TWI260811B - Composite separator and method thereof - Google Patents

Composite separator and method thereof Download PDF

Info

Publication number
TWI260811B
TWI260811B TW093140982A TW93140982A TWI260811B TW I260811 B TWI260811 B TW I260811B TW 093140982 A TW093140982 A TW 093140982A TW 93140982 A TW93140982 A TW 93140982A TW I260811 B TWI260811 B TW I260811B
Authority
TW
Taiwan
Prior art keywords
composite separator
composite
film
separator according
monomer structure
Prior art date
Application number
TW093140982A
Other languages
Chinese (zh)
Other versions
TW200623489A (en
Inventor
Chin-Chang Lee
Wen-Yueh Ho
Shu-Hui Cheng
Lien-Tai Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW093140982A priority Critical patent/TWI260811B/en
Publication of TW200623489A publication Critical patent/TW200623489A/en
Application granted granted Critical
Publication of TWI260811B publication Critical patent/TWI260811B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

A composite separator and method thereof are provided. A plurality of inorganic nanoparticles are first provided. An electrolyte resin is then formed by wrapping the inorganic nanoparticles in an ionic polymer. Thereafter, the electrolyte resin is coated on a fabric film. A thermal pressing process is performed to make the coated fabric film form a composite film. Thereafter, a plurality of pores are formed on the composite film.

Description

1260811 九、發明說明: 【發明所屬之技術領域】 尤其是一種用於電池 本發明係有關於一種複合隔離膜及其製作方法 的複合隔離膜及其製作方法。 【先前技術】 隨著行動電話、筆記型電腦 數位相機等各賴帶型電子產品的大量 興起與普及,小型二次電池(即可充電式電池) 的研究與開發也就更形重 要。而在各種二次電池巾,㈣池由於具有高能量密度、高操作電壓、大 使用溫度範圍、無記憶效應、壽命長等伽,因此格物彳各界的重視。 鐘二次電脸要_岭錢錄_、鶴雜_液和碳材 (負極),並在正負極之間設有-隔離膜以將正負極隔開避免短路,而液態 有機電解酬充斥於多絲的隔雜巾,貞責離子電荷的傳導工作。 -般而言,麟池而言,隔離膜之特性需求除了需為多孔型外, 最為重要的兩個特性就是導電度與機械強度。但在習知馳電池構造中, 隔離膜多係由雜性或低極性的有機材胸^,例如聚乙烯㈣膜或聚 丙嫦阳m,因此多為疏水性,故高極性的液態有機電解液通常無法^ 離膜充分濕潤’或無法被隔離膜有效吸收,因而普遍存有隔離膜導電性不田 佳的問題,使得整個電鱗紐表現受寒制而無法進—步提升。 為了改善隔離膜之導,f知技術忖提出了數種解決方式,如 對PE/PP膜進行表面處理,使表面活化並引入親水性單體進行接枝,心 利用極性高分子,如糧虹烯(驗)、?_ (酬_克她 液等,來進行表面塗佈,而使隔_表面改質以提升其導電度,或者可矛 0424~A20577TW(N2);02930011TW;encwen 1260811 夕g貼口的方式,來形成多層堆疊結構,以提升其導電度,或者採用膠 匕、私解貝來作為,來增加導電度及與電滅間之齡度。 然而乂些方法均仍存有一些無法克服的問題,舉例來說,對隔離膜改 貝的均勻度i不胃控制,而多層結制會大幅增加餘的_度,造成成 本的提升與度的下降,轉態電解質賴具有較高之魏度或與電極 板間之黏合度,但卻也_具有機械醜不足之缺點,轉致電池之不穩 定。 " 口此我們迫切需要一種具有高導電性及高濕潤性的隔離膜及其製作 方法,來改善隔離膜導電性不佳的問題。 【發明内容】 本發明的主要目的在於提供—複合隔離膜,其包含有聚電解質樹月旨以 及-纖維賴’ 包含有糊_奈練子収包覆於盈機 奈米粒子表面的離子型高分子,其中複合隔離膜係由該聚電解質樹脂與該 鐵維布膜複合咐細造,且複合瞻概奈米孔洞。 本發明的另—目的在於提供—種複合隔離崎作方法,首先,提供 複數個無機奈綠子,再崎_離子鶴分子,並輯子型高分子姑機 奈米粒,則《,解_,再___於一布膜 =接著進行-熱壓合製程,使聚電解f樹脂與布膜複合成—複合膜,最 後再於複合膜上形成複數個奈米孔洞。 為使本發明之上述和其他目的、特徵、和優點能更嗎祕,下文特 舉-較佳實關,並配合所關式,作詳細說明如下: 0424-A20577TW(N2) :02930011TW;ericwen 6 1260811 【實施方式】 複合隔離膜的製作方 利用複數無機奈米粒 參考第1圖,第1關顯示本發明—實施例中— 法流程示意®。如第1麟示,首先將進行步驟S1, 子與一離子型高分子來調製—聚電解質樹脂。 在本發日m施射,所使㈣域奈錄子包含有 (&〇2)、氧化鋁(Al2〇3)或二氧化鈦 平 2X不木粒子,且這些益 粒子之顆粒大小大抵為3〇至 …、 早刑_^ ^卡亚以50至湖奈米較佳。而離 对㈣子可驰含有一第_單體結構a與—第二單驗構b的―陽離子 型高分子,其賴代表加,其巾第_單懸心為離子型單 體結構,如乙烯基咪唑(VIM,如篥 弟2A圖所不)、4—乙烯基吡啶(4-VP, 如第2B圖所示)或2一乙烯基呢旬2—vp,如第%圖所示)等,第二單體 結構B為傳統型單體結構,如笨乙稀(ST)、丙烯腈陶妓克力(網等, r代表隨機共聚合,且離子型單體結構與傳統型單體結構之比例可視產品需 求而予以彈性調整,但該第二單體結構大抵為該第一單體結構的〇至2〇倍 1,並以0.5至5倍較佳。 在本發明之一實施例中,離子型高分子之配製方法係先將VIM、4-vp、 2-VP或其與ST、AN或AA系單體共聚合成一前趨高分子(合適之分子量為 2至2◦萬)’接著將使用一第一溶劑,例如二甲基乙醯胺 (Dimethylacetamide , DMAC) 、 二甲基 甲酸胺 (Dimethylf ormamide , DMF) 、 N—甲 基石比疼烧酮 (N一Methyl — 2一Pyrr〇lid〇ne,NMP)、四氯口夫喃(Tetrahydrofuran, 0424-A20577TW(N2) :02930011TW;ericwen η 1260811 THF)或二甲基亞颯(Dimethyl灿⑹恤,dms〇)來溶解前趨高分子, 以形成一含該前趨高分子之溶液,之後再於溶液内加入相對於單體1 2莫 耳當量之CnH2n+1X以進行離子化(n為丄至ls,而χ包含有ci、Br或工), 亚且於完成離子化後,再以鹼金屬鹽進行離子交換,在本發明之實施例中, 所使用之驗金屬鹽之化學結構為_,其中M包含、鈉_或 鉀⑻,而B包含有BA、PFe、AsFs、cl〇4、三氳甲基砜醯胺(TFsi)或 五氯乙基醯砜(BETi)。而在完成離子交換後,將形成如第3a—c圖所示之 離子型高分子結構。 在本發明之一實施例中,聚電解質樹脂之配製方法係先將無機奈米粒 子混入一第二溶劑(可使用之溶劑為醇、酮及乙醯胺等,例如甲醇、乙醇、 丙酮、一甲基曱g监胺、二曱基乙酸胺等)内,以形成一含無機奈米粒之溶液, 接著將離子高分子按相對無機粒子5至5〇%重量比加入含無機奈米粒之溶 液中,再以均質機混合並促使其包覆於粒子表面上,以形成聚電解質樹脂。 此外,在本發明之另一實施例中,可再於於含無機奈米粒之溶液内加入相 對於無機奈米粒子5〇至4〇〇%重量比之耐高電位膠合劑,適合之膠合劑包 含有聚氟化亞乙烯/六氟丙烯(PVDF/HFP)、聚丙烤猜 (polyacrylonitrile,PAN)系、聚苯烯酯(p〇iyacrylate)系、聚 氧化乙烯(Polyethylene Oxide,PE0)及亞克力系高分子,而本發明之 另一實施例中,可再加入相對膠合劑重量100〜5〇0%之造孔劑,造孔劑包 可含有鄰本一甲酸二丁醋(di-butyl phthalate,DBP)、鄰苯二甲酸二 辛酯(di-〇ctyl Phthalate,D〇P)、聚氧化乙烯(PE〇,分子量6〇〇至 0424-A20577TW(N2) ,02930011 TW:e「icwen 8 1260811 2, 000)、乙二醇碳酸醋(吻1咖⑽。树e,EC)、丙二醇韻醋 (PY ne Carb°nate,Pc)或其混合液,最後再藉由均質機以 I5, OOQrpm的速度充分均質化以本發明之聚電解質樹脂。 接f知麵S2,域供_布膜,再將辅製叙魏解質樹腊塗佈 於該布膜表面上。在本發明之—實施财,該麵係彻超細纖維材料以 編織、不細爾物版___,峨卿成的複合 隔離膜之機械強度,其中該超細纖維材料包含有聚丙稀睛(酬、聚丙稀 (PP)或聚乙稀(PE),其細度大抵為◦.1至丹,且布膜舆聚電解質樹脂 之重量比為1/3至3/1。 接著進行步驟S3 ’藉由一鍵合製程使聚電解質樹脂舆布膜複合成為 一複合膜,其中賴驗合製絲於印至:机下進行,值得注意的是經 過幻之熱屋合步驟之後,聚電解質氣已非僅塗佈於布膜表面,而係與布 膜完全結合,轉成-厚度大抵為1Q至扇微米之單層複合膜構造。 最後,再進行步驟S4,於複合膜上形成複數個奈米孔洞,以型成本發 明之複合隔雜。在本發日狀-細种,於複麵讀作奈她爾 法係於聚電解質樹脂之配置過程中,加入適量之造孔劑(如脚、卿、 PEO、EC或其混合液),之後在形成複合膜之後,再利用—第三溶劑來進行 萃取造孔程序,縣前加人之造孔劑自複合助萃取出來,並於%至· °C下進行真空乾燥,以形成複數個孔徑大抵為5Q至5⑽奈米之奈米孔洞。 在本發明之實施例中,細Μ之複合隔離_膜厚大抵為_微米, 且可應用於二次電池及鋁電解電容器用之隔離膜。 0424-A20577TW(N2);02930011TW;ericwen 9 1260811 。、:、、進〃 °兄明本發明之方法,以下特列舉數實施例及實驗數據以具體/ 、,x月之方式亚細本發明之優越性。然值縣意的是本發明中 ^各製程步·不限独下着料或參數,仍可具有其他騎性設計。 第一實施例 在本發明之第-實施例中,所使用之離子高分子係為Pvm-c4H9-PF6 離子鹽,其製作方法係先祥取2◦克之VIM_C4H9_pF6單體’置入4〇毫升6 之乙醇水UA)溶液中’再加入0.4克之偶氮異二丁月青(a酬作為起 始劑’於6(TC之氮氣環境下聚合24小時,並以分子量3,5◦。之透析膜及 乙醇進行透析純化,可得聚合物pviM_C4H9_pF6 Μ』克。 第二實施例 在本發明之第二實施例中,所使用之離子高分子係為共聚合 6離子鹽’其製作方法係先样取6〇克之vp,克之苯乙稀,置入3〇〇 毫升之水中,加入2.〇克議水解度之聚乙稀醇(pvA,分子量88,_) 及1.2克AIBN起始劑,於7〇t:N2環境下聚合24小時,以二次甲醇清洗 純化並乾燥後可得106克的前趨聚合物,其分子量約為16〇, 〇〇◦。再取前鲁 趨聚合物30克,以300毫升石肖基曱烧溶解,加入24克之㈣虹,於Η °C下離子化反應3天,以水及甲醇分別清洗並乾燥後得牝·4克離子高分 子’再以乙醇溶劑溶解後,加入3〇克KPFs進行離子交換,再以水及乙基 醋酸酯(EtAC)分別清洗及乾燥後,可得5S.8克之離子高分子 VP - r-ST-C4H9-即6離子鹽。 第三實施例 0424-A20577TW(N2) :02930011 TWiericwen 10 1260811 在本务月之弟三實施例中, 人-PF1 ^ 吏用之離子高分子係為VIM-r-AN共聚 口 6軒鹽’其製作方法 无秆取6◦克之VIM與6〇克之丙烯腈,置 笔升之乙醇水(1/1)溶液中,力1260811 IX. Description of the invention: [Technical field to which the invention pertains] In particular, a battery for use in the present invention relates to a composite separator and a method for fabricating the same. [Prior Art] With the rise and popularity of various electronic devices such as mobile phones and notebook digital cameras, the research and development of small secondary batteries (rechargeable batteries) is even more important. In various secondary battery towels, (4) the pool has high energy density, high operating voltage, large operating temperature range, no memory effect, long life and so on. The secondary electric face of the clock should be _ Ling Qianlu _, Hezao _ liquid and carbon material (negative electrode), and a separator is placed between the positive and negative electrodes to separate the positive and negative electrodes to avoid short circuit, and the liquid organic electrolysis is filled with The multi-filament spacers are responsible for the conduction of ion charges. In general, for Linchi, in addition to the porous type, the most important two characteristics of the separator are electrical conductivity and mechanical strength. However, in the Xizhichi battery structure, the separator is mostly made of a heterogeneous or low-polar organic material, such as a polyethylene (tetra) film or a polypropylene cation, so it is mostly hydrophobic, so a highly polar liquid organic electrolyte Usually, it is impossible to fully wet the film or it can not be effectively absorbed by the separator. Therefore, there is a problem that the conductivity of the separator is not good, so that the entire electric scale is subjected to cold and cannot be improved. In order to improve the conductivity of the separator, several solutions have been proposed, such as surface treatment of PE/PP film, surface activation and introduction of hydrophilic monomers for grafting, and the use of polar polymers such as grain rainbow Aene (test),? _ (remuner _ her liquid, etc., to surface coating, and to improve the conductivity of the _ surface to enhance its conductivity, or can be spear 0424 ~ A20577TW (N2); 02930011TW; encwen 1260811 eve g paste way, come Form a multi-layer stack structure to enhance its conductivity, or use plastic and private shells to increase the degree of electrical conductivity and age of electricity. However, there are still some insurmountable problems in these methods. In other words, the uniformity i of the isolation membrane is not controlled by the stomach, and the multi-layer formation will greatly increase the remaining _ degree, resulting in a cost increase and a decrease in the degree, and the transition electrolyte has a higher degree of Wei or the electrode. The adhesion between the plates, but it also has the shortcomings of mechanical ugliness, which leads to the instability of the battery. " This is an urgent need for a separator with high conductivity and high wettability and its manufacturing method to improve The problem of poor conductivity of the separator is as follows. SUMMARY OF THE INVENTION The main object of the present invention is to provide a composite separator comprising a polyelectrolyte tree and a fiber ray comprising a paste. Machine nanoparticle The surface of the ionic polymer, wherein the composite separator is made of the polyelectrolyte resin and the iron-dimensional film composite, and the composite nano-holes are formed. The other object of the present invention is to provide a composite isolation The method, firstly, provides a plurality of inorganic nephrons, re-saki-ion crane molecules, and a series of polymer-based nano-particles, then, "solution_, then ___ in a film = followed by - hot pressing In combination, the polyelectrolytic f resin and the cloth film are combined into a composite film, and finally a plurality of nanopores are formed on the composite film. To make the above and other objects, features, and advantages of the present invention more subtle, the following Special mention - better actual, and with the closed type, as detailed description is as follows: 0424-A20577TW (N2): 02930011TW; ericwen 6 1260811 [Embodiment] Preparation of composite separator using plural inorganic nanoparticles reference Figure 1 The first level shows the present invention - in the embodiment - the flow chart is schematically shown. As shown in the first, the first step S1, the sub-ionic polymer is used to prepare the polyelectrolyte resin. (4) Domain Naizi Contains (&〇2), alumina (Al2〇3) or titanium dioxide flat 2X non-wood particles, and the particle size of these beneficial particles is about 3〇 to..., early sentence _^ ^Kaya to 50 to Lake Nano Preferably, the (four) sub-Kechi contains a _monomeric structure a and a second single constitutive b-cationic polymer, which is represented by a singular addition, and the singular suspension is an ionic monomer. Structures such as vinylimidazole (VIM, as shown in Figure 2A), 4-vinylpyridine (4-VP, as shown in Figure 2B) or 2-vinyl-2-ox-vp, as shown in Figure As shown, etc., the second monomer structure B is a conventional monomer structure, such as stupid ethylene (ST), acrylonitrile terracotta (net, etc., r represents random copolymerization, and ionic monomer structure and tradition The proportion of the monomer structure can be elastically adjusted depending on the product requirements, but the second monomer structure is substantially 2 to 1 times the number of the first monomer structure, and preferably 0.5 to 5 times. In one embodiment of the present invention, the preparation method of the ionic polymer is to first synthesize a precursor polymer by copolymerizing VIM, 4-vp, 2-VP or a monomer thereof with ST, AN or AA (suitable molecular weight) 2 to 2 million) 'Then will use a first solvent, such as Dimethylacetamide (DMAC), Dimethylf ormamide (DMF), N-methyl stone than ketone (N-Methyl-2Pyrr〇lid〇ne, NMP), Tetrahydrofuran (0424-A20577TW(N2): 02930011TW; ericwen η 1260811 THF) or Dimethyl Athene (Dimethyl Can (6) shirt, Dms〇) to dissolve the precursor polymer to form a solution containing the precursor polymer, and then add CnH2n+1X relative to the monomer 1 2 molar equivalent for ionization in the solution (n is 丄 to Ls, and χ contains ci, Br or gong, and after ionization is completed, ion exchange is performed with an alkali metal salt. In the embodiment of the present invention, the chemical structure of the metal salt used is _, Wherein M contains, sodium or potassium (8), and B contains BA, PFe, AsFs, cl〇4, trimethylsulfone oxime (TFSI) acyl or five chloroethyl sulfone (BETi). Upon completion of the ion exchange, an ionic polymer structure as shown in Fig. 3a-c will be formed. In an embodiment of the present invention, the method for preparing the polyelectrolyte resin is to first mix the inorganic nanoparticles into a second solvent (the solvent that can be used is an alcohol, a ketone, an acetamide, etc., such as methanol, ethanol, acetone, and the like. a solution containing an inorganic nanoparticle, and then adding the ionic polymer to the solution containing the inorganic nanoparticle in a weight ratio of 5 to 5% by weight relative to the inorganic particles. Then, it is mixed by a homogenizer and urged to coat the surface of the particles to form a polyelectrolyte resin. In addition, in another embodiment of the present invention, a high-potential adhesive capable of adding 5 to 4% by weight relative to the inorganic nanoparticles can be further added to the solution containing the inorganic nanoparticles, and the suitable adhesive is further suitable. Including polyfluorinated ethylene/hexafluoropropylene (PVDF/HFP), polyacrylonitrile (PAN), polyphenylene ester (P〇iyacrylate), polyethylene oxide (PEO) and acrylic A polymer, and in another embodiment of the present invention, a pore former having a weight of 100 to 5 〇 0% relative to the binder may be further added, and the pore former may contain di-butyl phthalate. DBP), dioctyl phthalate Phthalate (D〇P), polyethylene oxide (PE〇, molecular weight 6〇〇 to 0424-A20577TW(N2), 02930011 TW:e “icwen 8 1260811 2 , 000), ethylene carbonate vinegar (kiss 1 coffee (10). tree e, EC), propylene glycol vinegar (PY ne Carb°nate, Pc) or a mixture thereof, and finally by a homogenizer at a speed of I5, OOQrpm Fully homogenize the polyelectrolyte resin of the present invention. Connect the surface of the surface S2, the domain for the film, and then the auxiliary system Coated on the surface of the cloth film. In the invention, the surface is completely woven, and the mechanical strength of the composite separator is woven, not fine, ___, 峨卿成, The fine fiber material comprises polypropylene eye (PP, polypropylene or polyethylene), the fineness of which is generally from ◦1 to 丹, and the weight ratio of the film 舆 polyelectrolyte resin is 1/3 to 3/1. Then proceed to step S3' to make the polyelectrolyte resin lining film composite into a composite film by a bonding process, wherein the ray is processed under the machine: it is worth noting that after the magic heat After the splicing step, the polyelectrolyte gas is not only applied to the surface of the cloth film, but is completely combined with the cloth film, and is converted into a single-layer composite film structure having a thickness of about 1Q to a fan micron. Finally, step S4 is performed. A plurality of nanopores are formed on the composite film to form a composite impurity in the form of the invention. In the present invention, in the configuration of the poly-electrolyte resin, the amount is added to the polymorphic resin. Pore forming agent (such as foot, qing, PEO, EC or a mixture thereof), followed by shape After the composite membrane, the third solvent is used to carry out the extraction and pore-forming procedure. The pre-existing pore-forming agent is extracted from the composite and vacuum-dried at % to °C to form a plurality of pore diameters. 5Q to 5 (10) nanometer nanometer holes. In the embodiment of the present invention, the composite isolation of the fine _ film thickness is _micron, and can be applied to a separator for a secondary battery and an aluminum electrolytic capacitor. 0424-A20577TW (N2); 02930011TW; ericwen 9 1260811. The method of the present invention is exemplified by the following examples and experimental data. The advantages of the present invention are detailed in the form of specific /, x months. The value of the county is intended to be in the present invention. Each process step is not limited to the material or parameters, and can still have other riding designs. First Embodiment In the first embodiment of the present invention, the ionic polymer used is a Pvm-c4H9-PF6 ionic salt, and the preparation method thereof is to take 2 gram of VIM_C4H9_pF6 monomer' into 4 〇 ml 6 In the ethanol water UA) solution, add 0.4 gram of azoisobutyric acid (a regenerate as initiator) to polymerize in 6 (TC nitrogen atmosphere for 24 hours, and the molecular weight of 3,5 ◦. dialysis membrane and ethanol The dialysis purification is carried out to obtain a polymer pviM_C4H9_pF6. The second embodiment is the second embodiment of the present invention, wherein the ionic polymer used is a copolymerized 6 ion salt, and the preparation method is as follows:克的vp, gram of styrene, placed in 3 liters of water, adding 2. 水解 议 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解 水解: Polymerization in N2 environment for 24 hours, purification by secondary methanol washing and drying to obtain 106 g of a precursor polymer having a molecular weight of about 16 Å, 〇〇◦. Then taking 30 grams of the former ruthenium polymer to 300 Dissolve ML Shijiji simmer, add 24 grams of (four) rainbow, ionize at Η °C for 3 days, with water and After methanol is separately washed and dried, 4 g of ionic polymer is dissolved in ethanol solvent, and 3 g of KPFs is added for ion exchange, and then washed with water and ethyl acetate (EtAC) and dried. 5S.8g of ionic polymer VP-r-ST-C4H9-, ie, 6-ion salt. Third embodiment 0424-A20577TW(N2):02930011 TWiericwen 10 1260811 In the third embodiment of this month, person-PF1 ^ The ionic polymer used in the system is VIM-r-AN copolymerized port 6 Xuan salt. The preparation method thereof is to obtain 6 gram of VIM and 6 gram of acrylonitrile without stalk, and to set the liter of ethanol water (1/1) solution. force

^ 文甲加入1 ·2克AIBN起始劑,於6〇〇C N2環境下聚合24小時,以二·Α 、、 —_人f醇清洗純化並乾燥後得98克之前趨聚合 物’分子量約為44,〇〇〇。^ Wenjia added 1 · 2g AIBN starter, polymerized in 6〇〇C N2 environment for 24 hours, cleaned and purified with 2·Α, ,__ human f alcohol and dried to obtain 98g of polymer before molecular weight About 44, hehe.

者取刖赵#合物40克,以4〇〇亳升之DMAC ;谷解’再加入42券r υ ώ v.A 4 9 Γ ; 50 C下離子化反應3天,以水及甲醇分別 、乾祕传77 · 2克之離子高分子,再以臟^溶劑溶解後,加入$的 6進行離子又換’以水及EtAc分別清洗及乾燥後可得Μ·]克離子高 分子VIM-:-ΑΝ>ίΡΓ6離子鹽。 第四實施例 在本發明之第四實施例中,所使用之聚電解質樹脂配方係為 Si〇2/PVIM-PF6/PAN’其製作方法係先取二氧化矽(si〇2)奈米粒子(粒徑 約50奈米)4克置入3〇毫升DMAC中以均質機充分分散,再加入丄·2克 之PVIM-PF6離子鹽’再以均質機充分混合使離子高分子(pv工M-pF6離子 鹽)包覆於奈米粒子表面上,加入pAN 6克及Ec/pc (1/1)混合液5克, 再以均質機充分混合製成Si02/PVIM-PF6/PAN聚電解質樹脂。之後可再 以500μιπ刮刀塗佈於鐵氟龍(Teflon)膜上,於110v紅外光燈下照射1 小時使溶劑初步乾燥,取下膠膜,再以6〇°C真空乾燥並形成複數奈米孔洞, 而得到膜厚約為1〇6μπι之複合隔離膜。此外,並以EC/PC(1/1) 1M LiTFSi (導電度為6.8mS/cm)電解液充份浸潤後以交流阻抗法測試,可得 其離子導電度為6.29 mS/cm。 〇424-A20577TW(N2) :02930011TW;ericwen 11 1260811 第五實施例 在本發明之第五實施例中,所佶用 所便用之聚電解質樹脂配方係為 ST/(PVDF/HFP)系’其製作方法係先取二氧化矽奈米粒子 (粒㈣5〇_2克置入25毫升丙_中以均質機充分分散,分別加入〇·3、 克之VP r ST QHs-PF6離子鹽,再以均質機充分混合使離子 高分子包覆於奈米粒表面上,加入(贿/HFp,%_@28〇1) 3克及乙二 醇碳酸酯/丙二醇碳_ (糊5克再以均f機充分混合製成三經 VP r-ST系聚電解質樹脂。接著以5〇_刮刀塗佈於聚醋(剛膜上, 室溫下靜置3小時候使溶劑自然揮發,取下膠膜,於_真空乾燥並製作 奈米孔洞,而得麵厚約為55至7Q微权複合隔離膜。此外,並於手套 廂中以乙二醇碳酸酯/丙二醇碳酸酯(1/1) 1M l±tfsi(導電度為 mS/cm)電解液充份浸潤後以交流阻抗法測試其離子導電度,三組複合隔離 膜¥私度分別為3·37、4· 6〇與5·仍mS/cm。相較於習知技術中之隔離 膜’導電度較佳者亦僅約2 mS/cm,本發明顯然在導電度的改善上具有相 當大之成效。 第六實施例 在本發明之第六實施例中,係使用第五實施例中調製之聚電解質樹脂 (力口入0 · 4g離子高分子),但以1〇g鄰苯二甲酸二丁醋(DBp)取代乙二醇 碳酸醋(EC) /丙二醇碳酸酯(PC),混合均勻後以5〇〇 μιη刮刀塗佈於8〇 μπι 之邱不織布上(基重l〇g/m2),自然乾燥後,於9〇°Cl5〇Kg/cm2壓力下 熱壓成膜’取出膠膜,以甲醇三次萃取出DBP並造奈米空孔,乾燥後可得 0424-A20577TW(N2);02930011TW;ericwen 1260811 膜厚85微米之複合隔離膜。此外,於手套廂中以乙二醇碳酸酯/乙基 甲基碳酸酯(Ethyl methyl carbonate , EMC) /二甲基碳酸酯 (Dimethyl carbonate,DMC) (6/2/2) 1M LiPF6(導電度為 8·9 mS/cm)電解液充份浸潤後,以交流阻抗法測試可得其離子導電度為工』 mS/cm。 第七實施例 在本發明之第七實施例中,係使用第三實施例中合成之離子高分子 VIEM-r-AN-dPh,按第四實施例來調製聚電解質樹脂但以_克主鄰 苯二甲酸二丁醋(DBP)取代Ec/pc,混合均勻後以5〇〇 _刮刀塗佈於 之不織布上(基重10_2),以11〇v紅外光燈下乾燥3小時後, 於WCBKg/cm2壓力下熱壓成膜,取出膠膜,以甲醇三次萃取出卿 並造奈米纽’乾雜可得轉%微米之複.軸。此外,於手套厢中 以 EC/EMC/DMC(6/2/2) 1M LiPF6(導電度為8·9 mS/cm)電解液充份 浸潤後以交流阻抗法職錄子導電度為u ms/cm。 相較於習知技術,本發明之複合隔離膜係以離子高分子包覆於無機奈 米粒子表面,將可職高軒轉之電縣,_質制後謂成高離子 導電通道協祕子料,故可有效提高__子導電度,飾提升電池 元件之電性表現。而由超細短纖維所製成之布膜則可提供超高之延伸及抗 穿透強度,以形成具有高機械強度之複合隔離膜,而有利應用於電池捲曲 連生產衣私此外’本發明之複合隔離層更可有效吸收電解液提昇導電 度’並抑制鋰金屬_dendrite)之職及穿透,啼高_池之安全 0424-A20577TW(N2) :02930011 TW;ericwen 1260811 性。 厂雖穌發㈣贿龄闕縣如上,然赫翻赚定本發明,任 何熟習此技藝者,在不脫離本發明之精神和範_,當可作更動與潤飾, 因此本發明之賴伽當減社_請專扉_界定者轉。 0424-A20577TW(N2);02930011TW;ericwen 14 1260811 【圖式簡單說明】 第1圖係顯示本發明一實施例中一複合隔離膜的製作方法流程示意圖。 第2A-2C圖係顯示本發明實施例中離子型單體之結構示意圖。 第3A-3C圖係顯示本發明實施例中離子高分子之結構示意圖。 【主要元件符號說明】 SI、S2、S3、S4〜步驟。 0424-A20577TW(N2);02930011TW;ericwen 15Take 40 grams of Zhao Zhao compound, 4 liters of DMAC; gluten's add 42 coupons r υ ώ vA 4 9 Γ; ionization reaction at 50 C for 3 days, separate with water and methanol, dry Secret transmission 77 · 2 grams of ionic polymer, then dissolved in the dirty solvent, add 6 to the ion and change 'after washing with water and EtAc separately and dry, you can get Μ ·] gram ion polymer VIM-:-ΑΝ&gt ; ΡΓ 6 ion salt. Fourth Embodiment In the fourth embodiment of the present invention, the polyelectrolyte resin formulation used is Si〇2/PVIM-PF6/PAN', which is prepared by first taking cerium oxide (si〇2) nanoparticles ( 4 g of particle size of about 50 nm) was placed in 3 ml of DMAC and dispersed well by a homogenizer. Then, 2 g of PVIM-PF6 ion salt was added, and then mixed with a homogenizer to make an ionic polymer (pv M-pF6). The ionic salt was coated on the surface of the nanoparticles, and 5 g of a mixture of pAN 6 g and Ec/pc (1/1) was added, and then mixed with a homogenizer to prepare a SiO 2 /PVIM-PF6/PAN polyelectrolyte resin. Then, it can be coated on a Teflon film with a 500 μm squeegee, and the solvent is preliminarily dried by irradiating for 1 hour under a 110-V infrared lamp. The film is removed, and dried under vacuum at 6 ° C to form a plurality of nanometers. Holes were obtained, and a composite separator having a film thickness of about 1 〇 6 μm was obtained. In addition, it was fully infiltrated with an electrolyte of EC/PC (1/1) 1M LiTFSi (conductivity of 6.8 mS/cm) and then tested by an alternating current impedance method to obtain an ionic conductivity of 6.29 mS/cm. 〇424-A20577TW(N2):02930011TW;ericwen 11 1260811 Fifth Embodiment In the fifth embodiment of the present invention, the polyelectrolyte resin formulation used in the present invention is ST/(PVDF/HFP) system The preparation method is to first take the cerium oxide nano particles (granules (4) 5 〇 2 gram into 25 ml of propylene _ to be fully dispersed by a homogenizer, respectively, adding 〇·3, gram of VP r ST QHs-PF6 ion salt, and then homogenizing machine Mix well to cover the surface of the nanoparticles with ionic polymer, add (bri / HFp,%_@28〇1) 3 grams and ethylene carbonate / propylene glycol carbon _ (paste 5 grams and then fully mix The VP r-ST polyelectrolyte resin was prepared, and then coated on a polyester vinegar with a 5 〇 squeegee (on the film, left to stand at room temperature for 3 hours to naturally evaporate the solvent, remove the film, and vacuum dry And make a nano hole, and the surface thickness is about 55 to 7Q micro-weight composite separator. In addition, in the glove compartment, ethylene glycol carbonate / propylene glycol carbonate (1/1) 1M l ± tfsi (conductivity After fully infiltrating the electrolyte for mS/cm), the ionic conductivity was tested by AC impedance method. The three sets of composite separators were 3·37, 4 respectively. 6〇 and 5·still mS/cm. Compared with the prior art, the isolation film of the prior art has a conductivity of only about 2 mS/cm, and the present invention obviously has a considerable effect in improving the conductivity. Sixth Embodiment In the sixth embodiment of the present invention, the polyelectrolyte resin prepared in the fifth embodiment (into the 0. 4 g ionic polymer) was used, but 1 〇g of dibutyl phthalate was used. DBp) Substituted ethylene glycol carbonate (EC) / propylene glycol carbonate (PC), uniformly mixed, and then coated on a 9 μm μιη woven fabric (basis weight l〇g/m2) with a 5 μμηη knife, drying naturally Thereafter, the film is formed by hot pressing at a pressure of 9 ° C 5 〇 Kg / cm 2 'take out the film, and DBP is extracted three times with methanol to make a nanopore, and after drying, 0424-A20577TW (N2); 02930011 TW; ericwen 1260811 A composite separator with a film thickness of 85 μm. In addition, Ethyl methyl carbonate (EMC) / Dimethyl carbonate (DMC) is used in the glove compartment (6/ 2/2) 1M LiPF6 (conductivity is 8·9 mS/cm) After the electrolyte is fully infiltrated, the ion conductivity can be obtained by AC impedance test. The working principle is mS/cm. Seventh embodiment In the seventh embodiment of the present invention, the ionic polymer VIEM-r-AN-dPh synthesized in the third embodiment is used to modulate the polymerization according to the fourth embodiment. Electrolyte resin, but replace Ec/pc with _g butyl dibutyl phthalate (DBP), mix well and apply it on non-woven fabric with 5 〇〇 squeegee (base weight 10_2), with 11 〇v infrared light After drying for 3 hours, the film was heat-pressed under the pressure of WCBKg/cm2, and the film was taken out, and the mixture was extracted three times with methanol, and the nano-dosing was obtained. In addition, it is fully infiltrated with EC/EMC/DMC(6/2/2) 1M LiPF6 (conductivity of 8·9 mS/cm) in the glove compartment, and the conductivity of the AC impedance method is u ms. /cm. Compared with the prior art, the composite separator of the present invention is coated with an ionic polymer on the surface of the inorganic nanoparticle, and can be turned into a high-ion conductive channel. Material, so it can effectively improve the __ sub-conductivity, and improve the electrical performance of the battery components. The cloth film made of ultra-fine short fibers can provide ultra-high elongation and penetration strength to form a composite separator with high mechanical strength, and is advantageously applied to battery crimping and production. The composite isolation layer can effectively absorb the electrolyte to improve the conductivity 'and inhibit the lithium metal _dendrite's position and penetration, 啼 high _ pool safety 0424-A20577TW (N2): 02930011 TW; ericwen 1260811 sex. Although the factory has a bribe (four) bribe-aged county as above, but he has earned the invention, anyone who is familiar with the art, without any departure from the spirit and scope of the invention, can be used as a change and retouch, so the Laijia Dangshe of the present invention _ Please specialize _ define the turn. 0424-A20577TW(N2); 02930011TW; ericwen 14 1260811 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of fabricating a composite separator according to an embodiment of the present invention. 2A-2C is a schematic view showing the structure of an ionic monomer in the embodiment of the present invention. 3A-3C is a schematic view showing the structure of an ionic polymer in the embodiment of the present invention. [Description of main component symbols] SI, S2, S3, S4~ steps. 0424-A20577TW(N2);02930011TW;ericwen 15

Claims (1)

修正日期:95.5.23 ‘王本 十、申請專利範圍: 1· 一種複合隔離膜的製作方法,其包含有·· 提供複數個無機奈米粒子; 配製一離子型高分子; 將該離子型高分子與該無機奈米粒子混合,以形成一聚電 解質樹脂; 提供一布膜; 將該聚電解質樹脂塗佈於該布膜上,· 進订-熱壓合製程,使該聚電解質樹脂與該布膜複合成一 複合膜;以及 於該複合膜上形成複數個奈米孔洞。 Η 2.如中請專利範圍第1項所述之複合隔離膜的製作方法, /、中該離子型南分子為一陽離子型高分子。 二申請專利範圍第1項所述之複合隔離膜的製作方法, /、中配衣忒離子型南分子包含有下列步驟: 將乙烯基咪唾(VIM)、4_乙稀基吼咬(4,)或 吡啶(2 - VP)或其與苯乙烯(s 細土 口田口麒枓取人上 N钸腈(AN)或亞克力(AA)系 早體共合成一前趨高分子;以及 將該前趨高分子離子化。 Ή請專利第3項所述之複合隔義的製作 其中配衣該離子型咼分子之方法更包含有· / 使用-第-溶劑溶解前趨高分子, 子之溶液; 攻3 5亥則趨高分 於該溶液内加入CnH2n+lX以進行離子化,其中 ,而X包含有氯(cl)、漠(Br)或峨(工);以及為1至 於完成離子化後再以鹼金屬鹽進行離子交換 0424-A20577TWF1 (N2);02930011TW;ericwen 16 1260811 5.如申請專利範圍第i項所述之複合隔離膜的製作方法, 其中該離子型高分子係包含有-第-單體結構與-第二單體社 構’該第—單體結構係為—離子型單體結構,該第二 = 係包含有笨乙浠(ST)、丙烯腈(網或亞克力(aa)系單:結 構’且该第二單體結構大抵為該第—單體結構的。i 倍。 6 .如申請專利範圍第5項所述之複合隔離膜的製作方法, 其中该第二單體結構大抵為該第一單體結構的至5仵。 7 .如申請專利範圍第1項所述之複合隔離膜的製作方法, 其中该無機奈米粒子包含有二氧化矽(si ^ ^ 或二氧化鈦(叫)之奈米粒子,且該無機奈米=^顆^ 大抵為30至500奈米。 離膜的製作方法, 以形成一含無機奈 8·如申請專利範圍第丄項所述之複合隔 其中形成該聚電解質樹脂包含有下列步驟·· 將該無機奈米粒子混入一第二溶劑内, 米粒之溶液; 將該離子型高分子加入該溶液中,且該離子型高分子相對 於該無機奈米粒子之重量比大抵為5至5 〇 % ;以及 利用均質機混合該溶液,以使該離子型高分子包覆於該無 機奈米粒子表面。 9·如申請專利範圍第8項所述之複合隔離膜的製作方法, 其中形成該聚電解質樹脂另包含有: 於該溶液内加入相對於該無機奈米粒子5〇至4〇〇%重量比 之膠合劑;以及 ° 里 於該溶液内加入相對於該膠合劑重量1〇〇至5〇〇%之造孔 劑。 1〇.如申請專利範圍第9項所述之複合隔離膜的製作方 0424-A20577TWF1 (N2):02930011TW:ericwen 17 1260811 法,其中該膠合劑係為一耐高電位膠合劑,且該膠合劑包含有 聚氟化亞乙稀/六氟丙稀(pvDF/HFp)、聚丙稀腈 (polyacrylonitrile,ΡΆΝ)系、聚苯稀酉旨(p〇lyacrylate) 系、聚氧化乙烯(Polyethylene 〇xide,PE〇)或亞克力系高 分子。 11 ·如申請專利範圍第9項所述之複合隔離膜的製作方 法’其中該造孔劑包含有鄰苯二甲酸二丁酯(di — butyl phthalate,DBP)、鄰苯二 f 酸二辛酯(di — 〇ctyl Phthalate ’ D〇p)、聚氧化乙烯(pE〇)、乙二醇碳酸酯 (Ethylene Carbonate ’EC)或其混合液。 12 ·如申請專利範圍第9項所述之複合隔離膜的製作方 法,其中於該複合膜上形成孔洞之方法係利用一第三溶劑來進 行萃取造孔程序,將該造孔劑自該複合膜内去除,而於該複合 膜上形成複數個孔洞。 13 ·如申明專利範圍第1項所述之複合隔離膜的製作方 法,其中該布膜係利用超細纖維材料以編織、不織布或濕式抄 紙法所製成之薄型纖維布膜。 I4·如申請專利範圍第13項所述之複合隔離膜的製作方 法,其㈣超細纖維材料包含有聚丙稀腈(PAN)、聚丙稀(州 或聚乙烯(PE),且該超細纖維材料之細度大抵為^至丹。 15 ·如申明專利範圍第丄項所述之複合隔離膜的製作方 法,其中該布膜與該聚電解質樹脂之重量比為1/3至3/1。 1 6 ·如申明專利耗圍帛i㉟所述之複合隔離膜的製作方 法,其中該熱壓合製程係於60至13〇。〇下進行。 、 方 法 0424-A20577TWF1 (N2);0293001 nwiericwen 18 1260811 、i8·如申請專利範圍第1項所述之複合隔離膜的製作方 法’其中該複合隔離膜係料三次電池及紹電解電容器用隔離 膜。 …is. —種複合隔離膜,其係根據申請專利範圍第丄項所述 ,複合隔離膜的製作方法所製作而成,且其係由該聚電解質樹 脂與該布膜複合而成之單層構造,該複合㈣膜上具有複數個 奈米孔洞。 2〇· 一種複合隔離膜,其包含有: 一聚電解質樹脂,該聚電解質樹脂包含有: 複數個無機奈米粒子;以及 離子型高分子包覆於該些無機奈米粒子表面;以及 一纖維布膜; /、中〇複a隔離膜係由該聚電解質樹脂與該纖維布膜複合 而成之早層構造,且該複合隔離膜上具有複數個奈米孔洞。 21·如申請專利範圍第2◦項所述之複合隔離膜,其中該離 子型南为子為一陽離子型高分子。 22·如申請專利範圍第2〇項所述之複合隔離膜,其中該離 子,高分子係包含有_第_單體結構與一第二單體結構,該第 一單體結構係為一離子型單體結構,該第二單體結構係包含有 苯^烯(st)、丙烯腈(AN)或亞克力(AA)系單體結構,且該第 二單體結構大抵為該第一單體結構的0至20倍。 23 ·如申請專利範圍第22項所述之複合隔離膜,其中該第 二單體結構大抵為該第一單體結構的0·5至5倍。 2 4 ·如申請專利範圍第2 0項所述之複合隔離膜,其中該無 機奈米粒子包含有二氧切、氧化㈣二氧化鈦之奈米粒子, 且该播機奈米粒子之顆粒大小大抵為3〇至5 〇〇奈米。 0424-A20577TWF1 (N2);02930011TW;ericwen 1Q 1260811 2 5 子刑_ •如申凊專利範圍第2 0項所述之複合隔離膜,其中該離 土呵分子相對於該無機奈米粒子之重量比大抵為5至50%。 φ斤所·如申睛專利範圍第2 0項所述之複合隔離膜,其中該聚 夕河、于月曰另包含有相對於該無機奈米粒子5 0至4〇〇%重量比 之膠合劑。 人卞〃、·如申睛專利範圍第2 6項所述之複合隔離膜,其中該膠 係為一耐高電位膠合劑,且該膠合劑包含有聚氟化亞乙 言八子、斌丙烯腈系、聚苯烯酯系、聚氧化乙烯或亞克力系 28.如申請專利範圍第2〇項所述之複合隔離膜,其中該布 、糸為由起細纖維材料所製成之薄型纖維布膜。 么29.如申請專利範圍第28項所述之複合隔離膜,其中該超 二義維材料包含有聚丙烯腈、聚丙稀或聚乙稀,且該超細纖維 料之細度大抵為0 · 1至10丹。 〇·如申明專利範圍第2 〇項所述之複合隔離直 維布膜與料電解質樹就重量比大㈣1/3至3//。、"義 3 1 ·如申明專利範圍第2 〇項所述之複合隔離膜,豆中★玄複 合隔離膜之膜厚大抵為1Q至1〇〇微米。 、/' ° 32.如申請專利範圍第2〇項所述之複合隔離膜,其中該些 奈米孔洞之孔徑大抵為5〇至5〇〇奈米。 一 一 33.如申請專利範圍第2〇項所述之複合隔離膜,其中該複 合隔離胰係作為二次電池及鋁電解電容器用隔離膜。 0424-A20577TWF1 (N2):02930011 TW;ericwen 20Amendment date: 95.5.23 'Wang Ben 10, patent application scope: 1. A method for manufacturing a composite separator, which comprises providing a plurality of inorganic nanoparticles; preparing an ionic polymer; Molecularly mixed with the inorganic nanoparticle to form a polyelectrolyte resin; providing a cloth film; coating the polyelectrolyte resin on the cloth film, and performing a binding-hot pressing process to make the polyelectrolyte resin The film is composited into a composite film; and a plurality of nanopores are formed on the composite film. Η 2. The method for producing a composite separator according to the first aspect of the patent, wherein the ionic south molecule is a cationic polymer. In the method for preparing the composite separator according to the first aspect of the patent application, the medium-coated ionic ion-type south molecule comprises the following steps: a vinyl imida (VIM), a 4-ethylene group bite (4) , or pyridine (2-VP) or its synthesis of a precursor polymer with styrene (s) Precursor polymer ionization. The preparation of the composite barrier described in Patent No. 3, wherein the method of coating the ion-type ruthenium molecule further comprises / using - the first solvent to dissolve the precursor polymer, the solution of the sub-solution Attacking 3 5 Hz, the high score is added to the solution to add CnH2n + lX for ionization, wherein X contains chlorine (cl), desert (Br) or bismuth (work); and 1 to complete ionization After that, the ion exchange is carried out with an alkali metal salt. 0424-A20577TWF1 (N2); 02930011 TW; ericwen 16 1260811 5. The method for producing a composite separator according to claim i, wherein the ionic polymer system comprises - The first monomer structure and the second monomer structure 'the first monomer structure is an ion type single The structure, the second = contains stupid (ST), acrylonitrile (mesh or acrylic (aa) series: structure ' and the second monomer structure is substantially equal to the first monomer structure. 6. The method of fabricating a composite separator according to claim 5, wherein the second monomer structure is substantially up to 5 Å of the first monomer structure. 7. As described in claim 1 The method for producing a composite separator, wherein the inorganic nanoparticle comprises nano particles of cerium oxide (si ^ ^ or titanium dioxide), and the inorganic nanometer is generally 30 to 500 nm. The method for preparing the release film to form a composite containing the inorganic naphthalene. The composite separator according to the above application of the invention has the following steps: the inorganic nanoparticle is mixed into a second solvent. a solution of rice particles; the ionic polymer is added to the solution, and the weight ratio of the ionic polymer to the inorganic nanoparticles is about 5 to 5% by weight; and the solution is mixed by a homogenizer so that The ionic polymer is coated on the inorganic The method for producing a composite separator according to claim 8, wherein the forming of the polyelectrolyte resin further comprises: adding 5 to 4 in the solution relative to the inorganic nanoparticle a peptizer having a weight ratio of 〇〇% by weight; and a pore former of from 1% to 5% by weight based on the weight of the binder in the solution. 1〇. The compound according to claim 9 The separator is manufactured by 0424-A20577TWF1 (N2): 02930011TW: ericwen 17 1260811, wherein the adhesive is a high-potential resistant adhesive, and the adhesive comprises polyfluorinated ethylene/hexafluoropropylene ( pvDF/HFp), polyacrylonitrile, polyfluorene, polyethylene oxide (PE) or acrylic polymer. 11. The method for producing a composite separator according to claim 9, wherein the pore former comprises dibutyl phthalate (DBP), dioctyl phthalate (di — 〇ctyl Phthalate ' D〇p), polyethylene oxide (pE〇), ethylene glycol carbonate (Ethylene Carbonate 'EC) or a mixture thereof. The method for producing a composite separator according to claim 9, wherein the method of forming a hole in the composite film is performed by using a third solvent to perform an extraction and pore-forming procedure, and the pore-forming agent is self-compositing The film is removed, and a plurality of holes are formed on the composite film. The method of producing a composite separator according to claim 1, wherein the film is a thin fiber cloth film made of a microfiber material by a weaving, non-woven fabric or wet papermaking method. I4. The method for producing a composite separator according to claim 13, wherein the (4) ultrafine fiber material comprises polyacrylonitrile (PAN), polypropylene (state or polyethylene (PE), and the microfiber The method of manufacturing the composite separator according to the above-mentioned claim, wherein the weight ratio of the film to the polyelectrolyte resin is 1/3 to 3/1. 1 6 · The method for manufacturing a composite separator according to the patent 耗i35, wherein the thermocompression bonding process is carried out at 60 to 13 Torr. The method is 0424-A20577TWF1 (N2); 0293001 nwiericwen 18 1260811 The method for producing a composite separator according to the first aspect of the patent application, wherein the composite separator is a three-cell battery and a separator for a thin electrolytic capacitor. ...is a composite separator, which is applied according to the application. According to the third aspect of the patent, a method for fabricating a composite separator, which is a single layer structure in which the polyelectrolyte resin is combined with the cloth film, and the composite (four) film has a plurality of nanopores 2〇· A composite separator comprising: a polyelectrolyte resin comprising: a plurality of inorganic nanoparticles; and an ionic polymer coated on the surface of the inorganic nanoparticles; and a fiber cloth film; /, the intermediate a a separation film is an early layer structure composed of the polyelectrolyte resin and the fiber cloth film, and the composite separator has a plurality of nanopores on the composite separator. 21 · Patent Application No. 2 The composite separator, wherein the ionic south is a cationic polymer. The composite separator according to claim 2, wherein the ion, the polymer contains _ a monomer structure and a second monomer structure, the first monomer structure being an ionic monomer structure, the second monomer structure comprising benzoic acid (st), acrylonitrile (AN) or acrylic ( AA) is a monomer structure, and the second monomer structure is substantially 0 to 20 times that of the first monomer structure. The composite separator according to claim 22, wherein the second monomer The structure is mostly 0 of the first monomer structure 5 to 5. The composite separator according to claim 20, wherein the inorganic nanoparticle comprises a nanoparticle of dioxo-cut, oxidized (tetra)titanium dioxide, and the seed nanoparticle The particle size is generally from 3 〇 to 5 〇〇. 0424-A20577TWF1 (N2); 02930011TW; ericwen 1Q 1260811 2 5 刑 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The weight ratio of the molecule to the inorganic nanoparticle is about 5 to 50%. The composite separator according to the item 20 of the patent application scope, wherein the poly Xihe, Yu Yuet Further, a binder is included in an amount of from 50 to 4% by weight based on the inorganic nanoparticles. The composite separator according to claim 26, wherein the adhesive is a high-potential resistant adhesive, and the adhesive comprises polyfluorinated polyethylene, acrylonitrile The composite separator according to claim 2, wherein the cloth and the crucible are a thin fiber cloth film made of a fine fiber material. . The composite separator according to claim 28, wherein the super-dimensional material comprises polyacrylonitrile, polypropylene or polyethylene, and the fineness of the microfiber material is substantially 0. 1 to 10 Dan. 〇· As stated in the second paragraph of the patent scope, the composite isolation straight film and the electrolyte tree have a large weight ratio (four) 1/3 to 3//. , "Yi 3 1 · The composite separator described in the second paragraph of the patent scope, the film thickness of the Bean Complex ★ is generally 1Q to 1 〇〇 micron. The composite separator of claim 2, wherein the pores of the nanometer pores are substantially 5 Å to 5 Å. The composite separator according to claim 2, wherein the composite isolating pancreas is used as a separator for a secondary battery and an aluminum electrolytic capacitor. 0424-A20577TWF1 (N2): 02930011 TW; ericwen 20
TW093140982A 2004-12-28 2004-12-28 Composite separator and method thereof TWI260811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW093140982A TWI260811B (en) 2004-12-28 2004-12-28 Composite separator and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093140982A TWI260811B (en) 2004-12-28 2004-12-28 Composite separator and method thereof

Publications (2)

Publication Number Publication Date
TW200623489A TW200623489A (en) 2006-07-01
TWI260811B true TWI260811B (en) 2006-08-21

Family

ID=37874861

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093140982A TWI260811B (en) 2004-12-28 2004-12-28 Composite separator and method thereof

Country Status (1)

Country Link
TW (1) TWI260811B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623539B2 (en) 2010-12-06 2014-01-07 Industrial Technology Research Institute Multilayer battery separator and method for manufacturing the same
US9257725B2 (en) 2011-12-20 2016-02-09 Industrial Technology Research Institute Separator for lithium cells having porous and cured layers on a non-woven support

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587335B (en) 2011-10-19 2017-06-11 國立成功大學 Supercapacitor with gel electrolyte of poly (ethylene glycol) blending poly (acrylonitrile) and manufacturing method thereof
CA2787584A1 (en) 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623539B2 (en) 2010-12-06 2014-01-07 Industrial Technology Research Institute Multilayer battery separator and method for manufacturing the same
US9257725B2 (en) 2011-12-20 2016-02-09 Industrial Technology Research Institute Separator for lithium cells having porous and cured layers on a non-woven support

Also Published As

Publication number Publication date
TW200623489A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
CN109509857B (en) Porous lithium ion battery diaphragm with interpenetrating network structure and application thereof
Wei et al. Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries
CN109473609B (en) Organic/inorganic crosslinked composite lithium ion battery diaphragm and preparation method and application thereof
JP5524330B2 (en) Polymer composite electrolyte, battery containing polymer composite electrolyte, and method for preparing the same
CN109494390A (en) A kind of modified solid electrolyte membrane and preparation method thereof and lithium battery
CN105633326B (en) Aromatic polyamide composite diaphragm
He et al. Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane
TW200816545A (en) Separator for battery with gel polymer layer
TW200814412A (en) Electrode having porous active coating layer, and manufacturing method thereof and electrochemical device containing the same
US20070020499A1 (en) Proton conducting electrolyte membrane and production method thereof and solid polymer fuel cell using the same
JP2012209234A (en) Secondary battery fibrous separation film and manufacturing method for the same
JP2019530128A (en) Ion conductive material for electrochemical power generation apparatus and manufacturing method
JPWO2016047360A1 (en) Metal secondary battery separator
KR20190008851A (en) Gel polymer coated separator of multi-core-mono shell structure, its manufacturing method and its application
JP5994476B2 (en) Method for producing composite polymer electrolyte membrane
JP6316417B2 (en) Porous separation membrane for electrochemical device comprising porous substrate with inverted opal structure and method for producing the same
TW201904867A (en) Carbon material, manufacturing method thereof, electrode material for electricity storage device, and power storage device
Liu et al. Electrospun Silsequioxane-grafted PVDF hybrid membranes for high-performance rechargeable lithium batteries
CN105619991B (en) A kind of composite lithium ion cell diaphragm material and preparation method thereof
JP2014203676A (en) Electrode-integrated separator and method of manufacturing the same
JP2007257904A (en) Separator for electronic component and electronic component
JP6302400B2 (en) Power storage device separator, power storage device, and lithium ion secondary battery
TWI260811B (en) Composite separator and method thereof
CN100506528C (en) Composite isolated film and preparation method thereof
JP2004273285A (en) Solid polyelectrolyte, manufacturing method thereof, and solid polymer fuel cell using the same