TWI260219B - Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method - Google Patents

Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method Download PDF

Info

Publication number
TWI260219B
TWI260219B TW93124181A TW93124181A TWI260219B TW I260219 B TWI260219 B TW I260219B TW 93124181 A TW93124181 A TW 93124181A TW 93124181 A TW93124181 A TW 93124181A TW I260219 B TWI260219 B TW I260219B
Authority
TW
Taiwan
Prior art keywords
ventilation
respirator
per minute
breathing
mode
Prior art date
Application number
TW93124181A
Other languages
Chinese (zh)
Other versions
TW200605860A (en
Inventor
Chin-Pyng Wu
Li-Chen Fu
Shih-Hsing Yang
Chien-Wen Chen
Junius Peng
Original Assignee
Chin-Pyng Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chin-Pyng Wu filed Critical Chin-Pyng Wu
Priority to TW93124181A priority Critical patent/TWI260219B/en
Publication of TW200605860A publication Critical patent/TW200605860A/en
Application granted granted Critical
Publication of TWI260219B publication Critical patent/TWI260219B/en

Links

Abstract

This invention is related to provide one kind of method for automatically adjusting and controlling ventilation quantity per minute of a respirator. It is able to automatically detect the required ventilation quantity of users and automatically adjust and control to supply the most suitably the lowest ventilation quantity per minute to avoid man-made erroneous calculation or wrong experienced determination. This invention also includes a respirator with capability of automatically adjusting and controlling ventilation quantity per minute and effectively decreasing the breathing effort of users.

Description

1260219 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種自動調控人工呼吸器每分鐘通氣量之方 法’可用於順應支持型通氣(Adapt ive support vent i 1 at ion, ASV) 模式的呼吸器’更具體而言,本發明技術是關於偵測並自動調控 該類呼吸器來提供降低使用者呼吸作功之合適的最低每分鐘通 Λ ϊ(Appropriate Minimal Minute Volume 7 AMMV) ° 【先前技術】 人工呼吸器是一種取代人體呼吸器官幫浦作用的機械裝 置’主要目的是讓呼吸衰竭病患得到通氣(Ventilation)及氧 氣治療(Oxygenation ),同時降低呼吸作功(work of breathing),來維持適當的血中二氧化碳及氧氣含量,讓病患呼 吸不費力。人工呼吸器的進展,也以前述三個方向為目標不斷的 研發。 人工呼吸器在氧氣治療方面的作用方式有呼氣末端正壓 (Positive End Expiratory Pressure,PEEP),是指讓人工呼 吸器遞送一定容積或流量氣體進入病患肺部後,使病患在呼氣末 時呼吸道及肺泡壓大於大氣壓,目的是將原來塌陷的呼吸道和肺 泡張開,恢復其氣體交換功能。在通氣方面,常使用的模式有容 積強制通氣模式(Continue Mandatory Ventilation, CMV)、壓 力強制通氣模式(Pressure Control Ventilation, PCV)、同步 間歇性強制通氣模式(Synchronized Intermittent Mandatory Vent i lati on,SI MV)、以及由病患自行啟動吸氣及結束吸氣的壓 力支持型通氣模式(Pressure support ventilation,PSV)。 在使用人工呼吸器時必須設定許多參數來模擬病人自行呼 吸時的狀態,早期的人工呼吸器設定多為固定參數,然而病人的 呼吸狀態並非恆定,因此常在突然發生呼吸窘迫時與呼吸器配合 1260219 不良而導致病人的不適,且呼吸器無法正常作用而發生警報,造 成病人、照護者及醫療人員的慌亂。呼吸模式發展至PSV由病患 自行啟動吸氣及結束吸氣後,從此人工呼吸器步入由病患自主的 時代,其後的改良包括:模擬自發性呼吸的特性,逐步改善吸氣 早期啟動的靈敏度,吸氣中期氣流的流速,吸氣晚期吸氣結束的 設定、並進而以電腦資訊隨時偵測病患的呼吸參數,以雙控模式 (dual control)調整,達到預設的吸氣容積、吸氣氣流量及每分 鐘通氣量(Minute volume, MV)。 瑞士 Hami 1 ton Gal i leo公司所生產的順應支持型通氣 (Adaptive support ventilation,ASV)呼吸裝置,是一種結合 同步間歇性強制通氣模式(SIMV)與PSV模式,可使呼吸器與使 用者的呼吸同步,相較於其他雙控模式的人工呼吸器,ASV呼吸 模式最大的突破在於其可藉由控制每分鐘通氣量以及機器控制 的呼吸速率來因應患者的需求。操作時,醫護人員僅需輸入病患 的理想體重及通氣支持百分比,呼吸器即可自動操控,以符合病 患的通氣需要,但是此呼吸器的缺點在於:病患需要的每分鐘通 氣量,需要由醫護人員依經驗估算,不同病患之每分鐘通氣量會 隨著其年紀、呼吸道及肺部健康狀況、需氧量等種種變數而有所 差異,這些都容易導致醫護人員的判斷與病患實際需求不符,而 無法達到理想的通氣功能,該呼吸器之使用手冊中雖提及藉由觀 察動脈血二氧化碳分壓(arterial blood patial pressure of carbon dioxide PaC〇2) 來調整每分鐘通氣量,然而影響每分鐘通氣量的因子除了二氧化 碳分壓之外,尚有肺順應性(lung compliance)、呼吸道的通暢、 氧氣消耗量、呼吸功及使用者之情緒等,若只評估血中二氧化碳 分壓並無法完全反應病患對於通氣量的需求。 另外,同一位病患所需之每分鐘通氣量也會隨著其情緒或健 康狀況變化而有所改變,在預設的每分鐘通氣量下,ASV呼吸模 1260219 式會自動調整自發性呼吸壓力(pressure support)及強制性壓力 呼吸(pressure control)來幫助病患來達到呼吸做功最小的理想 呼吸型態,然而若是預設的每分鐘通氣量不符合病患呼吸需求, 就必須由醫護人員再次調整每分鐘通氣量百分比幫助病患達到 呼吸做功最小的理想呼吸型態。 因此,如何發展一理想的監控及供氣調整方法,使人工呼吸 器的運作符合個別使用者的需求為目前迫切需要的技術。 【發明内容】 有鑑於習知人工呼吸器技術之缺失,本發明之目的在於提供 一種自動調控人工呼吸器每分鐘通氣量之方法,可自動偵測並供 應合適的最低每分鐘通氣量(A丽V)。 具體而言,本發明之目的是一種自動調控人工呼吸器每分鐘 通氣量之方法,包括下列步驟:連接人工呼吸器至使用者;提供 前述人工呼吸器預設之每分鐘通氣量;啟動前述人工呼吸器並同 時監測使用者的呼吸需求;以及配合使用者呼吸需求的改變,前 述人工呼吸器能夠自動將預設的每分鐘通氣量調整為新的每分 鐘通氣量。 前述的方法可應用於結合有SIMV通氣模式與PSV模式之呼 吸器種類,例如:順應支持型通氣(Adaptive support ventilation, ASV)呼'吸器。其中新的每分鐘通氣量是合適的最 低每分鐘通氣量(AMMV),是使ASV呼吸模式出現強制性呼吸次 數大於零,最佳的狀態為強制性呼吸次數介於〇至5之間的每分 鐘通氣量。 本發明的再一目的是一種自動調控人工呼吸器每分鐘通氣 量之方法,包括下列步驟:連接一結合有SIMV通氣模式與PSV 模式之人工呼吸器至使用者;提供前述人工呼吸器一預設之每分 鐘通氣量;啟動前述人工呼吸器並同時監測使用者的呼吸需求; 1260219 以及當使用者所需之每分鐘通氣量高於或低於前述預設之每分 鐘通氣量時,前述人工呼吸器能夠自動調控每分鐘通氣量,以達 到合適使用者的最低每分鐘通氣量。 本發明之另一目的是關於一種設定可自動調控每分鐘通氣 量後,可降低使用者呼吸作功的人工呼吸器。 本發明之又一目的在於一種可自動調控每分鐘通氣量之人 工呼吸器,包括:一人工呼吸器,含有一訊號接收單元,用於接 收使用者呼吸狀態改變時產生之訊號;以及一資料處理程式;其 特徵在於前述資料處理程式是負責判讀來自訊號接收單元的訊 號,並計算出合適的最低每分鐘通氣量,再自動回饋調控前述人 工呼吸器之每分鐘通氣量。其中前述之人工呼吸器是採用ASV呼 吸模式;且其中前述合適的每分鐘通氣量是為使ASV呼吸模式出 現強制性呼吸次數大於零,最佳的狀態是強制性呼吸次數介於〇 至5之間時之每分鐘通氣量。 【實施方式】 本發明之方法適用於結合有SIMV模式與PSV模式之ASV模 式人工呼吸器。當此類人工呼吸器的PSV模式所提供之每分鐘通 氣量大於或等於使用者所需之每分鐘通氣量時,使用者將感到舒 適而減低其自發性的呼吸次數,此時,呼吸器的SIMV模式將會 自行啟動,藉由增加機器控制的強制性呼吸次數來彌補因為使用 者呼吸減慢而減少的每分鐘通氣量。然而當所預設的每分鐘通氣 量高於或低於使用者的需求時,習知的ASV人工呼吸器需要醫護 人員再度設定一合適的最低每分鐘通氣量,本發明的方法便是利 用一資料處理程式控制前述ASV人工呼吸器,該程式可接收並判 讀來自使用者的呼吸,計算出合適的最低每分鐘通氣量,之後再 自動回饋調控前述ASV人工呼吸器之每分鐘通氣量。 1260219 本發明之“合適的最低每分鐘通氣量’’是定義為使AS V呼吸 模式出現強制性呼吸次數大於羊’表隹狀態是強制性呼吸次數介 於0至5之間的每分鐘通氣量,該通氣量也是讓使用者感覺舒適 的最低限度之通氣量。 本發明提供一種方法,讓ASV呼吸模式之人工呼吸器可隨時 依照使用者的呼吸需求自動調控每分鐘通氣量,不需要時常以人 為手動操作,該自動調控之每分鐘通氣量便是以達到前述“合適的 最低每分鐘通氣量”為標準。 有關本發明之描述及其他技術内容、特點與功效,在以下配 合參考圖式之較佳貫施例的詳細§允明中,將可清楚的明白。以下 實施例適用來進一步闡述本發明之優點,並非用於限制本發明之 申請專利範圍。 實施例一、利用本發明之呼i篆應^合適的最低每分鐘通氣 i 材料與方法 使用者 本實施例經過國防醫學院醫學人體試驗委員會所評估通 過’並在取得所有參與病患的受試者同意書(written inf〇rmed consent)之情況下進行。如表一所示參與實驗的22位使用者是 因急性呼吸衰竭而在加護病房接受插管(intubated)或氣管造 口術(tracheostomized)治療’並且在進行本實施例之前就已 使用舊有的呼吸器輔助呼吸。所有使用者均能自發性呼吸且處於 穩定的血流動力學及血氧濃度狀態(適當給予氧氣時,經皮血氧 飽和度維持95%以上;Sa〇2>95% )。為確保安全起見,本實驗排 除有癲癇或腦血管病史、近期冠狀動脈梗塞、惡性低血氧症 (refractory hypoxemia)或低血壓(hypotension)的使用者。 表一、使用者資料 1260219 性別 人數 女性 8 男性 14 診斷病因 慢性肺部阻塞(C0PD) 3 肺炎(pneumonia) 14 敗血症(sepsis) 2 肋膜積水(pleural effusion) 1 肺癌(lung Ca). 1 肝硬化(Liver cirrhosis) 1 呼吸道狀態 氣管切開術(tracheotomy) 10 氣管内插管(endotracheal tube) 12 平均年齡 72.1 士 14· 3 平均呼吸器使用天數 35土5· 4 平均住院天數 40· 1 士9· 2 平均身高 160土 10. 6 理想平均體重 56· 2士7· 51260219 IX. Description of the Invention: [Technical Field] The present invention relates to a method for automatically regulating the ventilation per minute of a respirator, which can be used in an Adaptive Support Ventilation (ASV) mode. Respirators' More specifically, the present technology relates to detecting and automatically regulating such respirators to provide a suitable minimum per minute ventilation (Appropriate Minimal Minute Volume 7 AMMV). Technology] The artificial respirator is a mechanical device that replaces the action of the human respiratory organs. The main purpose of the respirator is to provide Ventilation and Oxygenation for respiratory failure patients, while reducing the work of breathing. Maintain proper blood carbon dioxide and oxygen levels, allowing patients to breathe effortlessly. The progress of the artificial respirator is also continuously researched and developed in the above three directions. The mode of action of the artificial respirator in oxygen therapy is Positive End Expiratory Pressure (PEEP), which means that the patient is exhaled after the artificial respirator delivers a certain volume or flow of gas into the patient's lungs. At the end of the respiratory tract and alveolar pressure greater than atmospheric pressure, the purpose is to open the original collapse of the respiratory tract and alveolar, to restore its gas exchange function. In ventilation, the commonly used modes are Continuous Mandatory Ventilation (CMV), Pressure Control Ventilation (PCV), and Synchronized Intermittent Mandatory Vent i lati on (SI MV). ), and a pressure-supported ventilation mode (PSV) in which the patient initiates inhalation and ends inhalation. When using a respirator, many parameters must be set to simulate the state of the patient's self-breathing. Early artificial respirator settings are mostly fixed parameters, but the patient's breathing state is not constant, so often cooperating with the respirator in the event of sudden respiratory distress 1260219 Inadequate patient discomfort, and the respirator does not function properly and an alarm occurs, causing panic among patients, caregivers, and medical personnel. The breathing pattern develops to the PSV. After the patient initiates inhalation and ends the inhalation, the artificial respirator enters the era of patient autonomy. Subsequent improvements include: simulating the characteristics of spontaneous breathing, and gradually improving the early start of inhalation. The sensitivity, the flow rate of the mid-inhalation airflow, the end of inhalation inhalation, and the computer information to detect the patient's breathing parameters at any time, adjusted in dual control mode to achieve the preset inspiratory volume. Inspiratory flow and minute ventilation (Minute volume, MV). The Adaptive Support Ventilation (ASV) breathing apparatus manufactured by Hami 1 ton Gal i leo, Switzerland, is a combination of simultaneous intermittent forced ventilation mode (SIMV) and PSV mode that allows breathing of the respirator and the user. Synchronous, the biggest breakthrough in ASV breathing mode compared to other dual-control mode respirators is that it can respond to patient needs by controlling minute ventilation and machine-controlled breathing rate. During operation, the medical staff only needs to input the patient's ideal weight and ventilation support percentage, and the respirator can be automatically controlled to meet the patient's ventilation needs, but the disadvantage of this respirator is: the minute ventilation required by the patient, It is estimated by the medical staff that the ventilation per minute of different patients will vary with age, respiratory and lung health, oxygen demand and other variables, which can easily lead to the judgment and illness of medical staff. If the actual demand does not match, and the ideal ventilation function cannot be achieved, the manual of the respirator mentions that the ventilation per minute is adjusted by observing the arterial blood patial pressure of carbon dioxide PaC〇2. In addition to the partial pressure of carbon dioxide, factors affecting ventilation per minute include lung compliance, airway patency, oxygen consumption, respiratory work, and user mood. If only the partial pressure of carbon dioxide in the blood is assessed, The patient's need for ventilation is not fully reflected. In addition, the minute ventilation required for the same patient will change with changes in mood or health. The ASV breathing mode 1260219 automatically adjusts spontaneous breathing pressure under the preset minute ventilation. (pressure support) and mandatory pressure control to help patients achieve the ideal breathing pattern with minimal respiratory effort. However, if the preset ventilation per minute does not meet the patient's breathing needs, it must be re-medicated by the medical staff. Adjust the percentage of ventilation per minute to help patients achieve the ideal breathing pattern with minimal respiratory effort. Therefore, how to develop an ideal monitoring and gas supply adjustment method to make the operation of the artificial respirator meet the needs of individual users is a technology that is urgently needed at present. SUMMARY OF THE INVENTION In view of the lack of conventional respirator technology, the present invention aims to provide a method for automatically regulating the ventilation per minute of a respirator, which can automatically detect and supply a suitable minimum per minute ventilation (A Li V). Specifically, the object of the present invention is a method for automatically regulating the ventilation per minute of a respirator, comprising the steps of: connecting a respirator to a user; providing a preset per minute ventilation of the respirator; and starting the artificial The respirator simultaneously monitors the user's breathing needs; and in response to changes in the user's breathing requirements, the respirator automatically adjusts the preset minute ventilation to a new per minute ventilation. The foregoing method can be applied to a type of respirator incorporating a SIMV ventilation mode and a PSV mode, for example, an Adaptive support ventilation (ASV) caller. The new minute ventilation is the appropriate minimum minute ventilation (AMMV), which is to make the mandatory breathing rate of the ASV breathing mode greater than zero. The best state is that the mandatory breathing number is between 〇 and 5. Minute ventilation. A further object of the present invention is a method for automatically regulating the ventilation per minute of a respirator, comprising the steps of: connecting a respirator incorporating a SIMV ventilation mode and a PSV mode to a user; providing the artificial respirator as a preset Ventilation per minute; activate the aforementioned respirator and simultaneously monitor the user's breathing requirements; 1260219 and the artificial respiration when the per minute ventilation required by the user is higher or lower than the preset per minute ventilation The device automatically adjusts the minute ventilation to achieve the lowest per minute ventilation for the appropriate user. Another object of the present invention is to provide a respirator that can reduce the breathing work of a user after automatically adjusting the ventilation per minute. Another object of the present invention is an artificial respirator capable of automatically regulating the ventilation per minute, comprising: a artificial respirator comprising a signal receiving unit for receiving a signal generated when a user's breathing state changes; and a data processing The program is characterized in that the data processing program is responsible for interpreting the signal from the signal receiving unit, calculating an appropriate minimum minute ventilation, and automatically feeding back the minute ventilation of the artificial respirator. Wherein the aforementioned artificial respirator adopts an ASV breathing mode; and wherein the foregoing suitable per minute ventilation is to make the mandatory breathing number of the ASV breathing mode greater than zero, and the optimal state is that the mandatory breathing number is between 〇 and 5 Ventilation per minute between hours. [Embodiment] The method of the present invention is applicable to an ASV mode artificial respirator incorporating a SIMV mode and a PSV mode. When the breather per minute provided by the PSV mode of such a respirator is greater than or equal to the per minute ventilation required by the user, the user will feel comfortable and reduce the number of spontaneous breathing, at this time, the respirator The SIMV mode will start on its own, by increasing the number of mandatory breaths controlled by the machine to compensate for the reduced minute ventilation due to slower breathing. However, when the preset minute ventilation is higher or lower than the user's needs, the conventional ASV respirator requires the medical staff to set a suitable minimum minute ventilation again. The method of the present invention utilizes one. The data processing program controls the aforementioned ASV respirator, which receives and interprets the breath from the user, calculates the appropriate minimum minute ventilation, and then automatically feeds back the minute ventilation of the aforementioned ASV respirator. 1260219 The "appropriate minimum minute ventilation" of the present invention is defined as the number of mandatory breaths in the AS V breathing mode that is greater than the sheep's condition. The number of mandatory breaths is between 0 and 5 per minute. The ventilation is also the minimum ventilation that makes the user feel comfortable. The present invention provides a method for the ASV breathing mode artificial respirator to automatically adjust the ventilation per minute according to the user's breathing demand, without the need to Manually operated, the automatically regulated per minute ventilation is based on the aforementioned "appropriate minimum minute ventilation". The description of the present invention and other technical contents, features and effects are as follows with reference to the drawings. The detailed description of the preferred embodiments of the present invention will be clearly understood. The following examples are intended to further illustrate the advantages of the present invention and are not intended to limit the scope of the claims of the present invention. i篆 should be suitable for the minimum per minute ventilation i material and method user this embodiment passed the medical human body test of National Defense Medical College The committee evaluated and passed the case of obtaining written consent to all patients (written inf〇rmed consent). The 22 users who participated in the experiment as shown in Table 1 were treated for acute respiratory failure. The ward received an intubated or tracheostomized treatment and used the old respirator assisted breathing prior to performing this example. All users were able to spontaneously breathe and were in stable blood flow. Learning and blood oxygen concentration status (percutaneous oxygen saturation is maintained above 95% when appropriate oxygen is given; Sa〇2 > 95%). To ensure safety, this study excludes history of epilepsy or cerebrovascular disease, recent coronary artery Infarction, refractory hypoxemia or hypotension users Table 1. User data 1260219 Gender number Female 8 Male 14 Diagnostic cause Chronic pulmonary obstruction (C0PD) 3 Pneumonia 14 Septicemia (sepsis) 2 pleural effusion 1 lung cancer (lung Ca). 1 liver cirrhosis 1 respiratory tract state tracheotomy (tracheotomy) 10 endotracheal tube 12 mean age 72.1 ± 14 · 3 average respirator days 35 soil 5 · 4 average hospital days 40 · 1 ± 9 · 2 average height 160 soil 10. 6 ideal average weight 56· 2士7· 5

實驗步驟 本實施例使用Hami 1 ton Gal i leo公司所生產的ASV呼吸模式 之人工呼吸器來進行以下的實驗,但本發明之方法不限於該公司 所生產之順應支持型通氣呼吸器,亦可適用於他種結合SIMV模式 與PSV模式之呼吸器,或由其他公司所生產、可達到相同功效之 人工呼吸器。 如第一之流程所示,本發明之自動調控人工呼吸器每分鐘通 氣量之方法包括下列步驟:連接一人工呼吸器至使用者;提供前 述人工呼吸器一預設之每分鐘通氣量;啟動前述人工呼吸器並同 時監測使用者的呼吸需求;配合使用者呼吸需求的改變,前述人 工呼吸器自動將預設的每分鐘通氣量調至新的每分鐘通氣量。 前述之人工呼吸器為一種ASV模式呼吸器。 10 1260219 前述所預設之每分鐘通氣量是利用理想體重所計算出的。 ASV 100%疋依照娜模式原始設計,定義成人每公斤 0-lL/kg。男性的理想體重計算為(身高(公分)_8〇)復7;女: 的理想體重計算為(身高(公分)_7())机6。須特別說明的是, ASV胸僅為本研究中所使用,本項發明並不-定要以ASV100 %作為初始預設之每分鐘通氣量。 田ASV100%狀怨維持約數分鐘後,本發明的呼吸器可監測使 用者的需求,找出使ASV呼吸模式出現強制性呼吸次數大於零, 且介於0至5之間的每分鐘通氣量,本發明將該值定為目標點 (Ρτ)。該目標點即為合適的最低每分鐘通氣量(AMMV)。當找到 目標點後,本發明之呼吸器即以該點作為新設定的每分鐘通氣量 供氣給使用者,並持續偵測使用者的呼吸需求,當該目標點無法 滿足使用者的呼吸需求時,本發明之呼吸器會自動重複前述的步 驟,尋找新的目標點,改變供應的每分鐘通氣量來達到使用者的 呼吸需求。 复與例二、測試不同的每分鐘通氣量對使用者舒適度的影孿 實驗步驟 本貫施例依序測試在五種不同的每分鐘通氣量情況下,使用 者的舒適度。五種每分鐘通氣量分別為ASV100%、目標點(ρτ)、 目標點調升20% (Ρτ+20)、目標點減少2〇% (ρτ_20)以及最後 回到ASV100%。首先將每分鐘通氣量設定於ASV1〇〇%狀態並維 持十分鐘,接著調整每分鐘通氣量,當ASV呼吸模式出現強制性 呼吸次數大於零時,且介於0至5之間時,將該值定為目標點(ρτ)。 之後,再隨機將每分鐘通氣量自目標點調升或調降2〇% ( ρτ ± 20),五分鐘後再將每分鐘通氣量自目標點調升或調降2〇% (ρτ 士 2〇 )’最後再返回到ASV100%狀態。於每次調整五分鐘後開始進 行一分鐘的紀錄,若目標點控制呼吸次數出現於ASV100%或大於 1260219 ASV350%時,該紀錄則不列入統計。 測量與資料收集 在呼吸器的Y形管與氣管内插管間設置小型呼吸流速測量儀 及壓力感測器(VarFlax,BICORE Monitoring System,Irvine,CA, US A),監測氣流及近病人端呼吸道壓力。每位病患均放置食道球 導管(esophageal balloon catheter ),使氣球(1〇公分長)充氣膨 脹0.6mL,並置於食道末端以測量食道内部壓力的改變,利用前 項肺生理監視器(Bicore CP-100 pulmonary monitor)紀錄肺部 的呼吸生理狀態。不過由於圖像紀錄無法同時與數據資料顯示於 螢幕上,因此必須使用資訊軟體(PowerLab,ADInstrumentsPty Ltd, Australia)於線上收集類比訊號並儲存於PowerMac電腦内。 計算與分析 首先排除一些干擾因素(如:咳嗽、呑嚥或食道痙攣)所造成 不正常訊號。計算整個過程的每分鐘平均潮氣量(tidal volume, Vt)、呼吸次數(respiratory rate,RR)以及每分鐘通氣量(Ve)。 至於σ乎吸的壓力與時間之乘積(pressure-time product,PTP) 是測量吸氣時吸氣壓力的變化與此壓力變化所持續的時間,PTP 可直接反映呼吸作功的大小。呼吸中樞趨力(Ρ0. 1)表示吸氣動 作開始100毫秒内呼吸道壓力的改變。 實驗結果 如第二圖所示,當每分鐘通氣量達到目標點時,呼吸器控制 的呼吸次數增加,而使用者自發的呼吸次數急遽下降,此時每分 鐘通氣量仍維持不變。表二是摘要前述測試的五種不同每分鐘通 氣量之操作結果,在最初設定為ASV100%時,其平均壓力支持型 通氣量為17. 3 士 3. 5 cm Η2〇,病患自發的呼吸次數為每分鐘20. 7 土 4· 4次,機器控制的呼吸速率為零,然而機器的目標每分鐘通氣 量(6· 1 土 2.2升/分鐘)低於病患實際的每分鐘通氣量(9· 1 土 1.8 12 1260219 升/分鐘)。 ^當每分鐘通氣量增加至目標點(Ρτ)成為Asvl59 〇 土 33.5% 及壓力支持值為21· 5 土 5· 0 cm h2〇時,呼吸器的目標每分鐘通氣 量(9·6±2·2升/分鐘)幾乎等同於病患實際的每分鐘通氣量(9·8 ±1·9升/分鐘),且呼吸器控制的呼吸次數增加至每分鐘7ΐ±5·8 次,病患自發的呼吸次數減少為每分鐘133±7.7次。 s每分4里通氣s自目標點調升2〇% (Ρτ·)成為ASV178 〇± 33·6%以及麼力支持值為22.4 土 5.3 cm H20時,該呼吸器的目標每 分鐘通氣量(10·9±2·4升/分鐘)超過實際的每分鐘通氣量(1〇.4 土 1·9升/分鐘),且呼吸器控制的呼吸次數增加至每分鐘16·2 ± 6·9 φ 次,病患自發的呼吸次數減少為每分鐘31 ± 6.7次。 當每分鐘通氣量自目標點向下調降2〇% ( Ρτ成為 ASV139.0 土 33.5%以及壓力支持值為2〇 5 ± 6二cm Η2〇時,該呼 吸器的目標每分鐘通氣量(8.4±24升/分鐘)再度小於實際的每 分鐘通氣量(9.2土 2.3升/分鐘),且呼吸器控制的呼吸次數減少 至接近零,而病患自發的呼吸次數增加為每分鐘21 · 1 土 3 $次。 在實驗的最後,將每分鐘通氣量恢復至目標點(Ρτ)成為1〇〇% ASV,其壓力支持值為17·2 ± 3·4 cm HA時,該呼吸器的目標每 分鐘通氣量(6·1±0·7升/分鐘),實際每分鐘通氣量(9〇±2·8升 _ /分鐘),且病患自發的呼吸次數為每分鐘21·4 ± 8·3次,很接近最 初的100% ASV設定模式。 表二、五種不同每分鐘通氣操作效果 ASV 100°/〇(1) Ρτ Ρϊγ20 Ρτ-20 ASV 100%(2) 平均每分 鐘通氣量 百分比 100.0土 0.0 159· 0± 33.5 178. 0± 33.6 139. 0± 33. 5 100.0+ 0.0 目標值 6.1± 0.7 9· 6± 2· 2 10. 9± 2.4 8· 4土 2· 1 6 1+ Π 7 實際值 9.1土 1.8 9.8± 1.9 1〇.4± 1.9 9. 2± 2. 3 9 0+28 平均呼吸 次數 目標值 13.6+ 1.3 17. 7± 4.1 19·7± 5.0 17.0± 3.8 V · V/丄 Lim \J 13.7+ 1.9 機器強制 0· 0± 0· 0 7.1± 5. 8 16·2± 6. 9 0. 0± 0. 0 〇.3± 1.0 13 1260219 使用者 自發 20. 7土 4. 4 13.3± 7·7 3.1 土 6.7 21.1± 3.5 21.4± 8.3 平均潮氣 量 目標值 447· 1± 71· 2 530. 3± 124.3 573. 0± 178.5 492. 8± 86. 0 463. 9± 93. 7 實際值 460. 3± 75. 6 556. 0± 170.5 602.1± 187.4 513. 5± 97.4 506. 0± 114.5 平均壓力 支持值 17. 3± 3.5 21.5± 5.0 22· 4± 5. 3 20. 5土 6.1 17.2± 3.4 平均PTP 137· 4土 171.5 69.1± 80.4 68.0± 189.0 114.0+ 158.6 133. 6± 227.0 平均P0.1 2. 0± 1.4 1.2± 0.7 0_ 8± 2.1 1.8± 1_3 2. 2± 2. 2 平均呼氣 末二氧化 碳量 29.1+ 3.6 28. 9土 4. 4 27. 8± 3. 6 28. 9± 4. 9 27. 4± 2. 8 比較上述五種不同通氣量的結果,發現在ASV100%設定模式 時,平均PTP值為最高,顯示ASV100%並不是讓使用者呼吸作功 較低的每分鐘通氣量;當設定每分鐘通氣量機器強制性呼吸次數 大於零,且介於0和5之間時,即達到目標點Ρτ,此時平均PTP值 低於ASV100%,顯示使用者呼吸作功降低,舒適度提高,當每分 鐘通氣量提高至Ρτ+2〇時,平均ΡΤΡ值與Ρτ點相去不大(68.0± 189.0 及69.1± 80.4),顯示使用者的呼吸作功並未再降低。由此可知當 每分鐘通氣量>Ρτ時,就是使用者呼吸作功最低的時候;而在五 組中,呼氣末二氧化碳量(end-tidal C02)的差異在統計學上不 具意義(P值大於〇.〇5)。第三圖顯示每分鐘通氣量、平均PTP值、 平均P0.1值及平均吸氣壓力的關係圖,其中平均PTP值線*表示p 值小於0.001,**表示p值小於0.003 ;另外平均P0.1值線+表示p值 等於0.0043,+ +表示p值等於0.008。由第三圖可發現,每分鐘通 氣量與PTP值呈明顯反向關係,平均P0.1值及平均吸氣壓力則隨 著每分鐘通氣量的改變有些微的變動。 本發明之方法及裝置可隨時依照使用者的呼吸需求自動調 控每分鐘通氣量,不僅可隨時提供令使用者呼吸作功最低、感覺 最舒適的每分鐘通氣量,並且本發明不須時常以人工計算及手動 14 1260219 操作更改設定,可避免人為疏失或錯誤的經驗判斷。 雖然本發明已將較佳實施例揭露如上,但是並非侷限於本發 明,任何熟悉此技術者,在不脫離本發明之精神和範圍内,當可 作各種之更動與潤飾,因此,本發明之保護範圍,當視後附之申 請專利範圍所界定者為準。Experimental Procedure This example uses the ASV breathing mode artificial respirator manufactured by Hami 1 ton Gal i leo Co., Ltd. to perform the following experiments, but the method of the present invention is not limited to the compliant ventilated respirator produced by the company, and may also be It is suitable for other respirators that combine SIMV mode and PSV mode, or artificial respirators produced by other companies to achieve the same effect. As shown in the first flow, the method for automatically regulating the ventilation per minute of the artificial respirator of the present invention comprises the steps of: connecting a artificial respirator to a user; providing a preset per minute ventilation of the artificial respirator; The artificial respirator simultaneously monitors the user's breathing requirements; in conjunction with changes in the user's breathing requirements, the respirator automatically adjusts the preset minute ventilation to a new per minute ventilation. The aforementioned artificial respirator is an ASV mode respirator. 10 1260219 The aforementioned pre-set ventilation is calculated using the ideal weight. ASV 100% 定义 According to the original design of Na Na model, define 0-lL/kg per kilogram for adults. The ideal weight of a man is calculated as (height (cm) _8 〇) complex 7; female: the ideal body weight is calculated as (height (cm) _7 ()) machine 6. It should be specifically noted that the ASV chest is only used in this study, and this invention does not necessarily use ASV 100% as the initial preset minute ventilation. After a few minutes of field ASV 100% grievances, the respirator of the present invention monitors the user's needs and finds a per minute ventilation that causes the ASV breathing pattern to have a mandatory number of breaths greater than zero and between 0 and 5. The present invention sets this value as the target point (Ρτ). This target point is the appropriate minimum minute ventilation (AMMV). When the target point is found, the respirator of the present invention supplies the user with the point as the newly set per minute ventilation, and continuously detects the user's breathing demand, when the target point cannot meet the breathing requirement of the user. The respirator of the present invention automatically repeats the aforementioned steps to find new target points and change the supplied minute ventilation to meet the user's breathing needs. Repetition and Example 2: Testing the effect of different minute ventilation on user comfort Experimental procedure This example measures the user's comfort in five different minute per minute ventilations. The five types of ventilation per minute were ASV 100%, target point (ρτ), target point increased by 20% (Ρτ+20), target point decreased by 2〇% (ρτ_20), and finally returned to ASV100%. First set the minute ventilation to the ASV1〇〇% state for 10 minutes, then adjust the minute ventilation. When the ASV breathing mode has a mandatory number of breaths greater than zero, and between 0 and 5, The value is determined as the target point (ρτ). After that, the ventilation per minute is randomly increased or decreased by 2〇% (ρτ ± 20) from the target point, and the ventilation per minute is increased or decreased by 2〇% from the target point after five minutes (ρτ士士2) 〇) 'Last return to the ASV100% status. A one-minute record is taken after five minutes of adjustment. If the target-point control breath rate occurs at ASV100% or greater than 1260219 ASV350%, the record is not included in the statistics. Measurement and data collection A small respiratory flow rate meter and pressure sensor (VarFlax, BICORE Monitoring System, Irvine, CA, US A) were placed between the Y-tube and the endotracheal tube of the respirator to monitor airflow and near-patient respiratory tract. pressure. Each patient was placed with an esophageal balloon catheter to inflate the balloon (1 cm long) to 0.6 mL and placed at the end of the esophagus to measure changes in the pressure inside the esophagus. The previous lung physiological monitor (Bicore CP- 100 pulmonary monitor) records the respiratory physiology of the lungs. However, since the image record cannot be displayed on the screen at the same time, the information software (PowerLab, ADInstrumentsPty Ltd, Australia) must be used to collect the analog signal online and store it on the PowerMac computer. Calculations and Analysis First, the abnormal signals caused by some interference factors (such as cough, choking or esophageal fistula) are excluded. Calculate the average tidal volume (Vt), respiratory rate (RR), and minute ventilation (Ve) per minute for the entire procedure. The pressure-time product (PTP) is a measure of the change in inspiratory pressure during inspiration and the duration of this pressure change. PTP can directly reflect the amount of work done by breathing. The respiratory center force (Ρ0.1) indicates a change in respiratory pressure within 100 milliseconds of aspiration. Experimental Results As shown in the second figure, when the ventilation per minute reaches the target point, the number of breaths controlled by the respirator increases, and the number of spontaneous breathing of the user drops sharply, and the ventilation per minute remains unchanged. Table 2 summarizes the results of the five different per minute ventilations tested in the previous test. When the initial setting is ASV100%, the average pressure-supported ventilation is 17.3 ± 3. 5 cm Η 2〇, the patient's spontaneous breathing The number of times is 20. 7 soils per 4 4 times, the machine controlled breathing rate is zero, but the machine's target per minute ventilation (6.1 liters 2.2 liters / minute) is lower than the actual minute ventilation of the patient ( 9· 1 soil 1.8 12 1260219 l / min). ^ When the ventilation per minute increases to the target point (Ρτ) to become Asvl59 alumina 33.5% and the pressure support value is 2·5 soil 5·0 cm h2〇, the target per minute ventilation of the respirator (9·6±2) · 2 liters / minute) is almost equivalent to the actual minute ventilation of the patient (9·8 ± 1. 9 liters / minute), and the number of breaths controlled by the respirator increased to 7 ΐ ± 5 · 8 times per minute, the patient The number of spontaneous breathing was reduced to 133 ± 7.7 times per minute. s per minute of ventilation s from the target point by 2〇% (Ρτ·) becomes ASV178 〇± 33.6% and the force support value is 22.4 soil 5.3 cm H20, the target per minute ventilation of the respirator ( 10·9±2·4 liters/min) exceeds the actual minute ventilation (1〇.4 soil 1.9 liters/min), and the number of respirators controlled breathing increases to 16.2 ± 6.9 per minute φ times, the patient's spontaneous respiratory rate was reduced to 31 ± 6.7 times per minute. When the ventilation per minute is reduced by 2〇% from the target point (Ρτ becomes ASV139.0 soil 33.5% and the pressure support value is 2〇5 ± 6二cm Η2〇, the target per minute ventilation of the respirator (8.4 ±24 liters/min) is again less than the actual minute ventilation (9.2 liters 2.3 liters per minute), and the number of breaths controlled by the ventilator is reduced to near zero, and the number of spontaneous breathing of the patient increases to 21 · 1 soil per minute. 3 $ times. At the end of the experiment, the ventilation per minute was restored to the target point (Ρτ) to become 1〇〇% ASV, and the pressure support value was 17·2 ± 3·4 cm HA, the target of the respirator Minute ventilation (6·1±0·7 liters/min), actual minute ventilation (9〇±2·8 liters/min), and the patient's spontaneous respiratory rate is 21·4 ± 8·min. 3 times, very close to the initial 100% ASV setting mode. Table 2, five different per minute ventilation effects ASV 100°/〇(1) Ρτ Ρϊγ20 Ρτ-20 ASV 100%(2) Average per minute ventilation percentage 100.0 Soil 0.0 159· 0± 33.5 178. 0± 33.6 139. 0± 33. 5 100.0+ 0.0 Target value 6.1± 0.7 9· 6± 2· 2 10. 9± 2.4 8· 4 soil 2· 1 6 1+ Π 7 Actual value 9.1 soil 1.8 9.8± 1.9 1〇.4± 1.9 9. 2± 2. 3 9 0+28 Average respiratory number target value 13.6+ 1.3 17. 7± 4.1 19·7± 5.0 17.0± 3.8 V · V/丄Lim \J 13.7+ 1.9 Machine forced 0· 0± 0· 0 7.1± 5. 8 16·2± 6. 9 0. 0± 0. 0 〇.3± 1.0 13 1260219 User spontaneous 20. 7 soil 4. 4 13.3± 7·7 3.1 Soil 6.7 21.1± 3.5 21.4± 8.3 The average tidal volume target value is 447·1±71· 2 530. 3± 124.3 573. 0± 178.5 492. 8± 86. 0 463. 9± 93. 7 Actual value 460. 3± 75. 6 556. 0± 170.5 602.1± 187.4 513. 5± 97.4 506. 0± 114.5 Average pressure support value 17. 3± 3.5 21.5± 5.0 22· 4± 5. 3 20. 5 soil 6.1 17.2± 3.4 average PTP 137· 4 soil 171.5 69.1± 80.4 68.0± 189.0 114.0+ 158.6 133. 6± 227.0 average P0.1 2. 0± 1.4 1.2± 0.7 0_ 8± 2.1 1.8± 1_3 2. 2± 2. 2 Average end-tidal carbon dioxide amount 29.1+ 3.6 28. 9 soil 4. 4 27. 8± 3. 6 28. 9± 4. 9 27. 4± 2. 8 Comparing the results of the above five different ventilations, it was found that the average PTP value was the highest in the ASV100% setting mode. ASV100% is not a per minute ventilation that allows the user to breathe low; when the per-minute ventilation machine is forced to breathe more than zero and is between 0 and 5, the target point Ρτ is reached. The average PTP value is lower than ASV100%, which shows that the user's breathing work is reduced and the comfort is improved. When the ventilation per minute is increased to Ρτ+2〇, the average ΡΤΡ value is not much different from the Ρτ point (68.0± 189.0 and 69.1± 80.4). ), showing that the user's breathing work has not decreased. It can be seen that when the ventilation per minute > Ρτ is the lowest time for the user to work, and in the five groups, the difference in end-tidal CO 2 is statistically meaningless (P The value is greater than 〇.〇5). The third graph shows the relationship between minute ventilation, average PTP value, average P0.1 value, and average inspiratory pressure, where the mean PTP value line * indicates that the p value is less than 0.001, ** indicates that the p value is less than 0.003; The .1 value line + indicates that the p value is equal to 0.0043, and + + indicates that the p value is equal to 0.008. From the third graph, it can be found that the ventilation volume per minute has a significant inverse relationship with the PTP value. The average P0.1 value and the average inspiratory pressure vary slightly with the change of the ventilation per minute. The method and device of the invention can automatically adjust the ventilation per minute according to the breathing requirement of the user, and can provide the ventilation per minute which is the lowest and the most comfortable to the user, and the invention does not need to be manually used at any time. Calculation and manual 14 1260219 Operation change settings to avoid human error or incorrect empirical judgment. While the present invention has been described in its preferred embodiments, the invention is not limited thereto, and any of the modifications and refinements may be made without departing from the spirit and scope of the invention. The scope of protection shall be subject to the definition of the scope of the patent application attached.

15 1260219 【圖式簡單說明】 自動調控人工呼吸器調整每分鐘通 使用者自發性呼吸及機器強制性呼 第一圖為本發明之利用 氣量之方法流程圖。 弟一圖為每分鐘通氣量 吸之關係圖。 尸第一圖為每分鐘通氣量、平均ρτρ值、平均ρ〇 ι值及平均吸 氣壓力的關係圖。 【元件符號對照說明】15 1260219 [Simple description of the diagram] Automatic regulation of artificial respirator adjustment per minute User spontaneous breathing and machine mandatory call The first figure is a flow chart of the method of using gas volume according to the present invention. The picture of the younger brother is the relationship diagram of the ventilation per minute. The first picture of the cadaver is a graph of the ventilation per minute, the average ρτρ value, the average ρ〇 ι value, and the mean inspiratory pressure. [Component Symbol Comparison Description]

beneficial

1616

Claims (1)

126021^ ^ . l· ; : ^ i - ..…… 一....... 第93124181號專利申請案申請專利範圍修正本(2006.6.1) 【申請專利範圍】 1. 一種自動調控人工呼吸器每分鐘通氣量之方法,包括下 列步驟: 連接一結合同步間歇性強制通氣模式(SIMV)與壓 力支持型通氣模式(PSV)之人工呼吸器至使用者,該人工呼 吸器為順應支持型通氣(ASV)呼吸模式; 提供前述人工呼吸器一預設之每分鐘通氣量; 啟動前述人工呼吸器並同時監測使用者的呼吸需 求;以及 當使用者呼吸需求改變時,前述人工呼吸器能夠自 動將預設的每分鐘通氣量調控至新的每分鐘通氣量。 2. 如申請專利範圍第1項所述之方法,其中前述新的每分 鐘通氣量為合適的最低每分鐘通氣量(AMMV),前述合適 的最低每分鐘通氣量是指AS V呼吸模式出現強制性呼吸 次數大於零,是指介於0至5之間的每分鐘通氣量。 3. —種可自動調控每分鐘通氣量之ASV模式呼吸器,包 括: 一 ASV模式呼吸器,含有一訊號接收單元,係用於接 收使用者呼吸狀態改變時產生之訊號;以及一資料處理 程式;其特徵在於前述資料處理程式負責判讀來自訊號 接收單元的訊號,並計算出合適的最低每分鐘通氣量, 之後再自動回饋調控前述ASV模式呼吸器之每分鐘通氣 量。 4.如申請專利範圍第3項所述之呼吸器,其中前述合適之 最低每分鐘通氣量指ASV呼吸模式出現強制性呼吸次數 1260219 大於零,其中前述合適之最低每分鐘通氣量是介於 5之間的每分鐘通氣量。126021^^ . l· ; : ^ i - ........ I....... Patent No. 93124181 Patent Application Amendment (2006.6.1) [Application Range] 1. An automatic regulation manual The method of breathing the breather per minute includes the steps of: connecting a manual respirator combining a synchronous intermittent forced ventilation mode (SIMV) and a pressure supported ventilation mode (PSV) to the user, the artificial respirator being a compliant support type Ventilation (ASV) breathing mode; providing a preset per minute ventilation of the artificial respirator; activating the aforementioned respirator and simultaneously monitoring the user's breathing requirements; and automatically re arranging the respirator when the user's breathing needs change The preset minute ventilation is adjusted to the new minute ventilation. 2. The method of claim 1, wherein the aforementioned new minute ventilation is a suitable minimum minute ventilation (AMMV), and the aforementioned minimum minimum minute ventilation is mandatory for the AS V breathing mode. The number of sexual breaths greater than zero refers to the ventilation per minute between 0 and 5. 3. An ASV mode respirator capable of automatically regulating minute ventilation, comprising: an ASV mode respirator having a signal receiving unit for receiving a signal generated when a user's breathing state changes; and a data processing program The data processing program is responsible for interpreting the signal from the signal receiving unit and calculating the appropriate minimum minute ventilation, and then automatically feeding back the minute ventilation of the aforementioned ASV mode respirator. 4. The respirator of claim 3, wherein the aforementioned minimum per minute ventilation means that the mandatory breathing number of the ASV breathing mode is 1260219 is greater than zero, wherein the aforementioned suitable minimum per minute ventilation is between 5 Ventilation between minutes.
TW93124181A 2004-08-12 2004-08-12 Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method TWI260219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93124181A TWI260219B (en) 2004-08-12 2004-08-12 Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93124181A TWI260219B (en) 2004-08-12 2004-08-12 Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method

Publications (2)

Publication Number Publication Date
TW200605860A TW200605860A (en) 2006-02-16
TWI260219B true TWI260219B (en) 2006-08-21

Family

ID=37874676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93124181A TWI260219B (en) 2004-08-12 2004-08-12 Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method

Country Status (1)

Country Link
TW (1) TWI260219B (en)

Also Published As

Publication number Publication date
TW200605860A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4162118B2 (en) Determining proper ventilator settings for patients with reduced alveolar ventilation during sleep
US9295795B2 (en) System for providing flow-targeted ventilation synchronized to a patients breathing cycle
US20200297960A1 (en) Systems and methods for hypoxic gas delivery for altitude training and athletic conditioning
CN107614042A (en) Method and apparatus for being oxygenated and/or removing CO2
WO2005051280A2 (en) Method and apparatus for controlling a ventilator
EP2408502B1 (en) System for adjusting tidal volume of a self-ventilating subject
US10335564B2 (en) System and method for controlling exsufflation pressure during in-exsufflation
JP2016523586A (en) Pressure support system for respiratory accumulation therapy
AU2023200673A1 (en) Flow therapy system and method
US20240066243A1 (en) High flow respiratory therapy device and method through breath synchronization
US20220176058A1 (en) Oxygen therapy administration methods and related apparatus
TWI260219B (en) Respirator with capability of automatically adjusting and controlling ventilation quantity per minute and its operating method
TW201105371A (en) EEG-based positive airway pressure apparatus and operation method thereof
US11642481B2 (en) Patient ventilation system having sensors and electrodes coupled to intubations tube
KR102578530B1 (en) APPARATUS AND METHOD FOR PERFORMING BILEVEL HIGH FLOW THERAPY BASED ON SpO2
US20230157574A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy
CN1743021A (en) Artificial respirator of automatic regulating breather quantity/permin and method therefor
Donn et al. 8.1 Conventional mechanical ventilation
Arnal et al. Mechanical Ventilation
Tehrani Automatic Control of Mechanical Ventilation Technologies

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees