TWI270363B - Systems and methods for automated ventilator waveform recognition and measure based on ontologies - Google Patents

Systems and methods for automated ventilator waveform recognition and measure based on ontologies Download PDF

Info

Publication number
TWI270363B
TWI270363B TW94145529A TW94145529A TWI270363B TW I270363 B TWI270363 B TW I270363B TW 94145529 A TW94145529 A TW 94145529A TW 94145529 A TW94145529 A TW 94145529A TW I270363 B TWI270363 B TW I270363B
Authority
TW
Taiwan
Prior art keywords
point
respiratory
breathing
waveform
slope
Prior art date
Application number
TW94145529A
Other languages
Chinese (zh)
Other versions
TW200724093A (en
Inventor
Chang-Shing Lee
Mei-Hui Wang
Augustine Tsai
Han-Chao Lee
Charles Weng
Original Assignee
Inst Information Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Information Industry filed Critical Inst Information Industry
Priority to TW94145529A priority Critical patent/TWI270363B/en
Application granted granted Critical
Publication of TWI270363B publication Critical patent/TWI270363B/en
Publication of TW200724093A publication Critical patent/TW200724093A/en

Links

Abstract

Methods for automated ventilator waveform recognition and measure based on ontologies are provided. A first instant and a first pressure of a first significant point corresponding to an actual ventilator waveform are provided. A second instant and a second pressure of a second significant point corresponding to the actual ventilator waveform are provided. A slope between the first and second significant points is accordingly calculated. A degree of slope possibility distribution corresponding to the calculated slope is acquired according to information regarding a slope possibility distribution. The acquired degree of slope possibility distribution is displayed.

Description

1270363 策 九、發明說明: 【發明所屬之技術領域】 此發明是一種醫療之電腦輔助技術,特別是一種基於知識本體之自動 化呼吸波形判讀暨量測方法及系統。 【先前技術】 目如呼吸器監控畫面上所顯示之壓力·時間、流速_時間、容積_時間及 谷積-壓力圖已成為呼吸治療診斷上一種不可或缺的資訊。目前胸腔專科醫 師都是透過聽診搭配呼健制_呼吸參數值,進行病患呼吸相關病症 ⑩ 的診斷,但這對於病患呼吸病症的嚴重程度(相對於正常狀況程度)不易有準 * 確疋畺數值的判定,故本專利提出一基於知識本體之呼吸波形判讀、量測 , 機制與系統,可判讀一完整週期之呼吸波型的呼吸氣道壓力、呼吸時間與 呼吸波形斜率可能性分佈,並量測出與正常波形的差異程度,以將其偏離 正常之嚴重程度數值化,提供醫師做更準確之判斷。 【發明内容】 由於呼吸病患為數者眾,目前呼吸器監控晝面上所顯示之壓力-時間、 流速-時間、容積-時間及容積_壓力圖已成為呼吸治療診斷上一種不可或缺 魯 的資成。目如胸腔專科醫師都是透過聽診搭配呼吸器量測到的呼吸參數 值,進行病患呼吸相關病症的診斷,但這對於病患呼吸病症的嚴重程度(相 對於正常狀況程度)不易有準確定量數值的判定。本發明的目的在於解決上 it問通以模糊邏輯為基礎,進而建構一套基於知識本體之智慧型呼吸波 幵乂判項機制與系統,以節省醫療資源。藉由建立呼吸氣道壓力可能性分佈 ' 及呼吸時間可能性分佈,再透過模糊波形斜率建構演算法(Fuzzy Wavefonn ' SlQpe e()n_etic)n Algorithm: FWSCA)來推論出呼吸氣道壓力對呼吸時間 的呼吸波形斜率可能性分佈,以進一步計算出輸入呼吸波形屬於正常波形 的可能性。 依據上述目的,本發明實施例揭露一種基於知識本體之自動化呼吸波 Chenfs Docket N〇.:ACI94022 s Docket No:0213-A40656-TW/Final/Jonah/20051117 5 1270363 -形·暨制綠,被—處科元職行,其枝包括··提仙應於實際 呼讀形中的第—職狀第—呼吸時_與第-呼吸氣道壓力,以及相 應於實際呼吸波形中的第二特徵點之第二啤吸時間點與第二呼吸氣道壓 力二依據第-呼吸時間點、第—呼吸氣道壓力、第二呼吸時間點與第二呼 吸氣道壓力,β十算第-特徵點與第二特徵點間之呼吸波形斜率;依據呼吸 波形斜率之可紐分佈資訊,取得減於呼吸波形斜率之呼吸波形斜率隸 屬程度;以及顯示呼吸波形斜率隸屬程度。 本發明實施例另揭露-觀腦可讀取贿媒體,用以儲存電腦程式, • _腦程式用以載人至電齡統巾並且使得該電齡統執行如上所述之基 於知識本體之自動化呼吸波形判讀暨量測方法。 本發明實施例更揭鉻一種基於知識本體之自動化呼吸波形判讀暨量 測系統,包括一個輸出單元與一個處理單元。處理單元耦接於輸出單元, 用以提供相應於實際呼吸波形中的第一特徵點之第一呼吸時間點與第一呼 吸氣道壓力,以及相應於實際呼吸波形中的第二特徵點之第二呼吸時間點 與第二呼吸氣道壓力;依據第一呼吸時間點、第一呼吸氣道壓力、第二呼 吸時間點與第二呼吸氣道壓力,計算第一特徵點與上述第二特徵點間之呼 鲁 吸波形斜率;依據呼吸波形斜率之可能性分佈資訊,取得相應於呼吸波形 斜率之呼吸波形斜率隸屬程度;以及透過輸出單元顯示呼吸波形斜率隸屬 程度。 其中,呼吸波形斜率之可能性分佈資訊係使用訓練方法而得。 【實施方式】 • 第1圖係表示依據本發明實施例之基於知識本體之自動化呼吸波形判 項暨篁測糸統10之硬體架構圖’包括處理單元11、記憶體12、儲存裝置 13、輸出裝置14、輸入裝置15、通訊裝置16,並使用匯流排17將其連結 在一起。除此之外,熟習此技藝人士也可將此系統實施於其他電腦系統樣 態(configuration)上,例如,手持式設備(hand-held devices)、多處理器系統、1270363 策 九, invention description: [Technical field of invention] This invention is a computer-aided technology for medical treatment, in particular, an automatic breathing waveform interpretation and measurement method and system based on knowledge ontology. [Prior Art] The pressure, time, flow rate_time, volume_time, and grain-pressure map displayed on the respirator monitoring screen have become an indispensable information for the diagnosis of respiratory therapy. At present, the thoracic specialists are diagnosed with the patient's respiratory related symptoms by auscultation with the respiratory parameter _ breathing parameter value, but this is not easy to be accurate for the severity of the patient's respiratory disease (relative to the normal condition). The determination of the value of 畺, so this patent proposes a respiratory waveform interpretation, measurement, mechanism and system based on the knowledge ontology, which can interpret the respiratory airway pressure, respiratory time and respiratory waveform slope probability distribution of a complete cycle of respiratory waveforms, and The degree of difference from the normal waveform is measured to quantify its deviation from normal severity, providing the physician with a more accurate judgment. SUMMARY OF THE INVENTION Because of the large number of respiratory patients, the current pressure-time, flow-time, volume-time and volume_pressure maps displayed on the respirator monitoring surface have become an indispensable part of the diagnosis of respiratory therapy. Capital. For example, the thoracic specialists diagnose the respiratory-related conditions of the patient by auscultation with the values of the respiratory parameters measured by the respirator, but this is not easy to accurately quantify the severity of the respiratory condition of the patient (relative to the normal condition). The determination of the value. The object of the present invention is to solve the problem that the upper it is based on fuzzy logic, and then construct a set of intelligent respiratory wave sputum judgment mechanism and system based on knowledge ontology to save medical resources. By establishing a respiratory airway pressure probability distribution' and a breathing time probability distribution, and then using the fuzzy waveform slope construction algorithm (Fuzzy Wavefonn 'SlQpe e()n_etic)n Algorithm: FWSCA) to infer the respiratory airway pressure versus breathing time The respiratory waveform slope probability distribution is further calculated to further calculate the likelihood that the input respiratory waveform is a normal waveform. According to the above object, an embodiment of the present invention discloses an automatic breathing wave based on the knowledge ontology Chenfs Docket N〇.: ACI94022 s Docket No:0213-A40656-TW/Final/Jonah/20051117 5 1270363 - Shape · cum green, by - In the department of the department, the branch includes: the first position in the actual call form - the breathing time _ and the first - respiratory airway pressure, and the second characteristic point corresponding to the actual respiratory waveform The second beer suction time point and the second respiratory airway pressure 2 are based on the first-breathing time point, the first-breathing airway pressure, the second breathing time point and the second respiratory airway pressure, and the beta-characteristic-characteristic point and the second characteristic point The slope of the respiratory waveform; the degree of membership of the respiratory waveform minus the slope of the respiratory waveform is obtained based on the information of the slope of the respiratory waveform; and the degree of membership of the respiratory waveform is displayed. According to another embodiment of the present invention, a brain-reading bribery medium is used for storing a computer program, and a brain program is used to carry a person to an electric age towel and enable the electronic age system to perform the automation based on the knowledge ontology as described above. Respiratory waveform interpretation and measurement method. The embodiment of the invention further discloses an automatic breathing waveform interpretation and measurement system based on the knowledge ontology, comprising an output unit and a processing unit. The processing unit is coupled to the output unit for providing a first breathing time point corresponding to the first feature point in the actual respiratory waveform and the first respiratory airway pressure, and a second corresponding to the second characteristic point in the actual respiratory waveform a breathing time point and a second breathing airway pressure; calculating a Hulu between the first feature point and the second feature point according to the first breathing time point, the first breathing airway pressure, the second breathing time point, and the second respiratory airway pressure The slope of the waveform is absorbed; according to the probability distribution information of the slope of the respiratory waveform, the degree of membership of the respiratory waveform corresponding to the slope of the respiratory waveform is obtained; and the degree of membership of the respiratory waveform is displayed through the output unit. Among them, the probability distribution information of the slope of the respiratory waveform is obtained by using a training method. [Embodiment] FIG. 1 is a diagram showing a hardware structure diagram of an automatic breathing waveform judgment and measurement system based on an ontology according to an embodiment of the present invention, including a processing unit 11, a memory 12, a storage device 13, The output device 14, the input device 15, and the communication device 16 are connected together using the bus bar 17. In addition, those skilled in the art can implement this system on other computer system configurations, such as hand-held devices, multi-processor systems,

Client’s Docket No.:ACI94022 TT^ Docket No:0213-A40656-TW/Final/Jonah/20051117 ⑧ 1270363 Λ ·以微處理器為基礎或可程式化之消費性電子產品(miCr〇process〇r_baSed οι* consumer electronics)、網路電腦、迷你電腦、大型主機以及 類似之設備。處理單元11可包含一單一中央處理單元(central_pr〇cessing_ cpu)或者是關連於平行運算環境__ processing 之多個平5 行處理單元。3己憶體12包含唯讀記憶體(1^〇11以11^111〇1^;1^〇]^)、快閃記 憶體(£^11〇]\4)以及/或動態存取記憶體(聰(1〇1]1咖娜11^111()1^1^]^,$ 以儲存可供處理單it 11執行之程式模組以及資料。一般而言,程式模組包 含常序(routines)、程式扣嗯㈣、物件(object)、元件(c〇mp〇nent)等,用以 φ 執行電子學習順序編輯系統功能。本發明亦可以實施於分散式運算環境, • 其運算工作被一連結於通訊網路之遠端處理設備所執行。在分散式環境 中,基於知識本體之自動化呼吸波形判讀暨量測系統1〇之功能執行,也許 、 由本地以及多部遠端電腦系統共同完成。儲存裝置13包含硬碟裝置、軟碟 裝置、光碟裝置或隨身碟裝置,用以讀取硬碟、軟碟、光碟、隨身碟中儲 存之程式模組以及/或資料。 第2圖係表示依據本發明實施例之範例呼吸波形知識本體架構圖。呼 吸波形知識本體200可儲存於記憶體12(第丨圖)或儲存裝置13(第1圖)中, 疋一個由領域層210、主類別層23〇、次類別層250及概念層270,這四層 所組成的物件導向式知識本體架構。主類別層23〇包含壓力對時間波形圖、 容積對時間波形圖、流速對時間波形圖、壓力對容積波形圖以及流速對容 積波形圖等主類別。次類別層250包括呼吸時間可能性分佈、呼吸氣道壓 力可能性分佈、呼吸波形斜率可能性分佈等次類別。概念層27〇又由生理 參數層及症狀層273所組成。生理參數層271包含呼吸時間、呼吸氣 道壓力、波形斜率、肺順應性、肺部生理機轉、呼吸功、動脈血液氣體分 , 析等概念(c_ept),以及各概念間的關聯(associati〇ns)。症狀層273包含氣 %、慢性支氣管炎、支氣管擴張、塵肺症、肺纖維化等概念,以及各概念 間的關聯。Client's Docket No.: ACI94022 TT^ Docket No:0213-A40656-TW/Final/Jonah/20051117 8 1270363 Λ Microprocessor-based or programmable consumer electronics (miCr〇process〇r_baSed οι* consumer Electronics), network computers, mini computers, mainframes and similar devices. The processing unit 11 may comprise a single central processing unit (central_pr〇cessing_cpu) or a plurality of flat 5 line processing units associated with the parallel computing environment __processing. 3 Recalling body 12 contains read-only memory (1^〇11 to 11^111〇1^; 1^〇]^), flash memory (£^11〇]\4) and/or dynamic access memory体(聪(1〇1)1咖娜11^111()1^1^]^,$ to store program modules and data for processing single it11. In general, the program module contains the sequence (routines), program deduction (four), object (object), component (c〇mp〇nent), etc., for performing the e-learning sequence editing system function. The invention can also be implemented in a decentralized computing environment, • its computing work Executed by a remote processing device connected to the communication network. In a decentralized environment, the function of the automated breathing waveform interpretation and measurement system based on the knowledge ontology is performed, perhaps by local and multiple remote computer systems. The storage device 13 includes a hard disk device, a floppy disk device, a compact disk device or a flash drive device for reading a program module and/or data stored in a hard disk, a floppy disk, a compact disk, a flash drive, and the like. An exemplary breathing waveform knowledge ontology architecture diagram is provided according to an embodiment of the present invention. The respiratory waveform knowledge body 200 can Stored in the memory 12 (Fig. 1) or the storage device 13 (Fig. 1), an object consisting of the domain layer 210, the main class layer 23, the sub-category layer 250, and the concept layer 270. A guided knowledge ontology architecture. The main class layer 23 includes a pressure versus time waveform, a volume versus time waveform, a flow versus time waveform, a pressure vs. volume waveform, and a flow versus volume waveform. The subcategory layer 250 includes The respiratory time probability distribution, the respiratory airway pressure probability distribution, and the respiratory waveform slope probability distribution are sub-categories. The conceptual layer 27〇 is composed of a physiological parameter layer and a symptom layer 273. The physiological parameter layer 271 includes breathing time and respiratory airway pressure. , waveform slope, lung compliance, pulmonary physiology, respiratory work, arterial blood gas, analysis, etc. (c_ept), and the association between concepts (associati〇ns). Symptom layer 273 contains gas%, chronic bronchi Concepts such as inflammation, bronchiectasis, pneumoconiosis, pulmonary fibrosis, and the association between concepts.

Client 5s Docket N〇.:ACI94022 TT5s Docket No:〇213-A40656-TW/Final/J〇nah/20051117Client 5s Docket N〇.:ACI94022 TT5s Docket No:〇213-A40656-TW/Final/J〇nah/20051117

(I 7 1270363 第3圖係表示依據本發明實施例之範例之正常呼吸波形,其中包含起 始氣道壓力(airway pressure)、尖峰壓力加吐pressure)、高原壓力⑼拙如 pressure)、吐氣末正壓力 ^p〇skive end_expi加〇ry pressure)、吸氣時間 (inspiration time)及呼氣時間(eXpirati〇n time)等資訊。通常,每一個呼吸波形 包含六個特徵點A到F。 本發明之基於知識本體之自動化呼吸波形判讀暨量測方法分為兩階 段:判讀訓練;與實際量測。於判讀訓練階段中,提供相應於一個訓練呼 吸波形之特徵點(signiflcant points,如第3圖中之A到F)的壓力對時間資 訊、任意兩個特徵點間之呼吸氣道壓力可能性分佈㈧如仙办 distribution,or pressure membership也触⑽)與呼吸時間可能性分佈作咖 possibility distribution,or time membership function)資訊,據以計算出任意 兩個特徵點間之呼吸波形斜率可能性分佈(sl〇pe p〇ssibmty distributi〇n,沉 slope membership function)資訊,並建構出呼吸波形知識本體(亦可稱為訓練 知識本體)。於量測階段中,提供相應於一個實際呼吸波形之特徵點的壓力 對時間資訊,此實際呼吸波形可由一個呼吸量測儀器所偵測而得,代表一 個病患或被檢查者的呼吸波形。接著,依據判讀訓練階段所得到之任意兩 個特徵點間之呼吸氣道壓力、呼吸時間與呼吸波形斜率可能性分佈資訊, 計算並顯示實際呼吸波形中之任意一個特徵點之呼吸氣道壓力、呼吸時間 與任意兩個特徵點間之呼吸波形斜率的隸屬程度。當計算後之隸屬程度越 接近於”1”,代表實際呼吸波形中之特定特徵點之呼吸氣道壓力、呼吸日^間 與特定特徵點間之呼吸波形斜率,越趨近於正常的情況。反之,當計算後 之隸屬程度越偏離”1”,代表實際呼吸波形中之特定特徵點之呼吸氣道壓 力、呼吸時間與特定特徵點間之呼吸波形斜率,越偏離於正常的情況。兩 階段中之實施細節請參考以下的說明。 第4圖係表示依據本發明實施例之自動化呼吸波形判讀暨量測之判讀 訓練方法。於步驟S411,提供相應於一個訓練呼吸波形之特徵點的壓力對(I 7 1270363 Fig. 3 shows a normal respiratory waveform according to an example of an embodiment of the present invention, including initial airway pressure, peak pressure plus pressure, plateau pressure (9) such as pressure), and end-expiration Pressure ^p〇skive end_expi plus ry pressure), inspiration time and exhalation time (eXpirati〇n time) and other information. Typically, each breathing waveform contains six feature points A through F. The automatic ontology waveform interpretation and measurement method based on the knowledge ontology of the invention is divided into two stages: interpretation training; and actual measurement. During the interpretation training phase, provide pressure versus time information corresponding to a training breath waveform (signiflcant points, such as A to F in Fig. 3), and a respiratory airway pressure probability distribution between any two feature points (8) Such as the distribution, or pressure membership (10)) and the distribution of the possibility of breathing time, or time membership function information, according to the calculation of the probability distribution of the respiratory waveform between any two feature points (sl〇 Pe p〇ssibmty distributi〇n, sinking membership function), and constructing the respiratory waveform ontology (also known as training ontology). In the measurement phase, pressure versus time information corresponding to a feature point of an actual respiratory waveform is provided. The actual respiratory waveform can be detected by a respiratory measuring instrument to represent the respiratory waveform of a patient or subject. Then, based on the respiratory airway pressure, respiratory time and respiratory waveform slope probability distribution information between any two feature points obtained during the training phase, the respiratory airway pressure and breathing time of any one of the actual respiratory waveforms are calculated and displayed. The degree of membership of the slope of the respiratory waveform between any two feature points. When the calculated degree of membership is closer to "1", the respiratory wave pressure between the respiratory airway pressure and the specific feature point of the specific feature point in the actual respiratory waveform is closer to the normal situation. Conversely, the more the degree of membership after the calculation deviates from "1", the more the respiratory wave pressure, the breathing time, and the slope of the respiratory waveform between the specific feature points representing the specific feature points in the actual respiratory waveform deviate from the normal situation. Please refer to the following instructions for implementation details in the two phases. Fig. 4 is a diagram showing an automatic breathing waveform interpretation and measurement interpretation training method according to an embodiment of the present invention. In step S411, a pressure pair corresponding to a feature point of a training respiratory waveform is provided

Client’s Docket No·:ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 1270363Client’s Docket No·: ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 1270363

時間資訊。此資訊可以由-個檔案或資料庫中輸人,或可以透過一個使用 者介面(useri血face,m)輸入。第5圖係表示依據本發b月實施例之範例訓練 呼吸波形之特徵點的壓力對時間輸入介面則,其中包含六個子輸入區域 510至560,分別相應於如第3圖所示之特徵點A到F,每一個子輸入區域 可讓使用者輸人指定特徵_壓力與_等資訊。於步驟⑽,提供任音 兩個特徵點間之呼吸氣道壓力可紐分佈魏。任意兩個特徵關之啊 氣道壓力可能性分佈資訊包含模糊數的起始支持师响卿⑽肩、起 始核心點(begin㈣,BC)、結束核心點_賺,EC)與結束支持點_ 哪P〇rt,ES)。此資訊可由步驟則所提供的資訊計算而得,由一個播案或 資料庫中輸人’或可以透過-個使用者介面輸人。第6a圖係表示依據本發 明實施例之範鑛顏A卿_ 3 _啊氣道 介細,包含四個輸入攔細、613、615與617,分概讓 入模糊數”呼魏道壓力”的起始域點、起触_、結束如輯处束 支持點。於步驟S433,提供任意兩個特徵點間之呼吸時間可能性分佈資L 任意兩個特徵點狀呼吸_可紐分佈f訊包含翻數的起始支持點、 起始核心點、結束核心點與結束支持點。此資訊可由步驟s4u所提供的資 訊計算而得,由-健案或資料庫中輸入,或可以透過—個使用料面輸 入。第6b圖係表示依據本發明實施例之範例特徵點a到b間(第3靶的: 吸時間可能性分佈輸入介面630,包含四個輸入搁位631、633 Μ% :纪7, 分別用來讓使用者輸入模糊數,,呼吸時間,,的起始支持點、起始核心點、社 束核心點與結束支持點。 人"〜 於步驟S451,依據呼吸氣道壓力與時間可能性分佈資訊,吁曾出任立 兩個特徵闕之呼吸波形斜率可能性分佈資訊。任細個特徵 波形斜率可紐分鍾訊包含模驗的起始支持點、起始核心點、社束核 心點與結束支持點。此步驟可使用模糊波形斜率建構演算法Time information. This information can be entered from a file or database, or it can be entered via a user interface (useri blood face, m). Figure 5 is a diagram showing the pressure versus time input interface of the feature points of the training breathing waveform according to the example of the present invention, including six sub-input areas 510 to 560, corresponding to the feature points as shown in Fig. 3, respectively. A to F, each sub-input area allows the user to enter information such as characteristics _pressure and _. In step (10), the respiratory airway pressure between the two feature points is provided. Any two features related to the airway pressure probability distribution information including the starting number of the fuzzy number of supporters (10) shoulder, starting core point (begin (four), BC), ending core point _ earning, EC) and ending support point _ P〇rt, ES). This information can be calculated from the information provided in the step, from a broadcast or database to the input or can be entered through a user interface. Fig. 6a is a diagram showing the embodiment of the invention, according to the embodiment of the present invention, the squadron A _ 3 _ ah airway fine, including four input barriers, 613, 615 and 617, the subdivision of the fuzzy number "Hu Weidao pressure" The starting domain point, the start _, and the end point are the bundle support points. In step S433, the respiratory time probability distribution between any two feature points is provided. L. Any two characteristic point-like breaths _ can be distributed, including the starting support point, the starting core point, and the ending core point of the flip number. End the support point. This information can be calculated from the information provided in step s4u, entered from the health record or database, or can be entered through a use surface. Figure 6b shows an exemplary feature point a to b according to an embodiment of the present invention (the third target: suction time likelihood distribution input interface 630, comprising four input shelves 631, 633 Μ%: 纪7, respectively To let the user input the fuzzy number, the breathing time, the starting support point, the starting core point, the social beam core point and the ending support point. The person "~ in step S451, according to the respiratory airway pressure and time probability distribution Information, Yu has served as the two characteristics of the respiratory waveform slope probability distribution information. Any fine characteristic waveform slope can be used to include the initial support point of the model, the starting core point, the social core point and the end support Point. This step can use the fuzzy waveform slope construction algorithm.

Waveform Slope Construction Algorithm)來計算出任意兩個特徵點間之]^Waveform Slope Construction Algorithm) to calculate between any two feature points ^

Client’s Docket No···ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 9 1270363Client’s Docket No···ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 9 1270363

波形斜率可能性分佈資訊,模糊波形斜率建構演算法如下所示。 輪入· Pbs,Pbc,Pec,Pes,TBS,TBC,TEC,TES 輪出:〜,,〜 步麻1:計算出呼吸波形斜率的四個可能起始核心點與結束核心點:Waveform slope probability distribution information, fuzzy waveform slope construction algorithm is shown below. Rounds · Pbs, Pbc, Pec, Pes, TBS, TBC, TEC, TES Round: ~,, ~ Step 1 : Calculate the four possible starting core points and ending core points of the respiratory waveform slope:

PbcITbc,pbcItec,PecItbc,PecItec 步麻2:計算出呼吸波形斜率的四個可能起始支持點與結束支持點:PbcITbc, pbcItec, PecItbc, Pecitec Step 2: Calculate the four possible starting and ending support points for the slope of the respiratory waveform:

PbS / ^BS 5 ^BS / TES ? PES / TBS , PES / TES 步麻3:取得呼吸波形斜率的起始支持點、起始核心點、結束核心點 與結束支持點·· sBS 二 Mm、PBS/TBS, pbsItes, pjTbs, pjTe“ sBC =MIN(p,c/r5C5 pbc!tec, pec/tbc, pec/Tec) sEC =MAX{pbc/Tbc, pbc!tec, pec/Tbc, pec/Tec) sES -MAX(p^/r^5 pbsItes, pes/tbs^ pes/tes) 步驟4:結束 演异法巾u減的輸人參數,表賴驗,,啊氣賴力,,之起 支持點;P5C為程式的輸入參數,表示模糊數,,呼吸氣道遷力,,之起始核 點;〜為程式的輸入參數,表示模糊數’,令及氣道壓力,,之結束核心點;7 為程式的輸人錄,表稍_,’呼魏碰力”讀束支賊為程 的輸4數,表示模糊數,,呼吸時間,,之起始支持點、為程式的輸入參數 糊數呼辦間之触核為程式的輪人參數,表示模糊藝 鱼,吸日扣間’’之結束核心點、為程式的輸出參數,表示模糊數,,呼吸波辦 “ σ支持點’〜為転式的輸出參數,表示模細:,,呼吸波形斜率,,之夫 始核心點、為程式的輸出參數,表示模糊數,,呼吸波形斜率,,之結束如 ^ 6^1 雜摘輸岭數,絲翻數,,呼赠形解,,之絲支持點< =c圖絲__㈣魏狀__ A _ 形斜率可紐分佈顯示介面65G,包含四個顯示欄位65i、653、65)5的^PbS / ^BS 5 ^BS / TES ? PES / TBS , PES / TES Step 3 : Get the starting support point , starting core point , ending core point and ending support point of the respiratory waveform slope · · sBS Mm, PBS /TBS, pbsItes, pjTbs, pjTe" sBC =MIN(p,c/r5C5 pbc!tec, pec/tbc, pec/Tec) sEC =MAX{pbc/Tbc, pbc!tec, pec/Tbc, pec/Tec) sES -MAX(p^/r^5 pbsItes, pes/tbs^ pes/tes) Step 4: End the different input parameters of the different method, the table depends on the test, the ah, the gas, the support point P5C is the input parameter of the program, indicating the fuzzy number, the respiratory airway migration force, and the starting nuclear point; ~ is the input parameter of the program, indicating the fuzzy number ', the air pressure, and the ending core point; 7 is The program's input record, the table slightly _, 'Hu Wei touch force' read the bundle thief for the process of losing 4 numbers, indicating the fuzzy number, breathing time, the starting support point, the input parameter of the program The touch between the office is the program's wheelman parameter, which means that the fuzzy art fish, the end point of the 'day button' is the end of the program, the output parameter of the program, indicating the fuzzy number, and the respiratory wave is “σ support point”~ formula The output parameters indicate the modulus:,, the slope of the respiratory waveform, the starting core point of the husband, the output parameter of the program, the fuzzy number, the slope of the respiratory waveform, and the end of the cycle, such as ^ 6^1丝翻数,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 of ^

Client’s Docket No·:ACI94022 wke⑽細.Α4·τ卿讀_2_i7 10Client’s Docket No·: ACI94022 wke(10)细.Α4·τ卿读_2_i7 10

Ci 1270363 分別用來顯示計算後之模糊數”呼吸波形斜率,,的起始支持點 點、結束核心點與結束支持點。 、…起始核心 於步驟S47;l,建構相應於呼吸波形知識本體2〇〇(第2圖)的呼吸波形 知識庫(kn〇wledge base)。知識庫中包含提供之任意兩個特徵點間之啤吸氣 與^日可能性分佈資訊,以及利_波形斜率建構演算法所 外异出任忍兩個特徵點間之呼吸波形斜率可能性分佈資訊。 旦、第7 _表示依據本發明實施例之自動化呼吸波形判讀暨量測之實際 ==法。^步驟S7U,提供相應於一個實際呼吸波形之特徵點的壓“ 夺間貝戒。舉例來說,提供之呼吸波形的特徵點(Z7,...,jr„),尤=戶7 ,其中Ρι,·.·,ρ”中之—者代表—個特定特徵點之呼吸氣道(=”而’ U中之—者代表—㈣定特徵點之,瞒咖。此魏可以由一個標 案或資料庫中輸人,或可以透過—個使用者介面輸人。第如_ : 本發明實施例之·實際呼讀形之特徵闕壓力料嶋人介面⑽(盆 ΙΓΓ:子輸入區域811、813、815與817,每-個子輸入區域可咖 者輸入扣疋特徵點的壓力與時間等資訊。 參考第7 ®,於步驟S731,依據相應之任意兩個特徵 ,之I能性分佈資訊(第4圖中之步驟⑽所示),取_ = 中1意-個特徵點之呼吸氣道勤之隸屬程度。於步驟咖,依手據= 之任忍兩個特徵點間之呼吸時間之可能性分佈資訊(如第4圖 所示),取碰力對時間資訊中之任意一個特徵點之呼 程 於步驟S751,計算勤對時間資訊中之任意兩個特徵點間之呼吸 (sl_,任意兩個特徵點間之呼吸波形斜村使用如下的 ^ ^步驟S753 ’依據域之__概闕之啊 資訊(如第4财之步驟S435所示),取懸 =之了犯丨生刀佈 徵點間之呼吸波科率之·程度 、=财之任意兩個特 反於步驟S77;I,透過輸出單元14(第ΪCi 1270363 is used to display the calculated fuzzy number "respiratory waveform slope", the initial support point, the end core point and the end support point, respectively. The starting core is in step S47; l, constructing the corresponding body corresponding to the respiratory waveform 2〇〇 (Fig. 2) Respiratory waveform knowledge base (kn〇wledge base). The knowledge base contains information on the distribution of beer inhalation and probability of any two feature points provided, and the construction of the slope of the profit_waveform The algorithm is different from the residual waveform of the respiratory waveform between the two feature points. The seventh _ represents the actual == method of the automatic respiratory waveform interpretation and measurement according to the embodiment of the present invention. ^ Step S7U, A pressure "between ring" corresponding to a characteristic point of an actual respiratory waveform is provided. For example, the characteristic points (Z7,...,jr„) of the respiratory waveform provided, especially = household 7, where Ρι,·.·, ρ" represent the respiratory airway of a particular feature point ( = "And 'U' - the representative - (four) fixed feature points, 瞒 。. This Wei can be entered by a standard or database, or can be input through a user interface. For example _ : Ben In the embodiment of the invention, the characteristics of the actual call-reading form are as follows: the pressure input device (10) (the basin: the sub-input areas 811, 813, 815 and 817, the pressure and time of the 可 疋 疋 每 每 每 每 每 每 每 每 每 每 疋 疋 疋 输入For information, refer to Section 7®, in step S731, according to any two features corresponding to the I energy distribution information (shown in step (10) in Figure 4), take _ = 1 meaning - a characteristic point of breathing The degree of subordination of airway diligence. In the step coffee, according to the data of the hand, the information on the possibility of breathing time between the two feature points (as shown in Figure 4), taking any of the features of the force versus time information The call of the point is in step S751, and the breathing between any two feature points in the time information is calculated (sl_, any The respiratory waveform between the two feature points is used as follows: ^ ^Step S753 'According to the domain __ Overview of the information (as shown in step 4 of the fourth wealth), take the suspension = the knives The degree of the respiratory wave rate between the points, any two of the money is opposite to the step S77; I, through the output unit 14 (the third

Client’s Docket N〇.:ACI94022 TT^s Docket N〇:0213-A40656-TW/Final/J〇nah/20051117 1270363 '圖)顯示各隸屬程度之計算結果於—個顯示器上。第Sb圖係表示依據本發 ' Θ實蝴之1&amp;例拉結果顯讀面83G,其巾包含特徵點A(如第2圖所示) 之呼吸氣道壓力之隸&gt;|赌⑶、點B(如帛2 _椒啊氣道壓力 ^隸屬程度833、特徵點a之呼吸時間之隸屬程度835、特徵點B之啤吸 欠間之隸屬粒度837與特徵點a與B間之呼吸波形斜率之隸屬程度等 -貝訊。具體來說,當輸入呼吸波形特徵點A=(7 5, 〇 25)及特徵點b=(22 5, 〇 3) 時,則特徵點A隸胁這讎力可能性分佈及時間的可能性分佈的程度是 1、特徵點B隸屬於這健力可紐分佈及時關可齡㈣的程度也是 # 1(參考第如與你圖)’而特徵點A到特徵點B所形成的斜率,隸屬於這個 斜率可能性分佈的程度也是K參考第6c圖)。 $ 9 ® 實施例之基於知識本體之自動化呼吸波形判 讀暨量測之電腦可讀取儲存媒體示意圖。此儲存媒體9〇,用以儲存一電腦 程式92G,狀實觀上所叙知識本社自動化呼磁義讀暨量測 方法(包含繼娜與實㈣财法)。本發明之方法與纽,如校型態或 其部份,可以以程式碼的型態包含於實體媒體,如軟碟、光碟片、硬碟、 或是任何其他機器可讀取(如電腦可讀取)儲存媒體,其中,當程式碼被機 • 15,如電腦載入且執行時’此機器變成用以參與本發明之裝置。本發明之 方法與裝置也可以以程式碼型態透過一些傳送媒體,如電線或魏、光纖、 或是任何傳輸型態進行傳送,其中,當程式碼被機器,如電職收、載入 且執行時,此機器變成用以參與本發明之裝置。當在一般用途處理單元 (general-pu—ep職sing_實作時’程式碼結合處理器提供一操作類似 於應用特定邏輯電路之獨特裝置。 雖然本發明已讀佳實關跡如上,然其並_錄定本發明,任 何熟悉此項技藝者,在不脫離本發明之精神和範圍内,當可做些許更動盘 ΙίιϊϋΙΓ】之賴細#紐社㈣專鄕麟狀者為準。”Client's Docket N〇.: ACI94022 TT^s Docket N〇:0213-A40656-TW/Final/J〇nah/20051117 1270363 'Figure' shows the calculation results of each degree of membership on a display. The Sb diagram shows the appearance of the reading surface 83G according to the present invention. The towel contains the characteristic point A (as shown in Fig. 2) of the respiratory airway pressure &gt;|gambling (3), point B (such as 帛2 _ pepper ah airway pressure ^ degree of membership 833, characteristic point a of the respiratory time of the degree of membership 835, feature point B of the beer owing between the sub-granularity 837 and the characteristic point a and B between the respiratory waveform slope Degree of membership, etc. - Beyond. Specifically, when the input respiratory waveform feature points A = (7 5, 〇 25) and the feature points b = (22 5, 〇 3), then the feature point A is threatened by this force. The degree of probability distribution of sexual distribution and time is 1. The degree of characteristic point B belongs to this Jianli can be distributed in time and the age of (4) is also #1 (refer to the picture as you figure) and the characteristic point A to the characteristic point B The slope formed, to the extent that this slope is likely to be distributed, is also referred to in Figure 6c. $ 9 ® Example of a computer-readable storage medium based on knowledge ontology for automated respiratory waveform interpretation and measurement. This storage medium is 9〇, which is used to store a computer program 92G. It is a description of the knowledge of the Society's automated magnetic reading and measurement methods (including Ji Na and Shi (4) Finance). The method and the button of the present invention, such as a school type or a part thereof, may be included in a physical medium such as a floppy disk, a CD, a hard disk, or any other machine (such as a computer). The storage medium is read, wherein when the code is accepted by the machine, 15, if the computer is loaded and executed, the machine becomes a device for participating in the present invention. The method and apparatus of the present invention may also be transmitted in a code format through some transmission medium such as a wire or a fiber, an optical fiber, or any transmission type, wherein when the code is loaded by the machine, such as electricity, When executed, the machine becomes a device for participating in the present invention. When the general-purpose processing unit (general-pu-ep-sing_implementation), the code-integrated processor provides a unique device that operates similarly to the application-specific logic circuit. Although the present invention has read the good-looking trace as above, And </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

Clienfs Docket No. :ACI94022 TT s Docket No:0213-A40656-TW/Final/Jonah/20051117Clienfs Docket No. :ACI94022 TT s Docket No:0213-A40656-TW/Final/Jonah/20051117

12 1270363 •、 第1圖係表示依據本發明實施例之基於知識本體之自動化呼吸波形判 . 讀暨量測之硬體架構圖; 第2圖係表示依據本發明實施例之範例呼吸波形知識本體架構圖; 第3圖係表示依據本發明實施例之範例之正常呼吸波形; 第4圖係表示依據本發明實施例之自動化呼吸波形判讀暨量測之判讀 訓練方法; 第5圖係表示依據本發明實施例之範例訓練呼吸波形之特徵點的壓力 對時間輸入介面; # 第6a圖係表示依據本發明實施例之範例特徵點A到B間的呼吸氣道 壓力可能性分佈輸入介面; 第6b圖係表示依據本發明實施例之範例特徵點a到B間的呼吸時間 可能性分佈輸入介面; 弟6c圖係表示依據本發明實施例之範例特徵點a到B間的啤吸波形 斜率可能性分佈顯示介面; 第7圖係表示依據本發明實施例之自動化呼吸波形判讀暨量測之實際 量測方法; 第8a圖係表示依據本發明實施例之範例實際呼吸波形之特徵點的壓 籲力對時間輸入介面; 第8b圖係表示依據本發明實施例之範例計算結果顯示介面; 第9圖係表示依據本發明實施例之基於知識本體之自動化呼吸波形判 讀暨量測之電腦可讀取儲存媒體示意圖。 【主要元件符號說明】 10〜自動化呼吸波形判讀暨量測系統;11〜處理單元;12〜記憶體;13〜 儲存裝置;14〜輸出裝置;15〜輸入裝置;16〜通訊裝置;17〜匯流排;200〜 呼吸波形知識本體;210〜領域層;230〜主類別層;250〜次類別層;270〜相无 念層;271〜生理參數層;273〜症狀層;A、B、C、D、E、F〜特徵點;S411、12 1270363 • Fig. 1 is a diagram showing the hardware structure of the automatic respiratory waveform judgment and reading based on the knowledge ontology according to an embodiment of the present invention; and Fig. 2 is a diagram showing an example respiratory waveform knowledge ontology according to an embodiment of the present invention. FIG. 3 is a diagram showing a normal respiratory waveform according to an example of an embodiment of the present invention; FIG. 4 is a diagram showing an automatic breathing waveform interpretation and measurement interpretation training method according to an embodiment of the present invention; Example of the embodiment of the invention trains the pressure versus time input interface of the feature points of the respiratory waveform; #图 6a shows the respiratory airway pressure probability distribution input interface between the example feature points A to B according to an embodiment of the invention; The breathing time likelihood distribution input interface between the example feature points a to B according to the embodiment of the present invention is shown; the brother 6c diagram shows the probability distribution of the beer suction waveform slope between the example feature points a to B according to the embodiment of the present invention. Display interface; Figure 7 shows an actual measurement method for automatic respiratory waveform interpretation and measurement according to an embodiment of the present invention; Figure 8a shows The pressing force versus time input interface of the characteristic point of the actual respiratory waveform according to the embodiment of the present invention; the 8b is an example calculation result display interface according to an embodiment of the present invention; and the ninth figure is the embodiment according to the embodiment of the present invention. A schematic diagram of a computer readable storage medium based on knowledge ontology for automated respiratory waveform interpretation and measurement. [Main component symbol description] 10~Automatic respiratory waveform interpretation and measurement system; 11~ processing unit; 12~memory; 13~ storage device; 14~output device; 15~ input device; 16~ communication device; Row; 200~ respiratory waveform knowledge ontology; 210~ domain layer; 230~ main category layer; 250~ sub-category layer; 270~ phase non-layer; 271~ physiological parameter layer; 273~ symptom layer; A, B, C, D, E, F ~ feature points; S411,

Client’s Docket N〇.:ACI94022 13 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 1270363 … S43卜S433、S451、S47l〜方法步驟;500〜特徵點的壓力對時間輪入介面; 510、520、530、540、550、560〜子輸入區域;610〜呼吸氣道壓力可能性分 佈輸入介面;611、613、615、617〜子輸入欄位;630〜呼吸時間可能性分佈 輸入介面;63卜633、635、637〜子輸入欄位;650〜呼吸波形斜率可能性分 佈顯示介面;651、653、655、657〜顯示欄位;S711、S731、S733、S751、 S753、S771〜方法步驟;810〜特徵點的壓力對時間輸入介面;81丨、813、815、 817〜子輸入區域;830〜計算結果顯示介面;831〜特徵點A之呼吸氣道壓力 之隸屬程度;833〜特徵點B之呼吸氣道壓力之隸屬程度;835〜特徵點a之 • 呼吸時間之隸屬程度;837〜特徵點B之呼吸時間之隸屬程度;839嗜徵點 • A與B間之呼吸波形斜率之隸屬程度;9〇〜健存媒體;92〇〜基於知識本體之 自動化呼吸波形判讀暨量測電腦程式。Client's Docket N〇.: ACI94022 13 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117 1270363 ... S43 Bu S433, S451, S47l~ method steps; 500~ feature point pressure versus time rounding interface; 510, 520, 530, 540, 550, 560~ sub-input area; 610~ respiratory airway pressure possibility distribution input interface; 611, 613, 615, 617~ sub-input field; 630~ breathing time possibility distribution input interface; 63 633, 635, 637~ sub-input field; 650~ respiratory waveform slope probability distribution display interface; 651, 653, 655, 657~ display field; S711, S731, S733, S751, S753, S771~ method step; ~ characteristic point pressure versus time input interface; 81丨, 813, 815, 817~ sub-input area; 830~ calculation result display interface; 831~ feature point A's degree of respiratory airway pressure; 833~ feature point B breath Degree of membership of airway pressure; 835~feature point a • degree of subordination of breathing time; degree of subordination of breathing time of 837~feature point B; 839 lust point • degree of membership of respiratory waveform slope between A and B; ~健存Media; 92〇~ Based on the knowledge ontology Automatic breathing waveform interpretation and measurement computer program.

Client’s Docket N〇_:ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117Client’s Docket N〇_: ACI94022 TT5s Docket No:0213-A40656-TW/Final/Jonah/20051117

Claims (1)

12703丨 k 94145529 95 年 9 月 22 日 十、申請專利範圍: ^年?月A日修(更)正本 --^-_ 1 · 一種祕知識本體之自動化呼吸波形判讀暨量測方法,被理 行,其方法包括下列步驟: 、,提供相應於-實際呼吸波形中的_第_特徵點之—第—哞吸時間點與一第 呼吸氣道S力’以及相應於上述實際呼吸波形中的一第二特徵點之一第二呼吸 時間點與一第二呼吸氣道壓力; 、,據上述第-呼吸時_、上述第一呼吸氣道壓力、上述第二呼吸時間點與 上述第二呼吸氣賴力’計算上述第一特徵點與上述第二特徵點間之一吟吸波形 斜率; 依據一呼吸波形斜率之可能性分佈資訊,取得相應於上述呼吸波形斜率之一 呼吸波形斜率隸屬程度;以及 顯示上述呼吸波形斜率隸屬程度, 其中,上述呼吸波形斜率之可能性分佈資訊係使用一訓練方法而得。 2·如申請專利細第i項所述之胁知識本體之自動化呼吸波形判讀暨量測 方法,其中當上述呼吸波形斜率隸屬程度越偏離於,τ,,代表相應於上述實際呼吸 跡之上述第-特徵點與上述第二特徵點間之上述呼吸波形斜率越偏離正常的 況。 3·如申請專利細第1項所述之赫知識本體之自動化呼吸波形判讀暨量測 方法,其中上述訓練方法更包括: 一提供相應於-訓練呼吸波形中的上述第一特徵點之一第三呼吸時間點與一第 二呼吸氣道壓力,以及相應於上述訓練呼吸波形中的上述第二特徵點之—第四呼 吸時間點與一第四呼吸氣道壓力;以及 依據上述第三呼吸_點、上料三呼喊_力、上述第四呼吸時間點與 上述第四呼吸氣趣力,計算上述呼吸波形斜率之可能性分佈資訊。 4·如申明專利範圍第3項戶斤述之勤^知識本體之自動化呼吸波形判讀暨量 測方法,其中於計算上射吸波形斜率之可能性分佈#訊轉_,&amp;: Client’s Docket No.:ACI94022 TT’s Docket No:0213-A40656-TW/Finall/Jonah/20051117 15 1270363 提供代表相應於上述訓練呼吸波形中的上述第一特徵點與上述第二特徵點間 之-呼吸氣賴力触支雜一呼吸紐壓力起始核々點、_呼吸氣道壓力結 束核心點與一呼吸氣道壓力結束支持點; 提供代表相應於上述訓練呼吸波形中的上述第一特徵點與上述第二雛點間 之-呼吸_起始支持點、—呼吸時間起始核心點 '—啊時間結束核心點與一 呼吸時間結束支持點; 將上述儀道壓力起始核心點除以上述呼吸時間起始核心點以求得一第一 可能斜率核心點; 將上述呼吸氣道壓力起始核心點除以上述呼吸時間縣核心點財得一第二 可能斜率核心點; 心點以求得一第三 將上述呼吸氣道壓力結束核心點除以上述呼吸時間起始核 可能斜率核心點; 心、點以求得一第四 將上述呼吸氣道壓力結束核心點除以上述呼吸時間結束核 可能斜率核心點; 人 求得一第· 將上述呼吸氣道壓力起始支持點除以上述呼吸時間起始支持點以 可能斜率支持點; 將上述啤吸氣繼起始支持點除以上述啤吸時間結束 點以求得一第. 將上述呼吸氣道壓力結束支持點除以上述呼吸時間起始支持 可能斜率支持點; 可能=::麵力結束細除叫呼糊騎伽奮第四 小可能斜率支持點當 將上述第一、第二、第三與第四可能斜率支持點中之最 做一呼吸波形斜率起始支持點; 將上述第-n與細可簡率核心财 做-啤吸波形斜率起始核心點; 此斜羊核〜占田 Clienfs Docket N〇.:ACI94022 TTJs Docket No:0213-A40656-TW/Finall/J〇nah/20051117 16 1270363 I 、上 Λ*Α- . 以弟、第二、第三與第四可能斜率核心點中之最大可能斜率核心點當 做-呼吸波形斜率結束核心點; '第二、第三與第四可能斜率支持點巾之最大可能斜率支持點t 做-呼吸波形斜率結束支持點, 、,’、中上述呼及波形斜率起始支持點、上述呼吸波形斜率起始核心點、上述 呼吸,姊斜雜細心轉上述呼吸娜解結束姚減上述呼吸波形斜率 之可能性分佈資訊。 、士申明專利範圍第4項所述之知識本體之自動化呼吸波形判讀暨量 Φ 測方法,其中上述訓練方法更包括: 、〜將相應於上述翁呼吸波形中的上述第一特徵點與上述第二特徵點間之上 述呼吸氣道壓力起始支持點、上述呼吸氣道壓力起始核心點、上述呼吸氣道壓力 結束核心點與上述呼魏賴力結束支持點,儲存於相應於一呼吸波形知識本體 之一知識庫中; 將相應於上述訓練呼吸波形中的上述第—特徵點與上述第二特徵點間之上 述呼吸_起始_卜上料__核心點、上料贿間絲核心點與 上述呼吸時間結束支持點,儲存於上述知識庫中;以及 、、將相應於上述訓練呼吸波形中的上述第—特徵點與上述第二特徵點間之上 •述呼吸波形斜率起始支持點、上述呼吸波形斜率起始核心點、上述呼吸波形斜率 結束核心點與上述呼吸波形斜率結束支持點,儲存於上述知識庫中。 6.如申請專利範圍第5項所述之胁知識本體之自動化呼吸波形判讀暨量 測方法,其中上述呼吸波形知識本體包括一領域層、,員別層、一次類別層與 一概念層,上述概念層包括一參數層與一症狀層。 7·如申請專利細第!項所述之聽知識本體之 測方法,更包括: ' 依據-呼錄賴力之可雛分鑛訊,顿械社料—特徵點之上述 第一呼吸氣道壓力之一第一呼吸氣道壓力隸屬程度; Client’s Docket N〇.:ACI94022 TT^s Docket No:0213-A40656-TW/Finall/J〇nah/200511l7 17 “1270363 i«依啊罐力之可紐綱訊,取得 力之—第nt遞力隸屬程度; ,+¾½¾可祕分佈貧訊,取得相應於上述帛n胃&amp; 啤吸時間之-第—呼吸時間隸屬程度; 依據上述呼吸時間之可紐分佈資訊’取得相應於上述第二特徵點之 一’吸時間之一第二呼吸時間隸屬程度;以及 —顯示上述第-呼吸氣道勤隸屬程度、上述第二啤吸氣道勤隸屬程度、上 述第-呼吸時間隸屬程度與上述第二呼吸時間隸屬程度,12703丨 k 94145529 September 22, 1995 X. Patent application scope: ^年? The monthly A-day repair (more) original ----- 1 1 · A secret knowledge of the body of the automatic breathing waveform interpretation and measurement method, is managed, the method includes the following steps: ,, provide the corresponding - in the actual respiratory waveform _ _ feature point - first - sucking time point and a first breathing airway S force ' and corresponding to one of the second characteristic point of the actual breathing waveform, a second breathing time point and a second breathing airway pressure; Calculating a sucking waveform between the first feature point and the second feature point according to the first breathing time _, the first breathing airway pressure, the second breathing time point, and the second breathing gas lag force ' Slope; according to the probability distribution information of the slope of the respiratory waveform, obtaining the degree of membership of the respiratory waveform corresponding to one of the slopes of the respiratory waveform; and displaying the degree of membership of the respiratory waveform, wherein the probability distribution information of the slope of the respiratory waveform is used A training method comes. 2. The automatic respiratory waveform interpretation and measurement method of the threat knowledge ontology described in the patent application item i, wherein when the degree of membership of the respiratory waveform slope deviates from, τ, represents the above-mentioned first corresponding to the actual respiratory trace - The slope of the above-mentioned respiratory waveform between the feature point and the second feature point deviates from the normal state. 3. The automatic breathing waveform interpretation and measurement method of the Hermitology ontology described in the first application of the patent, wherein the training method further comprises: providing one of the first characteristic points corresponding to the - training breathing waveform a third breathing time point and a second respiratory airway pressure, and a fourth breathing time point and a fourth respiratory airway pressure corresponding to the second characteristic point in the training breathing waveform; and according to the third breathing point, The feeding three shouts _ force, the fourth breathing time point and the fourth breathing temptation, and calculates the probability distribution information of the slope of the breathing waveform. 4. For example, the third paragraph of the patent scope is the automatic breathing waveform interpretation and measurement method of the knowledge body, in which the probability distribution of the slope of the upper injection waveform is calculated. #转转_, &amp;: Client's Docket No .:ACI94022 TT's Docket No:0213-A40656-TW/Finall/Jonah/20051117 15 1270363 providing a respiratory-respiratory contact between the first feature point and the second feature point corresponding to the above-mentioned training respiratory waveform a respiratory pressure initial pressure nuclear point, a respiratory airway pressure end core point and a respiratory airway pressure end support point; providing a representation corresponding to the first characteristic point in the training breathing waveform and the second contour point - Breathing_Starting support point, - Breathing time starting core point' - ah time ending core point and one breathing time ending support point; dividing the above instrumental pressure starting core point by the above breathing time starting core point Obtain a first possible slope core point; divide the above-mentioned respiratory airway pressure starting core point by the above-mentioned breathing time county core point to obtain a second possible slope core point; Get a third to divide the above-mentioned respiratory airway pressure end core point by the above-mentioned breathing time start nuclear possible slope core point; heart, point to obtain a fourth to divide the above-mentioned respiratory airway pressure end core point by the above breathing time to end the nuclear possible Slope core point; person obtains a first · divide the above-mentioned respiratory airway pressure starting support point by the above breathing time starting support point with a possible slope support point; divide the above beer inhalation from the initial support point by the above beer suction time End point to obtain a first. Divide the above respiratory airway pressure end support point by the above breathing time to support the possible slope support point; Possible =:: Face force end finely divided by the caller Pointing to the first of the first, second, third, and fourth possible slope support points as the starting point of the respiratory waveform slope support point; the above-mentioned -n and fine-decide rate core-doping waveform Starting core point; this oblique sheep core ~ Zhantian Clienfs Docket N〇.: ACI94022 TTJs Docket No:0213-A40656-TW/Finall/J〇nah/20051117 16 1270363 I, Shangyu*Α- . The largest possible slope core point of the younger, second, third, and fourth possible slope core points as the -respiration waveform slope ends the core point; 'the second, third, and fourth possible slopes support the maximum possible slope support of the towel Point t do - breath waveform slope end support point, ,, ', the above call and waveform slope start support point, the above respiratory waveform slope start core point, the above breathing, skewed miscellaneous heart to the above breath Na na end Yao minus The probability distribution information of the above-mentioned respiratory waveform slope. The automatic breathing waveform interpretation and quantity Φ measuring method of the knowledge ontology described in the fourth aspect of the patent scope, wherein the training method further comprises: -, corresponding to the first characteristic point in the above-mentioned Weng respiratory waveform and the above The above-mentioned respiratory airway pressure initiation support point between the two feature points, the respiratory airway pressure initiation core point, the above-mentioned respiratory airway pressure end core point and the above-mentioned Huweilai force end support point are stored in one knowledge corresponding to a respiratory waveform knowledge ontology In the library; corresponding to the above-mentioned breathing point in the above-mentioned training breathing waveform and the above-mentioned second feature point, the above-mentioned breathing_starting_buying__core point, the core point of the bribe and the above breathing time Ending the support point, storing in the knowledge base; and, corresponding to the above-mentioned first feature point in the training breathing waveform and the second feature point, the respiratory waveform slope starting support point, and the respiratory waveform The slope start core point, the above-mentioned respiratory waveform slope end core point, and the above-mentioned respiratory waveform slope end support point are stored in the above In the knowledge base. 6. The automatic respiratory waveform interpretation and measurement method of the threat knowledge ontology according to claim 5, wherein the respiratory waveform knowledge body comprises a domain layer, a member layer, a primary category layer and a concept layer, The concept layer includes a parameter layer and a symptom layer. 7. If you apply for a patent fine! The method for measuring the ontology of the subject mentioned in the item further includes: 'Based on the record of the callable mine, the first respiratory airway pressure of the above-mentioned first respiratory airway pressure Degree; Client's Docket N〇.:ACI94022 TT^s Docket No:0213-A40656-TW/Finall/J〇nah/200511l7 17 "1270363 i«依啊罐力可纽纲,力力力——第nt递The degree of subordination of the force; , +3⁄41⁄23⁄4, the distribution of the poor news, obtained corresponding to the above-mentioned 帛n stomach &amp; beer time - the first degree of breathing time; according to the above-mentioned breathing time of the distribution information 'obtained corresponding to the second One of the characteristic points' one of the suction time and the second breathing time membership degree; and - the above-mentioned first-breathing airway subordinate degree, the second beer inhalation tract subordinate degree, the above-mentioned first breathing time subordinate degree and the second Breathing time membership degree, 其中’上述呼吸氣趟力之可能性分佈資訊包含一呼吸氣道壓力起始支持 點、一呼吸氣道壓力起始核心點、一呼吸氣道壓力結束核心點與一啊氣麵力 結,镇吐述呼吸時敗可能性分_訊包含—物糊起始支持點、_啤 吸時間起始核_、-呼吸_結束批點與—呼爾間絲支持點。 8·如申請專利細第7項所述之胁知識本體之自動化呼吸波形判讀暨量 測方法,其中當上述第-呼吸氣道壓力隸屬程度越偏離於,,Γ,,代表相應於上述實 際呼吸波形之上述第-特徵點之上述第—呼吸氣道壓力越偏離正常的情況,當上 述第一呼吸力隸4程度越偏獅,,代纟自彡 第二特徵點之上述第二呼吸氣道壓力越偏離正常的情況,當上述第一呼吸時間隸 屬私度越偏離於”1”,代表相應於上述實際呼吸波形之上述第一特徵點之上述第一 呼吸時間越偏離正常的情況,另當上述第二呼吸時間隸屬程度越偏離於” Γ,,代表 相應於上述實際呼吸波形之上述第二特徵點之上述第二呼吸時間越偏離正常的情 況。 9· 一種電腦可讀取儲存媒體,用以儲存一電腦程式,該電腦程式用以載入至 一電細糸統中並且使得该電腦糸統執行一基於知識本體之自動化呼吸波形判讀暨 量測方法,其方法包括: 提供相應於一實際呼吸波形中的一第一特徵點之一第一呼吸時間點與一第 一呼吸氣道壓力,以及相應於上述實際呼吸波形中的一第二特徵點之一第二呼吸 Client’s Docket N〇.:ACI94022 TT^ Docket No:0213-A40656-TW/Finall/Jonah/20051117 18 1270363 — 時間點與-第二呼吸氣道壓力; 匕、龙笛一、,述第呼吸日守間點、上述第—呼吸氣道壓力、上述第二呼吸時間點與 斜^ ·呼吸乳賴力’计异上述第—特徵點與上述第二特徵點間之一呼吸波形 依據呼吸波形斜率之可能性分佈資訊,取得相應於上述呼吸波形斜率之一 - 呼吸波形斜率隸屬程度;以及 顯示上述呼吸波形斜率隸屬程度, ”中’上述呼吸波形斜率之可能性分佈資訊係使用一訓練方法而得。 _ 1G·—種自動化呼吸波形判讀暨量曝統,包括: . 一輪出單元;以及 • ^處理單元’耦接於上述輸出單元,用以提供相應於-實際呼吸波形中的- 第特徵,、、、占之第-啤吸日守間點與一第一呼吸氣道壓力,以及相應於上述實際啤 ,波^/中的一第一特徵點之一第二呼吸時間點與一第二呼吸氣道壓力 •,依據上述 ^令及日守間點、上述第一呼吸氣道壓力、上述第二呼吸時間點與上述第二呼吸 氣道勤’计异上述第一特徵點與上述第二特徵點間之一呼吸波形斜率;依據一 呼及波幵y斜率之可月b性分佈資汛,取得相應於上述中及波形斜率之一中及波形斜 率隸屬耘度,以及透過上述輸出單元顯示上述呼吸波形斜率隸屬程度, 其中’上述呼吸波形斜率之可能性分佈資訊係使用一訓練方法而得。 11.如申請專利範圍第10項所述之自動化呼吸波形判讀暨量測系統,其中當 上述呼吸波形斜率隸屬程度越偏離於,,Γ,,代表相應於上述實際呼吸波形之上述第 一特徵點與上述第二特徵點間之上述呼吸波形斜率越偏離正常的情況。 - I2·如申請專利範圍第10項所述之自動化呼吸波形判讀暨量測系統,其中由 上述處理單元執行之上述訓練方法更包括: 提供相應於一訓練呼吸波形中的上述第一特徵點之一第三呼吸時間點與一 第二呼吸氣道壓力,以及相應於上述訓練啤吸波开^中的上述第二特徵點之一第四 呼吸時間點與一第四呼吸氣道壓力:以及 Client’s Docket No·:ACI94022 TT^ Docket Νο:0213-A40656-TW/Finall/Jonah/20051117 19 1270363 依據上述第三呼__、上述第三啊氣道壓力、 上述第四呼吸時間點與 上述第四啊氣賴力,計算上述呼吸波形斜率之可能性分佈 13.如申請專利範圍第12項所述之自動化呼 ;: 計算上述呼吸波形斜率之可能性分佈資訊步驟中,伽 M統’其中於 提:代表相應於上述訓練_中的上述第一特徵馳^ ^啤吸_柄始麵點、,_力_心點、—呼 …束核心點與一呼吸氣道壓力結束支持點; 4力 間之一啤_触支義、_呼_起健心點 ^點 一呼吸時間結束支持點; 丁门、、、口東核心點與 一 上述呼吸氣道壓力起始核心點除以上述呼吸時間起始核伽 資訊。 •可能斜率核心點; 將上述呼及氣道壓力起始核心點除以上述呼吸時間結束拉 二可能斜率核心點; 將上述呼吸氣道壓力結_心、點除以上述呼吸時間起始核心點以 三可能斜率核心點; 口 / ”、、厂 將上述呼吸氣道壓力結束核心點除以上述呼吸時間結束核心點 四可能斜率核心點; 于— 將上述呼吸氣道壓力起始支持點除以上述呼吸時間起始支持點〜 一可能斜率支持點; 將上述呼錢道壓力起始支持點除社述呼辦間結束鱗點以求 二可能斜率支持點; ^ 將上述呼吸_力結束支持點除以上述物夺間起始支持點 — 三可能斜率支持點; 將上述呼吸氣道壓力結束支持點除以上述呼吸時間結束支持點以求〜 四可能斜率支持點; ,伸一 第 心點以求得一第 得一第 第 第 第 第 第 Client’s Docket No.:ACI94022 TT^ Docket Νο:〇213-A40656-TW/Finall/J〇nah/20051117 20 1270363 做與細可能斜率核心財之最小可聰心點當 做-細可_心財之__心點當 做-===與細可能斜彻財之最大可能斜率娜當 呼吸=ΐϊΓ&amp;轉触伽、墙_斜軸核心點、上述 ==核心點與上述一結束細組成増吸波形斜率 «==嶋13撕物獅幽麵雜統,其中上 呼:==::=力:與上述―之上述 一知識庫中; 呼:==::r:,__u述 述呼吸時間結束支•,儲存於上=二广間結束核_上 ㈣增―氣雜增:慨關之上述 呼吸波形斜率起始支持點、上述呼吸波形斜率起始核心點、上述中及波 束核心點與上述呼吸波形斜率結束支持點,儲存於上述知識庫中。 15·如申請專利範圍第14項所述之自動化呼吸波形判讀暨量測系统 ==::層、,一—、上述 Client’s Docket No.:ACI94022 TT5s Docket No:0213-A40656-TW/Finall/Jonah/20051117 21 ! 1270363 16.如申請專利範圍第10項所述之自動化呼吸波形判讀 蝴m,蝴嫩增, :之上述弟呼吸風道壓力之一第—呼吸氣道麼力隸屬程度;依據上述呼吸氣道 艺之可能性分佈資訊,取得相應於上述*二特徵點之上述第二中魏道壓力之 -第=呼魏賴力隸屬程度;依據—呼吸_之可紐分佈資訊,取得相應於 上述第-特徵點之上述第-呼吸時間之—第—呼吸_隸屬程度;依據上述呼吸 吟間之可能性分佈貧訊,取得相應於上述第二特徵點之上述第二呼吸時間之一第 =呼吸時間隸屬程度;以及顯社述第一呼吸氣道壓力隸屬程度、上述第二呼吸 氣趟力隸屬程度、上述第-呼吸時間隸屬程度與上述第二,吸時間隸屬程产, 其中,上述呼吸氣道壓力之可能性分佈資訊包含一呼吸氣·力起始I持點二 呼吸氣道壓力起始核d -呼魏碰力結絲雜與—呼贼碰力姓束支 持點’上述呼吸時間之可能性分佈資訊包含—呼吸時間起始支持點、—呼:夺間 起始核心點、一呼吸時間結束核心點與一呼吸時間結束支持點。 Π·如申請專利麵第16項所述之自動化啼吸波形判讀暨量測系統,其中當 上述第-呼吸氣賴力隸屬程度越偏離於,,Γ,,代表相應於上述實際呼吸波形之上 述第一特徵點之上述第一呼吸氣力越偏離正常的情況,當上述第二呼吸氣道 壓力隸屬程度越偏離於”1”,代表相應於上述實際呼吸波形之上述第二特徵點之上 •述第二呼吸氣道壓力越偏離正常的情況,當上述第-呼吸時間隸屬程度越偏離 於”1” ’代表相應於上述實際呼吸波形之上述第一特徵點之上述第一呼吸時間越偏 離正常的情況,另當上述第二呼吸時間隸屬程度越偏離於”丨,,,代表相應於上述實 尸祭1乎吸波形之上述第二特徵點之上述第二呼吸時間越偏離正常的情況。 Client’s Docket N〇.:ACI94022 TT^ Docket No:0213-A40656-TW/Finall/Jonah/20051117 22The information on the distribution of the possibility of the above-mentioned respiratory qi force includes a respiratory airway pressure starting support point, a respiratory airway pressure starting core point, a respiratory airway pressure ending core point and an aerobic force knot, and the town speaks to breath. The probability of losing the time is _ contains - the initial support point of the paste, _ beer start time start _, - breath _ end batch point and - Huer line support point. 8. The automatic respiratory waveform interpretation and measurement method of the threat knowledge ontology described in claim 7 wherein, when the degree of sub-respiratory airway pressure membership is deviated from,, Γ, represents a corresponding actual respiratory waveform The more the first respiratory airway pressure of the above-mentioned first feature point deviates from the normal situation, the more the second respiratory airway pressure deviates from the second characteristic point when the first respiratory force is more than the lion. In a normal case, when the first breathing time membership degree deviates from "1", the first breathing time corresponding to the first characteristic point of the actual breathing waveform is deviated from the normal state, and the second The more the respiratory time membership degree deviates from "”", the more the second breathing time corresponding to the second characteristic point of the actual respiratory waveform is deviated from the normal situation. 9. A computer readable storage medium for storing a a computer program for loading into a battery system and causing the computer system to perform an automated breathing based on the knowledge ontology a method for determining a reading and measuring method, the method comprising: providing a first breathing time point and a first breathing airway pressure corresponding to a first characteristic point in an actual breathing waveform, and corresponding to one of the actual breathing waveforms One of the second feature points, the second breath Client's Docket N〇.: ACI94022 TT^ Docket No:0213-A40656-TW/Finall/Jonah/20051117 18 1270363 — time point and - second respiratory airway pressure; 匕, 龙笛一, the first respiratory day custodial point, the above-mentioned first-breathing airway pressure, the second breathing time point and the oblique ^·breathing force lag force' different respiratory waveforms between the first feature point and the second feature point According to the possibility distribution information of the slope of the respiratory waveform, one of the slopes corresponding to the respiratory waveform is obtained - the degree of membership of the respiratory waveform slope; and the degree of membership of the respiratory waveform is displayed, and the probability distribution information of the slope of the respiratory waveform is used The training method is derived. _ 1G·-Automated Respiratory Waveform Interpretation and Volume Exposure System, comprising: a round-out unit; and • a processing unit coupled to the output unit to provide a corresponding feature in the actual breathing waveform, , the first-breeding point and a first respiratory airway pressure, and one of the first characteristic points corresponding to the actual beer, the second respiratory time point and a second respiratory airway Pressure, according to the above-mentioned control and the day-to-day stagnation point, the first respiratory airway pressure, the second respiratory time point, and the second respiratory airway divergence, one of the first feature points and the second feature point The slope of the respiratory waveform; according to the monthly b-spot distribution of the slope of the wave and the slope of the wave, obtaining the slope of the waveform corresponding to one of the slopes of the neutral wave and the slope of the waveform, and displaying the slope of the respiratory waveform through the output unit Degree, where 'the probability distribution information of the above-mentioned respiratory waveform slope is obtained using a training method. 11. The automated respiratory waveform interpretation and measurement system of claim 10, wherein when the degree of subordination of the respiratory waveform slope deviates from,, Γ, represents the first characteristic point corresponding to the actual respiratory waveform. The slope of the above-mentioned respiratory waveform between the second feature points and the above is deviated from the normal state. The automatic breathing waveform interpretation and measurement system of claim 10, wherein the training method performed by the processing unit further comprises: providing the first feature point corresponding to a training breathing waveform a third breathing time point and a second breathing airway pressure, and a fourth breathing time point and a fourth breathing airway pressure corresponding to the second characteristic point in the training beer suction wave opening: and Client's Docket No ·: ACI94022 TT^ Docket Νο:0213-A40656-TW/Finall/Jonah/20051117 19 1270363 According to the above third call __, the above third ah airway pressure, the above fourth breathing time point and the above fourth ambition Calculating the probability distribution of the slope of the respiratory waveform described above. 13. The automatic call according to item 12 of the patent application scope;: calculating the probability distribution information of the slope of the respiratory waveform described above, in the step of gamma, where is represented by The first feature in the above training _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ One of the beer _ touch support, _ call _ start heart point ^ point one breath time end support point; Dingmen,,, mouth east core point and a above respiratory airway pressure start core point divided by the above breathing time start Nuclear gamma information. • Possible slope core point; divide the above-mentioned call airway pressure starting core point by the above-mentioned breathing time end to pull the second possible slope core point; divide the above-mentioned respiratory airway pressure knot_heart, point by the above breathing time starting core point to three Possible slope core point; mouth/", the factory divides the above-mentioned respiratory airway pressure end core point by the above-mentioned breathing time end core point four possible slope core points; - the above respiratory airway pressure starting support point is divided by the above breathing time Start support point ~ a possible slope support point; the above-mentioned caller pressure start support point is divided by the end point of the call to find the second possible slope support point; ^ the above breath_force end support point is divided by the above Inter-start support point - three possible slope support points; divide the above-mentioned respiratory airway pressure end support point by the above-mentioned breathing time end support point to obtain ~ four possible slope support points; extend a first heart point to obtain a first one The first first Client's Docket No.: ACI94022 TT^ Docket Νο:〇213-A40656-TW/Finall/J〇nah/20051117 20 1270363 With the finest possible slope, the core of the core can be the most confusing point of view - fine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ oblique axis core point, the above == core point and the above end of the fine composition of the suction waveform slope «==嶋13 tearing lion cryptosystem, where the upper call: ==::= force: the above - In a knowledge base; 呼:==::r:, __u describes the end of the breathing time branch, stored in the upper = two wide end nuclear _ upper (four) increased - gas mixed increase: the above-mentioned respiratory waveform slope start The support point, the start of the respiratory waveform slope starting point, the middle and the beam core point, and the end of the respiratory waveform slope support point are stored in the knowledge base. 15. The automatic respiratory waveform interpretation as described in claim 14 Cum measurement system ==:: layer,, one-, above Client's Docket No.: ACI94022 TT5s Docket No:0213-A40656-TW/Finall/Jonah/20051117 21 ! 1270363 16. As described in claim 10 The automatic breathing waveform is interpreted as a butterfly m, and the butterfly is tender and increased. One of the forces - the respiratory airway is the degree of subordination; according to the distribution information of the above-mentioned respiratory airway art, the degree of the second middle Weidao pressure corresponding to the above-mentioned * two characteristic points is obtained. Breathing _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ One of the second breathing time points = the degree of subsistence of the breathing time; and the degree of membership of the first respiratory airway pressure, the degree of membership of the second respiratory gas force, the degree of membership of the first breathing time, and the second, The suction time belongs to the process, wherein the information about the possibility of the respiratory airway pressure includes a respiratory gas, a force start, a hold point, a second respiratory airway pressure, a starting nuclear d-wee, a force, a knot, and a thief. Surname bundle support point 'The above-mentioned breathing time probability distribution information includes - breathing time starting support point, - call: intervening starting core point, one breathing time ending core point and one Suction time ends support point. Π 。 。 。 。 。 。 。 。 。 。 。 。 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼 啼The more the first respiratory power of the first feature point deviates from the normal state, the more the second respiratory airway pressure membership degree deviates from "1", which represents the second characteristic point corresponding to the actual respiratory waveform. The more the second respiratory airway pressure deviates from the normal situation, the more the first respiratory time is deviated from "1" when the above-mentioned first-breathing time membership degree deviates from "1"", the more the first breathing time corresponding to the first characteristic point of the actual respiratory waveform is deviated from the normal state, In addition, when the degree of membership of the second breathing time deviates from "丨,", the second breathing time corresponding to the second characteristic point corresponding to the above-mentioned actual corpse sacrifice waveform is deviated from the normal situation. Client's Docket N〇 .:ACI94022 TT^ Docket No:0213-A40656-TW/Finall/Jonah/20051117 22
TW94145529A 2005-12-21 2005-12-21 Systems and methods for automated ventilator waveform recognition and measure based on ontologies TWI270363B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94145529A TWI270363B (en) 2005-12-21 2005-12-21 Systems and methods for automated ventilator waveform recognition and measure based on ontologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94145529A TWI270363B (en) 2005-12-21 2005-12-21 Systems and methods for automated ventilator waveform recognition and measure based on ontologies

Publications (2)

Publication Number Publication Date
TWI270363B true TWI270363B (en) 2007-01-11
TW200724093A TW200724093A (en) 2007-07-01

Family

ID=38430104

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94145529A TWI270363B (en) 2005-12-21 2005-12-21 Systems and methods for automated ventilator waveform recognition and measure based on ontologies

Country Status (1)

Country Link
TW (1) TWI270363B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447680B (en) * 2012-07-05 2014-08-01 Univ Nat Chiao Tung Method and system on detecting abdominals for singing
TWI476723B (en) * 2013-07-25 2015-03-11 Univ Nat Chiao Tung Personalized system and method of abdominal breathing training evaluation based on abdominal muscles cluster function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201544074A (en) * 2014-05-22 2015-12-01 Apex Medical Corp Breathing waveform recognition method and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447680B (en) * 2012-07-05 2014-08-01 Univ Nat Chiao Tung Method and system on detecting abdominals for singing
TWI476723B (en) * 2013-07-25 2015-03-11 Univ Nat Chiao Tung Personalized system and method of abdominal breathing training evaluation based on abdominal muscles cluster function

Also Published As

Publication number Publication date
TW200724093A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
Al Osman et al. Ubiquitous biofeedback serious game for stress management
McGregor Big data in neonatal intensive care
Daniels et al. Accurate assessment of adherence: self-report and clinician report vs electronic monitoring of nebulizers
US8696592B2 (en) Breath biofeedback system and method
Burkhardt et al. The diagnosis of chronic obstructive pulmonary disease
Mottram Ruppel's Manual of Pulmonary Function Testing-E-Book
WO2021129067A1 (en) Method, system and device for formulating and implementing personalized paced breathing exercise prescription
EP3365057A1 (en) System and method for monitoring and determining a medical condition of a user
JP2019509101A (en) System and method for determining a hemodynamic instability risk score for pediatric subjects
Maslen Layers of sense: the sensory work of diagnostic sensemaking in digital health
Magalang et al. Agreement in the scoring of respiratory events among international sleep centers for home sleep testing
WO2019061941A1 (en) Traditional chinese medicine inquiry apparatus and traditional chinese medicine inquiry data processing device
Jayasekera et al. Feasibility assessment of wearable respiratory monitors for ambulatory inhalation topography
CN114974613A (en) Disease management method and device, computer storage medium and electronic equipment
Sanchez-Perez et al. A wearable multimodal sensing system for tracking changes in pulmonary fluid status, lung sounds, and respiratory markers
CN111402642A (en) Clinical thinking ability training and checking system
Wu et al. Development of quality assurance and quality control guidelines for respiratory oscillometry in clinic studies
TWI270363B (en) Systems and methods for automated ventilator waveform recognition and measure based on ontologies
Mishlanov et al. Scope and new horizons for implementation of m-Health/e-Health services in pulmonology in 2019
CN111402982A (en) Diagnosis evaluation system based on virtual standard patient
CN111403041A (en) Diagnosis process simulation system based on virtual standard patient
TW201227382A (en) Health activity plan establishment system, establishment method, and its computer program product
Patel et al. Refill rates of accessories for positive airway pressure therapy as a surrogate measure of long-term adherence
EP4072414B1 (en) System and method for metabolic measurements
Heuer et al. Comprehensive respiratory therapy exam preparation guide