--Asymmetric Fourier transform optical system, from the object plane to the spectrum surface, including a 1 - negative lens - lens group and - with positive power a two lens group, wherein the second lens - the first meniscus type negative lens and the second type _ negative lens, the convex surface of the two I two meniscus type negative lens faces the "two T lenses" The direction of the lens toward the object surface 透 Γ π Γ The Fourier transform optical system satisfies the constraints (1) ~ (3): U. 1 < K] r / I < U.4 ...... (i) -0.4 <R2F/f<-0·1 0.1<d]2/f<0.3 ··· where (2) (3) f: focal length of the asymmetric Fourier transform optical system; R]r: first The radius of curvature of the concave surface of the meniscus negative lens; R2F • the radius of curvature of the concave surface of the second meniscus negative lens; the mountain 2: the air between the first meniscus negative lens and the second moon type negative lens Π3&gt ;1·7...... (4) n3*^2>0.15 ...... (5) where η2·the second meniscus negative lens material refractive index; two%: second The refractive index of the lens group material. 3. As described in the patent application section The Fourier transform wire _ satisfies about the non-contrast-55<f3/f<〇.9 (6) where f3·the focal length of the second lens group. The symmetry system, wherein the non-symmetric Fourier transform optical system described in the non-parameters is viewed on the side of the 敎 lens group 20 1270689 and has a positive power The third through 6. As described in the fifth paragraph of the patent application scope, the lens _-bend and the fine (10) are replaced by the money, and the third of the towel is convex. Xie Wei, do (four) Zheng Wei read the object Face-Lens Surface 7 - Front Secret Age and New - Back Group Negative, including the optical system 'from the object to the 'group, one of the second meniscus negative lenses, the Η * 3 months without The convex surface of the lens and meniscus _ towards the spectrum:; the second === mirror:: ΪΪΪ = ^, the surface is convex; the front set of Fourier transform optics two 0.1 < R1R / f < 〇 e4. .....(1) *〇.4<R2F/f<-0.1 ...... (2) 0.1<di2/f<0.3 where f: (3) f •• former group Fourier The focal length of the transform optical system; Rm: the first meniscus negative lens Concave radius of curvature; If · concave radius of curvature of the second meniscus negative lens; spacer d12 · between the -f month type negative lens and the second meniscus type negative lens between the air on the optical axis 8 · as in the patent model M7 The volume holography-optical system according to the item, wherein the front set Fourier transform optical system satisfies the constraint condition (4)~(5) ··Π3>1·7... (4) η3- Η2 > 0.15 (5) where η2 η3 · the refractive index of the material of the first write, the moon type negative lens, and the refractive index of the material of the first lens group. 9. The volume holographic storage optical system of claim 7, wherein the front group of Fourier wheat for optical music meets the constraint condition (6): (6) 〇.55<f3/f<〇.9 21 1270689 where & is the focal length of the second lens group. 10. The volume holographic storage optical system of claim 7, wherein the double lenticular positive lens. The volume holographic storage optical system of claim 7, wherein the front tea conversion optical system further comprises a three lens group having positive refractive power disposed on the side of the first lens group. . The volume holographic storage optical system according to Item 11, wherein the third lens (four) is a positive parent, and the meniscus positive lens faces the object surface through the convex surface. 13'^Γ^ " Reading silk H riding series _ Liye Yiguang material system turning structure. 22twenty two
TW94116697A 2005-05-23 2005-05-23 Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same TWI270689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94116697A TWI270689B (en) 2005-05-23 2005-05-23 Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94116697A TWI270689B (en) 2005-05-23 2005-05-23 Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same

Publications (2)

Publication Number Publication Date
TW200641397A TW200641397A (en) 2006-12-01
TWI270689B true TWI270689B (en) 2007-01-11

Family

ID=38430236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94116697A TWI270689B (en) 2005-05-23 2005-05-23 Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same

Country Status (1)

Country Link
TW (1) TWI270689B (en)

Also Published As

Publication number Publication date
TW200641397A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
Fan et al. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement
TW561473B (en) Objective lens, light converging optical system, optical pickup apparatus, and recording/reproducing apparatus
TW451072B (en) Optical scanning device
JP2003279851A (en) Single lens having high numerical aperture, optical head device using the same and optical information recording and reproducing device
TW200821621A (en) Zoom lens
JP4422673B2 (en) Fourier transform optical system and hologram memory optical system
TW558654B (en) Objective lens, optical pickup apparatus, and recording and/or reproducing apparatus
JP2002303787A5 (en)
CN206074892U (en) Focus lens in a kind of long-focus
TW200411649A (en) Object lens for optical pick-up apparatus, optical pick-up apparatus and regeneration apparatus of optical information record
JP4539651B2 (en) Objective lens, optical head, and optical pickup device
TW539869B (en) Objective lens for optical pickup apparatus and optical pickup apparatus
TWI270689B (en) Unsymmetrical fourier transform optical system and volume holographic data storage optical system using the same
TWI278681B (en) Optical system for optical pickup apparatus
TW201250278A (en) Projection lens
TWI303415B (en) Optical pickup device, optical information recording and reproducing apparatus and objective lens
Muñoz et al. High-order aspherics: the SMS nonimaging design method applied to imaging optics
JP4477598B2 (en) Asymmetric Fourier transform optical system and hologram memory optical system
JP4723164B2 (en) Objective lens for optical information recording / reproducing device
JP4232188B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
Yan Photographic fisheye lens design for 35mm format cameras
JP2003084196A (en) Objective lens, optical pickup device and recording/ reproducing device
JP2003015031A5 (en)
TW200811469A (en) Objective lens system
Yan Selected Topics in Novel Optical Design