TWI268051B - Method for generating 2D OVSF codes in multicarrier DS-CDMA systems - Google Patents
Method for generating 2D OVSF codes in multicarrier DS-CDMA systems Download PDFInfo
- Publication number
- TWI268051B TWI268051B TW93108758A TW93108758A TWI268051B TW I268051 B TWI268051 B TW I268051B TW 93108758 A TW93108758 A TW 93108758A TW 93108758 A TW93108758 A TW 93108758A TW I268051 B TWI268051 B TW I268051B
- Authority
- TW
- Taiwan
- Prior art keywords
- matrix
- code
- generating
- dimensional orthogonal
- matrices
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1268051 砍、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) 本申請案係為一美國連續申請案,申請案號為 10/063,771,申請曰期為5月11曰2003年。 【發明所屬之技術領域】 本發明係提供一^重分碼多重存取通訊糸統(CDMA Communication system),尤指一種在多載波直接序列分碼 多重存取(multicarrier direct-sequence code-division multiple-access,MC-DS/CDMA)通訊系統中產生二維正交 可變展頻係數(two-dimensional orthogonal variable spreading factor,2D_OVSF)碼及可轉換不同速率 MC-DS/CDMA通訊系統的方法。 [先前技術] 第一代通訊系統市場的蓬勃發展,以及其相關功能的 不斷延伸,已快速地提升了其傳輸及接收的性能,使其能 夠以很高的傳輸速率來傳輸資料。而通訊线的日益進步 ,促使了第三代(3G)行動通訊系統的發展,如2Mbps的寬 員刀馬夕重存取通訊系統(Wideband Code-Division 曰,Aecess)服務已經為國際行動通訊團體(ΐΜτ_2_) 却^士才皮用於第—代行動通訊系統中之分碼多重存取通 服務。其細—種極有軸的方式來提供寬頻 刀碼多重存取it统賴過展頻後,可提供重複 1268051 使用的頻譜(Spectrum)、抵抗多路徑干擾(muitipath resistance)、頻率分集(frequency diversity)以及干擾消除 (interference rejection)之優點。 為了能夠同時提供高速度和多重資料傳輸服務之目 的,有兩種技術被應用在IMT2000寬頻CDMA通訊系統 中’亦即可變長度展頻(Variable_length spreading)技術和多1268051 Cutting, invention description (invention description should be stated: the technical field, prior art, content, implementation and schematic description of the invention) This application is a US continuous application, the application number is 10/063,771, The application period is May 11 2003. [Technical Field] The present invention provides a CDMA Communication system, in particular, a multicarrier direct-sequence code-division multiple -access, MC-DS/CDMA) A method for generating a two-dimensional orthogonal variable spreading factor (2D_OVSF) code and a convertible different rate MC-DS/CDMA communication system in a communication system. [Prior Art] The booming market of the first generation of communication systems and the continuous extension of its related functions have rapidly improved the performance of its transmission and reception, enabling it to transmit data at a high transmission rate. The ever-increasing communication lines have led to the development of third-generation (3G) mobile communication systems, such as the 2Mbps Wideband Code-Division 曰 (Aecess) service, which has become an international mobile communication group. (ΐΜτ_2_) However, it is used for the code division multiple access service in the first-generation mobile communication system. Its fine-grained way to provide wide-band code-code multiple access it depends on the spread spectrum, can provide the spectrum used by repeating 1268051, resisting multipath interference (muitipath resistance), frequency diversity (frequency diversity) And the advantages of interference rejection. In order to provide high-speed and multiple data transmission services at the same time, there are two technologies that can be applied to the IMT2000 broadband CDMA communication system, which can also be used for variable length spreadable (Variable_length spreading) technology.
碼技術(Multicode techniques)。其中可變長度展頻CDMA 通訊系統係使用不同長度之正交展頻碼來實現多重資料傳 輸。而多碼技術則分派了多個展頻碼給一個使用者來達成 高資料量傳輸服務。此兩展頻技術被用於寬頻之CDMA通 δίΐ糸統内精以提供在同一細胞格(Cell)内的用戶相互正交 性,並也同時維持了不同細胞格下用戶的相互隨機性。此 兩展頻技術包含有兩部份,第一部份是頻道化 (channelization),其將每一資料記號(Data symb〇1)轉換為一 預設碼片(Chip)數目。每一資料記號所對應的碼片數目係被 稱為展頻係數碼。二維正交可變展頻係數碼被拿來當作頻 道化碼藉以確保不同下載頻道之正交性。第二部份是擾頻 (scrambling)。同一細胞格内的每一用戶均使用同樣的擾頻 碼,藉以提供並維持不同細胞格中的用戶隨機性。然而, 二維正交可變展頻係數碼不能維持用戶在上傳頻道上的相 互隨機性。因此,在同一細胞格内的用戶在上傳頻道中使 用不同的擾頻碼來維持其正交性和隨機性。 然而為了有更大的資料傳輸能力,於是提出了多載波 直接序列分碼多重存取(MC-DS/CDMA)通訊系統。而使用 1268051 正交展頻碼之MC-DS/CDMA通訊系統的優點在於其可將 多重存取干擾減至最小(multiple-access interference, MAI)。該多重存取干擾係為CDMA通訊系統中最主要的一 干擾源。It著減小多重存取之干擾,加快其傳輸速率的可 能性則大大的提高。在多重存取干擾中的每一名用戶,係 被指派一作為用戶認證序列(signature sequence)之二維展 頻碼序列(spreading code sequence)。矩陣中行的數目係為 其所使用的展頻係數,而列的數目則為MC-DS/CDMA通 訊系統中頻率波數的數目。每一矩陣的列係經由不同頻率 而被傳送出去。為MC-DS/CDMA通訊系統建立一組展現 出零循環自相關旁波瓣(Cyclic autocorrelation Sidelobes)和 夺循環交互相關(Cyclic Cross-Correlation)特性的二維展頻 石馬矩陣是有可能的。既然多重存取干擾係為當同時傳輸中 用戶的主要非零交互自相關函數所產生的,則使用這樣的 展頻碼矩陣時,在MC-DS/CDMA通訊系統中的多重存取 干擾可以大大地被減輕。請參考第一 A圖與第一 B圖。第 〜A圖係為習知MC-DS/CDMA通訊系統10的簡單方塊 圖’第一 B圖為一使用於習知通訊系統10的ΜχΝ展頻石馬 矩陣14a。輸入資料12a被輸入一個乘法器14,這乘法器 ^經由一個MxN展頻碼矩陣14a的指派來作展頻,經過 展頻頻譜15後的資料會被輸入至一個多載波調變單位 迎被傳送出去。在接收端,一個多載波反調變單位17接收 W 了被傳送來的訊息後,經過反調變並產生反調變資料 18 ’ 一個乘法器19將資料18與相同之MxN展頻碼矩陣 1268051 14a相乘並產生輸出資料12b。一般來講,此所有用戶的 MxN展頻碼矩陣是一致的,而理想中輸出資料12b必須跟 輸入資料12a —致。 到目前為止,MC-DS/CDMA通訊系統的展頻碼矩陣在 形式上是被限制住的,也就是說M,N之間的關係有著下 列限制: 1) M=N=2k,k >1,或是 2) M=2k,N=M2,k >1 〇 以上的條件構成了 MC-DS/CDMA通訊系統中一個相 當的限制,這個限制會大大的減少這些系統在資料傳輸參 數上的彈性。 【發明內容】 為了讓本創作之上述和其他目的、特徵、和優 點能更顯著,下文特舉本創作較佳實施例,並配合 所附圖示,詳細說明如下。 因此,本發明的主要目的在於提供一多載波直接序列 分碼多重存取(Multicarrier direct-sequence code_division multiple-access,MC-DS/CDMA)通訊系統,配合現存二維 正交可變展頻係數碼(two-dimensional orthogonal variable spreading factor code,2D-OVSF codes)使其有能力產生並 使用擴充的二維正交展頻碼。擴充的二維正交展頻碼係為 MxN矩陣形式,而該MxN矩陣係藉由Me①和M2xN2矩陣所 產生,其中,N = NixN2。另外,當ΜρΝ!矩陣有 1268051 h個,ΜβΝ2矩陣有1¾個,可以產生(k/k2)個MxN矩陣。 本發明揭露了 一個無線通訊的方法,尤指一個在 MC-DS/CDMA通訊系統中產生二維正交展頻碼的方法。 並提出一因應此通訊系統之二維正交展頻碼的分碼樹。這 些分碼樹中所產生二維正交展頻碼皆可應用於 MC-DS/CDMA通訊系統。每一分碼樹之節點係代表 一二維正交展頻碼可當成記號序列(signature sequence) ° . 、 i …丄一 ¥正父履頸石馬, Αν’ ’視為種子矩陣。其中該Λ f A {l,2”..,KG、Μ!則代表 目別已知頻率波數(frequencycarriers),以及Νι代 表-展頻因子之碼長度而且假定心為2。每 =種子㈣係指定於相對應母節點 各 (:= 之第一代子節‘點,亦為分碼樹之二; 點之後代。Μ所有㈣代子節點均為這些母節 i^ixN2) 碼料啊矩陣 ,2, ···,κ〕}而 fC {MxxNx) }及對應矩_ 節點。第—展斤 j系用來產生分碼樹中之子 弟—層子卽點為(JVh 1U V XT K!K2個,該第- s; — 2 ΝιΝ2)矩陣並有個數 定義: 稽由重稷下列關係式所 為2。種子矩陣{ 1268051 C{{l-x)K^x\MxMiXNiN2) =B^{M2xN2) ® A(0(M1xN1) C{{i~x)K2+2\mxm2,nxn2) = ® A{1\mxxNx) C{{i~X)K2+K2\m{m^nxn2) = B{2Ki){M2xNi)® A{i\mxxnx) 該®表示為克羅尼克積,而1=1,2,3,4,...,1(4。透過上 述的公式,可以求出所有在同一層的二維正交展頻 碼0 本發明之優點為提供一新式二維正交展頻碼,其行列 數可有很大彈性的變化,也因此允許MC-DS/CDMA通訊 系統,能在頻率波數數目和所使用的展頻係數碼上具有很 大的彈性空間。似一維正交可變展頻係數碼的一樹狀結構 經由遞迴而產生,同樣地,此新式二維正交展頻碼也是經 由遞迴產生。因此當這種碼被用在MC-DS/CDMA通訊系 統時,多重資料傳輸速率亦可由可變長度展頻和多碼技術 來達到。 本發明仍有一個優點,本發明之二維正交展頻擁有零 循環自相關和零循環交互相關的特性,因此能在不同頻道 間保持正交性,故不需要兩層展頻技術(two_layered)。 【實施方式】 下文特舉本發明之較佳具體實施例,並參照附 圖做詳細說明。 藉由ΜγΝι矩陣(個數ΚΟ及M2xN2矩陣(個數 Κ2)兩組二維正交可變展頻係數碼(2D-OVSF),可建 1268051 = (κιΚ2)個(Ml M2)x(NiN2):維正交展頻瑪,並 Νι、M2、N2、1及K2係為正整數。這些分 ΜΓ^ς中所產生之二維正交展頻碼係應用於 -/CDMA通訊系統。每一分碼樹之節點均具有 目對應矩陣並代表該展頻碼序列。 ,V刀"組已存在之MlXNl二維正交展頻碼 係視為種子矩陣。其中丨={1, 2,·..,M、吣則 目别已知頻率波數、Νι代表—展頻因子 二 及1係為2〇而每一 刀馬樹之種子矩陣係指定至相 對應母㈣。該母節點#作分碼樹中之第 點:因广亦為分碼樹之根結構。所有延續代子節:: j為廷些母節點之後代且配合他們相對應之正 交矩陣。 ⑺另-組已存在之二維正交展頻石馬 與)(Μ2χΑ^係為一對應矩陣,其中丨={ 1 於达。 八 1, ,···,K2}而 κ2 係為2。種子矩陣{八娜,α拟“土 ί/?⑴ _ 4 及對應矩陣 二2 (^,...,炉)(一}係用來產生分碼樹中之子 節點。第二層子節點為(Κικ2)個% ¥ 陣’該第二層子節點係藉由重複下列關係式所定2義. ^ (Μ2χΝ2) ^ ^ (^ιχ^ι) 厂((ί.-1Κ2+2) … I {MyM^NxN2) = ^ (Μ2χΝ2) ^ ^ (Μ'χΝγ) Q{{i-\)K2+K2) (ΜιΜ2χΝίΝ2) = 2 (Μ2χΝ2) ® Α(<1\μ1χνχ) 1268051 頻碼。;°以’出所有在同-層的二維正交展 私德^例纟5兄,如果要找出再下一層㈤節點時,原 二 矩陣係藉由第二層的子矩陣{ , κ =Λ),,·.,所取代’此層的子矩陣具有個數 ;Κ2。另一/組二維正交展頻碼作為對應矩陣{碓_~, 3 (w’···’ Α 3(_)} ’具有個數&,其中假定%為2 〇 於第一層中,一維正交矩陣係藉由重複下列關 係式定義而成: ^Βΐ2\Μ^)®^ί){ΜλΜιΧΝχΝ2) 该⑭表示為克羅克尼克積,而i:=l,2,3,4,.,。 由此可知,藉由重複上述方法及選擇性地於各 層中使用各種不同之對應矩陣 {5(1) b{2) t 2 (M2xN2) 5 ΰ2 {Μ2χΝ2) ?· · *, 2\μ2χΝ2) { ^3 (Μ3χΝ3) 5 万3( )(M3x#3) ’···,β3(Α:3)(Λ/ 諸)},· { 5〇) ρ (Ά), #(μΛ),···,,即可求得/^層中子節點之二維 正父矩陣{ C(\m'M2』。,N2』。、,02)(¥2. .#„,···, C(K'K2〜Kp) } 〇 {MWyMpxN小2 …Np) 值得注意的是對應矩陣的選擇並無限制性,只 12 1268051 要對應矩陣為 χ _ 組二維正交展頻碼〜換白与^ _ 正交性。而和母節點呈防 、勹后呪即具 U可即點具關聯性的初 其限制性,僅限於-維不丄 巨陣亦無 1罜哏孓一維正交矩 鈥 ^ 整個分碼樹的架構,種子矩 了 ,右要維持 來% -. 陣則會受到限制。舉彻 子矩陸#日& 由 層的節點當成種 :;陣亚且代入上述的公式中得到,同時,第= 、即點也就是第四層節點的種子矩曰 是所有組別之對庫矩障,的飞士 值仔一^的 種子“ i 相同並且等於初始之 可更子矩陣。皇仓丨丨冰热.# 舉例來說 KrMulticode techniques. Among them, the variable length spread spectrum CDMA communication system uses orthogonal spreading codes of different lengths to realize multiple data transmission. Multi-code technology assigns multiple spreading codes to a single user to achieve high data volume transmission services. The two spread spectrum techniques are used in broadband CDMA to provide user inter-orthogonality within the same cell (cell) while maintaining the randomness of users in different cell compartments. The two spread spectrum techniques consist of two parts. The first part is channelization, which converts each data symbol (Data symb〇1) into a preset number of chips. The number of chips corresponding to each data mark is called a spread spectrum coefficient code. A two-dimensional orthogonal variable spreading coefficient code is used as a channelization code to ensure orthogonality of different download channels. The second part is scrambling. Each user within the same cell uses the same scrambling code to provide and maintain user randomness in different cell compartments. However, the two-dimensional orthogonal variable spreading coefficient code cannot maintain the mutual randomness of the user on the uploaded channel. Therefore, users within the same cell grid use different scrambling codes in the upload channel to maintain their orthogonality and randomness. However, in order to have a larger data transmission capability, a multi-carrier direct sequence code division multiple access (MC-DS/CDMA) communication system was proposed. The advantage of the MC-DS/CDMA communication system using the 1268051 orthogonal spreading code is that it can reduce multiple access interference (MAI). This multiple access interference is the most important source of interference in CDMA communication systems. It is much more likely to reduce the interference of multiple accesses and speed up its transmission rate. Each user in the multiple access interference is assigned a two-dimensional spreading code sequence as a user signature sequence. The number of rows in the matrix is the spreading factor used by it, and the number of columns is the number of frequency waves in the MC-DS/CDMA communication system. The columns of each matrix are transmitted via different frequencies. It is possible to create a set of two-dimensional spread-frequency stone-horse matrices for the MC-DS/CDMA communication system that exhibit Cyclic autocorrelation Sidelobes and Cyclic Cross-Correlation. Since the multiple access interference is generated by the user's main non-zero interactive autocorrelation function in simultaneous transmission, the multiple access interference in the MC-DS/CDMA communication system can be greatly improved when such a spreading code matrix is used. The ground is lightened. Please refer to the first A picture and the first B picture. The first to fourth drawings are a simplified block diagram of a conventional MC-DS/CDMA communication system 10. The first B is a ΜχΝ-spreading stone matrix 14a for use in the conventional communication system 10. The input data 12a is input to a multiplier 14 which is spread by an assignment of an MxN spreading code matrix 14a, and the data after the spread spectrum 15 is input to a multi-carrier modulation unit to be transmitted. Go out. At the receiving end, a multi-carrier inverse modulation unit 17 receives the transmitted message, undergoes inverse modulation and generates inverse modulation data 18 'a multiplier 19 sets the data 18 with the same MxN spreading code matrix 1680051 14a is multiplied and produces an output data 12b. In general, the MxN spreading code matrix of all users is consistent, and ideally the output data 12b must coincide with the input data 12a. So far, the spread spectrum code matrix of the MC-DS/CDMA communication system is formally restricted, that is, the relationship between M and N has the following restrictions: 1) M=N=2k,k > 1, or 2) M = 2k, N = M2, k > 1 〇 The above conditions constitute a considerable limitation in the MC-DS/CDMA communication system. This limitation will greatly reduce the data transmission parameters of these systems. Flexibility. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings. Therefore, the main object of the present invention is to provide a multi-carrier direct-sequence code-division multiple-access (MC-DS/CDMA) communication system, which cooperates with an existing two-dimensional orthogonal variable spreading coefficient code. Two-dimensional orthogonal variable spreading factor codes (2D-OVSF codes) make it possible to generate and use an extended two-dimensional orthogonal spreading code. The extended two-dimensional orthogonal spreading code system is in the form of an MxN matrix, which is generated by Me1 and M2xN2 matrices, where N = NixN2. In addition, when the ΜρΝ! matrix has 1268051 h and the ΜβΝ2 matrix has 13⁄4, (k/k2) MxN matrices can be generated. The present invention discloses a method of wireless communication, especially a method for generating a two-dimensional orthogonal spreading code in an MC-DS/CDMA communication system. A code division tree corresponding to the two-dimensional orthogonal spreading code of the communication system is proposed. The two-dimensional orthogonal spreading codes generated in these code division trees can be applied to the MC-DS/CDMA communication system. The node of each code tree represents a two-dimensional orthogonal spreading code which can be regarded as a signature sequence ° , i ... 丄 ¥ 正 履 履 , , , , 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为 视为Where Λ f A {l, 2".., KG, Μ! represents the known frequency carriers, and Νι stands for the code length of the spreading factor and assumes that the heart is 2. Every = seed (four) It is specified in the corresponding parent node (:= the first generation subsection 'point, also the second of the code tree; point generation. Μ all (four) generation child nodes are these mother nodes i^ixN2) The matrix, 2, ···, κ〕} and fC {MxxNx) } and the corresponding moment _ node. The first - is used to generate the children in the code tree - the layer is (JVh 1U V XT K !K2, the first - s; - 2 ΝιΝ2) matrix and has a number definition: The following relationship is repeated: 2. Seed matrix { 1268051 C{{lx)K^x\MxMiXNiN2) =B^{M2xN2 ® ®(((((( ( ( ( ( ( ( ( ( ( ( {2Ki){M2xNi)® A{i\mxxnx) The ® is expressed as a Kronik product, and 1=1, 2, 3, 4, ..., 1 (4. Through the above formula, all can be found The two-dimensional orthogonal spreading code 0 in the same layer has the advantage of providing a new two-dimensional orthogonal spreading code, and the number of rows and columns can be greatly changed. This allows the MC-DS/CDMA communication system to have a large elastic space in the number of frequency waves and the spread spectrum coefficient code used. A tree structure like a one-dimensional orthogonal variable spreading coefficient code is recursively However, this new two-dimensional orthogonal spreading code is also generated via recursion. Therefore, when such a code is used in an MC-DS/CDMA communication system, the multiple data transmission rate can also be made by variable length spread spectrum. The invention also has an advantage. The two-dimensional orthogonal spread spectrum of the present invention has the characteristics of zero-cycle autocorrelation and zero-cycle cross-correlation, so that orthogonality can be maintained between different channels, so two Embodiments of the present invention are described in detail below with reference to the accompanying drawings. By ΜγΝι matrix (number ΚΟ and M2xN2 matrix (number Κ 2) two groups Two-dimensional orthogonal variable spreading coefficient code (2D-OVSF), can be built 1268051 = (κιΚ2) (Ml M2) x (NiN2): dimensional orthogonal spread frequency Ma, and Νι, M2, N2, 1 and K2 Is a positive integer. The two-dimensional orthogonal exhibition generated in these branches The code system is applied to the -/CDMA communication system. Each node of the code tree has a mesh corresponding matrix and represents the spread code sequence. The V-knife" group already exists in the MlXNl two-dimensional orthogonal spread spectrum code system. Seed matrix. Where 丨={1, 2,·..,M,吣, the frequency wave number is known, Νι stands for – spread factor 2 and 1 is 2〇 and the seed matrix of each knife tree is assigned to the corresponding mother (4) . The parent node # is the first point in the code tree: because it is also the root structure of the code tree. All continuation sub-sections:: j is the descendant of some parent nodes and cooperates with their corresponding orthogonal matrices. (7) Another-group of existing two-dimensional orthogonal spread-frequency stone horses and) (Μ2χΑ^ is a corresponding matrix, where 丨={ 1 达达. 八1, ,···, K2} and κ2 is 2. The seed matrix {八娜,α拟"土ί/?(1) _ 4 and the corresponding matrix 2 2 (^,..., furnace) are used to generate the child nodes in the code-coding tree. The second-level child nodes are (Κικ2)%% ¥ Array' The second layer of subnodes is determined by repeating the following relationship. ^ (Μ2χΝ2) ^ ^ (^ιχ^ι) Factory ((ί.-1Κ2+2) ... I { MyM^NxN2) = ^ (Μ2χΝ2) ^ ^ (Μ'χΝγ) Q{{i-\)K2+K2) (ΜιΜ2χΝίΝ2) = 2 (Μ2χΝ2) ® Α(<1\μ1χνχ) 1268051 Frequency code;;° In order to 'out all the two-dimensional orthogonal exhibitions in the same layer, the five brothers, if you want to find the next layer (five) node, the original two matrix is through the second layer of the submatrix { , κ =Λ ),,·., replaced by 'the submatrix of this layer has a number; Κ 2. Another / group of two-dimensional orthogonal spreading code as the corresponding matrix {碓_~, 3 (w'···' Α 3 ( _)} 'has a number &, where % is assumed to be 2 in the first layer, and the one-dimensional orthogonal matrix is repeated by the following relationship义成: ^Βΐ2\Μ^)®^ί){ΜλΜιΧΝχΝ2) The 14 is expressed as the Croknonic product, and i:=l, 2, 3, 4,.,. It can be seen that by repeating the above Method and selectively use various different corresponding matrices in each layer {5(1) b{2) t 2 (M2xN2) 5 ΰ 2 {Μ2χΝ2) ?· · *, 2\μ2χΝ2) { ^3 (Μ3χΝ3) 50,000 3( )(M3x#3) '···,β3(Α:3)(Λ/ 诸)},· { 5〇) ρ (Ά), #(μΛ),···,, can be obtained The two-dimensional positive parent matrix of the /^ layer neutron node { C(\m'M2』.,N2』.,,02)(¥2. .#„,···, C(K'K2~Kp) } 〇{MWyMpxN小2 ...Np) It is worth noting that the choice of the corresponding matrix is not restrictive, only 12 1268051 to correspond to the matrix is χ _ group of two-dimensional orthogonal spread code ~ white and ^ _ orthogonality. However, the parent node is defended, and the 呪 呪 呪 呪 U U U U U U U U U U U U U U U U U U , , , , , , , , , , , , , , , , , , , The architecture, the seed moment, the right to maintain % -. The array will be limited. Lifting the roots of the moment #日& by the nodes of the layer as a species:; matrix and substituting into the above formula, at the same time, the =, that is, the seed matrix of the fourth layer node is the pair of all groups The library barrier, the seed of the Fei Shi value of a ^ "is the same and equal to the initial sub-matrix. Huang Cangyi ice heat. # For example Kr
Nl,2'· A ^2)^(2)(2x2)} = {B(1\2x2)9B(2\2,2)} = { 若以 Μ!: 以 及 _ η {++, Η— + — + + — — 為參考條件。在本發 、=施例中,,+’,代表+1而”則表示-卜重複上述方 二可得到與-組MXN :維正交展頻碼。其中該 N—2 、k〉〇以及1 >0。這組展頻碼算是 本發明實施之其中一組特例。 明參閱第二圖。第二圖係為本發明實施例中 =於MC-DS/CDMA通訊系統之二維正交展頻碼之 分碼樹20的部分示意圖。首先提供一組個數為4 m二維正交展頻碼作為種子料a⑴(4χ3)’其 1的範圍係從1至4。更具體的來說,矩陣 Α( \4χ3)係為: 13 1268051 Η---f- -+ + A ⑴(4x3)= ++— +++ ,A ⑵(4x3)= -+ + _++— —1— A(3)m ,、 一+— 八(4x3)=: Η--- >++ ,Α(4)(4χ3)== + + ^ 母一種子矩陳 A⑴ 1/ , 丁想I早A (4x3)均與其相 22a:2d具關聯性。#下來提供另;為:點 二維正交矩陣,B⑴(2χ2),做為對應矩陣。:為2之 範圍係為1至2,並展示如下: 、中’’J,,的 Β⑴ (2x2) Β(2) (2x2) 藉由種子矩陣A(i)(4><3)以及對應矩陣Βω 第Α,層中之ΜΧΝ二維正交展頻 (2χ2)’可求詞 赠、在這個例子中’產生每—層子; 二’_不,不是所有的例子都需要相同的對應矩卩» 每一節點2〇均會支持兩子節點。 ’、、s、之 22a-22d^^#_^ff,24a.24h^ ? P‘、、、a Cl (8x6)及24bc!(2)㈣,母節點2仏矩陣係被視為種子矩 二。該子節點24a及撕之種子矩陣係為A(1)㈣,而其相對應子 即點24a、施矩陣係藉由下列關係式而求得:Nl,2'· A ^2)^(2)(2x2)} = {B(1\2x2)9B(2\2,2)} = { If Μ!: and _ η {++, Η— + — + + — — is the reference condition. In the present invention, in the example, +', which stands for +1" means that - repeating the above-mentioned square two can obtain the -group MXN: dimensional orthogonal spreading code, where the N-2, k>〇 and 1 > 0. This set of spread spectrum codes is one of the special examples of the implementation of the present invention. Referring to the second figure, the second figure is a two-dimensional orthogonality of the MC-DS/CDMA communication system in the embodiment of the present invention. A partial schematic diagram of the code division tree 20 of the spread spectrum code. First, a set of 2 m two-dimensional orthogonal spread code is provided as the seed material a(1)(4χ3)', and the range of 1 is from 1 to 4. More specifically Say, the matrix Α( \4χ3) is: 13 1268051 Η---f- -+ + A (1)(4x3)= ++— +++ , A (2)(4x3)= -+ + _++—1 — A(3)m , , a +—eight (4x3)=: Η--- >++ ,Α(4)(4χ3)== + + ^ A sub-moment of the mother Chen A(1) 1/ , Ding Xiang I Early A (4x3) is related to its phase 22a:2d. #下下给其他; is: point two-dimensional orthogonal matrix, B(1)(2χ2), as the corresponding matrix.: the range of 2 is 1 to 2, And shown as follows: , '''J,, Β(1) (2x2) Β(2) (2x2) by seed matrix A(i)(4><3) and corresponding matrixΒ Dijon, the two-dimensional orthogonal spread spectrum (2χ2) in the layer can be given a word, in this case 'generate each layer|two'_ no, not all examples need the same corresponding matrix» Each node 2〇 will support two child nodes. ', s, 22a-22d^^#_^ff, 24a.24h^ ? P',,, a Cl (8x6) and 24bc! (2) (4) The parent node 2仏 matrix system is regarded as the seed moment 2. The child node 24a and the torn seed matrix are A(1)(4), and the corresponding sub-points 24a and the matrix are obtained by the following relationship. Get:
Ci〇)(8x6)= β( )(2χ2)®Α(1)(4χ3)Ci〇)(8x6)= β( )(2χ2)®Α(1)(4χ3)
Ci(2)(8x6)= Β( )(2χ2)®Α(1)(4χ3) 1268051 相同地’就與A(2)(4><3)具關聯性之次母節點2 2 b 而言,其相對應子節點24c、24d之c卩〉㈣及㈣矩陣係藉由下 列關係式而求得: ci3)(8x6)= Β(1)(2χ2)®Α(2)(4χ3) ci4)(8x6)-B(2)(2x2)(8)A(2)(4X3) 所有與子節點24a-24h相關之第二層矩陣均可 藉由重複上述階段而得到並展示於本發明實施例之 第二圖中。因此子矩陣cf)(8x6)之一般方程式可藉著重複上述 方程式求得並揭示如下: ^((/-1)2+7) ((4x2)x(3x2)) BU) ® A(0 (2x2) (4x3) (公式1) 一於A式(1)中,1係從1到4而父母節點22a_22< 父母節點之特定子節點矩陣係由”丨,,所定義。 藉由重複上述公式⑴即可求得第三層之矩 二夺以第二層節點做為種子矩陣’而對;矩陣 相同。對於第三層而言,關於子孫 之矩陣的一般方程式係如下所示: 丨 ί ·、 ((8x2)x(6x2)) = B J (2χ2) ® C/0 (公式2)Ci(2)(8x6)= Β( )(2χ2)®Α(1)(4χ3) 1268051 is the same as the second parent node 2 2 b associated with A(2)(4><3) The c卩>(4) and (4) matrices of the corresponding sub-nodes 24c, 24d are obtained by the following relation: ci3)(8x6)= Β(1)(2χ2)®Α(2)(4χ3) ci4 (8x6)-B(2)(2x2)(8)A(2)(4X3) All of the second layer matrices associated with the sub-nodes 24a-24h can be obtained by repeating the above stages and shown in the practice of the present invention. In the second picture of the example. Therefore, the general equation of the submatrix cf)(8x6) can be obtained by repeating the above equation and revealing the following: ^((/-1)2+7) ((4x2)x(3x2)) BU) ® A(0 ( 2x2) (4x3) (Formula 1) In Equation (1), 1 is from 1 to 4 and the parent node 22a_22< parent node's specific child node matrix is defined by "丨,". By repeating the above formula (1) The moment of the third layer can be obtained, and the second layer node is used as the seed matrix'; the matrix is the same. For the third layer, the general equation for the matrix of the descendants is as follows: 丨ί · , ((8x2)x(6x2)) = BJ (2χ2) ® C/0 (Equation 2)
CfM)2+y) (8x6) 二, 15 1268051 而該父母節點之特定子節點矩陣係由,’i”所定義的。 综合上述即可求得二維正交展頻碼之似二元 (binary_like)分碼樹。雖然已揭示出最基本之2x2對 應矩陣’然而任何一船Μ X n -雜X ^ 、 , 叙MXN 一維正交矩陣皆可被 吾成對應矩陣來產生分碼樹。更甚者,這種新式二 維正交展頻碼並不限於二元結構,而每_節點可有 -個或更夕支幹。另外,由於對應矩陣可隨層次不 同而有所不同,因此每一分碼樹代並不一定 射刪t)代或先前(previ〇us)代具有才目同之子 即點數目。然而,實施例之正交性必須具備,,偶 數(even)及可數(〇dd)之零的循環自相關波瓣CfM)2+y) (8x6) 2, 15 1268051 and the specific sub-node matrix of the parent node is defined by 'i'. Combine the above to obtain the binary of the two-dimensional orthogonal spreading code ( Binary_like) The code tree. Although the most basic 2x2 corresponding matrix has been revealed, any one of the ship X n -hetery X ^ , and the MXN one-dimensional orthogonal matrix can be used to generate a code tree. Moreover, the new two-dimensional orthogonal spreading code is not limited to a binary structure, and each _ node may have one or more branches. In addition, since the corresponding matrix may vary from layer to layer, Each code tree generation does not necessarily have to count the number of points in the t) generation or the previous (previ〇us) generation. However, the orthogonality of the embodiment must have, even (even) and countable (〇dd) zero cyclic autocorrelation lobe
aut〇correlation Sidel〇bes)4| f。上述之,,偶數,,或,,奇數,, 係根據二連續資料位元傳輸模式所定義的。前者,,偶 數”代表一個”+1伴隨著另一個,,+1,,(或者,一個,M 伴隨著另一個,M),後者,,基數,,則代表一個,,+1伴隨 著另一個”-1或完全相反。 ¥通A系統中的頻波數(FreqUenCy carriers)增 加且碼長度必須維持不變時,對應到二維正交矩陣 上就必須增加其行數。本發明實施例係提供兩種方 法,藉以得到固定長度(Fixed_length)之二維正交展 頻碼並咩述如下。然而,矩陣模組函數“㊉,,(matrix modulus function)的概念必須先行解釋。模組函數“㊉,,的 疋義係類似一二元右滾或左滾工作原理(“r〇11 right,,或著“r〇11 left” operation),由右至左方向沿著矩陣行數轉動。 16 l268〇5i 舉例來說,矩陣a(1)(2x4): A(1), (2x4)" [vl ν2 ν3 ν4] .(CO un, vectors) 〇 t A W[v4 vl v2 v3]a,, =1,而魏向量“V4”職最右行數位奴駐最左位置。ΐ (㈣㊉⑼相V3 v4 vl],所有行數向量左移i,配合行數向二 從最左行置雜至最纽置。#然,_配合纽〗的 值來執=模組操作子(mo她s operat〇祖A(1)_中2 v3 係與Α (2χ4)㊉(_ι)相同。 固疋長度之二維正交展頻碼之第一個產生方法(稱 ^ ^ ^ p+ A(1U # a(2)^ 生這1矩陣均被視為與分碼樹母節點有關之矩陣。接下來提供 -組特定2x2矩陣D。這種特定的矩陣qeD如下所示: dj\ d d η dAut〇correlation Sidel〇bes)4| f. The above, even, or, odd, is defined according to the two consecutive data bit transfer modes. The former, the even "represents one" +1 is accompanied by another, +1, (or, one, M is accompanied by another, M), the latter, the cardinality, then represents one, and +1 is accompanied by another A "-1" or the exact opposite. When the frequency of FreqUenCy carriers increases and the code length must remain unchanged, the number of rows must be increased corresponding to the two-dimensional orthogonal matrix. Two methods are provided to obtain a fixed-length two-dimensional orthogonal spreading code and are described below. However, the concept of the matrix module function "matrix modulus function" must be explained first. The module function "Ten," is similar to a binary right- or left-rolling principle ("r〇11 right," or "r〇11 left" operation), from right to left along the matrix line The number turns. 16 l268〇5i For example, the matrix a(1)(2x4): A(1), (2x4)" [vl ν2 ν3 ν4] .(CO un, vectors) 〇t AW[v4 vl v2 v3]a ,, =1, and the Wei vector "V4" position is the rightmost digit of the slave to the leftmost position. ΐ ((4) Ten (9) phase V3 v4 vl], all the number of rows is shifted to the left by i, and the number of rows is matched from the leftmost row to the most. #然,_ _ cooperate with the value of the button to execute = module operator ( Mo she s operat〇祖A(1)_中2 v3 is the same as Α(2χ4)十(_ι). The first method of generating the two-dimensional orthogonal spreading code of the fixed length (called ^ ^ ^ p+ A (1U # a(2)^ This 1 matrix is considered to be the matrix associated with the coded tree parent node. Next, a group-specific 2x2 matrix D is provided. This particular matrix qeD is as follows: dj\ dd η d
每一4值(心為2,心及心)不是+1就是-1。另外,…值必須遵 守下列關係式: djxdj3 ^dj2dj4 = 〇 因此’這組矩陣D的個數是有限的。而只要符 合上述條件的話,4可以任何形式排列而成。 17 !268〇5l 固定長度之二維正交 之二維正交展頻碼可 如果要利用方法A得到一 ^陣分碼樹的話,該固定長度 藉著重複下列關係式而得到·又 C(2i λ\2ΜχΝ) ,(公式 3A) C(2’)(2A/xA〇 \uxJV) dμ ,(公式3B) 八中。亥1 e d 2, 3, ···,Μ},而分碼樹中所有層次 _ 中之叫均必須全為奇數或偶數(叫e似4···,(Ν_冰或 叫 e {1,3,5···,(Ν_1)})。上述公式(3Α)及(3Β)中之 j J J 及· 〜係為D這組矩陣之任一矩陣Dj。如上例述, c(2%_與c(2、㈣代表於分碼樹某一層中藉由公式(3A) 及(3B)產生之一子節點。其矩陣之父母節點為Α(〇_)。 若以下列初始節點矩陣(亦即是分碼樹中與第工 層節點之矩陣)為一範例: A(1) (2x4)= A(2) (2x4)= + + - + ,以及 就此例而言: 18 1268051 A⑴ (2x4)㊉ 3= + - + + + + 以及 〇 A(1)(2x4)ei- ;: + :Each 4 value (heart 2, heart and heart) is not +1 or -1. In addition, the value of ... must follow the following relationship: djxdj3 ^dj2dj4 = 〇 Therefore, the number of matrixes D is limited. As long as the above conditions are met, 4 can be arranged in any form. 17 !268〇5l A fixed-length two-dimensional orthogonal two-dimensional orthogonal spreading code can be obtained by repeating the following relation if the method A is used to obtain a matrix coded tree. 2i λ\2ΜχΝ) , (Equation 3A) C(2')(2A/xA〇\uxJV) dμ , (Equation 3B) Eight. Hai 1 ed 2, 3, ···,Μ}, and all the levels in the code tree _ must be all odd or even (called e like 4···, (Ν_冰 or e {1 , 3,5···,(Ν_1)}). j JJ and ·~ in the above formulas (3Α) and (3Β) are any matrix Dj of the matrix of D. As described above, c (2%) _ and c (2, (4) represent one of the sub-nodes generated by equations (3A) and (3B) in a layer of the code-coding tree. The parent node of the matrix is Α(〇_). If the following initial node matrix is used ( That is, the matrix of the coded tree and the node of the work layer is an example: A(1) (2x4) = A(2) (2x4)= + + - + , and for this example: 18 1268051 A(1) ( 2x4)Thirty 3= + - + + + + and 〇A(1)(2x4)ei- ;: + :
請參閱第三圖。第三圖係為一固定長度二維正交矩陣分碼 樹30。以分碼樹30為例’ 、μ2=1 ’而Di、D〗矩陣則係從D 所選出;如下所示: D尸D2= π + - 母節點 32a、32b為二維正交矩陣 A ⑴(2x4)、 A(2)(2x4)。此外,為了求得固定長度之二維正交展頻碼 之相對應子節點34a及34b,需藉由父母節點32a, A(1)(2x4)。代入公式(3 A)及(3B),經過計算後即可得到: c(1) (4x4) r(2) = (4x4) (+)^〇)(2x4) (+)^4(1)(2χ4)Θ3 ㈩ (—M ⑴(2x4)㊉ 3 + + + -+ - + + + +— + - + + + 以及Please refer to the third picture. The third figure is a fixed length two-dimensional orthogonal matrix code tree 30. Take the code tree 30 as an example ', μ2=1' and the Di, D matrix is selected from D; as shown below: D corpse D2 = π + - The parent nodes 32a, 32b are two-dimensional orthogonal matrix A (1) (2x4), A(2) (2x4). Furthermore, in order to find the corresponding sub-nodes 34a and 34b of the fixed length two-dimensional orthogonal spreading code, it is necessary to use the parent node 32a, A(1) (2x4). Substituting the formulas (3 A) and (3B), after calculation, you can get: c(1) (4x4) r(2) = (4x4) (+)^〇)(2x4) (+)^4(1) (2χ4)Θ3 (10) (—M (1)(2x4)10 3 + + + -+ - + + + +- + - + + + and
+ + + -+ — + + +--- 〇 同理,子節點34c以及34d係如下所示: 19 1268051 ^(3) = (4x4) + Η---h (+M ⑺(2x4) Η---- (+)^4(2)(2x4)㊉ 1 + + Η— —1--- 以及 /^(4) = (4x4) + + — +_ (+)Α(2\2χ4) Η---- ⑺(2x4)㊉ 1 ----h Η---h + 細上所述,根據本發明實施例中之整組固定長 度2D正交碼可藉由上述之方法a而得到。第三圖 同時可表示出第3層中子節點36之矩陣的一般方程 式。公式3A及3B係應用於單一節點34&_34ά藉以 求得第3層之矩陣。 本务明實知例亦提供另外一個方法,同樣可以 產生固定長度之二維正交矩陣;稱作方法B。如同 方法A,=法B係首先提供一組初始2χΝ正交矩陣 {A (2xN),A (2xN)} °藉著重複下列關係式以得到一固定 長度2D正交碼。+ + + -+ — + + +--- Similarly, child nodes 34c and 34d are as follows: 19 1268051 ^(3) = (4x4) + Η---h (+M (7)(2x4) Η ---- (+)^4(2)(2x4)10 1 + + Η—1--- and /^(4) = (4x4) + + — +_ (+)Α(2\2χ4) Η----(7)(2x4)十 1 ----h Η---h + As described above, the entire set of fixed length 2D orthogonal codes in accordance with an embodiment of the present invention can be obtained by the above method a The third graph can also represent the general equation of the matrix of the sub-nodes 36 in the third layer. The formulas 3A and 3B are applied to the single node 34&_34 to obtain the matrix of the third layer. Providing another method can also produce a two-dimensional orthogonal matrix of fixed length; called method B. As with method A, = method B first provides a set of initial 2χΝ orthogonal matrices {A (2xN), A (2xN)} ° By repeating the following relationship to obtain a fixed length 2D orthogonal code.
A (4i-3) (2ΜχΝ)= djxA{2i^) dnA^ (MxN) (ΜχΝ)®μι (公式4A),A (4i-3) (2ΜχΝ)= djxA{2i^) dnA^ (MxN) (ΜχΝ)®μι (Equation 4A),
A (4i-2) (2MxN)= a(4M) (2MxN)= dJ3A{2i^) dj^i) (MxN) {ΜχΝ)@μλ dkl4(2i) (MxN) L Λ2 Z (ΜχΝ)Φμ2 (公式4B), (公式4C),以及 20 1268051 a(4i> (2MxN)= (公式4D) dk4A(2i_\M鄉 上述i值為介KlAM/2之正 2, ...,Μ/2}。同一層内之 數,即為吨, 數。最後,d d η Ά 7貝為偶數(包括零)或奇 理,〇 γ,〜及〜係為特定矩陣D之任—矩陣Dj。同 D』A ::二為特辦^ “展4員珥/ :展不了-個用方法Β產生二維正 又展須>5馬的一個例子。 表格1A (4i-2) (2MxN)= a(4M) (2MxN)= dJ3A{2i^) dj^i) (MxN) {ΜχΝ)@μλ dkl4(2i) (MxN) L Λ2 Z (ΜχΝ)Φμ2 ( Formula 4B), (Formula 4C), and 20 1268051 a(4i> (2MxN)= (Formula 4D) dk4A (2i_\M Township The above i value is positive 2 of K1AM/2, ..., Μ/2} The number in the same layer is ton, number. Finally, dd η Ά 7 is an even number (including zero) or odd, 〇 γ, ~ and ~ are the specific matrix D - matrix Dj. Same as D A: The second is a special office ^ "Exhibition 4 members 珥 / : Can not be exhibited - an example of using a method to generate two-dimensional positive and exhibition must be 5 horses. Table 1
21 126805121 1268051
較高階層,也就是M=16, M=32,等等。 舉例來說: 22 1268051 =Di Η— 為例且假設μι=μ产0,可將上述公式(4A)、(4B)、(4C)及 (4D)轉換並求得到下列公式: r〇) = 1 (4x4) (-(2) = 1 (4x4) (+) 乂⑴(2x4) (+) j(2)(2x4) (+) 乂⑴(2x4) ㈠ Z(2)(2x4) c(3) 1 (4x4) ί(2). (2x4) (+)^4(1)(2χ4) 以及The higher level, that is, M=16, M=32, and so on. For example: 22 1268051 =Di Η—for example and assuming that μι=μ yields 0, the above formulas (4A), (4B), (4C) and (4D) can be converted and the following formula can be obtained: r〇) = 1 (4x4) (-(2) = 1 (4x4) (+) 乂(1)(2x4) (+) j(2)(2x4) (+) 乂(1)(2x4) (1) Z(2)(2x4) c( 3) 1 (4x4) ί(2). (2x4) (+)^4(1)(2χ4) and
c(4) 1 (4x4) (+M(2)(2x4) ㈠j⑴(2x4) 於類似分支,經由上述(4A)、(4B)、(4C)及(4D)公式 可定義出矩陣C& 4),如下所示: — (8x4) — Ρ(2) —. (8x4) — (+)ciW、c(4) 1 (4x4) (+M(2)(2x4) (a) j(1)(2x4) In a similar branch, the matrix C&4 can be defined by the above formulas (4A), (4B), (4C) and (4D) ), as shown below: — (8x4) — Ρ(2) —. (8x4) — (+)ciW,
广(3) 2 (8x4) Ρ(4) 2 (8x4) r^5) (8x4) (+)ς(2> (4x4) (4x4) (+)ς(2) (4x4) (4x4) (+)ς(3) (+)ς(4) (4x4) (4x4) 23 1268051Wide (3) 2 (8x4) Ρ(4) 2 (8x4) r^5) (8x4) (+)ς(2> (4x4) (4x4) (+)ς(2) (4x4) (4x4) ( +)ς(3) (+)ς(4) (4x4) (4x4) 23 1268051
Ci6) (8x4)' (+)cf)㈠ ς(4) (4x4) (4x4) Γ(7) = 2 (8χ4) W(4)_ (+)Ct1(3)(4x4) 以及 ci8) (8x4)’ (+)cr(4x4) ) (4x4) 根據本發明實施例之整組固定長度之二維正交 :頻碼亦可藉由上述方法B而得到。然而,當以方 > 2得到二維正交展頻碼時,位於不同層次之二維 又矩陣亚不全然維持其正交性,因此並不能兩 同時使用。 然而,藉由方法B產生之固定長度展頻碼,在 同b人之展頻碼係維持其正交性,可以同時被分 配給不同的使用者。 在第二代通訊系統中,有兩種方法達到可變速 又傳輸的目的·一為多碼技術(削出⑶而 另方法則為可變長度法(Variable length scheme)。夕碼技術是指一基地台安排一或更多個展 ^頁馬至某使用者,藉以加速其資料傳輸速度。當 一個使用者同時使用兩個正交展頻碼時,會加倍其 傳輸速率。Μ明實施例所產生之新式。維正交展 居馬可以維持同—層中之正交性,因此適用於此種 技術。 另方面’可變長度法亦使用在第三代通訊系 24 1268051 AJ. : 上’目刚使用一維正交展頻碼來實現。此種方 ^ I根據用戶所需之不同之資料傳輸速率,由基地 口女排了給每個使用者一個不同長度之展頻碼。當 使用者侍到一較短之展頻碼時,該用戶獲得一較高 之貝料傳輸速率。然而,每一使用者一次只能使用 曰個展頻碼。若需要使用不同長度之展頻碼,本發 明中只有具有分碼樹結構之二維正交矩陣碼可以被 使用。 ^ 本發明實施例提供一可變多重傳輸速率方法, 該方法係揭示於本發明實施例中之第四圖;亦稱為 分離載波技術(Separated-carrierscheme)。第2級之 2MxN 2D矩陣八(1)(2心叫係分離成具有相同長度但载波 數較少之兩個矩陣、A〇—,或更多載波 數之矩陣。舉例來說,一 4χ8二維正交矩陣可被分 離成兩個2x8二維正交矩陣。藉著同時使用二個展 頻碼以及^卿,使用者可得到兩倍資料傳 =:。一個二維正交矩陣Α%χΝ)係分離為Α㈣㈣ 。(MxN)矩陣:A(1—a)(MxN)具有Μ排,1 χΝ展頻碼向量 且編號為,Α(1—%<州矩陣亦具有Μ排,i χΝ展 颂馬向里。a㈣(ΜχΝ)以及 序歹,卜平行轉換電路 42 (serial_t”arallel c〇nversi〇n(6) (4) (4x4) 8x4) '(+)cr(4x4) ) (4x4) The entire set of fixed length two-dimensional orthogonal according to an embodiment of the present invention: the frequency code can also be obtained by the above method B. However, when the two-dimensional orthogonal spreading code is obtained by the square > 2, the two-dimensional matrix of the different levels does not completely maintain its orthogonality, so it cannot be used at the same time. However, by using the fixed length spread spectrum code generated by method B, the orthogonality is maintained in the spread spectrum code of the same person, and can be assigned to different users at the same time. In the second generation communication system, there are two ways to achieve the purpose of variable speed and transmission. One is multi-code technology (cut (3) and the other method is Variable length scheme. The code technology refers to one. The base station arranges one or more exhibitions to a user to speed up the data transmission speed. When a user simultaneously uses two orthogonal spreading codes, the transmission rate is doubled. The new type. The Orthogonal Exhibition Horse can maintain the orthogonality in the same layer, so it is suitable for this technology. In addition, the 'variable length method is also used in the third generation communication system 24 1268051 AJ. :上'目Just use one-dimensional orthogonal spread spectrum code to achieve. This kind of square ^ I according to the different data transmission rate required by the user, the base station female platoon gives each user a different length of the spread spectrum code. When a short spread code is obtained, the user obtains a higher feed rate. However, each user can only use one spread code at a time. If it is necessary to use a spread code of different length, the present invention Only with a coded tree knot The two-dimensional orthogonal matrix code can be used. The embodiment of the present invention provides a variable multiple transmission rate method, which is disclosed in the fourth figure of the embodiment of the present invention; also known as a separate carrier technology (Separated-carrier scheme) 2nd level 2MxN 2D matrix eight (1) (2 cores are separated into two matrices of the same length but with fewer carriers, A〇-, or a matrix of more carriers. For example, one The 4χ8 two-dimensional orthogonal matrix can be separated into two 2x8 two-dimensional orthogonal matrices. By using two spreading codes and ^qing at the same time, the user can get twice the data transmission =: A two-dimensional orthogonal matrix Α% χΝ) is separated into Α(4)(4). (MxN) matrix: A(1—a)(MxN) has a Μ row, 1 χΝ spreading code vector and numbered, Α(1—%<the state matrix also has a Μ, i颂 颂 向 。 。. a (four) (ΜχΝ) and serial number, parallel conversion circuit 42 (serial_t "arallel c〇nversi〇n
ClrCUlt),其係傳輸用彳:#料位元44之序列傳輸,並 產生二平行編碼調變器46以及48。其中,46及48 係用第一個ΜχΝ矩陣A㈣(ΜχΝ)與第二個ΜχΝ矩陣8 25 1268051 A(1_b)(MxN)來執行資料編碼及模組化。 相較於初始2MXN_ a%xn), -^ H 〇 ^ A〇)(2x4)#^c〇U , ς(2)(4χ4) ^ 〇2〇) ^ c(2) ^ ^ ^ 及c2(V4)的父母碼。當使用矩陣A⑴(2叫時,)盆:、q(3U 能維持其正交性所以不能跟父母瑪同時被分= 同使用者1而只要不使用該父母碼,同St不 Γ第兄二弟層或之姐^ ' ς (4x4> c,㈣上述兄弟或姊妹碼係已於習 知技術揭露;以上述同一層次之碼為例: 、ClrCUlt), which is transmitted by a sequence of :# level bits 44, and produces two parallel code modulators 46 and 48. Among them, 46 and 48 use the first unitary matrix A (four) (ΜχΝ) and the second unitary matrix 8 25 1268051 A (1_b) (MxN) to perform data encoding and modularization. Compared to the initial 2MXN_ a%xn), -^ H 〇^ A〇)(2x4)#^c〇U , ς(2)(4χ4) ^ 〇2〇) ^ c(2) ^ ^ ^ and c2( Parental code for V4). When using the matrix A(1) (2 times), the basin:, q (3U can maintain its orthogonality, so it cannot be divided with the parental horse at the same time = with the user 1 and as long as the parental code is not used, the same as St. Brother or sister ^ ' ς (4x4 > c, (d) The above brother or sister code system has been exposed in the conventional technology; take the same level of code as an example:
A(1W a(2) (2x4f + + + -+ 一+ + + +— + Η---- 以及 因此,可得到下列矩陣結果 、⑴ =1 Ί (4x4) + + + — V+M (2x4) + - + + m: A(la)(2x4)1 _(^")^4^\2χ4)Θ3 + + - + - + + + -0) (4x4) 矩陣係被分離成兩分離碼,提供一組分碼(八(叫 A(1 b)(2x4)): A⑽ (2x4), (2x4) + - 以及 26 1268051 A(lb)(2x4)= + + 將上j77 = (Μ)'" I)均具正交性·1'視為認證序列,可 朴^刀碼A (2x4)及A(lbW旨派給MS-DC/CDMA致能裝置, 猎以提供紐《置驗之傳财率。 ; 組係不同於習知技術之 ^ (2χ4)Λ (2χ4)) 子分=Α⑴則 1㈣,1㈣,Cl —以及cr)(4x4)不能同時使用。然而,如 果使用刀碼組(A (2叫,八()(2X4))的話,則仍然可以讓其他用戶使用 矩陣π(4χ4)即巾㈣。综上所述,當所提供之分碼係同時由其他用 戶所使用時則用戶之傳輸速率會隨之而增加。 、 更進-步絲,# 貞分碼α(Μχν)係可被分成产 Α(2ΧΝ} 2D-OVSF㈣。由上所述,藉由重複上述方法可達到較原 始狀態快2m4倍的資料傳輸速率。此外,ΜχΝ二維正交展頻碼之 分離波數法(Separated-carrier scheme)維持其分碼正交性且具備零 循環自相關波瓣(Cyclic autocorrelation Sidelobes)和零循環 父互相關(Cyclic Cross_Correlation)之特性。所以,這樣的 MC-DS/CDMA通訊系統之分碼係可以維持其正交性,即使在非同 步頻道(asynchronous channels) 〇 如果之父母節點不等於Αω(2ΜχΝ)之父母節點 的話,從Α(1)(2ΜχΝ}分離之後的碼,八㈣阶叫以及八㈣⑽,均正 交於Αϋ)(2ΜχΝ;)。舉例來說,假設二維正交矩陣Α(1)(8χ8)係 分離成矩陣Α%Χ8)及A(lb)(4x8);則矩陣Α(14χ8)及 27 l268〇5l 句正交於一般之Αω(8χ8) ; ·Η3,···,8},卻與A(2)(8x8)不正交, 因為a%x8)與A(2)(8x8)有相同之父母矩陣。當然,矩陣 A( a)_及A(lb)(4x8)並不正交於原始未分離之矩陣八⑴阶幻。 奮起陣八叫…8)與a(1B)(4x8)被分配個同一個使用者來獲得 兩倍資料傳輸速率時,矩陣八⑴…8)及A(2)(8XS)皆不可以被 刀配給其他使用者了。本發明實施例中,由遞迴架構或者是 方决A所產生的二維正交展頻碼可以用分離載波法來實現 可變重速率傳輸。 本發明實施例另外提供一種方法,”多載波,,,來讓二 父展頻碼的使用更有彈性。如上所述,藉由方法A所得 固定長度二維正交展頻碼係以樹狀法建構所得到。和 頻=正交展頻碼的架構相似,這種方法產生的二維正交展 休馬只要位於不同層次則 外。由於不同波數之固定具:J :疋又母矩陣例 生’:此可以同時被分配給不同之使用者。 二茶閱本發明實施例第五圖圖 去之圖形。經由方法A # 夕戟政 %之八麟t 可得到—狀長度二維正交展頻 同盤曰沾、士私 更體故计,不同類型手機則支援不 冋數$的波數。就手機係 更用者的立場而言,基地台必須能 夠針對不同硬體設計而接 k供相同的無線通訊服務(Wireless :蜂假設第-使用者手機52支援m波數而第二使用 者败援M/2波數以及_㈣定長度二維正交展頻碼分 瑪樹所選擇的矩陣。該_ * m 〜矩陣係分別為矩陣A(1)(mxn) 53及矩 陣B 54其中_ aW⑽,)g係提供給第—使用者 28 1268051 手機51而矩陳b⑴ 第-使用者手係提供給第二使用者手機52。 A%XN)53以編碼和調 ^古編碼調節器58係、藉由矩陣 者手機52之編“ 方式來接收資料流…第二使用 頻的傳輸方式來接係藉由矩陣B%2㈣編碼和調 著不同的系統而改變其波4^7數目本發明實施例中之—特性係可隨 所有與崎有關的父母及子矩;皆無二== ΓΑΓ/手機。這種情況是由它的樹狀結構的限制,既然由方 =封=二維正交展綱也具有概轉,魏桃會有展頻 碼封鎖的情況。此外’多載波法並不支援可變速率傳輸,因為當使 用者被分配了具有相同分碼長度而不同波數的二維正交展頻碼 時,資料傳輸速率仍舊是相同的。 Μ 最後,經由分碼樹所產生之分碼矩陣擁有零循環自相關波 瓣(zero autocorrelation)及零循環交互相關(zer〇 cr〇ss_correlation)特質。這些二維正交展頻碼分碼樹均 一頻道中維持其正交性,因此並不需要二層次展頻技術。 本發明實施例係可應用在任何無線通訊裝置 device)上,如行動電話、基地台及計算平台等,且—妒〜、 來係藉由無線通訊裝置内之處理器或經過設計之電腦浐弋 進行處理。而事先藉由公式遞迴求出之二維正交展頻碼= 安裝並使用在無線通訊裝置上。 ·、、、糸 雖然本發明已經於其相關較佳實施例做說 29 1268051 明,然其並非用以限定本發明,應了解任何熟習此 技藝者,在不脫離許本發明之精神與範圍内,當可 作各種之修改與更動,而不脫離本發明於此所申請 專利範圍之精神與範圍。而本發明之保護範圍當視 後附之申請專利範圍所界定者為準。 【圖式簡單說明】 本發明的較佳實施例已於前述之說明文字中輔以下列 圖形做更詳細的闡述,其中: 第一 A圖係為習知MC-DS/CDMA通訊系統的簡單方塊圖。 第一 B圖係為習知MC-DS/CDMA通訊系統之2D-OVSF碼 之MxN展頻碼矩陣的示意圖。 第二圖係為本發明實施例用於MC-DS/CDMA通訊系統之 2D-OVSF碼之分碼樹的部分示意圖。 第三圖係為應用於本發明實施例中第一方法之固定長度之 2D-OVSF碼示意圖。 第四圖係為本發明實施例中以分離波數法而達到不同速率 傳輸之示意圖。 第五圖係為本發明實施例中以多載波法而達到不同速率傳 輸之示意圖。 【圖式之符號說明】 30 1268051 習知MC-DS/CDMA通訊系統 10 輸入資料 12a 輸出資料 12b MxN展頻碼矩陣 14a 乘法器 14 展頻資料 15 調變單位 16 反調變單位 17 反調變資料 18 乘法器資料 19 分碼樹 20 母節點 22a - 22d 子節點 24a-24h 孫節點 26 固定長度2D-OVSF分碼樹30 母節點 32a > 32b 子節點 34a_34d、 36 序列-平行轉換電路 42 用戶傳輸資料位元44 輸出資料流 46、48 第1用戶手機 51 第2用戶手機 52 矩陣 A(1)(MxN) 53 矩陣 Β〇((Μ/2)χν) 54 第1用戶資料流 56 第2用戶資料流 57 編碼調變器 58、59A(1W a(2) (2x4f + + + -+ a + + + +- + Η---- and, therefore, the following matrix results are obtained, (1) =1 Ί (4x4) + + + — V+M ( 2x4) + - + + m: A(la)(2x4)1 _(^")^4^\2χ4)Θ3 + + - + - + + + -0) (4x4) The matrix is separated into two separates Code, providing a component code (eight (called A(1 b)(2x4)): A(10) (2x4), (2x4) + - and 26 1268051 A(lb)(2x4)= + + will be on j77 = (Μ ) '" I) are orthogonal. 1' is regarded as the authentication sequence. It can be used to send the MS-DC/CDMA enabled device to the MS-DC/CDMA enabled device. The probability of passing the test. The group is different from the conventional technique ^ (2χ4)Λ (2χ4)) Sub-segment = Α (1) then 1 (four), 1 (four), Cl - and cr) (4x4) cannot be used at the same time. However, if a knife code group (A (2,8 (2X4)) is used, then other users can still use the matrix π(4χ4) ie towel (4). In summary, when the code system is provided At the same time, when used by other users, the transmission rate of the user will increase accordingly. Further, the step-by-step line, ##分码α(Μχν) can be divided into calving (2ΧΝ} 2D-OVSF (4). By repeating the above method, the data transmission rate is 2m4 times faster than the original state. In addition, the Separated-carrier scheme of the two-dimensional orthogonal spreading code maintains its code division orthogonality and has zero. The characteristics of Cyclic autocorrelation Sidelobes and Cyclic Cross_Correlation. Therefore, the code division of such MC-DS/CDMA communication systems can maintain its orthogonality even in non-synchronized channels. (asynchronous channels) 〇 If the parent node is not equal to the parent node of Αω(2ΜχΝ), the code after 分离(1)(2ΜχΝ) is separated, eight (four) orders and eight (four) (10) are orthogonal to Αϋ) (2ΜχΝ; For example, suppose two-dimensional positive The matrix Α(1)(8χ8) is separated into a matrix Α%Χ8) and A(lb)(4x8); then the matrix Α(14χ8) and 27 l268〇5l sentences are orthogonal to the general Αω(8χ8); ·Η3, ···, 8}, but not orthogonal to A(2)(8x8), because a%x8) has the same parent matrix as A(2)(8x8). Of course, the matrices A(a)_ and A(lb)(4x8) are not orthogonal to the original unseparated matrix eight (1) order illusion. If you are assigned the same user to obtain twice the data transfer rate, the matrixes of eight (1)...8) and A(2)(8XS) cannot be used. For other users. In the embodiment of the present invention, the two-dimensional orthogonal spreading code generated by the recursive architecture or the decision A can be implemented by the split carrier method to implement variable weight rate transmission. The embodiment of the present invention further provides a method, "multi-carrier," to make the use of the two-parent spreading code more flexible. As described above, the fixed-length two-dimensional orthogonal spreading code system obtained by the method A is in a tree shape. The structure is similar to that of the frequency-orthogonal spreading code. The two-dimensional orthogonal exhibition of this method is only at different levels. Because of the different wavenumbers: J: 疋 and mother matrix Example: This can be assigned to different users at the same time. The second figure of the fifth embodiment of the present invention is shown in Fig. 3. Through the method A # 夕戟政%之八麟t can be obtained - the length of the two-dimensional positive The spread frequency is the same as that of the disc, and the different types of mobile phones support the wave number of not less than $. In terms of the mobile phone system, the base station must be able to design for different hardware designs. k for the same wireless communication service (Wireless: bee assumes that the first user mobile phone 52 supports m wave number and the second user loses M/2 wave number and _ (four) fixed length two-dimensional orthogonal spread spectrum code The selected matrix. The _*m~matrix is matrix A(1)(mxn) 53 and Array B 54 where _ aW(10),) g is provided to the first user 28 1268051 mobile phone 51 and the moment b (1) the first user hand is provided to the second user mobile phone 52. A%XN) 53 to encode and adjust the ancient The code adjuster 58 is configured to receive the data stream by means of the matrix phone 52. The second frequency is transmitted by the matrix B%2 (four) to encode and adjust different systems to change the wave 4^. 7 Numbers In the embodiment of the present invention - the characteristics are related to all parents and sub-moments related to the same; no two == ΓΑΓ / mobile phone. This situation is limited by its tree structure. Since the square = seal = two-dimensional orthogonal display also has a generalization, Wei Tao will have a spread code blockade. Furthermore, the multi-carrier method does not support variable rate transmission because the data transmission rate is still the same when the user is assigned a two-dimensional orthogonal spreading code having the same code length and different wave numbers. Finally, the code division matrix generated by the code tree has zero-zero autocorrelation and zero-cycle cross-correlation (zer〇 cr〇ss_correlation) traits. These two-dimensional orthogonal spread spectrum code division trees maintain their orthogonality in a uniform channel, and thus do not require a two-level spread spectrum technique. The embodiments of the present invention can be applied to any wireless communication device, such as a mobile phone, a base station, a computing platform, etc., and are used by a processor in a wireless communication device or a designed computer. Process it. The two-dimensional orthogonal spreading code obtained by recursing the formula in advance = installed and used on the wireless communication device. The present invention has been described in the context of the related preferred embodiments of the invention, and is not intended to limit the scope of the invention. Various modifications and changes may be made without departing from the spirit and scope of the invention as claimed. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS A preferred embodiment of the present invention has been described in more detail in the foregoing description with the following figures, wherein: Figure 1A is a simple block of a conventional MC-DS/CDMA communication system. Figure. The first B diagram is a schematic diagram of the MxN spreading code matrix of the 2D-OVSF code of the conventional MC-DS/CDMA communication system. The second figure is a partial schematic diagram of a code division tree for a 2D-OVSF code of an MC-DS/CDMA communication system according to an embodiment of the present invention. The third figure is a schematic diagram of a fixed length 2D-OVSF code applied to the first method in the embodiment of the present invention. The fourth figure is a schematic diagram of the transmission at different rates by the separation wave number method in the embodiment of the present invention. The fifth figure is a schematic diagram of the transmission to different rates by the multi-carrier method in the embodiment of the present invention. [Symbol description of the diagram] 30 1268051 Conventional MC-DS/CDMA communication system 10 Input data 12a Output data 12b MxN Spreading code matrix 14a Multiplier 14 Spread spectrum data 15 Modulation unit 16 Anti-modulation unit 17 Reverse modulation Data 18 Multiplier data 19 Fragmentation tree 20 Parent node 22a - 22d Child node 24a-24h Sun node 26 Fixed length 2D-OVSF code tree 30 Parent node 32a > 32b Child node 34a_34d, 36 Sequence-parallel conversion circuit 42 User Transmission data bit 44 Output data stream 46, 48 1st user handset 51 2nd user handset 52 Matrix A(1)(MxN) 53 Matrix Β〇((Μ/2)χν) 54 1st user data stream 56 2nd User data stream 57 code modulators 58, 59
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/406,359 US7346038B2 (en) | 2002-05-11 | 2003-04-04 | Method for generating 2D OVSF codes in multicarrier DS-CDMA systems |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200421738A TW200421738A (en) | 2004-10-16 |
TWI268051B true TWI268051B (en) | 2006-12-01 |
Family
ID=34619228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93108758A TWI268051B (en) | 2003-04-04 | 2004-03-30 | Method for generating 2D OVSF codes in multicarrier DS-CDMA systems |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100438386C (en) |
TW (1) | TWI268051B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103701554B (en) * | 2013-12-31 | 2016-08-17 | 哈尔滨工业大学 | One class has the production method of the perfect orthogonal code of anti-multi-access inference |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137549C (en) * | 2001-02-28 | 2004-02-04 | 信息产业部电信传输研究所 | Design method for 2-D signals with low/zero correlation region |
JP2003046481A (en) * | 2001-07-31 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Data transmitter and data transmission method |
-
2004
- 2004-03-02 CN CNB2004100078093A patent/CN100438386C/en not_active Expired - Fee Related
- 2004-03-30 TW TW93108758A patent/TWI268051B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN100438386C (en) | 2008-11-26 |
CN1592179A (en) | 2005-03-09 |
TW200421738A (en) | 2004-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dinan et al. | Spreading codes for direct sequence CDMA and wideband CDMA cellular networks | |
CN1168243C (en) | Apparatus and method for generating scrambling code in UMTS communication system | |
JP3054402B2 (en) | Apparatus and method for generating spread spectrum signal in CDMA mobile communication system | |
JP3519053B2 (en) | Generation of quaternary complex quasi-orthogonal code for CDMA communication system and band spreading apparatus and method using the same | |
CN108696327A (en) | Large size mixing P-H is orthogonal, constructive method of class orthogonal matrix | |
EP2141820B1 (en) | Method for generating complex quasi-orthogonal code and apparatus and method for spreading channel data using the quasi-orthogonal code in CDMA communication system | |
EP1034665B1 (en) | Device and method for generating quasi-orthogonal code and spreading channel signals in mobile communication system | |
TWI268051B (en) | Method for generating 2D OVSF codes in multicarrier DS-CDMA systems | |
JP2003530000A (en) | Apparatus and method for channel data spreading in code division multiple access communication system using orthogonal transmission diversity | |
US7346038B2 (en) | Method for generating 2D OVSF codes in multicarrier DS-CDMA systems | |
WO2000014916A1 (en) | A method and apparatus for the reflection and transmission of quasi orthogonal vectors | |
Dávideková et al. | Generalized construction of two-dimensional complete complementary codes | |
Sadoudi et al. | Hyperchaos-based spreading codes generator for DS-CDMA communication systems | |
Yang et al. | 2D orthogonal spreading codes for multicarrier DS-CDMA systems | |
RO121304B1 (en) | Method and system for encoding message signals to be transmitted within a communication system | |
US7586835B2 (en) | Apparatus for generating 2D spreading code and method for the same | |
Jos et al. | Method of generating multiple sets of orthogonal codes with wide choice of spreading factors | |
CN108259116A (en) | A kind of cdma communication system | |
CN1251435C (en) | Method of generating bidimensional orthogonal variable spread spectrum coefficient code in multi-carrier wave direct sequency CDMA cemmunication system | |
CN108055104A (en) | Code word generating means, communication base station, base station controller and cordless communication network | |
CN103988457B (en) | Method and apparatus for generating pair of orthogonal sets with wide range of spreading factors | |
Kwong et al. | Optical CDMA codes | |
TW591916B (en) | Method for generating 2D OVSF codes in multicarrier DS-CDMA systems | |
KR100679859B1 (en) | Method for Generating Two Dimensional Orthogonal Variable Spreading Codes and MIMO System using it | |
CN108199801A (en) | The building method of orthogonal sequence set in cdma system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |