TWI263628B - Synthesis of polyurethane/clay nanocomposites - Google Patents

Synthesis of polyurethane/clay nanocomposites Download PDF

Info

Publication number
TWI263628B
TWI263628B TW93131801A TW93131801A TWI263628B TW I263628 B TWI263628 B TW I263628B TW 93131801 A TW93131801 A TW 93131801A TW 93131801 A TW93131801 A TW 93131801A TW I263628 B TWI263628 B TW I263628B
Authority
TW
Taiwan
Prior art keywords
clay
polyurethane
modifier
modified
lipophilic
Prior art date
Application number
TW93131801A
Other languages
Chinese (zh)
Other versions
TW200613234A (en
Inventor
Chih-Ming Hu
Sung-Jeng Jong
Ju-Feng Liao
Chin-Jen Cheng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW93131801A priority Critical patent/TWI263628B/en
Publication of TW200613234A publication Critical patent/TW200613234A/en
Application granted granted Critical
Publication of TWI263628B publication Critical patent/TWI263628B/en

Links

Abstract

A layered clay material is modified by ion exchange with a lipophilic modifier and a modifier with a reactive functional group. The modified clay material is dispersed into an aqueous dispersion and mixed with monomer or prepolymer of PU, followed by polymerization to form a polyurethane/clay nanocomposite comprising the modified clay material uniformly dispersed in a polyurethane matrix. The nanocomposite thus obtained is excellent in mechanical properties, thermal stability, less hygroscopicity and can emit far-IR radiation.

Description

1263628 九、發明說明: 【發明所屬之技術領域】 、本發明係有關於一種聚氨酯/黏土奈米複合材料及其製 去’特別係有關於利用親油性,具有與聚氨醋樹脂(p〇iyurethane, HJ)具w反應性之官能基的兩種改質劑所形成之改質型黏土,以及 錢質黏土與水性聚氨g旨所形成之水性聚氨酯/黏土奈米複合材 L先前技術】 由尼龍/黏土奈米複合材料的實例中得知, 二奈米等級分散於聚合料,對此種聚合物的機械強度㈣ 的提昇、阻氣性與阻水性㈣性具有加纽善的功效 二樹脂最大生產國家’聚氨酯樹脂應用於民生〉 =ΓΓ,除了Pu泡棉之外,pu樹醋最大的應用在於p 5成皮。由於近年來台灣製造業投資環境改變,下游加 ==陸發展,使台灣較低層次之產製造業也隨之移往大; 人東南亞,使得整體銷售量大幅下降。 ' 由於生產成本增加,AA地提升經#成本, 規陸續實施’會提供業界的成本支出, 衣保Θ 產值逐漸下降。所以提昇J二树脂的 的應用性,成為當前台灣廒商首要的議題。因樹脂 樹脂做為基材,再將具有層狀結構的黏土均勻二 脂當中’形成奈米級複合材料。奈米級的 散技術,可有效地補強樹脂結構,預 1、文疋性刀 械性質與熱穩定性,㈣磨耗、阻水性 機能特性,大幅提昇其應用上的附,是極== 0424-A20508TWF(N2);02930008;U〇fu ng 1263628 目刖有機/無機奈米級複合材料未有多樣商品化量產之主 要原因,在於分散再現性的問題,而聚氨酯/黏土奈米複合材料 專利,例如 US RE30,699、US5,421,876 與 US 5,520,998,都是 使用翁離子(〇mum)烷基進行黏土改質,部份專利會搭配含官能 基矽烷化合物再進行黏土片層表面改質,主要目的都是希望層 狀黏土此均勻分散聚氨酯樹脂當中。目前pu奈米複合材料大多 數以溶劑型與熱㈣柯樹脂為主,主要著墨於改質型奈米黏土 的技術開發,添加奈米黏土於PU|脂中可以明顯地提升機械性 質與熱穩定性,並可降低透氣性以及吸水率。 ^然而,由於全球性環境保護的風氣日盛,對於工業污染日 益重視,如何減少有機溶劑使用量成為當前產業最大的課題, 因此水性卿脂的發展即是依據此—趨勢。目前水性叩奈米複 合材料因奈米黏土於水性PU榭日t卜 、 脂,製程的條件車省…“上的應用不同於溶劑型PU樹 ώ 為嚴可,且極性也與溶劑型大相逕庭,,選 =!改f嶋散條件才可能提昇水性卿脂的㈣ 專目別亚無相關專利將奈米黏土應用於水性印樹脂上。 是水:二種層狀黏土均勻分散於聚氨_旨特別 上的瓶Γ 氨酉旨/黏土奈米複合材料,以解決應用 【發明内容】 距離土,使黏墙 料目的在於提供-《氨二材 料以增加耐磨耗、阻水性 不木稷口材 與擇放遠紅外線等機能特性,並大幅 ung 0424-A20508TWF(N2);02930008;Uofi 1263628 挺幵其應用上的附加價值。 本發明之再一目的在於提供一種水性聚氨酯/黏土奈米複 合材料之製法,以形成環保之奈米複合材料並避免列管毒物 N,N-一甲基甲酸胺(dmf)之使用。 為達上述目的,本發明提供一種改質型黏土,包括:層狀黏 土材料,其插層有親油性改質劑,以及反應性改質劑’該反座 性改質劑具有-官能基可與聚氨醋樹脂反應。 %、 本發明另提供一種聚氨醋/黏土奈米複合材料,包括 醋樹脂之高分子基質。以及,改質型黏土材料’均勾分散於i 2酷樹脂之高分子基質中,該改質難土材龍層有親油性改 貝月1j以及反應性改質劑,且反應性改質劑與聚氨醋樹脂之 子基質產生鍵結。 77 ,本發明再提供-種水性聚氨醋/黏土奈米複合材料 =,包括:提供層狀黏土材料;加人反應性改質劑以及長鍵燒 基親錄改質劑於層狀黏土材料中,以共同插層該黏土材料而 :::¾型黏土 ’其中反應性改質劑具有官能基可與聚氨 月曰反應;將改質型黏土與聚醇配製成分散母液;加入二異氣酸 s曰(duS〇Cyanate)化合物於分散母液中;加熱該分散母液至聚八 溫度以進行聚合反應;待聚合反應完成後,進行降溫並加入; 和劑與水攪拌均勻;加入鏈延長劑擔拌 黏土奈米複合材料。料以传到水性聚氨醋樹脂/ 本發明更提供一種水性聚氨_土奈米複合材料之制 包括··提供層狀黏土材料;加入反應性改質劑以及長鏈= 基親純改質劑於層狀黏土材料中,以共同插層該黏土材料而 =以型黏土 ’其中反應性改質劑具有宫能基可與聚氨 月曰反應。接著,將改質型勒土分散於水令,並以直接摻混的方 0424-A20508TWF(N2);02930008;Uofung 8 1263628 親油性’經親油性改質處理後之層狀黏土其層間距離為 20-40A。適用於此處之親油性改質劑,包括具有碳數12以上之 長鏈烧基的麟鹽、氮鹽、硫鹽、以及氧鹽。 本毛明所使用之第_種改質劑為一具有與聚氨醋具反應性 之官能基的改質劑’該改質劑至少具有兩主要的官能基,經基 (-0H)以及胺基(-NH) ’其中該改質劑之經基可為i _3個。利用該 胺基(-NH)為反應點經由離子交換過程以將改質劑導入黏土斧 間進行聚合反應,過程中由於黏土片層上具有—反應性官能基 經基(-0H)作為反應點以與聚氨醋樹脂進行原位(m_s⑽聚合, 再藉由聚合時分子鏈的增長使得黏土片層能夠均勻分散至聚氨 酯樹脂。適用於此處之具有與聚氨酯具反應性之官能基的改質 劑,包括:3-胺基-:ι_丙醇3胺基^丙 二醇(3-amino-l,2-propandiol)、三羥甲基曱基胺 (triOiydroxymethyl) aminomethane,THA),以及十六烷基胺 (hexadecylamine,HA)。 本發明之兩種不同改質劑的改質包括兩種方式’一種係先 將含有兩種改質劑的混合溶液沈浸在無機層狀黏土中,經持續 一段時間授拌後,以水洗去除多餘_子,完成離子交換反應; 另一種之改質,係先加入需質子化(protonation)之反應性之官能 ,改質劑(例如:三經曱基甲基胺;THA)後㈣著加人親油性改 質劑(例如:四級胺鹽),經持續一段時間攪拌後,以水洗去除 多餘的離子,完成離子交換反應。 此外,本發明之該兩種改質劑以及層狀黏土之添加量係十 刀重要的,其中親油性改質劑/反應性官能基改質劑/層狀黏土之 莫耳比大體為2-1 : 1-0.1 : 1,而較佳之添加莫耳比為12: 〇·4 : 1。此乃因若僅使用反應性官能基改質劑,會造成黏土層間距離 0424-A20508TWF(N2);02930008;Uofung 10 1263628 未撐開而使改質劑不易進入其中反應,進而使黏土分散不易; 而若僅使用親油改質劑則會因親油性過高而不易與PU樹脂反 應,進而造成改質黏土於水性聚胺S旨樹脂中分散性不佳產生沉 澱。表一係本發明所合成出改質型黏土的性質分析。 表一改質型黏土性質分析 奈米黏土種 類 改質劑 (mole ratio) 改質劑含量 (wt%) 熱穩定性 (°C) 層間距離 (A) montmorillonite BEN/THA 25.2 200 19.1 montmorillonite HA/THA 22.3 230 17.5 mica HA/THA 29.1 230 26.7 saponite HA/THA 21.7 190 16.2 montmorillonite THA 2.5 200 14.6 請參照第2圖(a),其係顯示由XRD偵測本發明之改質後 黏土由原始之黏土層間距離12.8人左右的變化情況。請參照第2 圖(b),其係顯示僅使用反應性官能基改質劑,例如以三羥甲基 曱基胺(tri(hydroxymethyl) aminometliane,THA)作為改質劑’層 間距離由於三羥甲基甲基胺(THA)分子鏈的長度不足,因此僅增 加2.0A左右。接著請參照第2圖(c),其係顯示加入長鏈親油性 改質劑/反應性官能基改質劑之混合改質劑。例如:氯化三甲基 十八烷基胺(BEN)/三羥曱基甲基胺(THA)混合改質劑插層黏土 所得到的XRD繞射圖,由圖中可知層間距離增加5_0〜8.0人左右。 因此,本發明使用長鏈親油性改質劑/反應性官能基改質劑 之混合改質劑,加入長鏈親油性改質劑一方面能有效增加黏土 層間距離,且能增加黏土的親油性,使奈米黏土均勻分散開; 而加入反應性官能基改質劑則可利用反應性官能基羥基(-0H) 作為反應點,以於後續反應中與聚氨酯樹脂進行原位(in-sltu)聚 0424-A20508TWF(N2);02930008;Uofung 11 1263628 合’使黏土片層能夠均勻分散以有效提升黏土片層於水性印樹 脂中的分散性。 本發明藉由長鏈烷基親油性改質劑以及可與聚氨酯反應之 官能基改質劑共同插層改質之奈米黏土,可提供三項優點: 長鏈烷基親油性改質劑增加黏土層間距離,層間呈有長 鏈烧基與可反應官能基改質劑,層間距離約為2〇A左右,最^ 可達40A以利後續聚合物(單體、_)_潤,提昇分散性。 2. 與聚氨酯具反應性之官能基(_〇H)改質劑可於奈米黏土 片上產生與聚氨S旨樹脂鍵結之反應點,利用胸如的機制盘分 散製程的掌控,可於後續使黏土片層能夠均句分散至聚氨醋樹 脂當中以提昇分散性。 3. 藉由調整親油性之長鍵絲改質劑,以及親水性之可鱼 聚氨醋反應之官能基改質劑於黏土之莫耳數比,可增加勒土鱼 聚合物的相容性。 * / ' 聚氨酯/黏土奈米複合材料 本發明之聚氨酯黏土奈米複合材料係將上述經過親油性^ 及具反應性官能基改質之黏土加人溶劑t分散均勾後,再加/ 聚氨酯樹脂單體或預聚物(pre_p〇lymer)以直接換混的方式 米黏土㈣分散㈣脂#巾,並進行聚氨㈣脂單體或^料 (Pre-P〇lym⑺之聚合反應以得到聚氨§旨/黏土奈米複合材料。直 中’由於層狀黏土之親油性改質劑使層間距離略微撐開的以: 後續聚合物(單體、溶劑)的膨潤’提昇分散性;此外利 土 ^上之反應性官能基(即經基,_〇H)為反應點與聚氨醋樹脂^ ,建、…“刀政性,使黏土片層能夠均勾分散至聚氨醋樹脂 0424-A20508TWF(N2);02930008;Uofung 1263628 式之黏土添加方式製備水性聚胺酯樹脂/黏土奈米複合材料,先 將改質型奈米黏土、親水劑分散於溶劑或聚醇當中,再加入二 異氰酸自旨化合物加熱進行聚合反應,接著為使該聚合物在水中 具有親水性,因此降溫並加入一中和劑以形成於水中可解離之 水性聚氨酯樹脂,此外為使該樹脂之分子量增加因此加入水分 散授拌後加入一鏈延長劑以得水性聚胺醋樹脂乳液。 上述以聚合之黏土添加方式製備水性聚胺酯樹脂/黏土奈 米複合材料,更包括將奈米黏土以長鏈親油改質型以及反應型 改質劑改質,並將該改質黏土分散於溶劑或聚醇當中,製備奈 米黏土分散液,適當的改質型奈米黏土可以安定地分散於溶劑 (例如:丙酮)或是聚醇當中,不會有沉澱或是凝聚情況發生。 其中適用於形成水性聚胺酯樹脂之聚醇為聚醚多元醇 (Polyether Polyol)、聚酯多元醇(Polyester Polyol),而以 PTMEGCpolytetramethylene ether glycol,Mw〜2000)較佳;二異氰 酸酯化合物為4,4-甲烯基雙苯基異氰酸酯(4,4-methylene bis(phenyl isocyanate),MDI)、甲苯二異氰酸醋(tolylene diisocyanate, TDI)以及異氟爾酮二異氰酸酯(isophor-one diisocyanate,IPDI);親水基為2,2-二羥甲基烷酸,而以2,2-雙 經甲基丁酸(252-bis(hydroxymetliyl)butyric acid,DMBA)較佳, 較佳之中和劑為含有三個以上活性氫之化合物3而以三乙基胺 (triethylamine,TEA)較佳,以及較佳之鏈延長劑為1,3_丙二胺 (1,3-propanediamine,PDA),反應條件包括’聚合溫度維持在 50-70°C,反應NC〇%值降至理論值後降溫至30-60QC加入中和 劑,待水分散攪拌10-30分鐘後加入鏈延長劑即可獲得水性聚 胺酯樹脂乳液。 本發明以聚合方式製備之水性聚氨酯樹脂/黏土奈米複合 〇424-A20508TWF1(N2);02930008;susan 14 1263628 材料,係先將刖述之改質型黏土 01_10wt%與聚醇(及/或溶劑) 在50-70°C下混合約5]〇小時以配製成一分散母液,其中改質 黏土之間距將因聚醇膨潤而被撐得更開,如此可使黏土間距由 原先的14.6-60A再多增加5_2〇A,接著加入二異氰酸酯 (dllsocyanate)化合物於該分散母液中並加熱至一聚合溫度以進 行聚合反應,此外親水劑與該聚氨酯樹脂/黏土奈米複合材料進 订取代反應,以形成水性聚氨酯/黏土奈米複合材料。待該聚合 反應完成後,降溫並添加一中和劑以中和該親水基之負離子電 荷。其中,該聚合反應之完成係根據反應NC〇%降低至理論值 f準,而該中和劑之加入方式,包括:先加入中和劑以中和該 樹脂再加水使完全分散、直接加含有中和劑之水於樹脂中使中 和並元全分散,或者同時添加樹脂、水以及中和劑使中和且利 用南述授拌以使其完全分散。此外,為使該水性聚氨§旨/黏土奈 米複合材料之分子量增加,通常會再添加一鏈延長劑。 由於改質劑的選擇與奈米黏土的種類是影響水性pu奈米 複合材料聚合分散與性質表現重要的因素之一,本發明之改質 劑主要是長鏈烧基BEN與HA搭配具有可反應官能基THA所組 成BEN與HA提供奈米黏土親油性以及增加層間距離,有利 奈米黏土分散於pu樹脂當中,而THA結構上具有〇H官能基, 可Μ 一異氰於黏主片層上進行反應,利於提升奈 舞土於pu樹脂中之分散均勻性。如第3圖所示,左圖為加入 不改質之奈米黏土於水性pu _,而右圖則係本發明加人上述改 貝U 土之TEM圖,由圖中可明顯得知,經本發明之兩種改質 d所改貝之黏土可有效分散於叩樹脂當卜此外鍵段與黏 土片層產生離子鍵結,有助於機械性質與_耗的表現。“ 不同的奈米黏土種類也會影響水性pu奈米複合材料的性 0424-A20508TWF1(N2);02930008;susan 1263628 質,因此本發明提供了三種不同系列的奈米黏土,天然純化的 蒙脫土(montmorillonite) ' 雲母(mica)與息土(saponite),其中以 皂土於水性PU樹脂乳液分散性最佳,其次為蒙脫土,而人造雲 母則是會產生沉殿。其中,皂土是日本kunimine公司所生產的 高純度人造層狀土,對水的膨潤度相當地高,可以得到透明的 水分散液,與長鏈改質型黏土 SPN的極性截然不同。本發明之 較佳實施例係利用HA與THA共同改質皂土所得到的水性PU 樹脂乳液,其乳液的黏度和粒徑都與純PU乳液相差不多,所製 得乾膜的透光率僅降低1%左右,可見分散性非常良好且乳液安 定性佳。 添加奈米黏土對水性PU的熱穩定性,可由TGA分析得知, 如第4圖所示,水性PU樹脂的熱裂解溫度約於220QC左右,添加 奈米黏土或是奈米二氧化矽,開始裂解溫度幾乎沒有增加,此 一裂解大多屬於side chain與end-chain等自由鏈(free chain)段部 分,與黏土片層作用力較少,所以熱穩定性並沒有提升;反之, 主鏈部位(interactive chain)由於與黏土片層或二氧化石夕作用力 強,甚至有鍵結產生,所以裂解溫度提昇20-30°C。由TMA分析 也可以看出,因為奈米結構與PU樹脂會產生内作用力而限制PU 鏈段的蠕動,造成玻璃轉移溫度的增加,PU樹脂的尺寸安定性 也會隨之提升(第5圖)。 本發明主要是開發一種新式改質黏土,改質劑為含翁離子 (onium)長鏈烷基與含反應官能基結構化合物,利用此新式改質 型黏土與聚醇(和/或溶劑)製備聚氨酯/黏土奈米複合材料,特別 是製備水性聚氨酯/黏土奈米複合材料,其係先將該改質黏土製 備成分散母液再進行聚酯聚合反應,以形成水性聚氨酯奈米複 合材料。而此新式的改質技術結合分散母液製備技術,不但可 〇424-A20508TWF1(N2);02930008;susan 16 1263628 以加速奈米複合材料上線製程 達到環保的目的。 幅獒升刀政再現性以及 因此,本發日㈣利料氨§旨_做為 r=改姆土均勻分散在聚㈣脂當中,:= 二水性pu樹脂釋放遠紅外線、耐磨耗、阻水性和尺 其::1:!性並ί提升機械性質與熱穩定性,大幅提昇 八α 、丨付加彳貝值,疋極具競爭優勢的發明。透過本發明之 以下藉由數個實施例以更進一步說明本發明之特徵和優 ^申更可制至其他種細樹脂,強化PU樹脂產業的國際競爭 力。開發ρυ奈米複合材料,具奈米商品化指標作用,可提升我 國奈米技術產業價值。在一較佳實施例中,本發明之水性聚氨 酉曰燦土奈米複合材料之抗之強度大體為Mo.4⑻(㈣―,其耐 磨耗係數為0.5-L0重量百分比,而吸水率為15_2.細%,、 點 實例: 實施例一:水性聚氨酯/黏土奈米複合材料之製備 a先將4.51克之十六烷基胺(hexa(jecyiamine,ΗΑ)與18Μ 之1.58耄升的濃鹽酸於100毫升之水中,於室溫下攪拌24小時 進心貝子化。再將G.75克之二每曱基曱基胺(ir;(hydr0Xymethyl) ammomethane,THA)與18M之0·53毫升的濃鹽酸於5〇毫升之 水中,於室)盈下攪拌24小時進行質子化。將2Q克之奈米黏土 (CL42)加入2000毫升之水中使該黏土膨潤於水中並於7〇度下 攪拌均勻,加入18Μ之濃鹽酸5毫升以將溶液之酸鹼值調整為 4(ρΗ==4)。將上述已質子化之兩種改質劑ΗΑ/ΊΉΑ緩慢滴入上述 之黏土水溶液中並於70°C下反應6小時,接著過濾並以熱水洗 0424-A20508TWF1 (N2);02930008;susan 17 1263628 滌3次以洗去未反應之多餘的改質劑,再置於高真空之7〇 箱中烘乾72小時,並打粉以得到改質完成之奈米黏土粉末。 接著將改質完成之奈米黏土 3.581克可加人聚_ PTMEG(polytetrametliylene ether glycol,Mw〜2000)120 克中 半 以分散於其中,接著加入 2,2-二羥曱基τ △ ^ J 酉蔓 (2,2_bis(hydroxymethyl)butyric acid,DMBA)9.485 克作為親次卞 以及加入以44.768克之丙酮為溶劑之雙十二酸基二丁基錫 (Τ-12)0·269克作為觸媒並於55度下攪拌均勻,接著升溫至6〇 C後加入49.586克之異氟爾1¾二異氰酸酉旨(isophor-one diisocyanate,IPDI)進行聚合反應2小時,再降溫至45°C並加入 6.473克之三乙基胺(triethylamine,TEA)作為中和劑擾拌1〇分鐘 後降至室溫’再加入270.590克的水以100Ormp南速擾摔1 〇分 鐘以使預聚物均勻分散,然後加入以6.902克之水為溶劑之1,3-丙二胺(l,3-propanediamine,P DA) 3 ·451克作為鏈延長劑並擾拌 10分鐘以得到水性聚氨酯/黏土奈米複合材料。 利用 Horiba LB-500 dynamic light scattering 粒徑分析儀在 水分散的條件下量測粒徑的大小;利用Shimadzu UV-3 101PC於 600nm與500nm的波長下,以空氣作為背景,量測穿透百分比 以顯示透光率;利用Hung Ta HT2010萬能拉力機檢測有關機械 性質(抗張強度、模數與延展性)。硬度是利用Shore A type硬度 測試計GS709N所量測;利用TA Instruments 2950型熱重分析 儀(TGA)檢測熱穩定性與重量隨溫度變化的情形,其分析條件係 於氮氣下,由30QC升溫至90(TC,升溫速率為10QC/min。在此 實施例中得到的結果列於表二(樣品1 )。 實施例二:水性聚氨酯/黏土奈米複合材料之製備 0424-A20508TWF1(N2);02930008;susan 18 1263628 本實施例除了黏土改為雲母(CL31)外,其餘製程與量測程 序均與實施例一相同。在此實施例中得到的結果列於表二(樣 品2 )。 實施例三:水性聚氨酯/黏土奈米複合材料之製備 本實施例除了黏土改為皂土外,其餘製程與量測程序均與 實施例一相同。在此實施例中得到的結果列於表二(樣品3 )。 實施例四:水性聚氨酯/黏土奈米複合材料之製備 本實施例除了將改質劑十六烧基胺(hexadecylamine,HA) 改為氯化三甲基十八烧基胺 (trimethylstearylammonium chloride,BEN)外,其餘製程與量測程序均與實施例一相同。在 此實施例中得到的結果列於表二(樣品4)。 實施例五:水性聚氨酯/黏土奈米複合材料之製備 本實施例除了僅使用改質劑三羥甲基甲基胺 (tri(hyd:roxymeiliyl)aminomet]iane,THA)外,其餘製程與量測程 序均與實施例一相同。在此實施例中得到的結果列於表三(樣 品5 )。 此外,請參照表三、四、五,其中表四是本發明之一系列 改質型奈米黏土所合成出的水性PU奈米複合材料性質整理。 THA改質型奈米黏土層間沒有親油性改質劑,分散至PTMEG 中會有沉殿情況產生’機械性質沒有明顯改善[弟6圖(a)與 (b)]。比較BEN與HA的改質型奈米黏土,HA分散性明顯較 BEN好,所以機械性質提升較為顯著,這是由於HA結構上具 有NH group可以參與PU聚合反應形成urea的結構。 0424-A20508TWF1(N2);02930008;〇usan 19 1263628 表二、水性pu奈米樹脂機械物性分析 樣品編號 一 1 2 3 4 5 改質劑 _ HA/THA HA/THA HA/THA BEN/THA THA 奈米黏土(wt%) — mont(2) mica(2) saponite(2) mont(2) mont(2) 黏度(cps) 30 17.5 24 34 112.5 10 粒徑(nm) 64 89 53 48 46 166 抗張強度(Kg/cm2) 290 315 365 290 320 301 100% 模數(Kg/cm2) 40 45 45 55 50 51 延展性(%) 530 540 550 475 510 484 熱穩定性(°C) 215 220 n.a. n.a. 220 n.a. 硬度 85 84 82 88 87 「84 透光率(600nm,%) 78 58 51 76 58 60 表三則係利用Abraser 503荷重lkg,2000轉比較前後重量損 失可以用來分析水性PU樹脂乾膜耐磨耗程度,其中經改質之複 合材料磨耗量都有顯著地降低,可能是因為lucentite結構較軟有 關。至於吸水率方面,由於黏土層狀結構可以增加水分子於PU 樹脂結構中移動路徑,可有效地阻隔水氣擴散進而降低吸水率 (表三),吸水率的降低可以減緩PU樹脂水解的情況。目前PU樹 脂最大宗的應用在於合成皮,產品大多為鞋材、皮衣、沙發與 汽車内裝,耐磨性與耐水解性的提升對這些產品應用具有相當 大的優勢,產品的使用時限也可大幅延長。 0424-A20508TWF1(N2);02930008;susan 20 1263628 表三、PU奈米樹脂之耐磨性與吸水性分析 樣品編號 — 1 4 填充料(Wt%) — HA/THA/mont(2) BEN/THA/mont(2) 膜重(磨耗前g) 18.7045 18.9944 17.4529 膜重(磨耗後g) 18.4931 18.8328 17.267 損失重量(g) 0.2115 0.1616 0.1859 損失重量(%) 1.15 0.85 1.07 膜重(PCT前g) 0.7935 1.384 1.0969 膜重(PCT後g) 0.813 1.4168 1.1185 另外,由表四可以看出,本發明添加奈米黏土所釋放之遠 紅外的放射率較其他種類矽礦高,將其應用於PU樹脂中可以賦 予保健與保溫機能性,並可提升PU樹脂附加價值提升表面溫度 上升幅度,在保溫與保健的應用上有顯著的功效。其中,遠紅 外線測試是由Thermo vision檢測,500W鹵素燈距離樣品100cm 照射lOmins,偵測表面溫度變化。 表四、PU奈米樹脂之遠紅外線分析 樣品編號 — 1 填充料(wt%) — HA/THA/mont(2) 起始溫度(°c) 18.6 18.7 鹵素燈照射後(°c) 24.8 25。2 表面溫度上升(°c) 6.2 6.5 綜上資料顯示,本發明之水性聚氨酯/黏土奈米複合材料之 各種機械性質、熱穩定性、耐磨耗、阻水性與釋放遠紅外光等 機能特性皆較一般聚氨酯樹脂具有顯著之提升與改良’其中該 較佳之抗之強度可增至365(Kg/cm2)、耐磨耗係數可降至〇·85 0424-A20508TWF(N2);02930008;Uofung 21 Ϊ263628 重$百分比、吸水率更可降至l_97wt%。 ^二;、本^明已以數個較佳實施例揭露如上,終其並非用以 圍疋本,明’任何熟習此技藝者,在不脫離本發明之精神和範 , 田可作些5午之更動與潤飾,因此本發明之保護範圍當視 後附之申請專利範圍所界定者為準。 0424-A20508TWF(N2);02930008;Uofung 22 1263628 【圖式簡單說明】 第1圖係顯示本發明之反應官能基改質型黏土的聚合過程 示意圖。 第2圖(a)係顯示由原始之黏土層間距離之XRD偵測圖。 第2圖(b)係顯示僅使用反應性官能基改質劑之層間距離的 XRD偵測圖。 第2圖(c)顯示本發明經長鏈親油性改質劑/反應性官能基改 質劑之混合改質劑改質後之黏土間距離的XRD偵測圖。 第3圖係顯示本發明加入改質型黏土與習知未改質之奈米 黏土之TEM圖。 第4圖)顯示本發明之水性PU奈米複合材料熱穩定性分析圖 (TGA)。 第5圖顯示本發明之水性PU奈米複合材料尺寸安定性分析 圖(TMA)。 第6圖顯示本發明之水性PU奈米複合材料分散性分析圖 (XRD)。 【主要元件符號說明】 無0 0424-A20508TWF(N2);02930008;Uofurtg 231263628 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a polyurethane/clay nano composite material and its preparation for the special use of lipophilicity, and with polyurethane resin (p〇iyurethane) , HJ) modified clay formed by two modifiers with w-reactive functional groups, and aqueous polyurethane/clay nanocomposite L formed by the use of moneyy clay and aqueous polyurethane In the example of the nylon/clay nano composite, it is known that the two nanometer grade is dispersed in the polymer material, and the mechanical strength (4) of the polymer is improved, the gas barrier property and the water resistance (four) property have the effect of the addition of the resin. The largest production country 'polyurethane resin for the people's livelihood> = ΓΓ, in addition to Pu foam, the biggest application of pu tree vinegar is p 5 into the skin. Due to the change in the investment environment of Taiwan's manufacturing industry in recent years, the downstream plus == land development has caused Taiwan's lower-level manufacturing industry to move to the larger; the Southeast Asia has caused the overall sales volume to drop sharply. Due to the increase in production costs, the cost of the AA will be increased, and the implementation of the regulations will provide the industry's cost, and the production value of clothing will gradually decline. Therefore, improving the applicability of J II resin has become the top issue of Taiwanese merchants. The resin is used as a substrate, and the layered structure of the clay is uniformly made into a nano-composite. The nano-level dispersion technology can effectively reinforce the resin structure, pre-1, the mechanical properties and thermal stability of the tool, and (4) the wear and water-resistance characteristics, which greatly enhance the applicability of the application. It is extremely == 0424- A20508TWF(N2);02930008;U〇fu ng 1263628 The main reason for the lack of commercialized mass production of organic/inorganic nanocomposites is the problem of dispersion reproducibility, while the polyurethane/clay nanocomposite patent, For example, US RE30, 699, US 5, 421, 876 and US 5, 520, 998, both use the 〇mum alkyl group for clay modification, and some patents will be combined with functional decane compounds to modify the surface of the clay sheet. The main purpose is to hope that the layered clay is uniformly dispersed in the polyurethane resin. At present, most of pu nanocomposites are solvent-based and thermal (tetra) ke resin, mainly in the development of modified nano-clay technology. Adding nano-clay in PU|fat can significantly improve mechanical properties and thermal stability. Sex, and can reduce the permeability and water absorption. However, due to the growing global environmental protection trend, it is becoming more and more important for industrial pollution. How to reduce the amount of organic solvent used has become the biggest issue in the industry. Therefore, the development of water-based resin is based on this trend. At present, the water-based glutinous nano-composite material is inferior to the solvent-based PU tree 因 in the water-based PU 榭 t 、 、 、 、 、 、 、 、 , , , , , , , , , , , , , , , , , , , , , , , , select =! Change the condition of f 才 才 才 才 才 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈In particular, the bottle Γ ammonia / / clay nano composite material to solve the application [invention content] Distance soil, so that the purpose of the wall material is to provide - "Ammonia two materials to increase wear resistance, water resistance not 稷 稷And the function of selecting far-infrared rays and the like, and large ung 0424-A20508TWF (N2); 0230008; Uofi 1263628 is quite added value in its application. A further object of the present invention is to provide an aqueous polyurethane/clay nano composite material. Method for forming an environmentally friendly nanocomposite and avoiding the use of the toxic N,N-methylformate (dmf). To achieve the above object, the present invention provides a modified clay comprising: a layered clay material , The intercalation layer has a lipophilic modifier, and the reactive modifier has a functional group capable of reacting with the polyurethane resin. The invention further provides a polyurethane/clay nano composite. The material, including the polymer matrix of the vinegar resin, and the modified clay material are all dispersed in the polymer matrix of the i 2 cool resin, and the modified hard soil layer has a lipophilic property and a reactivity. a modifier, and the reactive modifier is bonded to a sub-matrix of the polyurethane resin. 77. The invention further provides an aqueous polyurethane/clay nano composite material, comprising: providing a layered clay material; A human reactive modifier and a long-bonding base-based modifier are used in a layered clay material to intercalate the clay material together:::3⁄4 type clay' wherein the reactive modifier has a functional group and a poly Ammonia ruthenium reaction; the modified clay and the polyol are formulated into a dispersion mother liquor; a diisohydrous acid s曰 (duS〇Cyanate) compound is added to the dispersion mother liquor; the dispersion mother liquor is heated to a poly-eight temperature to carry out a polymerization reaction; After the polymerization reaction is completed, the temperature is lowered and added. The agent and the water are evenly stirred; the chain extender is added to the clay nano composite material, and the material is transferred to the aqueous polyurethane resin. The invention further provides an aqueous polyurethane-toner composite material including: Providing a layered clay material; adding a reactive modifier and a long chain = radically modifying agent in the layered clay material to intercalate the clay material together = type clay] wherein the reactive modifier has a palace The energy base can be reacted with the polyammonium. Then, the modified soil is dispersed in the water, and the directly blended square 0424-A20508TWF(N2); 029300000; Uofung 8 1263628 lipophilic 'lipophilic quality The treated layered clay has a layer-to-layer distance of 20-40A. A lipophilic modifier suitable for use herein includes a sulfonate, a nitrogen salt, a sulfur salt, and an oxygen salt having a long chain alkyl group having a carbon number of 12 or more. The first modification agent used in the present invention is a modifier having a functional group reactive with polyurethane. The modifier has at least two main functional groups, a trans-base (-0H) and an amine. The base (-NH) ' wherein the modifier has a basis group of i _3. The amine group (-NH) is used as a reaction point to carry out polymerization reaction by introducing an modifier into a clay axe through an ion exchange process, in which a reactive functional group via a base (-0H) is used as a reaction point on the clay sheet layer. In-situ (m_s(10) polymerization with polyurethane resin, and the molecular layer of the polymer can be uniformly dispersed to the polyurethane resin by the growth of the molecular chain during polymerization. It is suitable for the modification of the functional group reactive with polyurethane here. Agents, including: 3-amino-: i-propanol, 3-amino-l, 2-propandiol, triOiydroxymethyl aminomethane, THA, and hexadecane Hexadecylamine (HA). The modification of the two different modifiers of the present invention includes two ways: one is to first immerse the mixed solution containing the two modifiers in the inorganic layered clay, and after mixing for a period of time, wash with water to remove excess _ sub, complete the ion exchange reaction; the other is modified, first to add the protonation of the reactive function, modifier (for example: tri-methylmethylamine; THA) (four) with people A lipophilic modifier (for example, a quaternary amine salt) is stirred for a period of time and then washed with water to remove excess ions to complete the ion exchange reaction. In addition, the addition amount of the two modifiers and the layered clay of the present invention is important, wherein the molar ratio of the lipophilic modifier/reactive functional modifier/layered clay is generally 2- 1 : 1-0.1 : 1, and it is preferable to add a molar ratio of 12: 〇·4: 1. This is because if only the reactive functional group modifier is used, the distance between the clay layers will be 0424-A20508TWF(N2); 029300000; Uofung 10 1263628 is not opened, so that the modifier does not easily enter the reaction, and the clay is not easily dispersed; However, if only the lipophilic modifier is used, the lipophilicity is too high to react with the PU resin, and the modified clay is precipitated in the aqueous polyamine S resin with poor dispersibility. Table 1 shows the analysis of the properties of the modified clay synthesized by the present invention. Table 1 Properties of modified clays Analysis of nano-clay type modifiers Modifier content (wt%) Thermal stability (°C) Inter-layer distance (A) montmorillonite BEN/THA 25.2 200 19.1 montmorillonite HA/THA 22.3 230 17.5 mica HA/THA 29.1 230 26.7 saponite HA/THA 21.7 190 16.2 montmorillonite THA 2.5 200 14.6 Please refer to Fig. 2(a), which shows that the modified clay of the present invention is detected by XRD from the original clay layer. The change is about 12.8 people. Please refer to Fig. 2(b), which shows that only reactive functional modifiers, such as tri(hydroxymethyl) aminometliane (THA), are used as modifiers. The length of the methylmethylamine (THA) molecular chain is insufficient, so it is only increased by about 2.0A. Next, please refer to Fig. 2(c), which shows a mixed modifier in which a long-chain lipophilic modifier/reactive functional modifier is added. For example: XRD diffraction pattern obtained by intercalating clay with trimethyloctadecylamine (BEN)/trihydroxymethylmethylamine (THA) mixed modifier, the distance between layers is increased by 5_0~ About 8.0 people. Therefore, the present invention uses a long-chain lipophilic modifier/reactive functional modifier as a mixed modifier, and the addition of a long-chain lipophilic modifier can effectively increase the distance between clay layers and increase the lipophilicity of the clay. To uniformly disperse the nano-clay; and to add a reactive functional modifier, the reactive functional hydroxyl group (-0H) can be used as a reaction point for in-sltu with the polyurethane resin in the subsequent reaction. Poly 0424-A20508TWF(N2);02930008; Uofung 11 1263628 combines 'the clay sheet layer can be evenly dispersed to effectively improve the dispersion of the clay sheet in the aqueous printing resin. The invention provides three advantages by intercalating the modified nano-clay with a long-chain alkyl lipophilic modifier and a functional group modifier reactive with polyurethane: The long-chain alkyl lipophilic modifier is increased. The distance between the clay layers is such that there are long-chain alkyl groups and reactive functional group modifiers between the layers. The interlayer distance is about 2〇A, and the most ^40A can be used to facilitate the subsequent polymer (monomer, _)_Run, enhance dispersion. Sex. 2. The functional group (_〇H) modifier reactive with polyurethane can produce a reaction point with the polyurethane resin on the nano-clay sheet, and the control of the dispersion process can be controlled by the mechanism of the chest. Subsequently, the clay sheets can be uniformly dispersed into the polyurethane resin to enhance the dispersibility. 3. By adjusting the lipophilic long-chain silk modifier, and the hydrophilicity of the fish-polyurethane reaction-based functional modifier in the clay molar ratio, the compatibility of the Le-fish polymer can be increased. . * / 'Polyurethane/Clay Nanocomposite The polyurethane clay nanocomposite of the present invention is obtained by dispersing the above-mentioned oleophilic and reactive functional group-modified clay with human solvent t, and then adding / polyurethane resin Monomer or prepolymer (pre_p〇lymer) in a direct-mixing manner, the rice clay (4) disperses (four) grease #, and carries out the polymerization of poly-(tetra) lipid monomer or material (Pre-P〇lym (7) to obtain polyamine § / clay nanocomposite. Straight in the 'layer of clay's lipophilic modifier to make the distance between the layers slightly open: the subsequent polymer (monomer, solvent) swelling 'to enhance the dispersion; ^Reactive functional group (ie, via group, _〇H) is the reaction point and polyurethane resin, construction, ... "knife-polished, so that the clay layer can be evenly dispersed to the polyurethane resin 0424-A20508TWF (N2);02930008; Uofung 1263628 type clay addition method to prepare aqueous polyurethane resin/clay nano composite material, firstly disperse modified nano-clay, hydrophilic agent in solvent or polyalcohol, then add diisocyanate The compound is heated to carry out the polymerization reaction, followed by The polymer is made hydrophilic in water, so the temperature is lowered and a neutralizing agent is added to form an aqueous polyurethane resin which is dissociable in water. In addition, in order to increase the molecular weight of the resin, water is added to the dispersion to add a chain extender. Aqueous polyurethane foam emulsion. The above-mentioned aqueous polyurethane resin/clay nano composite is prepared by adding clay, and the nano-clay is modified by long-chain lipophilic modification and reactive modifier. Dispersing the modified clay in a solvent or a polyalcohol to prepare a nano-clay dispersion, and the appropriate modified nano-clay can be stably dispersed in a solvent (for example, acetone) or a polyalcohol without precipitation or It is a coacervation situation. The polyalcohol suitable for forming the aqueous polyurethane resin is Polyether Polyol, Polyester Polyol, and PTMEGCpolytetramethylene ether glycol, Mw~2000); diisocyanate compound 4,4-methylene bis(phenyl isocyanate, MDI), toluene diisocyanate (tolylen) e diisocyanate, TDI) and isophor-one diisocyanate (IPDI); the hydrophilic group is 2,2-dimethylol alkanoic acid, and 2,2-bis-methylbutyric acid (252- Bis(hydroxymetliyl)butyric acid, DMBA) is preferably a preferred neutralizing agent which is a compound 3 containing three or more active hydrogens, preferably triethylamine (TEA), and preferably a chain extender of 1, 3_propylenediamine (1,3-propanediamine, PDA), the reaction conditions include 'the polymerization temperature is maintained at 50-70 ° C, the reaction NC〇% value drops to the theoretical value, then the temperature is lowered to 30-60QC to add the neutralizer, wait After the water is dispersed and stirred for 10 to 30 minutes, an aqueous chain extender is added to obtain an aqueous polyurethane resin emulsion. The invention relates to an aqueous polyurethane resin/clay nano composite 〇424-A20508TWF1(N2);02930008;susan 14 1263628 material prepared by a polymerization method, which firstly describes the modified clay 01_10wt% and polyalcohol (and/or solvent) Mixing at 50-70 ° C for about 5] 〇 hours to prepare a dispersion mother liquor, in which the distance between the modified clays will be expanded by the swelling of the polyol, so that the clay spacing is from the original 14.6- 60A further increases 5_2〇A, and then a diisocyanate compound is added to the dispersion mother liquid and heated to a polymerization temperature to carry out polymerization reaction, and further, the hydrophilic agent and the polyurethane resin/clay nano composite are subjected to a substitution reaction. To form an aqueous polyurethane/clay nanocomposite. After the completion of the polymerization, the temperature was lowered and a neutralizing agent was added to neutralize the negative ion charge of the hydrophilic group. Wherein, the completion of the polymerization is reduced according to the reaction NC〇% to the theoretical value f, and the manner of adding the neutralizing agent comprises: first adding a neutralizing agent to neutralize the resin and then adding water to completely disperse and directly add the content. The neutralizer water is neutralized and completely dispersed in the resin, or simultaneously added with a resin, water, and a neutralizing agent to neutralize and be mixed with the south to completely disperse it. Further, in order to increase the molecular weight of the aqueous polyurethane/clay nano composite, a chain extender is usually added. Since the choice of modifier and the type of nanoclay are one of the important factors affecting the polymerization dispersion and properties of the aqueous pu nanocomposite, the modifier of the present invention is mainly composed of long-chain alkyl BEN and HA. The functional group THA composed of BEN and HA provides the lipophilicity of nano-clay and increases the interlayer distance. The beneficial nano-clay is dispersed in the pu resin, while the THA structure has a 〇H-functional group, which can be used to coat an isocyanate on the main layer. The reaction is carried out to improve the dispersion uniformity of the navel soil in the pu resin. As shown in Fig. 3, the left picture shows the addition of unmodified nano-clay to the water-based pu _, and the right picture shows the TEM image of the above-mentioned modified U-shaped soil, which is clearly known from the figure. The two kinds of modified d-modified clays can be effectively dispersed in the resin, and the bond segments and the clay sheets are ionic-bonded, which contributes to the mechanical properties and the performance of the consumption. "Different nano-clay species also affect the properties of aqueous pu nano composites 0424-A20508TWF1 (N2); 029.3008; Susan 1263628, so the present invention provides three different series of nano-clay, naturally purified montmorillonite (montmorillonite) 'mica and saponite, in which the miscibility of bentonite in aqueous PU resin emulsion is the best, followed by montmorillonite, and artificial mica will produce sinking. Among them, bentonite is The high-purity artificial layered soil produced by Kunimine Corporation of Japan has a relatively high degree of swelling to water, and a transparent aqueous dispersion can be obtained, which is quite different from the polarity of the long-chain modified clay SPN. Preferred Embodiments of the Invention The water-based PU resin emulsion obtained by modifying the bentonite with HA and THA, the viscosity and particle size of the emulsion are similar to those of the pure PU emulsion, and the transmittance of the dry film is only reduced by about 1%. The properties are very good and the emulsion stability is good. The thermal stability of the added nano-clay to the aqueous PU can be obtained by TGA analysis. As shown in Fig. 4, the thermal cracking temperature of the aqueous PU resin is about 220QC, added. Nano-clay or nano-cerium oxide, the cracking temperature is almost no increase. This cracking is mostly part of the free chain segment such as side chain and end-chain, and it has less force with the clay layer, so it is hot. The stability is not improved; on the contrary, the active chain is stronger than the clay layer or the dioxide dioxide, and even the bond is generated, so the cracking temperature is increased by 20-30 ° C. It can also be analyzed by TMA. It can be seen that since the nanostructure and the PU resin generate internal forces to restrict the peristalsis of the PU segment, resulting in an increase in the glass transition temperature, the dimensional stability of the PU resin is also increased (Fig. 5). It is the development of a new type of modified clay. The modifier is a long-chain alkyl group with onion and a compound containing reactive functional groups. The new modified clay and polyalcohol (and/or solvent) are used to prepare polyurethane/clay. Nano composite materials, especially for preparing waterborne polyurethane/clay nano composite materials, which are prepared by preparing the modified clay into a dispersion mother liquid and then performing polyester polymerization to form waterborne polyurethane Rice composite material. This new type of modification technology combined with the dispersion mother liquor preparation technology, not only can be 〇424-A20508TWF1 (N2); 029300000; Susan 16 1263628 to accelerate the on-line process of nano composite materials to achieve environmental protection purposes. Reproducibility and, therefore, the date of the fourth day (4) the ammonia § _ as r = modified soil uniformly dispersed in the poly (tetra) grease, : = two aqueous pu resin release far infrared, wear resistance, water resistance and ruler: :1:! Sexuality and ί improve the mechanical properties and thermal stability, greatly enhance the eight alpha, pay and increase the value of the shellfish, and the invention with a competitive advantage. The present invention will be further exemplified by several embodiments to further clarify the characteristics and advantages of the present invention to other fine resins, and to strengthen the international competitiveness of the PU resin industry. The development of ρυ nano composite materials, with the role of nano-commercial indicators, can enhance the value of China's nanotechnology industry. In a preferred embodiment, the water-resistant polyaluminum stellite composite material of the present invention has a resistance of substantially Mo.4(8)((4)-, and its wear resistance coefficient is 0.5-L0 weight percentage, and water absorption rate 15_2.fine %, point example: Example 1: Preparation of waterborne polyurethane/clay nano composites a. First, 4.51 grams of hexadecylamine (hexa (jecyiamine, ΗΑ) and 18 Μ of 1.58 liters of concentrated hydrochloric acid Stir in the water of 100 ml at room temperature for 24 hours, then add G.75 g of each hydrazinylamine (ir; (hydr0Xymethyl) ammomethane, THA) to a concentration of 0.53 ml of 18 M. Hydrochloric acid was dissolved in 5 ml of water and stirred for 24 hours in a chamber. The 2Q g of nano-clay (CL42) was added to 2000 ml of water to swell the clay in water and stir at 7 Torr. 5 ml of concentrated hydrochloric acid of 18 以 to adjust the pH value of the solution to 4 (ρ Η == 4). The above-mentioned protonated two modifiers ΗΑ / ΊΉΑ are slowly dropped into the above aqueous clay solution at 70 ° C The next reaction was carried out for 6 hours, followed by filtration and washing with hot water 0424-A20508TWF1 (N2); 0293008; susan 1 7 1263628 3 times to wash away the unreacted excess modifier, then dry in a high-pressure 7-inch box for 72 hours, and powder to obtain the modified nano-clay powder. Then the modification is completed. The nano-clay 3.581 g can be added to the poly-PTMEG (polytetrametliylene ether glycol, Mw~2000) 120 g of the middle half to disperse in it, followed by the addition of 2,2-dihydroxyindenyl τ △ ^ J 酉 ( (2, 2_bis (hydroxymethyl)butyric acid, DMBA) 9.485 g as a parent and a solution of 44.768 g of acetone as a solvent of dibutyltin dibutyltin (Τ-12) 0·269 g as a catalyst and stirred at 55 ° C, After heating to 6 ° C, 49.586 g of isophor-one diisocyanate (IPDI) was added for polymerization for 2 hours, then cooled to 45 ° C and 6.473 g of triethylamine (triethylamine) was added. , TEA) was stirred as a neutralizer for 1 minute and then cooled to room temperature. Then add 270.590 grams of water and spoiled at 100 °mp south for 1 minute to uniformly disperse the prepolymer, then add 6.902 grams of water as solvent. 1,3-propanediamine (P DA) 3 · 451 g A chain extender and scrambling stirred for 10 minutes to obtain an aqueous polyurethane / clay nanocomposites. The particle size was measured under a water dispersion condition using a Horiba LB-500 dynamic light scattering particle size analyzer; the penetration percentage was measured using Shimadzu UV-3 101PC at a wavelength of 600 nm and 500 nm with air as the background. The transmittance was shown; the mechanical properties (tensile strength, modulus and ductility) were examined using a Hung Ta HT2010 universal tensile machine. The hardness was measured by Shore A type hardness tester GS709N; the thermal stability and weight change with temperature were measured by TA Instruments Model 2950 Thermogravimetric Analyzer (TGA), and the analysis conditions were under nitrogen, and the temperature was raised from 30QC. 90 (TC, heating rate is 10 QC/min. The results obtained in this example are listed in Table 2 (Sample 1). Example 2: Preparation of aqueous polyurethane/clay nanocomposite 0424-A20508TWF1(N2);02930008 ;susan 18 1263628 In this example, except for the clay changed to mica (CL31), the other processes and measurement procedures are the same as in the first embodiment. The results obtained in this example are listed in Table 2 (sample 2). : Preparation of Waterborne Polyurethane/Clay Nano Composites In this example, except that the clay was changed to bentonite, the other processes and measurement procedures were the same as in Example 1. The results obtained in this example are shown in Table 2 (Sample 3) Example 4: Preparation of Waterborne Polyurethane/Clay Nanocomposite In this example, the modification agent hexadecylamine (HA) was changed to trimethyl octadecylamine (trimethyl). Except for stearylammonium chloride, BEN), the other processes and measurement procedures are the same as in Example 1. The results obtained in this example are shown in Table 2 (Sample 4). Example 5: Waterborne Polyurethane/Clay Nano Composites Preparation of this example except that only the modifier tri(hyd:roxymeiliyl)aminomet]iane (THA) was used, and the other processes and measurement procedures were the same as in the first embodiment. In this embodiment The results obtained are shown in Table 3 (Sample 5). In addition, please refer to Tables 3, 4 and 5, wherein Table 4 is the finishing of the aqueous PU nanocomposite synthesized by a series of modified nano-clay of the present invention. There is no lipophilic modifier between the THA modified nano-clay layers, and there will be no obvious improvement in mechanical properties when dispersed in PTMEG [Dia 6 (a) and (b)]. Comparing BEN and HA In the modified nano-clay, HA dispersibility is obviously better than that of BEN, so the mechanical properties are more obvious, which is due to the structure of the HA structure which can participate in the PU polymerization to form urea. 0424-A20508TWF1(N2);02930008; 〇usan 19 1263628 Second, waterborne pu nano resin mechanical properties analysis sample number one 1 2 3 4 5 modifier _ HA / THA HA / THA HA / THA BEN / THA THA nano clay (wt%) - mont (2) mica (2 Saponite(2) mont(2) mont(2) Viscosity (cps) 30 17.5 24 34 112.5 10 Particle size (nm) 64 89 53 48 46 166 Tensile strength (Kg/cm2) 290 315 365 290 320 301 100% Modulus (Kg/cm2) 40 45 45 55 50 51 Ductility (%) 530 540 550 475 510 484 Thermal stability (°C) 215 220 nana 220 na Hardness 85 84 82 88 87 "84 Transmittance (600nm, %) 78 58 51 76 58 60 Table 3 uses the Abraser 503 load lkg, and the weight loss before and after 2000 rpm can be used to analyze the dry film wear resistance of the aqueous PU resin, and the modified composite wear amount is significant. The ground reduction is probably due to the softer lucentite structure. As for the water absorption rate, since the clay layered structure can increase the movement path of water molecules in the PU resin structure, the water vapor diffusion can be effectively blocked and the water absorption rate can be lowered (Table 3), and the decrease of the water absorption rate can slow down the hydrolysis of the PU resin. At present, the largest application of PU resin is synthetic leather. Most of the products are shoe materials, leather garments, sofas and automobile interiors. The improvement of wear resistance and hydrolysis resistance has considerable advantages for these products, and the product life time can also be used. Significantly extended. 0424-A20508TWF1(N2);02930008;susan 20 1263628 Table 3. Abrasion Resistance and Water Absorption of PU Nano Resin Sample No. — 1 4 Filler (Wt%) — HA/THA/mont(2) BEN/THA /mont(2) Membrane weight (g before abrasion) 18.7045 18.9944 17.4529 Membrane weight (g after abrasion) 18.4931 18.8328 17.267 Loss weight (g) 0.2115 0.1616 0.1859 Loss weight (%) 1.15 0.85 1.07 Membrane weight (PCT preg) 0.7935 1.384 1.0969 Membrane weight (post-PCT g) 0.813 1.4168 1.1185 In addition, as can be seen from Table 4, the far-infrared emissivity released by the addition of nano-clay of the present invention is higher than that of other types of antimony ore, and its application to PU resin can be imparted. Health and insulation performance, and can increase the added value of PU resin to increase the surface temperature rise, and has significant effects in the application of heat preservation and health care. Among them, the far-red outside line test is detected by Thermo vision, and the 500W halogen lamp is irradiated for 10 minutes from the sample 100cm to detect the surface temperature change. Table 4, Far Infrared Analysis of PU Nano Resin Sample No. — 1 Filler (wt%) — HA/THA/mont(2) Starting Temperature (°c) 18.6 18.7 After halogen lamp irradiation (°c) 24.8 25. 2 Surface temperature rise (°c) 6.2 6.5 In summary, the waterborne polyurethane/clay nanocomposites of the present invention have various mechanical properties, thermal stability, wear resistance, water resistance and release of far-infrared light. Compared with general polyurethane resin, it has significant improvement and improvement. The strength of the better resistance can be increased to 365 (Kg/cm2), and the wear resistance coefficient can be reduced to 8585 0424-A20508TWF(N2); 029300000; Uofung 21 Ϊ263628 Weight %, water absorption can be reduced to l_97wt%. ^二;, 本明 has been disclosed above in several preferred embodiments, and it is not intended to be used as a shackle. Anyone who is familiar with the art can make some 5 noon without departing from the spirit and scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims. 0424-A20508TWF(N2);02930008; Uofung 22 1263628 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the polymerization process of the reactive functional group-modified clay of the present invention. Figure 2 (a) shows an XRD pattern of the distance between the original clay layers. Fig. 2(b) shows an XRD pattern of the interlayer distance using only the reactive functional group modifier. Fig. 2(c) is a view showing the XRD pattern of the inter-clay distance after the modification of the mixed modifier of the long-chain lipophilic modifier/reactive functional modifier of the present invention. Figure 3 is a TEM image showing the addition of a modified clay of the present invention to a conventional unmodified nanoclay. Fig. 4) shows the thermal stability analysis chart (TGA) of the aqueous PU nanocomposite of the present invention. Fig. 5 is a graph showing the dimensional stability analysis (TMA) of the aqueous PU nanocomposite of the present invention. Fig. 6 is a graph showing the dispersion analysis (XRD) of the aqueous PU nanocomposite of the present invention. [Main component symbol description] No 0 0424-A20508TWF(N2);02930008; Uofurtg 23

Claims (1)

1263618^131801 號申清專利範圍修正本 修正日期45.4.4 十、申請專利範圍: 1. 一種改質型黏土,包括.· 層狀黏土材料’其插層有一親油性改質劑,以及一反應 性改質劑’該反應性改質劑且右一处 貝片h、有吕月匕基可與聚氨酯樹脂反應; 該親油性改#劑具有碳數Ihx上之長鏈絲,且係擇自下 列所組成之族H正離子、氮正離子、硫正離子,以及氧正 離子; 該反應性改質劑係一具有經基(-OH)以及胺基(_NH)之化合 物; 該親油性改質劑/該反應性改質劑/該黏土材料之加入莫耳 數比大體為2-1:1-0.1:1。 2.如申清專利範圍第丨項所述之改質型黏土,其中該改質 型黏土之黏土層間距離為14.6-60A。 3·如申请專利範圍帛}項所述之改質型黏土,其中該層狀 黏土材料之插層改質處理的陽離子交換當量為 50-200meq/l〇〇g 〇 4. 如申請專利範圍第丨項所述之改質型黏土,其中該層狀 黏土材料係擇自下列所組成之族群:硅礬石類黏土(semctite clay)、虫至石(vermiculite)、管狀高領土(hall〇ysit^、絹雲母 (sencite)、皂土(saponite)、以及雲母(mica)。 5. 如申請專利範圍第4項所述之改質型黏土,其中該硅礬 石類黏土(semctite)係擇自下列所組成之族群:蒙脫土 (montmonllonite)、富鋁蒙脫土(beiddllte),矽鐵石(n〇ntr〇nite), 以及 hectorite。 6. 如申請專利範圍第丨項所述之改質型黏土,其中該反應 性改質劑係擇自下列所組成之族群:%胺基小丙醇 0424-A20508TWF1 (N2);02930008;susan 24 1263628 (3-ammo-l-propanol) 、 3_ 胺基 ^ 丙二醇 (3-amin〇-l,2-propandlol)、三羥甲基甲基胺(tn(hydr〇xymethyi) ammomethane,THA),以及十六烷基胺(hexadecylamme,HA)。 7. —種聚氨I旨/黏土奈米複合材料,包括: 一I氣酯樹脂之南分子基質;以及 一改質型黏土材料,均勻分散於該聚氨醋樹脂之高分子基 質中’该改質型黏土材料插層有—層狀黏土材料、—親油性改 貝劑以及一反應性改質劑,且該反應性改質劑與該聚氨酯樹脂 之高分子基質產生鍵結; 該親油性改質劑具有碳數12以上之長鏈烷基,且係擇自下 列所組成之族群:磷正離子、氮正離子、硫正離子,以及氧正 離子; 該反應性改質劑係一具有羥基(-〇H)以及胺基(-NH)之化合 物; 該親油性改質劑/該反應性改質劑/該黏土材料之加入莫耳 數比大體為2-1:1-0.1:1。 8·如申請專利範圍帛7項所述之聚氨酯/黏土奈米複合材 料,其中該產生之鍵結係奈㈣土片上之經基(_〇Η)與聚氨醋樹 脂之異氰酸酯基(-NCO)反應,所形成之碳氧鍵(c_〇 b〇nd)鍵結。 9·如申請專利範圍帛7項所述之聚氨酯土奈米複合材 料,以该聚氨酯/黏土奈米複合材料之總重為基準,盆中該芦 黏土材料含有(U至1〇重量份。 〃 曰 10·如申請專利範圍帛7項所述之聚氨醋/黏土奈米複合材 料/、中σ亥改貝型黏土係專利範圍第1 -8項中任一項所述之該 改質型黏土。 、以 11.如申請專利範圍帛7帛所述之聚氨酯/黏丨奈米複合材 〇424-A20508TWF1(N2);029300〇8;susan 25 1263628 料,其中该聚氨酯樹脂係擇自由下列所組成之族群··溶劑型聚 氨酯樹脂、水性聚氨酯樹脂,以及熱熔型聚氨酯樹脂。 …I2·如申請專利範圍第π項所述之聚氨酯/黏土奈米複合材 料,其中該水性聚氨酯/黏土奈米複合材料之抗張強度大體為 250-400(Kg/cm2)。 13.如申請專利範圍第u項所述之聚氨酯/黏土奈米複合材 料,其t以該水性聚氨酯/黏土奈米複合材料之總重為準,其耐 磨耗係數為0.5-1 ·0重量百分比。 “ 14·如申巧專利範圍第11項所述之聚氨酯/黏土奈米複合材 料,其中以該水性聚氨酯/黏土奈米複合材料之總重為準,其吸 水率為.1.5-2.4wt%。 15· —種如申請專利範圍第u項所述之聚氨酯/黏土奈米複 合材料之製法,包括: 提供一層狀黏土材料; 加入一反應性改質劑以及一長鏈烷基親油性改質劑於該層 狀黏土材料中,以共同插層該黏土材料而形成一改質型黏土, 其中该反應性改質劑具有一官能基可與聚氨酯樹脂反應; 該長鏈烷基親油性改質劑係擇自下列所組成之族群··磷正 離子、氮正離子、硫正離子,以及氧正離子; 該反應性改質劑係一具有羥基(-〇Η)以及胺基之化合 物; 該長鏈烷基親油性改質劑/該反應性改質劑/該黏土材料之 加入莫耳數比大體為2-1:1-0.1:1 將3改貝型黏土、親水劑與聚醇配製成一分散母液; 加入二異氰酸酯(diisocyanate)化合物於該分散母液中; 加熱該分散母液至一聚合溫度以進行聚合反應; 〇424-A20508TWF1(N2);029300〇8;susan 26 1263628 待該聚合反應完成後,進行降溫並加入一中和劑與水攪拌 均勻; 加入一鏈延長劑攪;拌,以得到該聚氨酯樹脂/黏土奈米複合 材料。 16. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該聚合反應之完成係根據反應NCO%降低至理 論值為準。 17. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該聚醇包括聚醚多元醇(polyether polyol)或聚酯 多元醇(polyester polyol)。 18. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該二異氰酸酯(diisocyanate)化合物包括4,4-甲稀 基雙苯基異 氰酸酯 (4,4-methylene bis(phenyl isocyanate),.MDI)、甲苯二異氰酸酯(tolylene diisocyanate,TDI) 或異氟爾酮二異氰酸酯(isophorone diisocyanate,IPDI)。 19. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該反應性改質劑與該聚氨酯樹脂預聚物產生鍵 結。 20. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該產生之鍵結係奈米黏土片上之羥基(-OH)與聚 氨酯樹.脂之異氰酸酯基(-NCO)反應,所形成之碳氧鍵(00 bond) 鍵結。 21. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該改質型黏土之黏土層間距離為H6-60A。 22. 如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該分散母液中之該改質型黏土的黏土層間距離 0424-A20508TWF1(N2);02930008;susan 27 1263628 再增加5-ΙΟΑ。 - 23.如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該鏈延長劑包括胺類或多元醇類。 、,24·如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,纟中加入該兩改質劑之方法係先加入該反應性改質 J於3層狀黏土後,再接著加入_長鏈烷基親油性改質劑。 、,:25·如申請專利範圍第丨5項所述之聚氨酯/黏土奈米複合材 料之製法,纟中加入該兩改質劑之方法係先將該兩改質劑混合 均勻後再一併加入該黏土材料中。 26.如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料=製法’其中該分散母液中更包括一溶劑,該溶劑包括丙嗣、· 曱苯(toluene)或n,N-二甲基甲醯胺(DMF)。 、,27·如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 料之製法,其中該親水劑為2,2_二羥甲基烷酸,包括2,2_二羥甲 , 基丁 &L(252-bis(hydroxymethyl)butyric acid, DMBA)。 28·如申請專利範圍第丨5項所述之聚氨酯/黏土奈米複合材 料之製法,其中該改質型黏土係專利範圍第1-9項中任一項所 述之該改質型黏土。 、 、、、29_如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 · 料之製法,其中該親油性改質劑/該反應性改質劑/該黏土材料之 加入莫耳數比為1.2 : 0.4 : 1。 3〇·如申請專利範圍第15項所述之聚氨酯/黏土奈米複合材 · 料之製法,其中該聚合溫度大體為5〇_7〇〇c而該聚合反應後之· 降溫溫度大體為3〇-50QC。 31. —種如申請專利範圍第u項所述之聚氨酯/黏土奈米複 合材料之製法,包括: 0424-A20508TWF1(N2);02930008;susan 28 1263628 提供一層狀黏土材料; 加入一反應性改質劑以及一長鏈烷基親油性改質劑於該層 狀黏土材料中’以共同插層該黏土材料而形成一改質型黏土, 其中該反應性改質劑具有一官能基可與聚氨酯樹脂反應; 該長鏈烷基親油性改質劑係擇自下列所組成之族群··磷正 離子、氮正離子、硫正離子,以及氧正離子; 该反應性改質劑係一具有羥基(-0H)以及胺基(_NH)之化合 物; 該長鏈烷基親油性改質劑/該反應性改質劑/該黏土材料之 加入莫耳數比大體為; 將该改質型黏土分散於水中;以及 以直接摻混的方式加入一水性聚氨酯樹脂乳液攪拌均勻, 以形成該聚氨酯/黏土奈米複合材料。 32.如申請專利範圍第η項所述之聚氨酯/黏土奈米複合材 料之製法,其中該水性聚氨酯樹脂乳液之製備包括: 技供聚氣S旨樹脂單體或預聚物; 加入一親水劑於該聚氨酯樹脂並加熱至一聚合溫度以進行 聚合反應; & 待該聚合反應完成後,降溫並加入一中和劑與水攪拌均 勻;以及 ' 加入鏈延長劑以得到水性聚氨酯樹脂乳液。 ,33 ·如申凊專利範圍第3 1項所述之聚氨酯/黏土奈米複合材 料之製法,其中該聚合溫度大體為外㈣而該聚合反應後之 降溫溫度大體為30-50QC。 0424-A20508TWF1(N2);02930008;susan 291263618^131801 Shen Qing Patent Scope Amendment Amendment Date 45.4.4 X. Patent Application Range: 1. A modified clay, including: · Layered clay material' has a lipophilic modifier and a reaction a modifier, the reactive modifier, and a right shell, h, and a lyophile, can be reacted with a polyurethane resin; the lipophilic compound has a long-chain filament on the carbon number Ihx, and is selected from the following a group of H positive ions, nitrogen cations, sulfur cations, and oxygen cations; the reactive modifier is a compound having a radical (-OH) and an amine group (_NH); the lipophilic modifier / The reactive modifier / the clay material has a molar ratio of 2-1:1 - 0.1:1. 2. The modified clay as described in claim 2, wherein the modified clay has a clay interlayer distance of 14.6-60A. 3. The modified clay according to the scope of the patent application, wherein the cation exchange equivalent of the intercalation modification of the layered clay material is 50-200 meq/l 〇〇g 〇4. The modified clay according to the above item, wherein the layered clay material is selected from the group consisting of: secmtite clay, vermiculite, tubular high territory (hall〇ysit^ , sencite, saponite, and mica. 5. The modified clay of claim 4, wherein the semectite is selected from the following The group consisting of: montmonllonite, beiddllte, ruthenium (n〇ntr〇nite), and hectorite. 6. Modified clay as described in the scope of claim Wherein the reactive modifier is selected from the group consisting of: % amino-based dipropanol 0424-A20508TWF1 (N2); 029.3008; susan 24 1263628 (3-ammo-l-propanol), 3_amino^propanediol (3-amin〇-l, 2-propandlol), trishydroxymethylamine (tn(hy Dr〇xymethyi) ammomethane, THA), and hexadecylamine (HA) 7. A polyurethane-based/clay nanocomposite comprising: a southern molecular matrix of a gas ester resin; The modified clay material is uniformly dispersed in the polymer matrix of the polyurethane resin, and the modified clay material is intercalated with a layered clay material, a lipophilic modified shelling agent, and a reactive modifier, and The reactive modifier is bonded to a polymer matrix of the polyurethane resin; the lipophilic modifier has a long-chain alkyl group having a carbon number of 12 or more, and is selected from the group consisting of phosphorus cations and nitrogen. a positive ion, a sulfur cation, and an oxygen cation; the reactive modifier is a compound having a hydroxyl group (-〇H) and an amine group (-NH); the lipophilic modifier/the reactive modifier / The molar ratio of the clay material to the molar ratio is 2-1:1 - 0.1:1. 8. The polyurethane/clay nano composite material as described in claim 7 of the patent application, wherein the bond is produced (4) Isocyanate groups of the base (_〇Η) and polyurethane resin on the soil sheet (-NCO) reaction, the formed carbon-oxygen bond (c_〇b〇nd) is bonded. 9. The polyurethane-tano composite material as described in Patent Application 帛7, with the polyurethane/clay nano composite The total weight of the material is based on the basis, and the clay material in the pot contains (U to 1 part by weight). 〃 ·10· The urethane/clay nano composite material as described in claim 7 of the patent application, and the medium σ hai modified shell type clay is the modification described in any one of the claims 1 to 8 Type clay. 11. The polyurethane/adhesive nanocomposite 〇424-A20508TWF1(N2); 029300〇8; Susan 25 1263628 according to the patent application 帛7帛, wherein the polyurethane resin is selected from the following Groups · Solvent-based polyurethane resins, waterborne polyurethane resins, and hot melt polyurethane resins. ... I2. The polyurethane/clay nanocomposite of claim π, wherein the aqueous polyurethane/clay nanocomposite has a tensile strength of generally 250-400 (Kg/cm2). 13. The polyurethane/clay nanocomposite according to claim 5, wherein t is based on the total weight of the aqueous polyurethane/clay nano composite, and the wear resistance coefficient is 0.5-1 · 0 weight. percentage. 14. The polyurethane/clay nanocomposite according to claim 11, wherein the water absorption of the aqueous polyurethane/clay nanocomposite is from 1.5 to 2.4% by weight. 15. A method for preparing a polyurethane/clay nanocomposite as described in claim U, comprising: providing a layer of clay material; adding a reactive modifier and a long chain alkyl lipophilic modification In the layered clay material, the clay material is intercalated to form a modified clay, wherein the reactive modifier has a functional group to react with the polyurethane resin; the long-chain alkyl lipophilic modification The agent is selected from the group consisting of phosphorus cations, nitrogen cations, sulfur cations, and oxygen cations; the reactive modifier is a compound having a hydroxyl group (-oxime) and an amine group; The long-chain alkyl lipophilic modifier/the reactive modifier/the clay material has a molar ratio of 2-1:1 to 0.1:1. The modified shell clay, hydrophilic agent and polyalcohol are matched. Making a dispersion mother liquor; adding diisocyanate a compound in the dispersion mother liquid; heating the dispersion mother liquid to a polymerization temperature to carry out polymerization; 〇424-A20508TWF1(N2); 029300〇8; susan 26 1263628 After the polymerization reaction is completed, cooling is performed and a neutralizing agent is added Stirring with water; adding a chain extender; stirring; mixing to obtain the polyurethane resin/clay nano composite material. 16. The method for preparing a polyurethane/clay nano composite according to claim 15, wherein The completion of the polymerization is based on the reduction of the NCO% of the reaction to the theoretical value. 17. The method for preparing a polyurethane/clay nanocomposite according to claim 15, wherein the polyalcohol comprises a polyether polyol Or a polyester polyol as described in claim 15 wherein the diisocyanate compound comprises 4,4-methyldiyl double 4,4-methylene bis(phenyl isocyanate, MDI), tolylene diisocyanate (TDI) or isophorone diisocyanate (Isophorone diisocyanate, IPDI). The method of producing a polyurethane/clay nanocomposite according to claim 15, wherein the reactive modifier is bonded to the polyurethane resin prepolymer. The method for preparing a polyurethane/clay nanocomposite according to claim 15, wherein the resulting bond is a hydroxyl group (-OH) on a nano-clay sheet and reacts with an isocyanate group (-NCO) of the polyurethane tree. The formed carbon-oxygen bond (00 bond) is bonded. 21. The method of preparing a polyurethane/clay nanocomposite according to claim 15, wherein the modified clay has a clay interlayer distance of H6-60A. 22. The method for preparing a polyurethane/clay nanocomposite according to claim 15, wherein the interbedded distance of the modified clay in the dispersed mother liquor is 0424-A20508TWF1 (N2); 029.3008; susan 27 1263628 Increase 5-ΙΟΑ. The method for producing a polyurethane/clay nanocomposite according to claim 15, wherein the chain extender comprises an amine or a polyhydric alcohol. 24) The method for preparing a polyurethane/clay nano composite according to claim 15, wherein the method of adding the two modifiers is to add the reactive modification J to the three layered clay. This is followed by the addition of a long chain alkyl lipophilic modifier. ,: 25. For the preparation method of the polyurethane/clay nano composite material described in claim 5, the method of adding the two modifiers is to first mix the two modifiers together. Add to the clay material. 26. The polyurethane/clay nanocomposite according to claim 15, wherein the dispersion mother liquor further comprises a solvent comprising propyl hydrazine, toluene or n, N-di Methylformamide (DMF). The method for producing a polyurethane/clay nanocomposite according to claim 15, wherein the hydrophilic agent is 2,2-dihydroxymethylalkanoic acid, including 2,2-dihydroxymethyl, Ding & L (252-bis (hydroxymethyl) butyric acid, DMBA). The method of preparing the polyurethane/clay nanocomposite according to claim 5, wherein the modified clay is the modified clay of any one of claims 1-9. The method for producing a polyurethane/clay nano composite material according to claim 15, wherein the lipophilic modifier/the reactive modifier/the clay material is added to the molar The ratio is 1.2: 0.4: 1. 3〇 The method for preparing a polyurethane/clay nano composite material according to claim 15 wherein the polymerization temperature is substantially 5〇_7〇〇c and the temperature after the polymerization is substantially 3 〇-50QC. 31. A method for preparing a polyurethane/clay nanocomposite as described in claim U, comprising: 0424-A20508TWF1(N2); 029300000; susan 28 1263628 providing a layer of clay material; adding a reactive modification a modifying agent and a long-chain alkyl lipophilic modifier in the layered clay material to form a modified clay by co-intercalating the clay material, wherein the reactive modifier has a functional group and a polyurethane Resin reaction; the long-chain alkyl lipophilic modifier is selected from the group consisting of phosphorus cations, nitrogen cations, sulfur cations, and oxygen cations; the reactive modifier has a hydroxyl group a compound of (-0H) and an amine group (_NH); the long-chain alkyl lipophilic modifier / the reactive modifier / the molar ratio of the clay material to the molar ratio is substantially; the modified clay is dispersed In the water; and in a direct blending manner, an aqueous polyurethane resin emulsion is added and stirred uniformly to form the polyurethane/clay nano composite. 32. The method for preparing a polyurethane/clay nanocomposite according to claim n, wherein the preparation of the aqueous polyurethane resin emulsion comprises: a technique for providing a resin monomer or a prepolymer; and adding a hydrophilic agent. The polyurethane resin is heated to a polymerization temperature to carry out a polymerization reaction; & After the polymerization reaction is completed, the temperature is lowered and a neutralizing agent is added to stir evenly with water; and 'the chain extender is added to obtain an aqueous polyurethane resin emulsion. 33. The method for producing a polyurethane/clay nanocomposite according to claim 31, wherein the polymerization temperature is substantially the outer (four) and the temperature after the polymerization is substantially 30-50 QC. 0424-A20508TWF1(N2);02930008;susan 29
TW93131801A 2004-10-20 2004-10-20 Synthesis of polyurethane/clay nanocomposites TWI263628B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93131801A TWI263628B (en) 2004-10-20 2004-10-20 Synthesis of polyurethane/clay nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93131801A TWI263628B (en) 2004-10-20 2004-10-20 Synthesis of polyurethane/clay nanocomposites

Publications (2)

Publication Number Publication Date
TW200613234A TW200613234A (en) 2006-05-01
TWI263628B true TWI263628B (en) 2006-10-11

Family

ID=37967115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93131801A TWI263628B (en) 2004-10-20 2004-10-20 Synthesis of polyurethane/clay nanocomposites

Country Status (1)

Country Link
TW (1) TWI263628B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330045B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant wire/cable
US8329820B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant coating material
TWI408164B (en) * 2010-04-23 2013-09-11 Nat Univ Kaohsiung Flame-retardant nanocomposite and manufacturing method therefor
US9437900B2 (en) 2011-12-20 2016-09-06 Industrial Technology Research Institute Electrolyte, method for fabricating electrolyte solution, and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453226B (en) * 2011-11-17 2014-09-21 Nat Inst Chung Shan Science & Technology A method for preparing an aqueous polyurethane having a reactive functional group and a nanocomposite thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330045B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant wire/cable
US8329820B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant coating material
US8329819B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Organic/inorganic composite and fire-resistant plate utilizing the same
TWI408164B (en) * 2010-04-23 2013-09-11 Nat Univ Kaohsiung Flame-retardant nanocomposite and manufacturing method therefor
US9437900B2 (en) 2011-12-20 2016-09-06 Industrial Technology Research Institute Electrolyte, method for fabricating electrolyte solution, and lithium ion battery

Also Published As

Publication number Publication date
TW200613234A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
Kim et al. Morphology and properties of waterborne polyurethane/clay nanocomposites
Joshi et al. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications
Pokharel et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites
ES2627429T3 (en) Hydrolytically stable polyurethane nanocomposites
CN101565588B (en) Organic attapulgite water-borne polyurethane nano composite leather coating agent and preparation method thereof
Qiang et al. Waterborne polyurethane/carbon quantum dot nanocomposite as a surface coating material exhibiting outstanding luminescent performance
TWI453226B (en) A method for preparing an aqueous polyurethane having a reactive functional group and a nanocomposite thereof
CN102251400B (en) Organic Li-based bentonite-WPU (waterborne polyurethane) leather finishing agent and preparation method thereof
Zhu et al. Current advances of Polyurethane/Graphene composites and its prospects in synthetic leather: A review
US20070197709A1 (en) Clay-Polyurethane Nanocomposite And Method For Preparing The Same
Mishra et al. Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques
Kuan et al. Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites
CA2906644A1 (en) Oligomer-grafted nanofillers and advanced composite materials
Nan et al. Covalently introducing amino-functionalized nanodiamond into waterborne polyurethane via in situ polymerization: Enhanced thermal conductivity and excellent electrical insulation
Karthika et al. Super-hydrophobic graphene oxide-azobenzene hybrids for improved hydrophobicity of polyurethane
TWI263628B (en) Synthesis of polyurethane/clay nanocomposites
JP2015533859A (en) Polyisobutylene-based polyurethane containing organically modified montmorillonite
KR20090122064A (en) Coating composition of aqueous polyurethane dispersion and method for producing a breathable coated glove of using same
Xiao et al. Highly sensitive detection of Fe3+ ions using waterborne polyurethane‐carbon dots self‐healable fluorescence film
Mallakpour et al. Novel nanocomposites based on reactive organoclay of l-tyrosine and amine end-capped poly (amide–imide): Synthesis and characterization
CN106243314A (en) A kind of composite modified aqueous polyurethane and preparation method and application
US9150753B2 (en) Method for making waterborne polyurethane with a reactive functional group and a nanocomposite made of the same
Dias et al. Synthetic talc as a new platform for producing fluorescent clay polyurethane nanocomposites
CN114058051A (en) Core-shell structure halogen-free flame retardant in-situ modified solvent-free polyurethane resin film and preparation method thereof
Hao et al. Morphology and mechanical properties of UV-curable castor oil-based waterborne polyurethane/organic montmorillonite nanocomposites