TWI269849B - Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material - Google Patents
Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material Download PDFInfo
- Publication number
- TWI269849B TWI269849B TW94105159A TW94105159A TWI269849B TW I269849 B TWI269849 B TW I269849B TW 94105159 A TW94105159 A TW 94105159A TW 94105159 A TW94105159 A TW 94105159A TW I269849 B TWI269849 B TW I269849B
- Authority
- TW
- Taiwan
- Prior art keywords
- nano
- self
- noise
- cleaning
- strength
- Prior art date
Links
Landscapes
- Sink And Installation For Waste Water (AREA)
Abstract
Description
1269849 九、發明說明: 【發明所屬之技術領域】 ,據自創之奈米科學原理,將粒徑1000nm以下之碳金 金屬氧化物、喊或礦物等奈米粉體與歸共混,以太 料’作為製作排水管材料’並利用f知之塑料 來$ 奈米防噪音、自潔、触排水管。 職#衣成 【先前技術】 目前高樓大廈_水管材料都是㈣歸,它並不具吸 2 以每當污7]C從排水管高處向下排放時,水與^ 擊而發生震㈣音,辟饿安寧,絲改麵_、排“她 【發明内容】 後,米物理理論時發現,凡奈米材料受摩擦 ίίΞΓΓί奈米粉财簡之混合體也具枝震消音和強 管如?將此原理利用於奈米防噪音、自潔、強化排水 ㈣所呈現週於常規材料的特性,目前尚缺乏理論 “發日月、1已二建作正陷於摸索中求前進的情況,所幸 象.解除之义^ .昌/之别知其然而不知其所以然的種種奈米現 ί多作在财中前進_境;可發掘奈米材料 頸。乾式研磨法製造奈米籠所_之技術瓶 會大幅以破’則不僅奈米粉體的功能 在上述乾式研磨法_造1 2、強化排水管”之可行性係建立 ^裝以7^卡叔體之技術革新以及發現可大量使 Γ269849 用奈米粉體之新用途的基礎上。 案發至奈米尺寸時’表面原子的面積比率甚高。本 關,合Γ、、,不米體一旦形成,其初生表面原子因曝露於外界 此0^=少共價電子的表面殘鍵,而處於極不安定狀態, 還廣卜界捕捉電子’亦即初生態奈米體具有極強烈的化學 球',、因I=町稱奈米表面殘鍵為自由基。環顧人類居住的地 二雜33使,產生熱水汽對流上升過程中,水汽與空氣 米有;= 寻r並遺留地面大氣帶負電。由於奈 氣奪取電子而趨於蚊,所以奈米體的表面“ 著電子的存在。由於表面殘鍵多屬強力的共心 t ir及者電子並非在自由狀態,錢處於束職態。設若材 =二:::日結構’則奈米表面吸著電子的基態能位 取向能位Εν稍高的能隙⑶中,如第—圖所示。社W(2) w 體絲面吸著電何期n型半導财的電子(施 1^】^一兩者有著明顯的區別,其一是奈米體帶有豐富的負電,而 半電,其次是奈米吸著電子存在於材料表面,、而N型 ίϊί』()卻存在於。由於奈米表面吸著電子 ®巾,當表著電子峨得能量纽(Ε^)時$面: ,子的能位就進人傳導帶⑴;如第二圖表示,表^吸 ΐ位=&加功函數Φ值時’即可脫離奈米材料表面成為Ϊ離】 =备並退留原位成為表面自由基,然後表面自由基又向^ !奪取電子並釋放能量。根據本案發明人研究顯示,“ 者電子有下列多種方式吸收能並發生能位變化: 不“、吸 (1) 光子撞擊引起導電或游離作用; (2) 低頻光反射及高頻光透射作用·, (3) 粒子撞擊引起導電或游離作用; 1269849 (4) 吸收電磁波生熱作用; (5) 傳導熱和幅射熱引起導電或游離作用; (6) 電場牽引起導電或游離作用; (7) 吸收震波(超音速壓力波)引起導電或游離作用; (8) 吸收稀釋波(超音速拉力波)引起導電或游離作用; (9) 受劇變磁場感應引起導電或游離作用; (10) 受互為垂直的靜態電場和磁場之感應引起導電增強作用; (11) 吸收彈性波(音波和超音波)引起導電或游離作用; (12) 摩擦引起導電或游離作用。 ^奈,材料之所以具有諸多奇異特性,均因帶負電的表面吸著 電子容易吸收上述各種不同型態能並起能位變遷或游離化所引 起。這些奇異特性包括:(1)光觸媒作用;(2)化學觸媒作用;(3)雙親 ,面現^;(4)雙疏表面現象;(5)分散作用;(6)高折光率;(7)高誘電 率;(8)遠紅外線反射性;(9)反射遮光作用隨材料粒徑變小而起藍 移現象;(10)高電導率;(11)高熱導率;(12)高比熱;(13)防火 性;(14)乾式研磨起黏聚現象;(15)低熔點;〇6)韌性增加;(17)蒸氣 壓上升;(18)對電磁波吸收性;(19)吸音性;(2〇)毛細管現象;(2 ,粉體和歸料混起架橋_併使強度增加、導神上升、阻 =變佳;(22)非磁性材料出現強磁性;(23)奈米磁性體的避显磁 =ίϊ;ί24)巨磁電阻現象;(25)生物晶片的工作原理;⑽活性炭 奇異的奈米碳管;(28)奈米金屬粉體呈黑 食抑、化妝口口、古傳療法以及自然界現象等不勝 逐 用,奈米材料37項特性中編號第(34)號吸震作 第(32)私去3、殺菌作用,編號第(21)號共混起架橋作= 1269849 的原理為依據。 -縣位表面積上有Ns個配位不足的懸鍵,並假設每 之吸㈣子,麟狀奈米材料之吸著電子 心體錢(早位體積之數目)Nd為1269849 IX. Description of the invention: [Technical field to which the invention belongs], according to the principle of nanotechnology, the carbon powder metal oxide, shouting or mineral nano powder with a particle size of 1000 nm or less is blended with the glutinous rice. As a material for making the drain pipe, and using the plastics of the knowing, the nanometer is anti-noise, self-cleaning, and the drain pipe.职#衣成【前技术】 At present, the high-rise building _ water pipe material is (four) return, it does not have suction 2, whenever the sewage 7] C discharges from the height of the drain pipe, the water and the shock occur (4) Sound, hungry and tranquillity, silk changed face _, row "she [invention content], after the physics theory of rice, found that the nano material is subject to friction ίίΞΓΓί nano-powder money mixture is also a mixture of vibration and strong tube? Applying this principle to the characteristics of conventional materials such as nanometer anti-noise, self-cleaning and enhanced drainage (4), there is still a lack of theory that “the sun and the moon, one and two constructions are being trapped in the groping for progress, fortunately The meaning of disarming ^. Chang / I do not know the reason, but I do not know why the various kinds of nano-manufacturing in the fortune _ _; can explore the neck of nano material. The dry grinding method to make the nano cage _ the technical bottle will be greatly broken 'there is not only the function of the nano-powder in the above-mentioned dry grinding method _ 1 2, reinforced drainage pipe's feasibility department is established ^ installed 7 ^ card uncle The technical innovation of the body and the discovery can greatly increase the 用途 269849 based on the new use of nano powder. When the case is sent to the nanometer size, the area ratio of surface atoms is very high. This is the case, the combination of Γ, ,, The primary surface atom is exposed to the external surface of this 0^= less covalent electron surface residual bond, and is in a state of extreme instability, and also captures the electrons in the wide-border world, that is, the nascent nano-body has a very strong chemical ball. Because I = machi called the nano surface residual bond as a free radical. Looking around the human habitation of the second two 33, the generation of hot water vapor convection rising process, water vapor and air rice; = 寻 r and left the ground atmosphere with negative electricity Because Nai gas captures electrons and tends to mosquitoes, the surface of the nano-body is "electron." Because the surface residual bonds are mostly strong concentric t ir and the electrons are not in a free state, the money is in a state of affairs. If the material = 2::: the structure of the day, then the surface energy of the electrons on the surface of the nanometer is oriented in the energy gap (3) which is slightly higher than ν, as shown in the figure. W (2) w body silk absorbing electricity, what is the period of n-type semi-conducting electrons (Shi 1 ^ ^ ^ ^ a significant difference between the two, one is the nano-body with a rich negative, and semi-electric Secondly, nano sorption electrons exist on the surface of the material, while N-type ϊ 』 』 ) 。 。 。 。 。 。 。 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于:, the energy level of the child enters the conduction band (1); as shown in the second figure, the table ^ suction position = & when the work function Φ value is 'can be separated from the surface of the nano material to become separated】 = ready and retired In situ, it becomes a surface free radical, and then the surface free radicals take electrons and release energy. According to the research of the inventor, "the electrons have the following ways to absorb energy and change the energy level: no", suction (1) Photon impact causes conduction or free action; (2) low-frequency light reflection and high-frequency light transmission ·, (3) particle impact causes conduction or free action; 1269849 (4) absorption electromagnetic wave heat generation; (5) conduction heat and radiation heat Causes conduction or free action; (6) Electric field traction causes conduction or free action; (7) Absorbs shock wave (supersonic (speed pressure wave) causes conduction or free action; (8) absorption of dilution wave (supersonic tension wave) causes conduction or free action; (9) induced or induced by induced magnetic field; (10) static perpendicular to each other The induction of electric and magnetic fields causes conduction enhancement; (11) absorption of elastic waves (sonic and ultrasonic) causes conduction or free action; (12) friction causes conduction or free action. ^Na, the material has many singular characteristics, Because the negatively charged surface attracts electrons and easily absorbs the above various types of energy and causes energy level changes or dissociation. These singular characteristics include: (1) photocatalytic action; (2) chemical catalyst action; (3) parents (4) double sparse surface phenomenon; (5) dispersion; (6) high refractive index; (7) high induction rate; (8) far infrared reflection; (9) reflection shading with material particles Small diameter and blue shift phenomenon; (10) high conductivity; (11) high thermal conductivity; (12) high specific heat; (13) fire resistance; (14) dry grinding to cohesion; (15) low melting point ;〇6) increased toughness; (17) vapor pressure rise; (18) electromagnetic wave absorption; (19) sound absorption; (2) Capillary phenomenon; (2, powder and return mixing bridges _ and increase the strength, lead the rise, resistance = better; (22) non-magnetic materials appear strong magnetic; (23) nano magnetic body avoidance Magnetic=ίϊ; ί24) giant magnetoresistance phenomenon; (25) working principle of biochip; (10) activated carbon carbon nanotubes; (28) nano metal powder is black food, cosmetic mouth, ancient transmission therapy and Natural phenomena and other phenomena are inexhaustible. Among the 37 characteristics of nanomaterials, No. (34) shock absorption is the first (32) private 3, bactericidal effect, numbered (21) blended bridges = 1269849 . - There are Ns insufficient dangling bonds on the surface area of the county, and it is assumed that for each sucking (four), the absorbing electrons of the lining nano material (the number of early volumes) Nd is
NdNd
3NS (1) 太半米球之半徑。⑴式表示表面吸著1子體密度恒與 ίίΓ 例,即材_粒愈小,表面吸著電子體密 田^在排水管内從尚處向下排放而與管壁撞擊摩擦時,管壁 電子就會吸收縣熱而起游離,生成表面自由基,轉而 可使水解離,並產生氫氧自由基,促使污穢物起分解。 已知在溫度T之熱平衡情形下,持能量E之表面吸著電子的機 率/(稱為Fermi-Dirac分佈函數)為 /(E) e(E^)/kT+1 e -(Ε-μ)^Τ ⑵ 因為(Ε-// )>>kT;式中k為Boltzman常數,#為Fermi能 又能量介於E與ΕΜΕ間之單位體積狀態數公(E)dE為 3/2 麵 dE= i3NS (1) Radius of the half-meter ball. (1) means that the surface is absorbing a sub-body density constant and ίίΓ. For example, the smaller the material _ granules, the surface absorbing electrons, the dense field ^ when it is discharged from the still place in the drain pipe and collides with the pipe wall, the wall electrons It will absorb the heat of the county and free up, generating surface free radicals, which in turn can hydrolyze and produce hydroxyl radicals, which will cause the pollutants to decompose. It is known that in the case of thermal equilibrium of temperature T, the probability of absorbing electrons on the surface holding energy E / (called Fermi-Dirac distribution function) is /(E) e(E^)/kT+1 e -(Ε-μ )^Τ (2) Because (Ε-//)>>kT; where k is the Boltzman constant, #为 Fermi can be energy and the unit volume state between E and ΕΜΕ is (E)dE is 3/2 Face dE= i
2me ~ψ J(E-Eg)1/2dE (3) 式中me為電子之有效質量,tl= h/27T,h為Plank常數。傳 導帶單位體積之電子數Nc為 (4)2me ~ψ J(E-Eg)1/2dE (3) where me is the effective mass of electrons, tl=h/27T, and h is the Plank constant. The number of electrons per unit volume of the conduction band Nc is (4)
Nc= JTg 切(E)/(E)dE=2(27imekT/h2)3/V(E㈣竹 Nc = n〇e (E^)/kT 8 (5) 1269849 -2、3/2 n〇 = 2(27imekTh-2) 今假設進入傳導帶的電子全部來自表面吸著電子。人 =著電子密度;和W *別代表已進人傳導帶和處於^ 基感能位之表面吸著電子密度。由於基態能位E'、有 tfhg-Ed,所以Nc= JTg Cut (E)/(E)dE=2(27imekT/h2)3/V(E(四)竹Nc = n〇e (E^)/kT 8 (5) 1269849 -2,3/2 n〇= 2 (27imekTh-2) It is assumed that the electrons entering the conduction band all come from the surface to attract electrons. People = electron density; and W * represent the electron density that has entered the conduction band and the surface at the base energy level. Due to the ground state energy level E', there is tfhg-Ed, so
J+e(Eg-Ed^)/kT N: =Nd/(Eg-Ed#)= - NdJ+e(Eg-Ed^)/kT N: =Nd/(Eg-Ed#)= - Nd
NdNd
Nd = Nd-N°d= 1+e-叱 ⑹ 因為e c Nd (//-Eg+Ed)/kT 、、 , / >> 1,所以(6)式可簡化為 Nd eNd = Nd-N°d= 1+e-叱 (6) Since e c Nd (//-Eg+Ed)/kT , , , / >> 1, the formula (6) can be simplified to Nd e
-(Eg-Ed^)/kT ⑺ 注意N〗=Nc關係,於是合併(4)和(?)二式得 ⑻ (9)-(Eg-Ed^)/kT (7) Note N ==Nc relationship, then merge (4) and (?) two formulas (8) (9)
e-(Eg^)/kT ^ (^d/n〇y^Ed,2kTE-(Eg^)/kT ^ (^d/n〇y^Ed, 2kT
將(8)式代入(4)式,即得表面傳導電子密度為 Nc ^ (n〇Nd)1/2e"Ed/kT H式尺柏絕輯不做有半導體躲,而且材料顆 金屬,的表面電子會從表面蒸發丄成金屬導體。 i所ίίϊϊ量(φ),稱為功函數⑽—)如第H 所不。今考慮動量介於F和·圖 面積之電子魏率4 5C ^向(自胁細)單位 1269849 (10)Substituting (8) into (4), the surface conduction electron density is Nc ^ (n〇Nd) 1/2e"Ed/kT H-type ruler is not made of semiconductor hiding, and the material is metal, Surface electrons evaporate from the surface into metal conductors. The amount of (i) is called the work function (10) -) as in the H. Now consider the momentum of the F and · map area of the electronic rate of 4 5C ^ (self-shock) unit 1269849 (10)
Vxn(^〇dI>xdl>ydI>z ^ r) dsdl>ydl>z 式中ε為動能,nd3,r)為單位相空間電子數,可用Fermi-Dirac 分布函數/表示為 軌r) 2 —, 一h3 (11) 於是表面發射電流密度為 # ^ 2e f°° f °° f °° ^Vxn(^〇dI>xdl>ydI>z ^ r) dsdl>ydl>z where ε is kinetic energy, nd3,r) is the number of electrons per unit phase space, and the Fermi-Dirac distribution function can be expressed as rail r) 2 — , a h3 (11) then the surface emission current density is # ^ 2e f ° ° f ° ° f ° ° ^
0 (e-Ef)/kT (12) 利用(ε — Ef) (13) (14) (15) (16) j = jeVxii(l>,r )亦 ^ J -〇〇 J .〇〇 J Ε&φ dl>ydl>z de 式中e為電子之荷電量,Ef為金屬之Fermi能 > >kT條件,簡化後積分之,得0 (e-Ef)/kT (12) Use (ε - Ef) (13) (14) (15) (16) j = jeVxii(l>,r ) also ^ J -〇〇J .〇〇J Ε& ;φ dl>ydl>z de where e is the charge of the electron, and Ef is the Fermi energy of the metal>kT condition, which simplifies the integral
j = AT2e^/kT A = 47rmekT2h_3 = 120 amp/cm2-deg2 Φ ~ E〇 ~Efj = AT2e^/kT A = 47rmekT2h_3 = 120 amp/cm2-deg2 Φ ~ E〇 ~Ef
Ef = 3^2Nc)2/3 2m 愈高、奈米材料顆粒 矣示觀(13)〜(16)諸式結果,即知溫度τ 愈小(Ν。愈大)時,熱放射電流密度愈大二 矣而ίίΐ電3發生’乃表示表面吸著電子脫離表面’並遺留 摩擦熱而發生表面自由基,“ 壁即因吸收 促使污穢物起分解。本案之奈米二线氧自由基, 料與奈米雜材料之共混物|y、1、:日、自潔、·排水管係塑 一物1^ ;利用其與排水摩擦時發熱升溫 1269849 同時奈米材料顆粒愈細、含量愈多時(仏命大)士 發揮其南度去污自潔效力。 4大),才可 处八ί料it分子比較小的單體行強鍵共價結合,成為後性具以 電子起游離’並遺留表面自由基’強 顆表面及者 橋ί产謂材質結構起改變,由長:結構 狀聚合物,使材料的強度大幅提升。 再文成馮眉 ,於本案也_上述奈米材料37項躲巾編號第(⑷吸 Γίί’制!^震波阻抗的奈米粉體2與較低震波阻抗的塑勝1 相^合之混合物作為吸震材料體Α,如第三睛示。—旦震波進入 ,震材料’則震波(壓力波)就在_物質界面行反射作用。設震 ,在I物^①的震波速度Usi、質點速度Upi、質點密度〜/壓力 成,八抵達承=勿„ ’壓力即由Ρι變成h,览點速度由⑸變 反射震波_,穿入震Ef = 3^2Nc) 2/3 2m The higher the height, the nanoparticle particles show the results of (13)~(16), that is, the smaller the temperature τ is, the larger the thermal radiation current density is. The second occurrence of 大 ί ΐ ΐ ΐ ΐ 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃 乃Blends of nano-hetero-materials | y, 1, day, self-cleaning, drainage pipe plastics 1 ^; use of friction with the drainage heat rise 1269849 while the nano-material particles are finer, the content is more (The commander is big) The singer plays the role of decontaminating and self-cleaning in the south. 4 big), it can be used in the eight molecules, the smaller molecules of the molecule are covalently combined with each other, and become the post-sex with the electrons. Remaining surface free radicals 'strong surface and bridge ί production means that the material structure changes, from long: structural polymer, so that the strength of the material is greatly improved. Re-Wen Cheng Feng Mei, in this case also _ the above-mentioned nano material 37 items to hide Towel number ((4) sucking ίί' system! ^ Shock wave impedance of nano-powder 2 with lower seismic impedance The mixture of Sheng 1 phase is used as the body of shock absorbing material, as shown by the third eye. Once the shock wave enters, the seismic material 'the shock wave (pressure wave) is reflected at the _ material interface. Set the earthquake, in the I object ^1 The shock velocity Usi, the particle velocity Upi, the mass density ~/pressure, and the eight arrivals are not „the pressure is changed from Ρι to h, the velocity of the point is changed by (5), and the shock is penetrated.
Pi u; + P oi Usi = :0, (17) p2 -Pi =pi Usi (Up2 - UpI), (18) Pi =P oi Usi Upi , (19) p2 =p 02 Us2 UP2 , (20) 式中/0 oi 、P 〇2為震波未到時的質量密度, 運用(17)至(20)式, 求得:υΡ2 2p0lUslPi u; + P oi Usi = :0, (17) p2 -Pi =pi Usi (Up2 - UpI), (18) Pi =P oi Usi Upi , (19) p2 =p 02 Us2 UP2 , (20) Medium /0 oi and P 〇2 are the mass densities when the shock wave is not reached. Using (17) to (20), find: υΡ2 2p0lUsl
Upl POlUsl + P〇2Us2 (21) (22) 1269849 AρΓ 2β〇2^ s2 poiUsi + p02us2 利用⑻和(22)式可分析震波吸收體的震波吸收能力。考慮 下列兩種情形: υ usi) _膠進人較高震波阻抗 (p〇2Js2)Mi^^mm , 0p〇2 Us2>p〇i Usi|f# } ^ 二U:2 < Un。此結果表示反射波為如細圖所示之震波(壓 力波)。就能量觀點而言,奈米材料顆粒 SL’ii壓力增大,因此具有增加壓縮ί 玛為凝態,壓縮率甚小,所以壓縮耗能效 11),震波,=震波阻抗(PQ1 Usi)的奈米顆粒進人較低震波阻 抗(P⑽US2)的塑膠時’因p〇1 Usi >p〇2 Us2關係,即得Ρ2〈 Ρι· ί。ί結果表示反射波為如第五圖所示之稀釋波(拉力 ί i電發生拉力關係,首當其衝的奈米表面 =電子財被逼拉離表面,並在拉引過程中,表面吸 f即因能位提升甚至起游離作用而大量吸收能。 哗立“奈米防噪音、自潔、強化排水管”之吸震消除 提ΚΐΙΠίΞ紐,係彻奈米材·面吸著電子之能位 體的體積形狀保持不變,而能消除震動噪音。 才 12 1269849 【實施方式】 將粒徑1000簡以下、5%wt•以上之碳、金 ίίίΐ物等奈米粉體取代塑膠之填充劑,加人塑以 =膠,為排水管之製作材料,再利用習知之ΐ料成型 法製成奈米防嘴音、自潔、強化排水管。 十成1 卜【圖式簡單說明】 复二凰為奈米表面吸著電子的能位圖。 屋三凰為:金屬表面傳導電子之能位圖。 凰為:震動吸收材料體。 震波阻抗奈米顆 遂!凰為:震波從較低震波阻抗的塑膠進入較高 粒時所發生的反射狀態。 凰為:震波從較較高震波阻抗的奈米顆粒進入低雷 _時所發生的反雛態。 叫的 ^【主要元件符號說明】 第一圖圖號: (1)〜-傳導帶,(2)-—價帶,(3)---能隙, Εν〜〜價帶最高能位,Upl POlUsl + P〇2Us2 (21) (22) 1269849 AρΓ 2β〇2^ s2 poiUsi + p02us2 The shock absorption capacity of the shock absorber can be analyzed by equations (8) and (22). Consider the following two situations: υ usi) _ glue into people with higher seismic impedance (p〇2Js2) Mi^^mm, 0p〇2 Us2>p〇i Usi|f# } ^ Two U:2 < Un. This result indicates that the reflected wave is a shock wave (pressure wave) as shown in the fine graph. From the energy point of view, the pressure of the nanomaterial particle SL'ii increases, so the compression γ is increased to a condensed state, and the compression ratio is very small, so the compression energy efficiency is 11), the seismic wave, the seismic impedance (PQ1 Usi) When the rice particles enter the plastic of the lower seismic impedance (P(10)US2), the relationship between the p〇1 Usi >p〇2 Us2 is 2Ρ Ρι· ί.结果 The result indicates that the reflected wave is a dilution wave as shown in the fifth figure (the pulling force is related to the pull force), the first surface of the nanometer surface = the electronic money is forced to pull away from the surface, and during the pulling process, the surface absorbs f The energy level can be increased or even freed to absorb a large amount of energy. The shock absorption elimination of the "nano anti-noise, self-cleaning, and enhanced drainage pipe" is the volume of the energy body of the Chennai material. The shape remains unchanged, and the vibration noise can be eliminated. Only 12 1269849 [Embodiment] A nano-powder such as carbon, gold, or 5% wt•, which is less than 5% wt•, is used as a filler to replace the plastic filler. = Glue, which is the material for the drainage pipe, and then made the nano-anti-mouth sound, self-cleaning and reinforced drainage pipe by the conventional material forming method. 10% 1 卜 [Simple description of the drawing] Fu phoenix is the surface of the nano The energy absorbing figure of the electron. The house is three phoenix: the energy level map of the electron conduction on the metal surface. The phoenix is: the vibration absorbing material body. The shock wave impedance nanometer 遂! The phoenix is: the shock wave enters the plastic from the lower seismic impedance. The opposite of high grain The state is: the shock wave from the higher seismic impedance of the nanoparticle into the low mine _ when the reverse state occurs. Called ^ [main component symbol description] The first picture number: (1) ~ - conduction band , (2)--valence band, (3)---energy gap, Εν~~ valence band highest energy level,
Ea〜〜表面吸著電子的基態能位, Eg〜〜傳導帶的最低能位, E〜傳導帶的最高能位,Ed=Eg-Ea。 13 1269849 第二圖圖號: Φ---功函數 E〇 - -The ground energy level of Ea~~ surface is absorbed by electrons, the lowest energy level of Eg~~ conduction band, and the highest energy level of E~ conduction band, Ed=Eg-Ea. 13 1269849 Second picture number: Φ---Work function E〇 - -
Ef 一--Fermi 能位, η ίΐί導電子從最低能位Q脫離表_需能量 0 傳導帶的最低能位為零, (1)——傳導帶,©———真空,〇———表面。 第三圖圖號: A---震動吸收材料體。 2 較咼震波阻抗粒徑l〇〇〇nm以下之金屬、金屬氧化物、陶莞或 礦物等奈米級粉粒。 1-一較低震波阻抗之塑膠。 第四圖圖號: ①一-塑膠, ②—一奈米顆粒, ①———界面, Ρ〇ι---塑膠原有密度, pi-一受震壓後之塑膠密度, P2—反射後之震波壓力, Usi---反射之震波速度, UP2---反射後質點速度, P 02---奈米顆粒原有密度, Pi-一反射前之震波壓力, Usi---原有震波速度, Upi-一反射前質點速度, Us2---奈米顆粒震波速度。 第五圖圖號: ①---奈米顆粒, ②---塑膠’ ①---界面, Ρ〇ι一-奈米顆粒原有密度, —-塑膠原有密度, p 1-一受震壓後之奈米顆粒密度,Pi-—反射前之震波壓力, p2---反射後之震波壓力, ❿一-原有震波速度,Ef one--Fermi energy level, η ίΐί conductance from the lowest energy Q detachment table _ energy required 0 conduction band minimum energy zero, (1) - conduction band, © - vacuum, 〇 - surface. The third picture number: A---shock absorbing material body. 2 Nano-grade particles such as metals, metal oxides, pottery or minerals with a shock wave impedance of l〇〇〇nm or less. 1- a lower seismic impedance plastic. The fourth picture number: 1 - plastic, 2 - one nano particle, 1 - interface, Ρ〇ι - plastic density, pi - plastic density after shock, P2 - after reflection Shock wave pressure, Usi---reflection wave velocity, UP2---reflection particle velocity, P 02---the original density of nanoparticle, Pi--pre-reflection shock wave pressure, Usi---original seismic wave Speed, Upi - a pre-reflection particle velocity, Us2---nano particle shock velocity. Figure 5: 1---Nano granules, 2---Plastic ' 1---interface, Ρ〇ι-Nylon granules original density, --- plastic original density, p 1- one Nanoparticle density after seismic pressure, Pi--shock wave pressure before reflection, p2---shock wave pressure after reflection, ❿一-original seismic wave velocity,
Usi -—反射震波速度, 旧-一塑膠内震波速度,Usi - reflection seismic speed, old - plastic internal shock wave velocity,
Upi---反射前質點速度, ㈤---反射後質點速度。Upi---the velocity of the particle before reflection, (5)---the velocity of the particle after reflection.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94105159A TWI269849B (en) | 2005-02-22 | 2005-02-22 | Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94105159A TWI269849B (en) | 2005-02-22 | 2005-02-22 | Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200630558A TW200630558A (en) | 2006-09-01 |
TWI269849B true TWI269849B (en) | 2007-01-01 |
Family
ID=38318485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94105159A TWI269849B (en) | 2005-02-22 | 2005-02-22 | Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI269849B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI460359B (en) * | 2007-10-01 | 2014-11-11 | Mircona Ab | A new product and method for its manufacture within material processing |
-
2005
- 2005-02-22 TW TW94105159A patent/TWI269849B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI460359B (en) * | 2007-10-01 | 2014-11-11 | Mircona Ab | A new product and method for its manufacture within material processing |
US8895160B2 (en) | 2007-10-01 | 2014-11-25 | Mircona Ab | Product and method for its manufacture within material processing |
Also Published As
Publication number | Publication date |
---|---|
TW200630558A (en) | 2006-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation | |
TWI344487B (en) | Thermal interface material | |
Njuguna et al. | Health and environmental safety of nanomaterials: polymer nanocomposites and other materials containing nanoparticles | |
Sattler | Handbook of nanophysics: functional nanomaterials | |
CN106905795A (en) | A kind of super-hydrophobicity coating and preparation method with raspberry shape structure composite particle | |
Dahlan | Smart and functional materials based nanomaterials in construction styles in nano-architecture | |
Enomoto et al. | Effect of ultrasound on synthesis of spherical silica | |
Zaporotskova et al. | Sensor activity of carbon nanotubes with a boundary functional group | |
TWI269849B (en) | Anti-noise, self-cleaning, and strength-reinforced water-discharging pipe made of nano-material | |
CN107686129A (en) | A kind of TiO2The solvent process for thermosynthesizing of flower-shaped hierarchy sub-micron ball | |
Chu et al. | Synergistic effect of nano‐SiO2 and small‐sized graphene oxide on carbon fiber/epoxy composite | |
Tripathy et al. | Mechanical and thermal properties of mineral fiber based polymeric nanocomposites: a review | |
Waked | Nano materials applications for conservation of cultural heritage | |
Yang et al. | Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature | |
Yu et al. | Acoustic properties of polyurethane composite with both millimeter-scale closed cavity and nanometer-scale semi closed cavity | |
Forushani et al. | Effect of multi-wall carbon nanotubes/strontium ferrite nanoparticles on the microstructure, phase, magnetic and electromagnetic behavior of carbon aerogel composites | |
Zhou et al. | Structure and properties of polymer/two-dimensional nanomaterials studied via molecular dynamics simulation: a review | |
Aamina et al. | Exact solutions for the Atangana-Baleanu time-fractional model of a Brinkman-type nanofluid in a rotating frame: Applications in solar collectors | |
Tam et al. | Thermal Conductivity and Photothermal Conversion Performance of Ethylene Glycol‐Based Nanofluids Containing Multiwalled Carbon Nanotubes | |
TWI261578B (en) | The method of producing nano cement solid with damper capability | |
Cao et al. | Enhanced Transport of TiO 2-Reduced Graphene Oxide Nanocomposites in Saturated Porous Media: The Impact of Loaded TiO 2 Shape and Solution Conditions | |
Long | Design, performance, and mechanism of cement-based materials with 2D nanomaterials | |
TWI307381B (en) | ||
TWI287521B (en) | A ship propeller made of a shock-absorbing and strength-reinforced nano-plastics material | |
TWI247625B (en) | Method for using nanometer thermal catalyst to suppress production of dioxin by incinerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |