TWI265187B - Nano coating with capability of absorbing electromagnetic waves - Google Patents

Nano coating with capability of absorbing electromagnetic waves Download PDF

Info

Publication number
TWI265187B
TWI265187B TW93120770A TW93120770A TWI265187B TW I265187 B TWI265187 B TW I265187B TW 93120770 A TW93120770 A TW 93120770A TW 93120770 A TW93120770 A TW 93120770A TW I265187 B TWI265187 B TW I265187B
Authority
TW
Taiwan
Prior art keywords
nano
coating
electromagnetic wave
absorbing
oily
Prior art date
Application number
TW93120770A
Other languages
Chinese (zh)
Other versions
TW200602444A (en
Inventor
Jen Shiu
Yi-Chi Liou
Original Assignee
Jen Shiu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jen Shiu filed Critical Jen Shiu
Priority to TW93120770A priority Critical patent/TWI265187B/en
Publication of TW200602444A publication Critical patent/TW200602444A/en
Application granted granted Critical
Publication of TWI265187B publication Critical patent/TWI265187B/en

Links

Landscapes

  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is one kind of nano coating with capability of absorbing electromagnetic waves. Its composition comprises nano particles, a resin, a solvent and an appropriate additive. Among above, the permittivity of the nano coating will be subjected to an effect of an electromagnetic wave with an initial responding frequency, and then is altered. At the same time, the energy of the electromagnetic wave with responding frequency is consumed, by which a decrease of the refection of electromagnetic waves with specific frequency range can be achieved.

Description

1265187 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種對電磁波具有頻率響應的奈米塗料,在 起始響應頻率以上的電磁波作用下,該奈米塗料之介電常數 (Permittivity)發生改變,同時損耗響應電磁波的能量。 【先前技術】 電磁波吸收材料係指可减少電磁波反射的材料’此類材料 的發展起源於軍事用途,用於屏避及吸收電磁波;然而,隨著 電磁波使用技術的急速發展,近年來電腦、手機等使用電磁波 的電器日益普及,電磁波對電器的干擾及對人體的不良影響也 隨之引起人們的廣泛重視,因此,電磁波吸收材料被用來防止 電磁波干擾或遮蔽電磁波,以避免電磁波影響人體。現今已開 發了多種類型的電磁波吸收材料,主要包括有磁性材料、介電 材料和複合材料。 電磁波在遇到物體表面時,電磁波的一部分能量被反射回 去,一部分能量則穿過邊界傳到第二媒介裏,這些進入物質表 面的電磁波通過各種途徑穿透媒介,其中部份電磁波能量在通 過物質時被吸收,殘餘的能量穿透物質,在物質表面的另一邊 變成輻射能,其強度則因部分被吸收而減弱。因此,理想的吸 收材料首先應能儘量使入射到材料表面的電磁波透入,使電磁 波反射達到最小,為達此一目的,一般要求電磁波入射綫要垂 直吸收材料的表面;其次,透入到吸收材料裏的電磁波能量應 能有效地把入射的電磁能量全部吸收。 電磁波吸收材料的用途廣泛,可用來防止雷達假象、電視 重影、移動無綫電障礙,及用於吸收微波或毫米波等。例如, 在雷達或通信設備機身、天線和周圍干擾物上塗覆電磁波吸收 材料,則可降低通信電磁波彼此間的相互干擾,提高靈敏度; 1265187 或者,將電磁波吸收材料塗佈於密閉空間壁面,可形成等效無 反射的自由空間,在此空間内操作的電磁波發射裝置如雷達、 通信天線等不會受到壁面反射電磁波的干擾;此外,應用電磁 波吸收材料於家用電器中,如微波爐、手機等,可防止電磁輕 射漏’保護使用人員的身體健康。 【發明内容】 有鑑於對電磁波吸收材料的需求,本發明利用奈米複合材 料之概念,在塗料中加入奈米粒子,改變塗料特性,以獲得新 穎之電磁波吸收材料。 本發明之目的係提供一種可吸收電磁波之奈米塗料,該奈 米塗料會受起始響應頻率電磁波之作用而改變,同時損耗響應 頻率電磁波的能量,藉以達到減少特定頻率範圍電磁波之反 射。本發明之可吸收電磁波之奈米塗料包含奈米顆粒、樹脂、 溶劑及適當之添加劑。前述奈米塗料之介電常數會受起始響應 電磁波之作用而改變,及前述奈米塗料係可減少起始響應頻率 電磁波之能量及反射。 本發明之另一目的係提供一種可吸收電磁波之油性奈米塗 料’包含奈米顆粒有機溶液、油性塗料及適當之添加劑。前述 油性奈米塗料之介電常數受起始響應頻率電磁波之作用而改 變’及前述油性奈米塗料係可減少起始響應頻率電磁波之能量 及反射。前述油性奈米塗料較佳係包含〇·5〜7%(ν/ν)奈米顆粒有 機溶液、93〜99·5%(ν/ν)油性塗料及適當之添加劑。 本發明之另一目的係提供一種可吸收電磁波之水性奈米塗 料’包含奈米顆粒水溶液、水性塗料及適當之添加劑。前述水 性奈米塗料之介電常數受起始響應頻電磁波之作用而改變,及 4述水性奈米塗料係可減少起始響應頻率電磁波之能量及反 1265187 射。前述水性奈米塗料較佳係包含0.5〜7%(v/v)奈米顆粒水溶 液、93〜99·5%(ν/ν)水性塗料及適當之添加劑。 在一較佳實施態樣中,本發明之可吸收電磁波之油性奈米 塗料係包含60〜80%(ν/ν)聚醇樹脂、10〜25(ν/ν)二曱苯、 5〜20%(ν/ν)異氰酸鹽及0.5〜7%(ν/ν)之奈米顆粒溶液。更佳之實 施態樣係包含65〜68%(ν/ν)聚醇樹脂、15〜18(ν/ν)二曱苯、 8〜12%(ν/ν)異氰酸鹽及3〜6%(ν/ν)之奈米顆粒溶液。 本發明係將含有奈米顆粒之溶液加入傳統塗料中,使塗料 能耗損響應頻率電磁波之能量,進而減少電磁波之反射,塗佈 本發明之奈米塗料於電器或房間牆壁,可減少環境中電磁波對 人體的不良影響,或避免電磁波干擾電子儀器之運作;此外, 本發明奈米塗料之介電常數受響應頻率電磁波產生之電場影 響,利用此一介電常數隨電磁波頻率產生變化的特性,配合適 當之裝置設計,本發明之奈米塗料並可用來偵測及定位特定電 磁波之發射位置。本發明之奈米塗料可配合塗佈物品之性質而 調整其配方,使其適合塗佈於各種材料上,如建築物、車輛、 船舶、塑膠、橡膠製品等,其應用廣泛,不受空間、形狀限制, 且製備方法簡單,為一極具商機之電磁波吸收塗料。 【實施方式】 本發明係利用奈米複合材料之概念,將奈米粒子加入傳統塗 料配方中,改變塗料之特性,使混合之奈米塗料具有對電磁波發 生響應的特性,其介電常數(Permittivity)在響應頻率電磁波作用 下發生改變,並耗損響應頻率電磁波的能量,達到減少電磁波反 射的能力。本發明提供之奈米塗料,其組成成分包含奈米顆粒、 樹脂、溶劑及適當之添加劑。 在本發明中,奈米顆粒較佳係為金奈米顆粒、銀奈米顆粒、 金銀混合奈米顆粒或金銀合金奈米顆粒,其製備方法不受特殊限 1265187 制可由任何本技術領域已知之方法製備。奈米 別限制,較佳料直㈣於1GGnm,更佳# /、^特 前述奈米顆粒較佳係分散於溶劑 ^於⑺⑽。 圍而定;-般而言,製備油性塗料時= = 劑中,製備水性塗料時,奈•子則分散於水溶i中於有^谷 本發明奈米塗料組成成分中使用的樹脂,係可為 塗料中所使用的樹脂’例如,聚醇樹脂、盼樹脂、聚氣乙婦樹 脂、三聚氰胺樹脂、環氧樹脂1樹脂、聚氨基甲義樹脂等。 本發明之奈米塗料並可進一步添加適當之添加劑,例如稀釋 劑、乾燥劑、硬化劑、可塑劑、安定劑、顏料等。 在本發明中’減少響應頻率電磁波之反射”係指本發明之 奈米塗料對於特疋頻率以上電磁波(例如:900MHz以上之電磁 波)開始發生響應後,響應電磁波之部分能量被奈米塗料吸收, 因此反射出來的電磁波強度較原入射電磁波為弱。 本發明奈米塗料之”介電常數在響應頻率電磁波作用下發 生變化”係指本發明奈米塗料在響應頻率範圍(例如:900MHz以 上之電磁波)内測得之介電常數與其他頻率下測得之介電常數 顯然不同,因而影響奈米塗料在該頻率範圍内之介電性質。 在一實施態樣中,本發明之奈米塗料係為一種油性奈米塗 料’包含奈米顆粒有機溶液及油性塗料及適當之添加劑,其中 前述油性奈米塗料之介電常數在起始響應頻率電磁波的作用下 會產生改變,及前述油性奈米塗料可耗損響應頻率範圍電磁波 之能量,其中前述起始響應頻率電磁波較佳係為900MHz以上 之電磁波。當前述油性奈米塗料包含0.5〜7%(v/v)奈米顆粒有機 溶液、93〜99·5°/〇(ν/ν)油性塗料及適當之添加劑配比組合時,對 於電磁波響應較佳,特別是對於900MHz以上之電磁波響應最 佳0 1265187 在此實施態樣中,前述奈米顆粒有機溶液較佳係為包含金 奈米顆粒或銀奈米顆粒之有機溶液,或為包含金銀混合奈米顆 粒之有機溶液,或為包含金銀合金奈米顆粒之有機溶液。其中 前述奈米顆粒大小不受特別限制,其直徑較佳係小於l〇〇nm, 更佳係小於1 Onm。前述油性塗料係包含樹脂、溶劑及適當之添 加劑,較佳係由聚醇樹脂、二甲苯及異氰酸鹽組成。 在一較佳實施態樣中,本發明之油性奈米塗料係包含 60〜80%(v/v)聚醇樹脂、10〜25(v/v)二甲苯、5〜20%(v/v)異氰酸鹽 及0.5〜7%(v/v)之奈米顆粒有機溶液。最佳係包含65〜68%(v/v) 聚醇樹脂、15〜18(v/v)二甲苯、8〜12%(v/v)異氰酸鹽及3〜6°/〇(v/v) 之奈米顆粒有機溶液。 在另一實施態樣中,本發明之奈米塗料係為一種水性奈米 塗料,包含奈米顆粒水溶液、水性塗料及適當之添加劑,其中 前述水性奈米塗料之介電常數在起始響應頻率電磁波作用下會 產生改變,及前述水性奈米塗料係可減少響應電磁波之能量及 反射,其中前述起始響應電波較佳係為900HMZ以上之電磁 波。當前述水性奈米塗料包含0.5〜7%(v/v)奈米顆粒水溶液、 93〜99.5%(v/v)水性塗料及適當之添加劑配比組合時,對於電磁 波響應較佳,特別是對於900MHz以上之電磁波響應最佳。 在此實施態樣中,前述奈米顆粒水溶液較佳係為包含金奈米 顆粒之水溶液,或為包含銀奈来顆粒之水溶液,或為包含金銀混 合奈米顆粒之水溶液,或為包含金銀合金奈米顆粒之水溶液。其 中前述奈米顆粒大小不受特別限制,其直徑較佳係小於l〇〇nm, 更佳係小於l〇nm。前述水性塗料係可為任何市售之水性塗料, 例如:乳膠漆、水性水泥漆、氯化橡膠漆、粉體塗料、無基塗料 等。其中前述市售水性塗料一般組成成分包含樹脂、溶劑及適當 之添加劑如稀釋劑、乾燥劑、可塑劑、硬化劑、安定劑、顏料等。 A^65l87 之申請專二;::係用於說明本發明之優點,並非用於限制本發明 十二烷=-叫的金氣酸(HAUCl4)水溶液(0·01Μ)與溶有0.37克二 的 13·6ι^1 〜1 基溴化銨amm〇nium bromid) 秒1滴的if、笨'容液’置於授拌器上定速半5分鐘,然、後以每 完成後置於度將5ml氫硼化鈉(NaBH4,0·05克)水溶液緩緩滴入, 甲笨溶液與攪拌器上攪拌1小時。停止攪拌後靜置於陰涼處,待 金奈米顆粒去離子水分層後,萃取上層的甲苯溶液,即獲得含有 微鏡影像圖的甲苯溶液。第一圖即為金奈米顆粒之掃描式電子顯 脸f 金奈米顆粒直徑平均在1 Onm以下。 月等聚^ 5S. 混合後, 脂1〇〇nU、二甲苯稀釋劑25ml、異氰酸鹽l〇ml 之含金太加入前述製備之金奈米顆粒甲苯溶液,即獲得本發明 各、’不、米顆粒可吸收電磁波之油性奈米塗料。 電磁波之油性奈来沴料(銀奈来頫敖、 此合6ml的硝酸銀(AgN〇3)水溶液(〇·〇1Μ)與溶有〇·37克二 一土 Τ 基演化叙(Didodecyl-dimethyl ammonium bromid) 的13.6ml甲苯溶液,置於攪拌器上定速攪拌5分鐘,然後以每 秒1滴的速度將5mi氫爛化納(NaBH4,0.05克)水溶液緩緩滴 入,完成後置於攪拌器上攪拌丨小時。停止攪拌後靜置於陰涼 處,待甲苯溶液與去離子水分層後,萃取上層的甲苯溶液,即 獲得含有銀奈米顆粒的甲苯溶液。第二圖即為銀奈米顆粒之掃 描式電子顯微鏡影像圖,銀奈米顆粒直徑平均在l〇mn以下。 將聚醇樹脂l〇〇ml、二曱苯稀釋劑25ml、異氰酸鹽1〇ml 混合後,加入前述製備之銀奈米顆粒曱苯溶液,即獲得本發明 1265187 之含銀奈米顆粒可吸收電磁波之油性奈米塗料。 實施例三··製備可吸電磁波之水性奈来涂斜 混合2ml的金氣酸(HAuCU)水溶液(〇·〇ιμ)與溶有〇 18克十 六烷基三甲基溴化銨(C^TAB)的10ml去離子水溶液,置於授掉 器上定速攪拌5分鐘,然後以每秒1滴的速度將Uml氯:化 鈉(NaBHr 0.02克)水溶液緩緩滴入,完成後置於授拌器上授掉 1小時。停止攪拌後靜置於陰涼處,即獲得含有金奈米顆粒的 水溶液。 將市售水性塗料與金奈米顆粒水溶液混合,即獲得本發明之含 金奈米顆粒可吸收電磁波之水性奈米塗料。前述市售水性塗料 係可為任何市售塗料,可依應用之領域選擇。1265187 玖, invention description: [Technical Field] The present invention relates to a nano-coating having a frequency response to electromagnetic waves, and a dielectric constant (Permittivity) of the nano-coating material under the action of an electromagnetic wave having an initial response frequency or higher A change occurs while the energy of the response electromagnetic wave is lost. [Prior Art] Electromagnetic wave absorbing materials are materials that reduce the reflection of electromagnetic waves. The development of such materials originated from military applications and was used to shield and absorb electromagnetic waves. However, with the rapid development of electromagnetic wave technology, computers and mobile phones have been developed in recent years. The use of electromagnetic waves is becoming more and more popular. The interference of electromagnetic waves on electrical appliances and the adverse effects on the human body have also attracted widespread attention. Therefore, electromagnetic wave absorbing materials are used to prevent electromagnetic waves from interfering or shielding electromagnetic waves to prevent electromagnetic waves from affecting the human body. Various types of electromagnetic wave absorbing materials have been developed, including magnetic materials, dielectric materials, and composite materials. When electromagnetic waves encounter the surface of an object, part of the energy of the electromagnetic wave is reflected back, and part of the energy is transmitted to the second medium through the boundary. The electromagnetic waves entering the surface of the material penetrate the medium through various channels, and part of the electromagnetic wave energy passes through the substance. When absorbed, the residual energy penetrates the substance and becomes radiant energy on the other side of the surface of the substance, and its intensity is weakened by partial absorption. Therefore, the ideal absorbing material should firstly penetrate the electromagnetic wave incident on the surface of the material to minimize the reflection of the electromagnetic wave. For this purpose, it is generally required that the electromagnetic wave enters the ray to vertically absorb the surface of the material. Secondly, it penetrates into the absorption. The electromagnetic wave energy in the material should be able to effectively absorb all of the incident electromagnetic energy. Electromagnetic wave absorbing materials are widely used to prevent radar artifacts, TV ghosting, mobile radio barriers, and for absorbing microwaves or millimeter waves. For example, coating electromagnetic wave absorbing materials on radar or communication equipment body, antenna and surrounding interferences can reduce the mutual interference of communication electromagnetic waves and improve sensitivity; 1265187 Alternatively, the electromagnetic wave absorbing material can be applied to the wall surface of the sealed space. Forming an equivalent non-reflective free space, electromagnetic wave transmitting devices operating in this space, such as radar, communication antennas, etc., are not interfered by electromagnetic waves reflected by the wall; in addition, electromagnetic wave absorbing materials are applied to household appliances, such as microwave ovens, mobile phones, etc. It can prevent electromagnetic light leakage and protect the health of the user. SUMMARY OF THE INVENTION In view of the demand for electromagnetic wave absorbing materials, the present invention utilizes the concept of a nano composite material, adds nano particles to a coating, and changes the characteristics of the coating to obtain a novel electromagnetic wave absorbing material. SUMMARY OF THE INVENTION An object of the present invention is to provide a nano-coating which can absorb electromagnetic waves, which is changed by the action of an initial response frequency electromagnetic wave, and at the same time, the energy of the electromagnetic wave in response to the frequency is lost, thereby reducing the reflection of electromagnetic waves in a specific frequency range. The electromagnetic wave-absorbing nano-coating of the present invention comprises nano particles, a resin, a solvent and a suitable additive. The dielectric constant of the aforementioned nano-coating material is changed by the action of the initial response electromagnetic wave, and the aforementioned nano-coating system can reduce the energy and reflection of the initial response frequency of the electromagnetic wave. Another object of the present invention is to provide an oily nano coating which absorbs electromagnetic waves' comprising a nanoparticle organic solution, an oily coating and suitable additives. The dielectric constant of the aforementioned oily nano-coating is changed by the action of the initial response frequency electromagnetic wave' and the aforementioned oily nano-coating system can reduce the energy and reflection of the electromagnetic wave at the initial response frequency. The oily nano-coating preferably comprises an organic solution of 〜·5 to 7% (ν/ν) nanoparticles, an oily coating of 93 to 99·5% (ν/ν), and a suitable additive. Another object of the present invention is to provide an aqueous nanoparticle coating which absorbs electromagnetic waves' comprising an aqueous solution of nanoparticle, an aqueous coating and suitable additives. The dielectric constant of the aforementioned aqueous nano-coating is changed by the action of the initial response frequency electromagnetic wave, and the aqueous nano-coating system can reduce the energy of the initial response frequency electromagnetic wave and the inverse 1265187. The aqueous nano-coating preferably comprises a 0.5 to 7% (v/v) nanoparticle aqueous solution, a 93 to 99.5% (v/v) aqueous coating, and a suitable additive. In a preferred embodiment, the electromagnetic wave-absorbing oily nano-coating of the present invention comprises 60-80% (v/v) polyalcohol resin, 10~25 (ν/ν) diphenyl, 5~20 % (ν / ν) isocyanate and 0.5 ~ 7% (v / ν) of nanoparticle solution. A more preferred embodiment comprises 65 to 68% (v/v) polyalcohol resin, 15 to 18 (v/v) diphenyl, 8 to 12% (v/v) isocyanate and 3 to 6%. (v/v) nanoparticle solution. The invention adds the solution containing the nano particles into the traditional coating, so that the coating energy consumption damages the energy of the electromagnetic wave in response to the frequency, thereby reducing the reflection of the electromagnetic wave, and coating the nano coating of the invention on the wall of the electric appliance or the room, thereby reducing the electromagnetic wave in the environment. The adverse effect on the human body, or avoiding electromagnetic waves from interfering with the operation of the electronic instrument; in addition, the dielectric constant of the nano-coating of the present invention is affected by the electric field generated by the electromagnetic wave of the response frequency, and the dielectric constant is varied with the frequency of the electromagnetic wave. With suitable device design, the nano-coating of the present invention can be used to detect and locate the emission position of a particular electromagnetic wave. The nano-coating of the invention can be adjusted according to the nature of the coated article, so that it is suitable for coating on various materials, such as buildings, vehicles, ships, plastics, rubber products, etc., and is widely used without space. The shape is limited, and the preparation method is simple, and it is an electromagnetic wave absorption coating with great business opportunities. [Embodiment] The invention utilizes the concept of nano composite material to add nano particles into a traditional coating formulation, and changes the characteristics of the coating, so that the mixed nano coating has the characteristics of responding to electromagnetic waves, and the dielectric constant (Permittivity) In the response frequency, the electromagnetic wave changes and consumes the energy of the electromagnetic wave in response to the frequency, thereby reducing the ability of the electromagnetic wave to reflect. The nano coating provided by the present invention comprises a composition comprising nano particles, a resin, a solvent and a suitable additive. In the present invention, the nanoparticle is preferably a gold nanoparticle, a silver nanoparticle, a gold-silver mixed nanoparticle or a gold-silver alloy nanoparticle, and the preparation method is not limited to any specific one 1265187, and can be any known in the art. Method preparation. Nano is not limited, preferably straight (4) at 1 GGnm, more preferably # /, ^ Special The above nanoparticles are preferably dispersed in a solvent ^ (7) (10). In general, when preparing an oily coating = = in the preparation, when the aqueous coating is prepared, the naphtha is dispersed in the water soluble i, and the resin used in the composition of the nano coating of the invention is The resin used in the coating is, for example, a polyhydric alcohol resin, a resin, a polyethylene resin, a melamine resin, an epoxy resin 1, a polyurethane resin, or the like. The nano-coating of the present invention may further be added with appropriate additives such as a diluent, a desiccant, a hardener, a plasticizer, a stabilizer, a pigment, and the like. In the present invention, 'reducing the reflection frequency of the electromagnetic wave reflection' means that the nano-coating of the present invention responds to electromagnetic waves (for example, electromagnetic waves of 900 MHz or more) at a characteristic frequency or higher, and a part of the energy in response to the electromagnetic wave is absorbed by the nano-coating material. Therefore, the intensity of the reflected electromagnetic wave is weaker than that of the original incident electromagnetic wave. The "dielectric constant of the nano coating of the present invention changes under the action of the response frequency electromagnetic wave" means the electromagnetic wave of the present invention in the response frequency range (for example, electromagnetic waves of 900 MHz or more) The measured dielectric constant is significantly different from the dielectric constant measured at other frequencies, thus affecting the dielectric properties of the nanocoating in this frequency range. In one embodiment, the nanocoating system of the present invention An oily nano-coating comprising 'nanoparticle organic solution and an oily coating and suitable additives, wherein the dielectric constant of the aforementioned oily nano-coating material changes under the action of an initial response frequency electromagnetic wave, and the aforementioned oily nano-coating The energy of the electromagnetic wave can be depleted in response to the frequency range, wherein the aforementioned initial response frequency electromagnetic wave The best system is an electromagnetic wave of 900MHz or more. When the aforementioned oily nano-coating material contains 0.5~7% (v/v) nano particle organic solution, 93~99·5°/〇(ν/ν) oily coating and appropriate additive When the ratio is combined, the electromagnetic wave response is better, especially for electromagnetic waves above 900 MHz. In this embodiment, the nanoparticle organic solution is preferably composed of gold nanoparticles or silver nanoparticles. The organic solution is either an organic solution containing gold-silver mixed nano-particles, or an organic solution containing gold-silver alloy nano-particles. The size of the aforementioned nano-particles is not particularly limited, and the diameter thereof is preferably less than 10 nm. Preferably, the oily coating comprises a resin, a solvent and a suitable additive, preferably consisting of a polyol resin, xylene and an isocyanate. In a preferred embodiment, the oily naphtha of the invention The rice coating system comprises 60~80% (v/v) polyalcohol resin, 10~25 (v/v) xylene, 5~20% (v/v) isocyanate and 0.5~7% (v/v ) nanoparticle organic solution. The best system contains 65~68% (v/v) polyalcohol resin, 15~18 (v/ v) xylene, 8 to 12% (v/v) isocyanate and 3 to 6 ° / 〇 (v / v) nanoparticle organic solution. In another embodiment, the nano-particle of the invention The coating is a water-based nano-coating comprising an aqueous solution of nano-particles, an aqueous coating and a suitable additive, wherein the dielectric constant of the aqueous nano-coating material changes under the action of an initial response frequency electromagnetic wave, and the aforementioned aqueous nano-coating The energy and reflection of the response electromagnetic wave are reduced, wherein the initial response wave is preferably an electromagnetic wave of 900 HMZ or more. When the aqueous nano paint comprises 0.5~7% (v/v) nano particle aqueous solution, 93~99.5% (v/v) When the water-based paint and the appropriate additive ratio are combined, the response to electromagnetic waves is better, especially for electromagnetic waves above 900 MHz. In this embodiment, the aqueous solution of the nanoparticle particles is preferably an aqueous solution containing gold nanoparticles, or an aqueous solution containing silver nanoparticles, or an aqueous solution containing gold-silver mixed nano particles, or a gold-silver alloy. An aqueous solution of nanoparticles. The size of the aforementioned nanoparticle is not particularly limited, and the diameter thereof is preferably less than 10 nm, more preferably less than 10 nm. The aforementioned aqueous coatings may be any commercially available aqueous coatings such as latex paints, waterborne cement paints, chlorinated rubber paints, powder coatings, baseless paints, and the like. The above-mentioned commercially available water-based paints generally comprise a resin, a solvent and suitable additives such as a diluent, a desiccant, a plasticizer, a hardener, a stabilizer, a pigment and the like. Application No. 65l87;:: is used to illustrate the advantages of the present invention, and is not intended to limit the dodecane=-called gold gas acid (HAUCl4) aqueous solution (0·01Μ) and dissolve 0.37 g of the present invention. 13·6ι^1 〜1 group ammonium bromide amm〇nium bromid) seconds 1 drop of if, stupid 'liquid' placed on the stirrer for a fixed speed of half a minute, then, after each completion of the degree 5 ml of an aqueous solution of sodium borohydride (NaBH 4 , 0.05 g) was slowly added dropwise, and the solution was stirred with a stirrer for 1 hour. After stopping the stirring, it was left to stand in a cool place. After the deionized water layer of the gold nanoparticles, the upper layer of the toluene solution was extracted to obtain a toluene solution containing a micromirror image. The first picture shows the scanning electron appearance of the gold nanoparticles. The diameter of the gold nanoparticles is below 1 Onm. After the mixture is mixed, the lipid 1〇〇nU, the xylene diluent 25ml, and the isocyanate l〇ml are added to the toluene solution of the gold nanoparticle prepared as described above, thereby obtaining the present invention. , rice particles can absorb electromagnetic waves of oily nano paint. Electrolytic oily Naibi ( (Silver Naiyi, this 6ml silver nitrate (AgN〇3) aqueous solution (〇·〇1Μ) and dissolved 〇·37g Broiled 13.6 ml of toluene solution, placed on a stirrer and stirred at a constant speed for 5 minutes, then slowly drip 5M hydrogen argon (NaBH4, 0.05g) aqueous solution at a rate of 1 drop per second. Stir on the vessel for a few hours. Stop stirring and then place in a cool place. After the toluene solution and the deionized moisture layer, extract the upper layer of toluene solution to obtain a toluene solution containing silver nanoparticles. The second figure is silver nanometer. Scanning electron microscope image of the particles, the diameter of the silver nanoparticles is below l〇mn. The polyol resin l〇〇ml, the diphenyl benzene diluent 25ml, the isocyanate 1〇ml are mixed, and the above preparation is added. The silver nanoparticle bismuth benzene solution obtains the oily nano-coating of the silver-containing nano-particles of the invention of 1265187 which can absorb electromagnetic waves. Example 3· Preparation of an absorbing electromagnetic wave, Nailai coating, mixing 2 ml of gold gas acid (HAuCU) aqueous solution (〇·〇ι μ) with 10 ml of deionized water solution containing 18 g of cetyltrimethylammonium bromide (C^TAB), placed on a transferer at a constant speed for 5 minutes, and then at a rate of 1 drop per second. Uml Chloride: Sodium (NaBHr 0.02 g) aqueous solution was slowly added dropwise, and then placed on a stirrer for 1 hour. After stirring was stopped, it was left in a cool place to obtain an aqueous solution containing gold nanoparticles. The water-based paint is mixed with the aqueous solution of the golden nano-particles to obtain the aqueous nano-coating of the invention containing the gold nano-particles and absorbing electromagnetic waves. The commercially available water-based paint can be any commercially available paint, and can be selected according to the field of application.

混合2ml的硝酸銀(AgN〇3)水溶液(〇 〇1M)與溶有〇 18克十 六烷基三甲基溴化銨(C^TAB)的1〇ml去離子水溶液,置於攪拌 器上定速攪拌5分鐘,然後以每秒i滴的速度將Mml氫硼化 鈉(NaBH4,0.02克)水溶液緩緩滴入,完成後置於授拌器上授拌 1小呀仔止攪拌後靜置於陰涼處,即獲得含有銀奈米顆粒的 水溶液。 將市售水性塗料與6%之銀奈米顆粒水溶液混合,即獲得本 發明之含銀奈米顆粒可吸收電磁波之水性奈米塗料。前述市售 水性塗料係、可為任何市售塗料,可依應用之領域選擇。 复雜例五:奈也皇^電性測試 本只加例測試之奈米塗料,係依實施例一之方法將聚醇樹 脂1〇〇ml、二甲笨稀釋劑25ml、異氰酸鹽l〇ml混合後,分別 1265187 加入1〜l〇ml前述包含金奈米顆粒之甲笨溶液,製成不同濃度之Mix 2 ml of silver nitrate (AgN〇3) aqueous solution (〇〇1M) with 1 〇ml of deionized water solution containing 18 g of cetyltrimethylammonium bromide (C^TAB) and place on a stirrer. Stir for 5 minutes, then slowly drip the Mml sodium borohydride (NaBH4, 0.02g) solution at a rate of i drops per second. After mixing, put it on the stirrer and mix it for 1 hour. Stir and stir. In a cool place, an aqueous solution containing silver nanoparticles is obtained. The commercially available water-based paint was mixed with an aqueous solution of 6% silver nanoparticles to obtain an aqueous nano-coating of the present invention containing silver-containing nanoparticles absorbing electromagnetic waves. The above commercially available water-based paint system can be any commercially available paint and can be selected according to the field of application. Complex Example 5: Nai Yehuang ^ Electrical Test This is only the nano-coating of the test, the method of the first embodiment is 1 ml of polyalcohol resin, 25 ml of dimethicone diluent, isocyanate l After mixing 〇ml, add 1~l〇ml of the above-mentioned solution containing the gold nanoparticles to each other at 1265187, and make different concentrations.

油性電磁波奈米㈣,然後制射頻阻抗量測儀(RFOily electromagnetic wave nano (four), then RF impedance measuring instrument (RF)

Impedance/Mterial Analyzer 4291B)測試電磁波奈米塗料之頻 率、介電常數和導磁係數,所量測果可進一步計算其反射損失 效果。 A·奈米塗料之頻率_介電常數測試 、材料的介電常數是判斷材料極性的基準,介電常數為複數 且為頻率的函數:"⑺=6丫/»”⑺。介電常數的實部反應材 料於外在電場可貯存多少能量;虛部被稱為損失係數,可 反應材料受外加電場後能量的消散或損耗。第三圖係為奈米塗 · 料之頻率-介電常數實部圖,第四圖係為奈米塗料之頻率-介電 常數虛部圖。 由第一圖及第四圖可知:奈米塗層在頻率時開 始發生響應,本發明奈米塗料之介電常數實部及虛部都會產生 明顯變化;其t以加人6ml奈米驗甲笨溶液混合製狀奈# 塗料Μ化最為明顯’其次為加人8ml奈米顆粒甲苯溶液混合Μ 成之奈米塗料。由於介電常數的虛部顯示材料耗損電磁波能量 的能力,因此由第四圖之結果可知本發明之奈米塗料可吸收起 始響應頻率9·0χ108Ηζ以上電磁波之能量。 籲 Β·奈米塗料之頻率-導磁係數測試 導磁係數測試試片為一中空圓柱體,規格限制如下:外徑 S 20mm,内徑25mm,高度$i〇mm。第五圖係為奈米塗料之 頻率-導磁係數實部圖,第六圖係為奈米塗料之頻率_導磁係數 虛部圖。 由第五圖及第六圖可知:當頻率大於9.〇χ1〇8時,隨著頻率 上升,導磁係數的變化亦逐漸明顯,其中以加入5ml奈米溶液 之奈米塗料導磁係數變化最為顯著。 12 1265187 c.奈米塗料反射損失效果 第七圖係為奈米塗料之反射損失效果。當電磁波頻率大於 起始響應頻率9·0χ108Ηζ時,電磁波能量會被本發明之奈米塗 料吸收,其反射強度明顯下降,其中以加入5 ml奈米溶液之奈 米塗料所造成的能量損失最為顯著。 其他實施態樣 本發明之實施方法已詳述於前述實施例中,任何熟悉本技 術領域之人士皆可依本發明之說明,在不背離本發明之精神與 範圍内視需要更動、修飾本發明,因此,其他實施態樣亦包含 在本發明之申請專利範圍中。 【圖式簡單說明】 第一圖即為金奈米顆粒之穿透式電子顯微鏡影像圖。 第二圖即為銀奈米顆粒之穿透式電子顯微鏡影像圖。 第三圖係為本發明奈米塗料之頻率-介電常數實部圖。 第四圖係為本發明奈米塗料之頻率-介電常數虛部圖。 第五圖係為本發明奈米塗材料之頻率-導磁係數實部圖。 第六圖係為本發明奈米塗料之頻率-導磁係數虛部圖。 第七圖係為本發明奈米塗料之反射損失效果。 13Impedance/Mterial Analyzer 4291B) tests the frequency, dielectric constant and magnetic permeability of electromagnetic wave nano-coatings, and further measures the reflection loss effect. A. The frequency of the dielectric coating _ dielectric constant test, the dielectric constant of the material is the basis for determining the polarity of the material, the dielectric constant is a complex number and a function of frequency: "(7)=6丫/»" (7). Dielectric constant The real part of the reaction material can store how much energy in the external electric field; the imaginary part is called the loss coefficient, and the energy of the reactive material is dissipated or lost by the applied electric field. The third picture is the frequency of the nano coating material - dielectric The constant real part diagram, the fourth figure is the frequency-dielectric constant imaginary part of the nano paint. It can be seen from the first figure and the fourth figure that the nano coating starts to respond at the frequency, and the nano coating of the invention The real and imaginary parts of the dielectric constant will change significantly; the t is added to the 6ml nanometer test solution, and the coating is the most obvious. The second is the addition of 8ml nanometer toluene solution. Since the imaginary part of the dielectric constant shows the ability of the material to consume electromagnetic wave energy, it can be seen from the results of the fourth figure that the nano-coating of the present invention can absorb the energy of the electromagnetic wave having an initial response frequency of 9·0χ108Ηζ or more. Nano paint frequency The rate-permeability coefficient test magnetic permeability test piece is a hollow cylinder, the specifications are as follows: outer diameter S 20mm, inner diameter 25mm, height $i〇mm. The fifth picture is the frequency of the nano paint - magnetic The real part of the coefficient, the sixth figure is the imaginary part of the frequency _ magnetic permeability of the nano paint. It can be seen from the fifth and sixth figures that when the frequency is greater than 9.〇χ1〇8, as the frequency increases, The change of magnetic coefficient is also obvious, among which the permeability coefficient of nano-coating with 5ml nano-solution is the most significant. 12 1265187 c. The reflection loss effect of nano coating is the reflection loss effect of nano paint. When the electromagnetic wave frequency is greater than the initial response frequency of 9·0χ108Ηζ, the electromagnetic wave energy is absorbed by the nano-coating of the present invention, and the reflection intensity thereof is remarkably lowered, and the energy loss caused by the nano-coating with 5 ml of the nano-solution is most remarkable. Other embodiments of the present invention have been described in detail in the foregoing embodiments, and any person skilled in the art can change the scope of the present invention without departing from the spirit and scope of the present invention. The present invention is modified, and therefore, other embodiments are also included in the scope of the patent application of the present invention. [Simplified description of the drawings] The first figure is a transmission electron microscope image of the gold nanoparticles. The transmission electron microscope image of silver nanoparticles is shown in Fig. 3. The third figure is the real-frequency diagram of the frequency-dielectric constant of the nano coating of the invention. The fourth figure is the frequency-dielectric constant of the nano coating of the invention. The fifth figure is the real part of the frequency-magnetic permeability of the nano-coating material of the present invention. The sixth figure is the imaginary part of the frequency-magnetic permeability of the nano-coating of the present invention. Invented the reflection loss effect of nano paint. 13

Claims (1)

12651871265187 ί 9 人 * .4r- 拾、申請專利範圍:V 牙重可吸收電磁波之奈米塗料,包含奈米顆粒 '樹脂、溶劑 及添加杳,丨;# rb 粒八 ”〒則述奈米顆粒包含金奈米顆粒、銀奈米顆 边、金銀混合之奈米顆粒、或金銀合金奈米顆粒,且前述奈 米顆粒直徑係小於100nm。 如^请專利範圍第1項所述之可吸收電磁波之奈米塗料,其 3中绌述奈米顆粒直徑係小於1〇nm。 3·如:请專利範圍帛1項所述之可吸收電磁波之奈米塗料,其 中前述樹脂包含聚醇樹脂。 ’、 4.如:請專利範圍帛i項所述之可吸收電磁波之奈米塗料,其 中鈾述/谷劑包含有機溶劑或水溶劑。 如申6月專利|色圍帛i項所述之可吸收電磁波之奈米塗料,其 中鈾述添加劑包含稀释劑、乾燥劑、可塑劑、硬化劑、安定 劑或顏料。 6·如=請專利範圍帛!項所述之可吸收電磁波之奈米塗料,其 中前述奈米塗料之介電常數會受響應頻率電磁波之作用而^文 變。 7·如申請專利範圍帛6項所述之可吸收電磁波之奈米塗料,其 中月ό述奈米塗料之介電常數會受起始響應頻率9〇〇MHz以上 電磁波之作用而改變。 δ·如申請專利範圍第1項所述之可吸收電磁波之奈米塗料,其中 前述奈米塗料係可減少響應頻率電磁波之能量和反射。 9. 如申請專利範圍第8項所述之可吸收電磁波之奈米塗料,其中 前述奈米塗料係可減少起始響應頻率9〇〇ΜΗζ以上電磁波^能 量和反射。 10. —種可吸收電磁波之油性奈米塗料,包含奈米顆粒有機溶 液、油性塗料及添加劑;其中前述奈米顆粒直徑係小於 14 1265187 ^ 且中韵述奈米顆粒有機溶液包含··金奈米顆粒甲苯 岭液、I奈米難甲苯溶液、金銀混合奈米甲笨溶液或 合金奈米T苯溶液。 又 、,申明專利範圍f 1〇項所述之可吸收電磁波之油性奈米塗 =中則述油性奈米塗料包含〇·5〜7%(Wv)奈米顆粒有機溶 /文及93〜99·5%(ν/ν)油性塗料及添加劑。 12^申^專利範圍第1()所述之可吸收電磁波之油性奈米塗料, 〃 $述油f生奈米塗料之介電常數會受響應頻率電磁波之作 用而改變。 料申明專利㈣帛12項所述之可吸收電磁波之油性奈米塗 〇斗’其令前述油性奈米塗料之介電常數會受起始響應頻; 〇〇MHz以上電磁波之作用而改變。 U利1&圍帛1Q項所述之可吸收電磁波之油性奈米塗 :,其中前述油性奈米塗料係可減少響應頻率電磁波^ 及反射。 15:申請專:成圍帛14項所述之可吸收電磁波之油性奈米塗 ^ 中刖述油性奈米塗料係可減少起始響應頻率900MHz以 上電磁波之能量和反射。 17 U利$&圍帛1Q項所述之可吸收電磁波之油性奈米塗 料,其中前述奈米顆粒直徑係小於1〇nm。 18 :申请專利範圍帛1G項所述之可·電磁波之油性奈米塗 /、、,其中前述油性塗料包含樹脂、溶劑或添加劑。 圍帛17項所述之可吸收電磁波之油性奈米塗 1其中則述油性塗料倍、由聚醇樹脂、二曱苯及異氰酸鹽组 成。 、 19=°申晴專2範圍s 1G項所述之可吸收電磁波之油性奈米塗 厂,其_前述添加劑包含稀釋劑、乾燥劑、可塑劑、硬化 15 1265187 劑、安定劑或顏料。 20. 如申請專利範圍第10項所述之可吸收電磁波之油性奈米塗 料,其中前述油性奈米塗料係包含60〜80%(v/v)聚醇樹脂、 10〜25(v/v)二甲苯、5〜20%(v/v)異氰酸鹽及0.5〜7%(v/v)之奈米 顆粒有機溶液。 21. 如申請專利範圍第10項所述之可吸收電磁波之油性奈米塗 料,其中前述油性奈米塗料係包含65〜68%(v/v)聚醇樹脂、 15〜18(v/v)二曱苯、8〜12%(v/v)異氰酸鹽及3〜6%(v/v)之奈米 顆粒有機溶液。 22. —種可吸收電磁波之油性奈米塗料,包含0.5〜7%(v/v)奈米顆 粒有機溶液及93〜99·5%(ν/ν)油性塗料及添加劑。 23. 如申請專利範圍第22項所述之可吸收電磁波之油性奈米塗 料,其中前述油性奈米塗料之介電常數會受響應頻率電磁波 之作用而改變。 24. 如申請專利範圍第22項所述之可吸收電磁波之油性奈米塗 料,其中前述油性奈米塗料係可減少起始響應頻率900MHz以 上電磁波之能量及反射。 25. —種可吸收電磁波之水性奈米塗料,包含奈米顆粒水溶液、 水性塗料及適當之添加劑;其中前述奈米顆粒水溶液包含金 奈米顆粒水溶液、銀奈米顆粒水溶液、金銀混合顆粒水溶液 或金銀合金奈米顆粒水溶液,且前述奈米顆粒直徑係小於 100nm 〇 26. 如申請專利範圍第25項所述之可吸收電磁波之水性奈米塗 料,其中前述水性奈米塗料包含0.5〜7%(v/v)奈米顆粒水溶 液、93〜99·5%(ν/ν)水性塗料及添加劑。 27. 如申請專利範圍第25項所述之可吸收電磁波之水性奈米塗 料,其中前述水性奈米塗料之介電常數會受起始響應頻率以 16 1265187 上電磁波之作用而改變。 28.如申請專利範圍第25項所述之可吸收電磁波之水性奈米冷 料’其中前述水性奈米塗料之介電常數受起始響應頻= 900MHz以上電磁波之作用而改變。 29·如申請專利範圍第25項所述之可吸收電磁波之水性奈米条 料’其中前述水性奈米塗料係可減少起始響應頻率電磁波之 能量及反射。 30.如申請專利範圍第25項所述之可吸收電磁波之水性奈米淹 料,其中述水性奈米塗料係可減少起始響應頻率9⑽、 上電磁波之能量及反射。 、 31·、如申凊專利範圍第25項所述之可吸收電磁波之水性奈米添 料’其中前述奈米顆粒直徑係小於1〇ηιη。 土 处如申請專利範圍帛25工員所述之可吸收電磁波之水性奈米塗 料,其中前述水性塗料之組成包含樹脂、溶劑或添加劑。、土 33^〇申請專利範圍第乃項所述之可吸收電磁波之水性奈米冷 料,其中前述水性塗料包含氣化橡膠漆、粉體塗料、I : 料、乳膠漆或水性水泥漆。 …、土主 如申請專利範圍帛25項所述之可吸收電磁波之水性奈米冷 料,其中前述添加劑包含稀釋劑、乾燥劑、可塑劑、土 劑、安定劑或顏料。 化 17ί 9人* .4r- Pickup, patent application scope: V tooth weight absorbable electromagnetic wave nano coating, including nanoparticle 'resin, solvent and added 杳, 丨; # rb 粒八〒 〒 奈 奈 颗粒 颗粒 奈Gold nanoparticle, silver nanoparticle edge, gold-silver mixed nanoparticle, or gold-silver alloy nanoparticle, and the diameter of the aforementioned nanoparticle is less than 100 nm. For example, please absorb the electromagnetic wave according to the first item of the patent scope. In the case of the nano-coating, the diameter of the nano-particles is less than 1 〇 nm. 3. The invention relates to the nano-coating of the electromagnetic wave absorbing according to claim 1, wherein the resin comprises a polyalcohol resin. 4. For example, please apply the nano-coating of electromagnetic wave absorption mentioned in the scope of patent 帛i, wherein the uranium/valency agent contains an organic solvent or a water solvent. As described in the patent of June, the color can be absorbed. Electromagnetic wave nano coating, wherein the uranium additive comprises a diluent, a desiccant, a plasticizer, a hardener, a stabilizer or a pigment. 6·If the patent scope is 帛! The dielectric constant of the aforementioned nano paint It is affected by the electromagnetic wave of the response frequency. 7. The nano-coating of absorbable electromagnetic waves as described in the scope of patent application ,6, wherein the dielectric constant of the monthly coating is affected by the initial response frequency of 9〇. The nano-coating capable of absorbing electromagnetic waves as described in claim 1, wherein the nano-coating system can reduce the energy and reflection of electromagnetic waves in response frequency. The nano-coating capable of absorbing electromagnetic waves according to the item 8, wherein the nano-coating material can reduce the initial response frequency by more than 9 电磁 electromagnetic wave energy and reflection. 10. An oily nano coating capable of absorbing electromagnetic waves The invention comprises an organic solution of nano particles, an oily coating and an additive; wherein the diameter of the nano particle is less than 14 1265187 ^ and the organic solution of the medium nanoparticle comprises:······························· , gold and silver mixed nano-A solution or alloy nano T benzene solution. Also, the patented range f 1〇 can absorb electromagnetic waves of oily nano-coating = The oily nano-coatings include 〇·5~7% (Wv) nano granules organic solvent/texture and 93~99.5% (ν/ν) oily coatings and additives. 12^申^ Patent scope 1st The oily nano-coating material capable of absorbing electromagnetic waves, 介 $ The oil dielectric constant of the oil-like nano-coating material is changed by the action of the electromagnetic wave of the response frequency. It is claimed that the electromagnetic wave can be absorbed by the patent (4) The oily nano-coating bucket" causes the dielectric constant of the oily nano-coating to be affected by the initial response frequency; the action of electromagnetic waves above 〇〇MHz. Uli 1 & the absorption of electromagnetic waves as described in item 1Q Oily nano-coating: wherein the aforementioned oily nano-coating system can reduce the response frequency of electromagnetic waves and reflection. 15: Application: The oily nano-coating of the electromagnetic wave that can be absorbed by the 14th enthalpy can be used to reduce the energy and reflection of electromagnetic waves with an initial response frequency of 900MHz or more. The utility model relates to an oily nano coating capable of absorbing electromagnetic waves as described in Item 1Q, wherein the diameter of the aforementioned nano particles is less than 1 〇 nm. 18: The invention relates to an oily nano-coating of an electromagnetic wave according to the invention of claim 1G, wherein the oil-based paint comprises a resin, a solvent or an additive. The oily nano-coating of the electromagnetic wave which can be absorbed as described in Item 17 of the above-mentioned item 1 is an oil-based paint composition which is composed of a polyhydric alcohol resin, diphenylbenzene and isocyanate. 19=° Shenqing 2 Scope 1A The oily nano coating plant capable of absorbing electromagnetic waves, the aforementioned additive comprises a diluent, a desiccant, a plasticizer, a hardening 15 1265187 agent, a stabilizer or a pigment. 20. The oil-absorbing nano-coating according to claim 10, wherein the oily nano-coating comprises 60-80% (v/v) of a polyol resin, 10 to 25 (v/v). Xylene, 5~20% (v/v) isocyanate and 0.5~7% (v/v) nanoparticle organic solution. 21. The oil-absorbing nano-coating according to claim 10, wherein the oily nano-coating layer comprises 65 to 68% (v/v) of a polyalcohol resin, 15 to 18 (v/v). Diphenylbenzene, 8~12% (v/v) isocyanate and 3~6% (v/v) nanoparticle organic solution. 22. An oily nano-coating capable of absorbing electromagnetic waves, comprising 0.5 to 7% (v/v) nanoparticle organic solution and 93 to 99.5% (v/v) oily coating and additive. 23. The oil-absorbing nano-coating of an electromagnetic wave absorbing according to claim 22, wherein the dielectric constant of the oily nano-coating material is changed by the action of the response frequency electromagnetic wave. 24. The oil-absorbing nano-coating of the electromagnetic wave absorbing according to claim 22, wherein the oily nano-coating material reduces the energy and reflection of the electromagnetic wave with an initial response frequency of 900 MHz or more. 25. An aqueous nano coating capable of absorbing electromagnetic waves, comprising an aqueous solution of nano particles, an aqueous coating, and a suitable additive; wherein the aqueous solution of the nanoparticle comprises an aqueous solution of gold nanoparticles, an aqueous solution of silver nanoparticles, an aqueous solution of gold and silver mixed particles or An aqueous solution of a gold-silver alloy nano-particles, wherein the diameter of the nano-particles is less than 100 nm. The aqueous nano-coating of the electromagnetic wave-absorbing material according to claim 25, wherein the aqueous nano-coating material comprises 0.5 to 7% ( v/v) aqueous solution of nanoparticle, 93~99.5% (ν/ν) water-based paint and additives. 27. The aqueous nanoparticle absorbing electromagnetic wave according to claim 25, wherein the dielectric constant of the aqueous nano-coating material is changed by the initial response frequency by an electromagnetic wave of 16 1265187. 28. The aqueous nanofluid of the absorbable electromagnetic wave according to claim 25, wherein the dielectric constant of the aqueous nano-coating material is changed by an initial response frequency = an electromagnetic wave of 900 MHz or more. 29. The aqueous nanoparticle capable of absorbing electromagnetic waves according to claim 25, wherein the aqueous nano-coating material reduces the energy and reflection of the electromagnetic wave at the initial response frequency. 30. The aqueous nanofluid for absorbing electromagnetic waves according to claim 25, wherein the aqueous nano-coating material reduces the initial response frequency of 9 (10), the energy of the upper electromagnetic wave, and the reflection. The aqueous nanoparticle for absorbing electromagnetic waves as described in claim 25, wherein the nanoparticle diameter is less than 1 〇ηηη. The soil is an aqueous nano-coating material capable of absorbing electromagnetic waves as described in the patent application 帛25, wherein the composition of the aqueous coating comprises a resin, a solvent or an additive. The invention relates to the water-absorbing nano-fluid for absorbing electromagnetic waves according to the invention, wherein the water-based paint comprises a gasified rubber paint, a powder paint, an I material, a latex paint or a water-based cement paint. ..., the landlord, as claimed in claim 25, for the absorption of electromagnetic waves of aqueous nano-cooled materials, wherein the aforementioned additives comprise a diluent, a desiccant, a plasticizer, a soil agent, a stabilizer or a pigment. 17
TW93120770A 2004-07-12 2004-07-12 Nano coating with capability of absorbing electromagnetic waves TWI265187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93120770A TWI265187B (en) 2004-07-12 2004-07-12 Nano coating with capability of absorbing electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93120770A TWI265187B (en) 2004-07-12 2004-07-12 Nano coating with capability of absorbing electromagnetic waves

Publications (2)

Publication Number Publication Date
TW200602444A TW200602444A (en) 2006-01-16
TWI265187B true TWI265187B (en) 2006-11-01

Family

ID=38122114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93120770A TWI265187B (en) 2004-07-12 2004-07-12 Nano coating with capability of absorbing electromagnetic waves

Country Status (1)

Country Link
TW (1) TWI265187B (en)

Also Published As

Publication number Publication date
TW200602444A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
CN102020899B (en) Composite coating electromagnetic shielding paint and composite coating electromagnetic shielding material prepared therefrom
CN102449050B (en) Electromagnetic field absorbing composition
CN105111913A (en) Graphene/nano ferrite based water electromagnetic shielding paint and preparation method thereof
CN107312419B (en) A kind of graphene-based silver composite material and graphene-based silver-colored multi-functional water-based coating
CN104628422B (en) A kind of coated with silica magnetic nanoparticle makes the method that cement or concrete have absorbing property and solid surface
TWI733727B (en) Polymer emulsion as binder for conductive composition
CN107043134A (en) Preparation method based on Bluetooth communication frequency range application flaky carbonyl iron powder absorbing material
CN106564227A (en) Polymer/graphene foamed material with electromagnetic shielding performance, and preparation method and application thereof
Mandal et al. Effect of BaTiO3 on the microwave absorbing properties of Co‐doped Ni‐Zn ferrite nanocomposites
CN109837061A (en) Modified metal powder wave absorbing agent and preparation method thereof
TWI265187B (en) Nano coating with capability of absorbing electromagnetic waves
CN1935916A (en) Graphite base electromagnetic shielding composite coating and its preparing method
CN102337101B (en) Composition for electromagnetic shielding, device using same and structure preparation method
Kong et al. Processing of HoFeO3/Poly (EDOT-co-CIn) nanocomposite: Comprehensive analysis of the ku band absorption mechanism
JP2005286190A (en) Electromagnetic wave absorber
GB2457129A (en) Electromagnetic shielding paint composition
KR20110113999A (en) Sheet composition and sheet for shielding electromagnetic wave, and manufacturing method thereof
CN109548394A (en) A kind of flexibility PU graphene electromagnetic shielding material and preparation method thereof
CN100567422C (en) A kind of preparation method of four-needle-shape nano zinc oxide wave absorbing coating
CN109971300A (en) A kind of microwave absorbing coating and preparation method thereof
JP2000357893A (en) Electromagnetic wave shielding film and electromagnetic wave shielding paint
CN109575340A (en) Flexible PET graphene coating electromagnetic shielding membrane material and preparation method thereof
US20080258119A1 (en) Squeezable, Cross-Linked, Grease-Like Electromagnetic Wave Absorber
CN101282635A (en) Low secondary pollution composite electromagnetic shielding material and method of preparing the same
Malothu et al. Combination of Copper Bismuth Oxide (CuBi2O4) and Polymer Composites from Plastic Waste: A Boon for EMF Shielding

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees