TWI254485B - Electromagnetic wave reflecting apparatus - Google Patents

Electromagnetic wave reflecting apparatus Download PDF

Info

Publication number
TWI254485B
TWI254485B TW94125549A TW94125549A TWI254485B TW I254485 B TWI254485 B TW I254485B TW 94125549 A TW94125549 A TW 94125549A TW 94125549 A TW94125549 A TW 94125549A TW I254485 B TWI254485 B TW I254485B
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
sphere
focusing
reflecting
reflecting device
Prior art date
Application number
TW94125549A
Other languages
Chinese (zh)
Other versions
TW200705742A (en
Inventor
Cheng-Ching Lee
Sang-Chaur Lin
Da-Chuen Lin
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW94125549A priority Critical patent/TWI254485B/en
Application granted granted Critical
Publication of TWI254485B publication Critical patent/TWI254485B/en
Publication of TW200705742A publication Critical patent/TW200705742A/en

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

An electromagnetic wave reflecting apparatus suitable for receiving and reflecting an electromagnetic wave is provided. The electromagnetic wave reflecting apparatus includes a focusing sphere and a reflector. The reflector is disposed outside the focusing sphere and at a distance from the focusing sphere. The focusing sphere is suitable for receiving and focusing the electromagnetic wave on the reflector. Then the reflector is suitable for reflecting the electromagnetic wave focused thereon to enable the electromagnetic wave passing through the focusing sphere again. Thus, the electromagnetic wave reflecting apparatus has better efficiency of reflection.

Description

1254485 17266twf.doc/m 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電磁波反射裝置,且特別是有關 於一種具有高反射效率之電磁波反射裝置。 【先前技術】 在現今社會中,電磁波反射裝置已被廣泛地運用於多 種領域中,例如應用於河道及船隻避撞器以及雷達訊號校 正态上。舉例而言,配置在河道兩旁之電磁波反射裝置, 可將船隻上之雷達所發出的電磁波反射,以使船隻上的雷 達偵測到被反射之電磁波進而判讀出河道兩侧之位置。如 此,駕驶者可根據雷達顯示出的資料駕駛船隻,以避免船 隻撞上河道兩側而發生危險。 圖1示理想之龍伯球的結構示意圖。請參考圖1, 龍伯球(LunebergLens)lO為一種電磁波反射裝置,其用以 刻意顯覌電磁波信號(雷達波),此龍伯球1〇主要包括一 球體11與一金屬膜13,其中金屬膜13配置於球體丨丨上。 上述之龍伯球ίο的設計原理係利用史奈爾定律(sndl,s law) ’即叩丨吨:^如㊀2,並透過球體u内部不同折射率 之分佈變化(ni,indexofrefraction)來改變入射之電磁波 E於球體11内部之行徑,以使電磁波E:聚焦於金屬祺13 上’並藉由金屬膜13將電磁波Ε反射出去。 承上述,在理想情況下球體U内部任意一點的材 之折射率須滿足叫2:=^二2_(1^())2,其中6為相對介電常 數,A為球體U内部任意一點至球心的距離,rQ為球體u 51254485 17266twf.doc/m IX. Description of the Invention: [Technical Field] The present invention relates to an electromagnetic wave reflecting device, and more particularly to an electromagnetic wave reflecting device having high reflection efficiency. [Prior Art] In today's society, electromagnetic wave reflecting devices have been widely used in various fields, for example, in river and ship collision avoidance devices and radar signal correction. For example, an electromagnetic wave reflecting device disposed on both sides of a river channel can reflect electromagnetic waves emitted by a radar on a ship, so that the radar on the ship detects the reflected electromagnetic wave and thereby judges the position on both sides of the river channel. In this way, the driver can drive the vessel based on the information displayed by the radar to avoid the danger of the ship hitting the sides of the river. Figure 1 shows the structure of the ideal dragon ball. Referring to FIG. 1, Luneberg Lens 10 is an electromagnetic wave reflecting device for deliberately displaying an electromagnetic wave signal (radar wave), which mainly includes a sphere 11 and a metal film 13, wherein the metal The film 13 is disposed on the spherical body. The design principle of the above-mentioned dragon ball ίο uses Snell's law (sndl, s law), that is, 叩丨 ton: ^如一 2, and changes the incident through the distribution of different refractive indices inside the sphere u (ni, index of refraction) The electromagnetic wave E is inside the sphere 11 so that the electromagnetic wave E: is focused on the metal crucible 13 and the electromagnetic wave is reflected by the metal film 13. According to the above, in an ideal situation, the refractive index of any material inside the sphere U must satisfy 2:=^2 2((1^()) 2, where 6 is the relative dielectric constant, and A is any point inside the sphere U to The distance of the center of the sphere, rQ is the sphere u 5

1254485 17266twf.doc/m 之半徑。當球體11内部任意-點的㈣之折射率滿足上、私 關係式時,則入射球體11的電磁波E能準確地聚焦於= 屬膜13上,如此可使金屬膜13有效地將電磁波£反射出 然而,在實際應用上’這種具有連續性變化之介 數的材料是*存在的。-般較常見的作法是细多個= 介電常數之球殼層來作組合’使得製作完成後之龍伯球内 部各個殼層的介電常數分佈能逼近理論值。1中,不同人 電常數之材料主要是藉由改㈣料之密度或者添加高= 常數顆粒而製成。 圖2緣示為習知之龍伯球電磁波反射裝置的結構示音 圖。請參考圖2,習知之龍伯球電磁波反射裝置1〇〇包^ —核心球體no、多個球殼層(如球殼層12〇a、12〇b、i2〇c) 與-金屬膜130。其中,球殼層12Qa包覆核心、球體ιι〇, 球殼層1鳩包覆球殼層120a,球殼層12〇c包覆球殼層 120b γ此外,金屬膜130配置於最外層之球殼層i2〇c上。 ^當電磁波E由外界進入龍伯球電磁波反射裝置100之 後,私磁波E於龍伯球電磁波反射装置1〇〇内之行徑會被 核心球體110球體與球殼層〗2 〇所改變。值得留意的是, 由於邊伯球電磁波反射裝置⑽之各個殼層(UG與12〇) 的材料’其介電常數之分佈並無法滿足上述之關係式。因 ^ ’電磁波E往往無法準確地聚焦於金触⑽上,如此 來,金屬膜130反射電磁波£之效果將大打折扣。 6 1254485 17266twf.doc/m 【發明内容】 狀有鑑於此,本發明的目的就是在提供一種電磁波反射 裝置,其具有較佳的反射效果。 為達上述或其他目的,本發明提供一種電磁波反射裝 置適於接收一電磁波並將其反射,電磁波反射裝置包括 —聚焦球體與—反射元件。其中,反射元件配置於聚焦球 ' 體外,且與聚焦球體相隔一距離,而聚焦球體適於接收電 « 磁^並將電磁波聚焦於反射元件上,且此反射元件適於反 射聚焦於其上之電磁波,以使電磁波再次通過聚焦球體。 一本發明之較佳實施例中,電磁波反射裝置例如更包括 一墊片組,其係連接於聚焦球體與反射元件之間。 本發明之較佳實施例中,墊片組之相對介電常數例如 是小於1.2。Radius of 1254485 17266twf.doc/m. When the refractive index of the arbitrary (d) (4) inside the sphere 11 satisfies the upper and the private relationship, the electromagnetic wave E of the incident sphere 11 can be accurately focused on the genus film 13, so that the metal film 13 can effectively reflect the electromagnetic wave However, in practical applications, this material with a continuous change of the medium is *present. The more common practice is to combine a plurality of spherical shells of dielectric constants to make the dielectric constant distribution of the inner shells of the Longbo balls after the fabrication is close to the theoretical value. In 1, the material of different human electric constants is mainly made by changing the density of (4) materials or adding high = constant particles. Fig. 2 is a schematic diagram showing the structure of a conventional Longbo ball electromagnetic wave reflecting device. Referring to FIG. 2, the conventional Longbo ball electromagnetic wave reflecting device 1 includes a core ball no, a plurality of spherical shell layers (such as a spherical shell layer 12〇a, 12〇b, i2〇c) and a metal film 130. . Wherein, the spherical shell layer 12Qa covers the core, the sphere ιι, the spherical shell layer 1鸠 covers the spherical shell layer 120a, the spherical shell layer 12〇c covers the spherical shell layer 120b γ, and the metal film 130 is disposed on the outermost sphere Shell i2〇c. ^When the electromagnetic wave E enters the Longbo ball electromagnetic wave reflecting device 100 from the outside, the path of the private magnetic wave E in the Longbo ball electromagnetic wave reflecting device 1 is changed by the core sphere 110 sphere and the spherical shell layer 22 〇. It is worth noting that the distribution of the dielectric constant of the material of each shell (UG and 12 〇) of the edge ball electromagnetic wave reflecting device (10) does not satisfy the above relationship. Since the electromagnetic wave E often cannot be accurately focused on the gold contact (10), the effect of the metal film 130 reflecting the electromagnetic wave is greatly reduced. 6 1254485 17266twf.doc/m SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide an electromagnetic wave reflecting device which has a better reflection effect. To achieve the above or other objects, the present invention provides an electromagnetic wave reflecting device adapted to receive and reflect an electromagnetic wave, the electromagnetic wave reflecting device comprising - a focusing sphere and a reflecting element. Wherein, the reflective element is disposed outside the focusing ball 'and at a distance from the focusing sphere, and the focusing sphere is adapted to receive the electric current and focus the electromagnetic wave on the reflective element, and the reflective element is adapted to reflect the focus thereon Electromagnetic waves, so that electromagnetic waves pass through the focusing sphere again. In a preferred embodiment of the invention, the electromagnetic wave reflecting means further includes, for example, a spacer group coupled between the focusing sphere and the reflecting member. In a preferred embodiment of the invention, the spacer group has a relative dielectric constant of, for example, less than 1.2.

本發明之較佳實施例中,墊片組例如包括至少一發泡 棉。 X 本發明之較佳實施例中,發泡棉的材質例如是乙烯_ • 乙烯基醋酸鹽(EVA)。 ’ 本發明之較佳實施例中’聚焦球體例如包括一核心球 • 體與多個球殼層。此球殼層包覆核心球體,且核心球體之 相對介電常數大於球殼層的相對介電常數,且球殼層^, 位於較外層的球殼層之相對介電常數較低。 本發明之較佳實施例中,最外層之球殼層的相對介電 常數例如是小於等於1.3,而核心球體之相對介電常數例 如是小於等於2.0。 7 1254485 I 7266twf,doc/ni *本發明之較佳實施例中’聚焦球體的材質例如是發泡 材質。 本發明之較佳實施例中,發泡材質例如是聚氨基甲酸 酯(poly urethanes,PU)。 本發明之較佳實施例中,反射元件之材質例如是金 屬。 、’ 本發明之較佳實施例中,反射元件例如包括一基板與 一反射膜層。其中,反射膜層例如是配置於基板上。 本發明之較佳實施例中,反射膜層之面電阻值例如 小於1歐姆/匚]。 綜上所述,本發明之電磁波反射裝置之反射元件係配 置於電磁波聚焦處。因此,本發明之電磁波反射裝置可有 效地反射電磁波。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖3繪示為本發明一實施例之電磁波反射裝置示意 圖。請芩考圖3,本實施例之電磁波反射裝置200適於接 收一電磁波E並將其反射,此電磁波反射裝置2〇〇包括一 聚焦球體210與一反射元件220。其中,反射元件220配 置於聚焦球體210外,且與聚焦球體21〇相隔一距離D。 本實施例之聚焦球體210適於接收電磁波E並將電磁波E 聚焦於反射元件220上(如圖3之焦點ρ )。這裡要詳加 8 1254485 17266twf.doc/m 况明的疋’由不同位置進人聚焦球體21()之電磁波^ 聚焦球體210聚焦於反射元件22〇上之不同位置,二破 限於圖3所示之焦點F。 亚不侷 承上述,反射元件22〇適於反射聚焦於其上之 E,以使電磁波E再次通過聚焦球體21〇,進而達到反心 磁波E的效果。上述之反射元件22〇之材質例如是金兒 而聚焦球Μ 210之材質可以是發泡材質。频而言,此 泡材質例如是聚氨基曱酸酯(polyurethanes,PU)。 ★ μ值得留意的是,製造人員為了確保電磁波E能準確地 聚焦於反射元件220上,會先進行數鋪擬分析以求出· 磁波聚焦之位置(例如焦點F),並且推算出焦點 焦球體210表面之間的最短距離(如距離D)。然後,、$ 造人員才將反射元件220配置於與聚焦球體21〇相隔距: D之位置。在本實施例之電磁波反射裝置2〇〇中,由於反 射凡件220係配置於電磁波£聚焦之位置,因此能更有效 率地反射電磁波Ε。 &gt; 在本實施例中,電磁波反射裝置2〇〇例如更包括_墊 片組230,其係連接於聚焦球體210與反射元件220之間, 以維持聚焦球體210與反射元件220的間距。換言之,在 本實施例中係藉由墊片組230來調整聚焦球體21〇與反射 元件220之間的間距。此外,本實施例之墊片組23〇之相 對介電常數例如是小於1·2。此墊片組230例如包括一個 或多個發泡棉,但不侷限於發泡棉。這些發泡棉的材質例 如為乙烯_乙烯基醋酸鹽(EVA)。另外,聚焦球體21〇與 9 1254485 17266twf.doc/m 反射元件220之間的介質例如是空氣(er=l),但不以此 為限。 有別於習知技術,本實施例之電磁波反射裝置200的 製造方法主要係先算出聚焦球體210接收電磁波後,將電 磁波聚焦的位置,再將反射元件220配置於電磁波聚焦 處。因此,本實施例之反射元件220能夠有效反射電磁波 E之角度可以增加;意即本實施例之電磁波反射裝置2〇〇 具有較大的雷達散射截面積(radar cross-section,RCS), 且具有更大的有效視角(view angle)。 本發明一實施例中,聚焦球體210與反射元件220可 依據不同的需求來作設計。舉例來說,聚焦球體210例如 是包括一核心球體212與多個球殼層214。其中,球殼層 214包覆核心球體212,而球殼層214例如由球殼層214&amp;、 214b與214c所構成。詳細地說,球殼層214a包覆核心球 體212 ’球殼層214b包覆球殼層214a,球殼層214c包覆 球殼層214b。 承上述’核心球體212之相對介電常數例如是大於球 a又層214的相對介電常數。此外,位於較外層的球殼層214 ===介電常數較低。另外,最外層之球殼層214c的相對 介電常數例如是小於等於1.3,而核心球體212之相對介 電常數=如是小於等於2·〇。這裡要留意的是,上述之說 明亚無意限定球殼層214的數量,製造人貞可依據實際狀 況的需要來增減球殼層214之數量。 圖4繪示為本發明另一實施例之電磁波反射裝置示 1254485 17266twf.doc/m 意圖。請參考圖4,圖4所繪示之電磁波反射裝置3〇〇與 圖3所繪示之電磁波反射裝置2〇〇相似,兩者主要不同之 處在於··反射元件之設計。更詳細地說,本實施例之反射 元件除了可用金屬材料製成(如反射元件220)之外,還可由 一基板222與一反射膜層224所構成(如反射元件220a)。 其中’反射膜層224例如是配置於基板222上,而反射膜 層224之面電阻值例如是小於丨歐姆/□。製造人員可以藉 由形成一金屬塗層於基板222上來製作出反射元件22〇a。 此反射元件220a也具有與反射元件220 (如圖3所示)相 同之反射功能。 綜上所述,由於本發明之反射元件係配置於事先求得 之電磁波聚焦處,使得入射至聚焦球體内之電磁波能準確 地聚焦於反射元件上。因此,本發明之電磁波反射裝置具 有更好的電磁波反射效率。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 又 【圖式簡單說明】 圖1繪示理想之龍伯球的結構示意圖。 圖2繪示為習知之龍伯球電磁波反射裝置。 圖3繪示為本發明一實施例之電磁波反射裝置示意 圖。 圖4繪示為本發明另一實施例之電磁波反射裝置示意 11 1254485 17266twf.doc/m 圖。 【主要元件符號說明】 10 :龍伯球 11 :球體 13、130 :金屬膜 100、200、300 :電磁波反射裝置 110 :核心球體 120、120a、120b、120c、214、214a、214b、214c : 球殼層 210 :聚焦球體 212 :核心球體 220、220a :反射元件 222 :基板 224 :反射膜層 230 :墊片組 D :距離 E ·電磁波 F :焦點 叫:位於半徑η之材料的折射率 er :相對介電常數 η:球體内部任意半徑 r〇 :球體之半徑 Θ!:入射角 θ2 :折射角 12In a preferred embodiment of the invention, the shim set includes, for example, at least one expanded cotton. X In a preferred embodiment of the invention, the material of the foamed cotton is, for example, ethylene_vinyl acetate (EVA). In the preferred embodiment of the invention, the 'focusing sphere' comprises, for example, a core sphere and a plurality of spherical shells. The spherical shell layer covers the core sphere, and the relative dielectric constant of the core sphere is greater than the relative dielectric constant of the spherical shell layer, and the spherical shell layer is located at a lower relative dielectric constant of the outer shell layer. In a preferred embodiment of the invention, the outermost spherical shell layer has a relative dielectric constant of, for example, 1.3 or less, and the core sphere has a relative dielectric constant of, for example, 2.0 or less. 7 1254485 I 7266twf, doc/ni * In the preferred embodiment of the invention, the material of the focusing sphere is, for example, a foamed material. In a preferred embodiment of the invention, the foamed material is, for example, polyurethanes (PU). In a preferred embodiment of the invention, the material of the reflective element is, for example, a metal. In a preferred embodiment of the invention, the reflective element comprises, for example, a substrate and a reflective film layer. Among them, the reflective film layer is disposed, for example, on a substrate. In a preferred embodiment of the invention, the surface resistivity of the reflective film layer is, for example, less than 1 ohm/匚. As described above, the reflecting element of the electromagnetic wave reflecting device of the present invention is disposed at the focus of the electromagnetic wave. Therefore, the electromagnetic wave reflecting device of the present invention can effectively reflect electromagnetic waves. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] FIG. 3 is a schematic view of an electromagnetic wave reflecting device according to an embodiment of the present invention. Referring to FIG. 3, the electromagnetic wave reflecting device 200 of the present embodiment is adapted to receive and reflect an electromagnetic wave E, which includes a focusing sphere 210 and a reflecting element 220. The reflective element 220 is disposed outside the focusing sphere 210 and spaced apart from the focusing sphere 21 by a distance D. The focusing sphere 210 of the present embodiment is adapted to receive the electromagnetic wave E and focus the electromagnetic wave E on the reflective element 220 (such as the focus ρ of FIG. 3). Here, 8 1254485 17266twf.doc/m is added in detail. 电磁 'Electromagnetic waves that enter the spherical body 21 (from different positions) ^ The focusing sphere 210 is focused on different positions on the reflecting element 22, and the second is limited to the one shown in FIG. Focus F. In the above, the reflecting member 22 is adapted to reflect the E focused thereon so that the electromagnetic wave E passes through the focusing sphere 21 again, thereby achieving the effect of the anti-cardiac magnetic wave E. The material of the above-mentioned reflective element 22 is, for example, gold, and the material of the focusing ball 210 may be a foamed material. In terms of frequency, the foam material is, for example, polyurethanes (PU). ★ It is worth noting that in order to ensure that the electromagnetic wave E can be accurately focused on the reflective element 220, the manufacturer first performs a number of preliminary analysis to determine the position of the magnetic wave focus (for example, the focus F), and derives the focal focus sphere. The shortest distance between the 210 surfaces (eg distance D). Then, the constructor configures the reflective element 220 at a distance from the focusing sphere 21: D. In the electromagnetic wave reflecting device 2 of the present embodiment, since the reflecting member 220 is disposed at a position where the electromagnetic wave is focused, the electromagnetic wave can be reflected more efficiently. &gt; In the present embodiment, the electromagnetic wave reflecting device 2, for example, further includes a pad group 230 connected between the focusing sphere 210 and the reflecting member 220 to maintain the distance between the focusing sphere 210 and the reflecting member 220. In other words, in the present embodiment, the spacer between the focusing sphere 21 〇 and the reflecting member 220 is adjusted by the spacer group 230. Further, the relative dielectric constant of the spacer group 23 of the present embodiment is, for example, less than 1.2. This shim set 230 includes, for example, one or more foamed cotton, but is not limited to foamed cotton. The material of these foamed cotton is, for example, ethylene-vinyl acetate (EVA). Further, the medium between the focusing sphere 21 〇 and the 9 1254485 17266 twf.doc/m reflecting member 220 is, for example, air (er = 1), but is not limited thereto. Different from the conventional technique, the manufacturing method of the electromagnetic wave reflecting device 200 of the present embodiment mainly calculates the position at which the focusing sphere 210 receives the electromagnetic wave and then focuses the electromagnetic wave, and then arranges the reflecting element 220 at the electromagnetic wave focusing position. Therefore, the angle at which the reflective element 220 of the present embodiment can effectively reflect the electromagnetic wave E can be increased; that is, the electromagnetic wave reflecting device 2 of the embodiment has a large radar cross-section (RCS) and has A larger view angle. In an embodiment of the invention, the focusing sphere 210 and the reflecting element 220 can be designed according to different needs. For example, the focusing sphere 210 includes, for example, a core sphere 212 and a plurality of spherical shell layers 214. Among them, the spherical shell layer 214 covers the core sphere 212, and the spherical shell layer 214 is composed of, for example, the spherical shell layers 214 &amp; 214b and 214c. In detail, the spherical shell layer 214a covers the core sphere 212' and the spherical shell layer 214b coats the spherical shell layer 214a, and the spherical shell layer 214c covers the spherical shell layer 214b. The relative dielectric constant of the above-mentioned 'core sphere 212 is, for example, greater than the relative dielectric constant of the layer a 214. In addition, the spherical shell layer 214 located at the outer layer has a lower dielectric constant. Further, the relative dielectric constant of the outermost spherical shell layer 214c is, for example, 1.3 or less, and the relative dielectric constant of the core sphere 212 = 2 or less. It should be noted here that the above description does not intend to limit the number of spherical shell layers 214, and the manufacturer can increase or decrease the number of spherical shell layers 214 according to the actual situation. Fig. 4 is a view showing an electromagnetic wave reflecting device according to another embodiment of the present invention, showing the intention of 1254485 17266twf.doc/m. Referring to FIG. 4, the electromagnetic wave reflecting device 3〇〇 illustrated in FIG. 4 is similar to the electromagnetic wave reflecting device 2〇〇 illustrated in FIG. 3, and the main difference between the two is the design of the reflective element. In more detail, the reflective member of the present embodiment may be formed of a substrate 222 and a reflective film layer 224 (e.g., reflective member 220a) in addition to a metal material (e.g., reflective member 220). The reflective film layer 224 is disposed, for example, on the substrate 222, and the surface resistivity of the reflective film layer 224 is, for example, less than 丨 ohm/□. The manufacturer can fabricate the reflective element 22A by forming a metal coating on the substrate 222. This reflective element 220a also has the same reflective function as the reflective element 220 (shown in Figure 3). As described above, since the reflecting member of the present invention is disposed at the electromagnetic wave focusing portion obtained in advance, the electromagnetic wave incident into the focusing sphere can be accurately focused on the reflecting member. Therefore, the electromagnetic wave reflecting device of the present invention has better electromagnetic wave reflection efficiency. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. [Simplified illustration of the drawing] Figure 1 shows the structure of the ideal dragon ball. 2 is a conventional Longbo ball electromagnetic wave reflecting device. Fig. 3 is a schematic view showing an electromagnetic wave reflecting device according to an embodiment of the present invention. 4 is a schematic diagram of an electromagnetic wave reflection device according to another embodiment of the present invention, 11 1254485 17266twf.doc/m. [Description of main component symbols] 10: Longbo ball 11: sphere 13, 130: metal film 100, 200, 300: electromagnetic wave reflecting device 110: core ball 120, 120a, 120b, 120c, 214, 214a, 214b, 214c: ball Shell layer 210: focusing sphere 212: core sphere 220, 220a: reflecting element 222: substrate 224: reflecting film layer 230: spacer group D: distance E · electromagnetic wave F: focus is called: refractive index er of material at radius η: Relative dielectric constant η: any radius inside the sphere r〇: radius of the sphere Θ!: angle of incidence θ2: angle of refraction 12

Claims (1)

1254485 17266twf.d〇c/m 十、f請專利範圍: ι·種電磁波反射裝置,適於接收一電磁波並將其反 射,該電磁波反射裝置包括: 一聚焦球體;以及 3 一反射元件,配置於該㈣、賴外,且能聚焦球體 相隔-距離,其中該聚焦球體適於接收該電磁波並將該電 =波水焦於献射凡件上,而該反射元件適於反射聚焦於 /、上之4包磁波,以使該電磁波再次通過該聚焦球體。 2·如_料纖目帛i顧述之電磁波反射裝置 ο括-墊片組’連接於該聚焦球體與該反射元件之間。 ㈣it申料纖㈣2销叙電磁波反射裝置,其 中忒墊片組之相對介電常數小於12。 hit申料纖㈣2韻述之電磁波反縣置,盆 中忒墊片組包括至少一發泡棉。 〃、 中卞專利㈣第4項所述之電磁波反射裝置,並 中料泡棉的材質包括乙烯·乙烯基- 中該==範圍第丨項所述之電丄射裝置,其 一核心球體;以及 多個球殼層,包覆該核心球 掛介帝赍L 其中該核心球體之相 對,丨私吊數大於該些球殼層的相對^目 層中,較外層的球殼声之相斟人兒㊆數,^二球殼 n丄智之相對介電常數較低。 7·如申請專利範圍第6項 - 中最外μα、斤述之電磁波反射裝置,其 層之“層的相對介電常數小於等於L3,而該核 1254485 17266twf.doc/m 心球體之相對介電常數小於等於2.0。 ▲ 8.如申請專利第1項所述之電磁波反射裝置,I 中§玄聚焦球體的材質包括發泡材質。 &quot; 9.如申請專利範圍第8項所述之電磁波反射裝置,复 中該發泡材質包括聚氨基甲酸酯(p〇1y urethanes,pu)。〜 ι〇·如申請專利範圍第1項所述之電磁波反射裝置,复 中該反射元件之材質包括金屬。 〜 11.如申凊專利範圍第1項所述之電磁波反射裝置,I 中該反射元件包括: 〃 一基板;以及 一反射予層,配置於該基板上。 12·如申μ專利範圍第11項所述之氣磁波反射裝置, 其中$亥反射膜層之面電阻值小於1欧姆/口。 141254485 17266twf.d〇c/m Ten, f please patent range: ι · electromagnetic wave reflecting device, adapted to receive and reflect an electromagnetic wave, the electromagnetic wave reflecting device comprises: a focusing sphere; and 3 a reflective element, configured in The (4), outside, and capable of focusing the sphere apart-distance, wherein the focusing sphere is adapted to receive the electromagnetic wave and focus the electric wave on the object, and the reflecting element is adapted to reflect the focus on the / 4 packets of magnetic waves are passed so that the electromagnetic waves pass through the focusing sphere again. 2. An electromagnetic wave reflecting device, such as a slab, is connected between the focusing sphere and the reflecting element. (4) It applies the material fiber (4) 2 pin to the electromagnetic wave reflection device, wherein the relative dielectric constant of the 忒 pad group is less than 12. The hitting material fiber (four) 2 rhyme of the electromagnetic wave is anti-county, and the basin middle shimming gasket group includes at least one foamed cotton. The electromagnetic wave reflecting device according to item 4 of the above-mentioned patent (4), wherein the material of the material foam comprises an electric radiation device of the ethylene/vinyl group, wherein the core ball is a core ball; And a plurality of spherical shell layers covering the core ball 赍 赍 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中The number of people is seven, and the relative dielectric constant of the two ball shells is lower. 7. If the electromagnetic wave reflection device of the outermost μα and jin is described in the sixth paragraph of the patent application, the relative dielectric constant of the layer of the layer is less than or equal to L3, and the core is 1254485 17266twf.doc/m. The electric constant is less than or equal to 2.0. ▲ 8. The electromagnetic wave reflecting device according to claim 1, wherein the material of the XX focus sphere includes a foamed material. &quot; 9. The electromagnetic wave according to claim 8 In the reflection device, the foaming material comprises a polyurethane (p〇1y urethanes, pu). The electromagnetic wave reflection device according to claim 1, wherein the material of the reflective element includes The electromagnetic wave reflecting device of claim 1, wherein the reflective element comprises: a substrate; and a reflective layer disposed on the substrate. The gas magnetic wave reflection device according to Item 11, wherein the surface resistance of the surface layer of the hai reflective film is less than 1 ohm/port.
TW94125549A 2005-07-28 2005-07-28 Electromagnetic wave reflecting apparatus TWI254485B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94125549A TWI254485B (en) 2005-07-28 2005-07-28 Electromagnetic wave reflecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94125549A TWI254485B (en) 2005-07-28 2005-07-28 Electromagnetic wave reflecting apparatus

Publications (2)

Publication Number Publication Date
TWI254485B true TWI254485B (en) 2006-05-01
TW200705742A TW200705742A (en) 2007-02-01

Family

ID=37587335

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94125549A TWI254485B (en) 2005-07-28 2005-07-28 Electromagnetic wave reflecting apparatus

Country Status (1)

Country Link
TW (1) TWI254485B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382198B (en) * 2009-12-17 2013-01-11 Chung Shan Inst Of Science Large view angle corner reflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382198B (en) * 2009-12-17 2013-01-11 Chung Shan Inst Of Science Large view angle corner reflector

Also Published As

Publication number Publication date
TW200705742A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5864423B2 (en) Gradient-index lens and method without spherical aberration
CN111367000A (en) Layered structure capable of simultaneously realizing low laser reflection, low infrared radiation and high microwave absorption
CN111834756B (en) Antenna array and wireless device
KR102482247B1 (en) Antenna device including planar lens
US9160077B2 (en) Antenna based on a metamaterial and method for generating an operating wavelength of a metamaterial panel
CN103809277A (en) Off-axis triple-reflector
CN110165422A (en) Based on the passive millimeter wave near field imaging system for focusing super surface
US20190097378A1 (en) Method for designing dielectric resonator
US11385384B2 (en) Spoke dielectric lens
WO2012159425A1 (en) Antenna based on metamaterial and metamaterial plate
JP6766809B2 (en) Refractive index distribution type lens design method and antenna device using it
JP2023525644A (en) Electromagnetic device with dielectric lens and dielectric lens
US11936104B2 (en) Luneburg lens formed of assembled molded components
JP2012528540A (en) A low-loss variable phase reflection array using two-resonance phase shift elements.
US20130002509A1 (en) Impedance matching component, metamaterial panel, converging component and antenna
CN108933334B (en) Method and device for manufacturing spherical Longbo electromagnetic lens reflector
TWI254485B (en) Electromagnetic wave reflecting apparatus
RU2757073C2 (en) Suppression of side lobes in a spherical dielectric lens by reducing spherical aberration
WO2012155475A1 (en) Electromagnetic wave beam splitter
CN216052549U (en) Dielectric lens
Cory et al. Use of conjugate dielectric and metamaterial slabs as radomes
US20220368024A1 (en) Gradient index metamaterial lens for terahertz radiation
US4682179A (en) Omnidirectional electromagnetic lens
Wang et al. High‐efficiency electromagnetic wave controlling with all‐dielectric Huygens’ metasurfaces
EP2728669B1 (en) Metamaterial and metamaterial antenna