TWI254257B - Method and system for non-iterative global motion estimation - Google Patents

Method and system for non-iterative global motion estimation Download PDF

Info

Publication number
TWI254257B
TWI254257B TW93126794A TW93126794A TWI254257B TW I254257 B TWI254257 B TW I254257B TW 93126794 A TW93126794 A TW 93126794A TW 93126794 A TW93126794 A TW 93126794A TW I254257 B TWI254257 B TW I254257B
Authority
TW
Taiwan
Prior art keywords
global
motion vector
global motion
motion
group
Prior art date
Application number
TW93126794A
Other languages
Chinese (zh)
Other versions
TW200609841A (en
Inventor
Yeping Su
Ming-Ting Sun
Yuh-Feng Hsu
Original Assignee
Ind Tech Res Inst
Univ Washington
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Univ Washington filed Critical Ind Tech Res Inst
Priority to TW93126794A priority Critical patent/TWI254257B/en
Publication of TW200609841A publication Critical patent/TW200609841A/en
Application granted granted Critical
Publication of TWI254257B publication Critical patent/TWI254257B/en

Links

Landscapes

  • Image Analysis (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A fast non-iterative global motion estimation (GME) algorithm is disclosed for estimating the perspective transform global motion parameters from the motion vectors (MV) obtained from the block matching process that includes grouping a plurality of motion vectors in the input video stream into a predetermined number of groups of motion vectors, calculating a set of global motion parameters from each of the predetermined groups of the motion vector, and processing the set of global motion parameters generated from the calculation to obtain a final estimation.

Description

1254257 玖、發明說明: 【么明所屬之技術領域】 域移動估測方 移動估測方法 I發明係關於影像序列中之全 法及系^ 乂&、、4,尤指一種非反覆式全域 及系統。 L先前技術】 10 去1用攝影機(video Camera)或數位相機(DS| 係儲景象已廣為所知。由攝影機所攝錄之景 律=存成一影像序列。該影像序列由攝影機依 、的時間間隔擷取個別影像或圖框(frame)所 成。當擷取時間間隔足夠小時,所播放的連續 才1可充分重現所記錄景象的動態。1254257 玖, invention description: [Miao Ming belongs to the technical field] Domain mobile estimation method mobile estimation method I invention is related to the whole method and system in the image sequence ^ 乂 &, 4, especially a non-repetitive global domain And system. L Prior Art 10 To 1 uses a video camera or a digital camera (DS| is known as a scene. The scene recorded by the camera = stored as a sequence of images. The sequence of images is controlled by the camera. The time interval is obtained by taking individual images or frames. When the time interval is sufficiently small, the continuous playback of 1 can fully reproduce the dynamics of the recorded scene.

般而言,影像序列中的移動或是連續圖框的 5差異’係由於所攝錄的物件之移動,或是由於攝 衫機的移動所造成。攝影機的移動源自於使用者 "周整攝影機的功能(例如放大)、或無意識的移動、 或抖動。因攝影機的移動,在影像序列中會產生 全域移動,其係為整張景象移位及移動。此和攝 錄物件相對於靜止背景之所產生的區域移動係不 同的。因抖動所產生的全域移動一般係無意,而 真在攝錄過程中係非想要的。—些系統及方法被 提出以估測及補償全域移動。 習知技術中,影像序列中的全域移動常模擬 5 1254257 成二維參數轉換。全域移動估測(Global Motion Estimation、GME)係由影像去估測轉換參數。全 域移動估測(GME)為一種重要工具,且廣泛使用於 電腦視覺(computer vision)、影像處理等相關領 5 域。例如,對MPEG4的全域移動估測,全域移動 係使用參數形式予以描述,其描述模型可由僅有 二個參數的簡單模型到有八個參數的透視考量模 型。在這些模型中,具有八個參數的模型在MPEG4 的全域移動估測中係最一般性。依據此模型,在 10 一參考圖框及現行圖框的全域移動(GM)中,可由 下列公式所計算出的座標表示: m0x+ mxy+ m2 m3x+ m4y+ m5 x ^ ? y ——---- m6x+ ΐΥΐηγΛ-1 m6x+ rr^y + 1 。 全域移動(GM)可經由計算圖框的所有八個參 數m。〜m7而獲得。在像素領域或是壓縮領域,已 15 有許多演算法被提出以估測 MPEG4的全域移 動。雖然經由反覆式計算,可達到能接受的執行 效能,然而對於即時編碼或是對於僅有有限計算 能力的無線裝置,此種計算花費卻是不被允許。 此外,在MPEG4·的先進簡單型(Advanced 20 Simple Profile,ASP)影像編碼中,習知的全域移 動估測(GME)演算法被視為最耗費時間及無效率 花費操作。對於一些涉及全域移動估測(GME)的應 用’一旦計算花費被視為最主要考量時,需要新 1254257 的技術以減少計算的複雜度。 【發明内容】 本發明之目的係在提供一種非反覆式全域移 5 動估測方法,以在一輸入影像資料流的多個影像圖 框之間估測全域移動,其包含將該影像資料流中 的多個移動向量分組成具有預定數目移動向量之 多個分組,其次,係依據每一組中之移動向量,求 取該等組之全域移動向量參數值,最後,處理計 10 算出的每一組之全域移動向量參數值,以獲得一 最後之全域移動向量。 在一較佳實施例中,在每一預定之組中,其 移動向量分組步驟係依據移動向量間一固定空間 距離,對群組中移動向量進行分組。 15 同時,依據本發明,其提供一在參考影像圖 框及現行影像圖框之間的估測全域移動方法,其 包含使用一有八個全域移動參數(m〇 - m7)的透視 考量模型,全域移動參數(m〇 - m7)可由下列公式 所描述: , .. ,.m0x + mxy + m2 = /;(χ,}|ιη) = ^-1-f- m6x + m7y +1 ,r ( , x m3x + m4y + m5 2〇 7 =/>,少 Im)= ¥ + ¥ + 1, 其中,(x,_y)和(x’,/)係分別為在參考影像圖框及現行影像 圖框的座標,m為八個全域移動參數(m〇 - m7)的集合,亦 1254257 即m = [m〇,···,%]。可經由使用下列代數距離(algebraic distance)公式計算具有八個全域移動參數(mO - m7)的集 合m : /=〇 Ν-\ =Σ Λ: }\τη6χι +1) -(^ +/^) ,,·(—ς +哪 +1)-(-; +卿 +巧) —vhm +Vx ·% +Vx,词 rvmw、,+>;’>: .w 其中,ν=Λ^·+'·及兄,=M^+兄.。 在一實施例中,在一過度確定(over-determined)線性 糸統中’代數距離(algebraic distance)公式可為: % 凡 1 0 0 0 ~y〇V、 0 0 0 ^ Λ 1 -¾¾1 一凡凡, V Μ Μ Μ Μ Μ Μ Μ Μ = Μ 1 0 0 0 ϋ/ Uw ’ m4 、0 0 0 1 -yN.xyNA\ 10 法 依據本發明,係提供一種非反覆式全域移動估測方 以在一輸入影像資料流的多個影像圖框之間估測全域 移動,其包含將該影像資料流中的多個移動向量分組成具 有預定數目移動向量之多個分組’其次,係依據每一組中 之移動向量’求取該等組之全域移動向量參數值,最後, 處理所計算出的每—組之全域移動向量參數值,以獲得一 最後之全域移動向量。該計算步驟求取該等組之全域移 動向量參數值’更包含使用代數距離(咖⑽ dlstance)來言十#乡個全域移動參數,及使用—過度確定 15 1254257 (over-deternnned)線性系統來計算代數距離(Mg咖㈣ distance) 〇 依據本發明,係提供一種非反覆式全域移動估測系 統,以在-輸入影像資料流的多個影像圖框之間估測全域 5移動,其包含-分組裝置,係將該輸入影像資料流中的多 個移動向量區分成具有預定數目的移動向量之群組;一計 异裳置,係依據每-群組中之移動向量,求取該等群 組之全域移動向量參數值{m山〜^,每—全域移動 向量估測值包含八個全域移動參數㈦。〜所7); 一 比後處理裝置’處理計算裝置中所計算出的每一群組之群組 全域移動向量參數值,以獲得一最後之全域移動 向量。 【實施方式】 15 在一個或多個較佳實施例被詳細描述前,一個 熟習該技藝者正確地評價本發明並非僅限於本說 明書所描述之應用、或是元件安排、或是詳細描 述之步驟或是圖示的安排而已。 本發明係一種快速非反覆式全域移動估測(Global 20 Motion Estimati〇n、GME)方法,以由區塊移動估測方 法獲得的多個移動向量(M〇ti〇n Ve ctors、MV)中,去 估測透視的全域移動參數。本發明使用一種基於非反 覆式移動向:!:的全域移動估測(Global Motion Estimation、GME)方法,以估測最一般畫模型中的八 1254257 個全域移動(G1〇bal M〇tion、gm)參數。本發明之方 法使用一輸入影像資料流的多個移動向量以估測全域移 動(GM)。於本發明中,基於移動向量(Mv)的方法可 減低全域移動估測(GME)的計算複雜度,同時保有最 5 /]的衫像失真。此外,本發明之方法可實現在習知 MPEG-4編碼器中區塊式移動估測(bl〇ck_baad motion estimati〇n、BME)之後。特別地,本發明 的移動向量(MV)方法係線性且為非反覆式,故可有效 且強建地估測透視全域移動(G M)。 10 依據本發明之一較佳實施例,移動向量(Mv)方 式的全域移動估測(GME)係從一取樣移動向量(mv) 領域對一般透視模型進行透視性全域移動(gm)估 測。區塊式移動估測(BME)係先對影像圖框的一部 份進行區塊移動向量(MV)估測,然後區塊移動向量 15 (MV)被用來估測全域移動(GM)參數。本發明之一較 佳實施例係提供一估測方法,以估測一輸入影像資 料流的多個影像圖框之間的全域移動。依據該較佳實施 例,該輸入影像資料流的多個移動向量(MV)被區分成】 組移動向量。該估測方法依據每一組中之移動向量, 2〇計算J組之全域移動估測(GME)。該】組之全域移動估測 (GME)更進一步處理以獲得一最後的估測值。 本發明更提供一種全域移動估測系統,以在 一輸入影像資料流的多個影像圖框之間估測全域 移動。該系統包含一分組裝置、一計算裝置及一 10 1254257 後處理裝置。該分細脸职 ^ ^ ^ 、、且表置係將該輸入影像資极 中的多個移動向量,F ^ α ζ π # ^ Θ 貝枓^ £分成J組移動向量。該斗曾 裝置係依據J組移勳 ^ 量,求取該組之全蛣狡4 ^ 杉動向 株移動向量參數值{nij}、 — 一全域移動向量估;I丨 1 ’ 1 母 里彳古,則值m]包含八個全域移動泉 (所。〜…)。該後處理裝置處理計算出的j組全域移動\ 量參數值,以獲得—畀义 ,^ ^ θ移動向 最後之全域移動向ϊ。 ίο 15In general, the movement in the image sequence or the 5 differences in the continuous frame is caused by the movement of the recorded object or by the movement of the camera. The movement of the camera originates from the user's function (such as zooming in) or unintentional movement, or jitter. Due to the movement of the camera, a global movement occurs in the image sequence, which is the entire scene shift and movement. This and the moving of the recorded object relative to the stationary background are different. The global movement caused by jitter is generally unintentional, and it is really unwanted during the recording process. Some systems and methods have been proposed to estimate and compensate for global mobility. In the prior art, the global movement in the image sequence often simulates 5 1254257 into a two-dimensional parameter conversion. Global Motion Estimation (GME) estimates the conversion parameters from images. Global Mobile Estimation (GME) is an important tool and is widely used in computer vision, image processing and other related fields. For example, for MPEG4 global motion estimation, global mobility is described using parametric forms, which can be modeled from a simple model with only two parameters to a perspective model with eight parameters. Among these models, a model with eight parameters is the most general in the global motion estimation of MPEG4. According to this model, in the global motion (GM) of the 10 reference frame and the current frame, the coordinates calculated by the following formula are expressed: m0x+ mxy+ m2 m3x+ m4y+ m5 x ^ y ————-- m6x+ ΐΥΐηγΛ -1 m6x+ rr^y + 1 . Global Mobile (GM) can pass all eight parameters m of the calculation frame. ~m7 and get. In the field of pixels or compression, many algorithms have been proposed to estimate the global movement of MPEG4. Although acceptable performance can be achieved through repeated calculations, such computational cost is not allowed for instant encoding or for wireless devices with limited computing power. In addition, the conventional Global Motion Estimation (GME) algorithm is considered to be the most time consuming and inefficient operation in MPEG4 Advanced 20 Simple Profile (ASP) image coding. For some applications involving Global Mobile Estimation (GME), once the computational cost is considered the primary consideration, a new 1254257 technique is needed to reduce the computational complexity. SUMMARY OF THE INVENTION The object of the present invention is to provide a non-repetitive global mobile 5-motion estimation method for estimating global motion between multiple image frames of an input image data stream, which includes the image data stream The plurality of motion vectors in the group are grouped into a plurality of packets having a predetermined number of motion vectors, and secondly, the global motion vector parameter values of the groups are determined according to the motion vectors in each group, and finally, each of the calculated calculations 10 A set of global motion vector parameter values is obtained to obtain a final global motion vector. In a preferred embodiment, in each predetermined group, the motion vector grouping step groups the motion vectors in the group based on a fixed spatial distance between the motion vectors. At the same time, in accordance with the present invention, there is provided an estimated global motion method between a reference image frame and a current image frame, comprising using a perspective consideration model having eight global motion parameters (m〇-m7), The global mobility parameter (m〇-m7) can be described by the following formula: , .. ,.m0x + mxy + m2 = /;(χ,}|ιη) = ^-1-f- m6x + m7y +1 ,r ( , x m3x + m4y + m5 2〇7 =/>, less Im)= ¥ + ¥ + 1, where (x, _y) and (x', /) are in the reference image frame and the current image The coordinates of the frame, m is the set of eight global mobility parameters (m〇-m7), also 1254257 ie m = [m〇,···,%]. The set m with eight global moving parameters (mO - m7) can be calculated by using the following algebraic distance formula: /=〇Ν-\ =Σ Λ: }\τη6χι +1) -(^ +/^) ,,·(—ς+哪+1)-(-;+卿+巧)—vhm +Vx ·% +Vx, word rvmw,,+>;'>: .w where ν=Λ^· +'·And brother, =M^+ brother. In an embodiment, the 'algebraic distance' formula in an over-determined linear system can be: % where 1 0 0 0 ~ y〇V, 0 0 0 ^ Λ 1 -3⁄43⁄41凡凡, V Μ Μ Μ Μ Μ Μ Μ Μ = Μ 1 0 0 0 ϋ / Uw ' m4 , 0 0 0 1 -yN.xyNA\ 10 According to the present invention, a non-repetitive global mobile estimation method is provided. Estimating global motion between a plurality of image frames of an input image data stream, comprising grouping the plurality of motion vectors in the image data stream into a plurality of packets having a predetermined number of motion vectors, followed by each The motion vector in the group 'determines the global motion vector parameter values of the groups. Finally, the calculated global motion vector parameter values of each group are processed to obtain a final global motion vector. The calculation step seeks the global motion vector parameter value of the group to include the use of algebraic distance (Cai (10) dlstance) to describe the ten-home global mobility parameter, and to use the over-determined 15 1254257 (over-deternnned) linear system. Calculating Algebraic Distance (Mg Coffee) In accordance with the present invention, a non-repetitive global motion estimation system is provided for estimating a global 5 movement between a plurality of image frames of an input image data stream, which includes - The grouping device divides the plurality of motion vectors in the input image data stream into groups having a predetermined number of motion vectors; and the counting is based on the motion vectors in each group to obtain the groups The global motion vector parameter value of the group {m mountain~^, the per-global motion vector estimate contains eight global mobility parameters (7). ~ 7); A post-processing device' processes the group global motion vector parameter values for each group calculated in the computing device to obtain a final global motion vector. [Embodiment] Before a detailed description of one or more preferred embodiments, a person skilled in the art will correctly evaluate that the present invention is not limited to the application described in the specification, or the component arrangement, or the detailed description. Or the arrangement of the illustration. The present invention is a fast non-repetitive global motion estimation (Global 20 Motion Estimati〇n, GME) method, which is obtained by a plurality of motion vectors (M〇ti〇n Ve ctors, MV) obtained by the block motion estimation method. To estimate the global movement parameters of the perspective. The present invention uses a global motion estimation (GME) method based on non-repetitive moving directions: !: to estimate eight 1254257 global movements in the most general painting model (G1〇bal M〇tion, gm )parameter. The method of the present invention uses a plurality of motion vectors of an input image stream to estimate global motion (GM). In the present invention, the motion vector (Mv) based method can reduce the computational complexity of the Global Motion Estimation (GME) while maintaining the most image distortion. Furthermore, the method of the present invention can be implemented after the block motion estimation (bl〇ck_baad motion estimati〇n, BME) in the conventional MPEG-4 encoder. In particular, the motion vector (MV) method of the present invention is linear and non-repetitive, so that perspective global motion (G M ) can be estimated efficiently and strongly. In accordance with a preferred embodiment of the present invention, the Global Motion Estimation (GME) of the motion vector (Mv) method performs a perspective global motion (gm) estimation of a general perspective model from a sample motion vector (mv) domain. Block Motion Estimation (BME) first performs block motion vector (MV) estimation on a portion of the image frame, and then block motion vector 15 (MV) is used to estimate global motion (GM) parameters. . A preferred embodiment of the present invention provides an estimation method for estimating global movement between a plurality of image frames of an input image stream. According to the preferred embodiment, the plurality of motion vectors (MVs) of the input image data stream are divided into a group motion vector. The estimation method calculates the global motion estimation (GME) of the J group based on the motion vector in each group. The group's Global Mobile Estimation (GME) is further processed to obtain a final estimate. The present invention further provides a global motion estimation system for estimating global motion between a plurality of image frames of an input image data stream. The system includes a grouping device, a computing device, and a 10 1254257 post-processing device. The sub-series ^ ^ ^ , and the table is divided into a plurality of motion vectors in the input image, F ^ α ζ π # ^ Θ 枓 £ ^ £ into J group of motion vectors. The bucket device is based on the J group shifting quantity, and obtains the movement vector parameter value {nij} of the group, and the global mobile vector estimate; I丨1 '1 , then the value m] contains eight global mobile springs (to.....). The post-processing device processes the calculated j-group global mobility parameter values to obtain - 畀, ^^ θ moves to the last global domain to ϊ. Ίο 15

依據本發明,—由數位相機所記錄的影像圖 框首先被區分成多個區塊,每一區塊包含一像素、1 成的矩陣。每一區塊的移動向量係先使用區塊移 動估測方法先行估測,所獲得的移動向量再被處 理以獲付一取後估測值。與逐一像素進行估測的 習知估測方法不同,該習知估測方法係反覆式,故 浪費許多時間。而本發明係、針對每—區塊進行全域移 動估測(GME),故可減少計算步驟的數目及計算複 雜度。In accordance with the present invention, an image frame recorded by a digital camera is first divided into a plurality of blocks, each block comprising a matrix of one pixel and one. The motion vector of each block is first estimated using the block motion estimation method, and the obtained motion vector is processed to obtain a post-acquisition estimate. Unlike the conventional estimation method of estimating one pixel by pixel, the conventional estimation method is repeated, so that a lot of time is wasted. However, the present invention performs global motion estimation (GME) for each block, thereby reducing the number of calculation steps and calculating the complexity.

例如’考慮在三維空間移動物體上的一個 點。其位置能被表示為三維座標x = (U,z)r j3,其 中(X⑺,0可定義該點隨著時間變化在三維空間的 20軌跡。一影像掏取系統將三維執跡投影至二維影 像平面,再對該投影二維影像平面進行一定間隔 的取樣x = (x,3;)r ei?2。依據該二維影像投影,可獲得 一二維移動執跡(X⑴,〇。一般而言,一移動向量場 (MV field)係在一連續空間座標之移動軌跡的向 11 1254257 量函數。在實際應用中, 赵々主-斗办▲ 该向量函數一般使用參 數式表不,該參數式係 田 此会上 A 卜、、且參數的轉換,或是使 用一些參考點的移動軌跡表示。 在MPEG-4標準中宏矣 義許多二維參數模型,其 中以具有八個參數的透相本 M ^ 思現考ϊ模型最為普遍。其可定 義為: 所6*^ +所7少+ 1 m6x + m7y +1 其中,㈣和(Ο,)係分別為在參考影像圖框及現行影像 圖框的座標’ m為八個全域移動參數(m。- m7)的集合,亦 10即—。,…,糾。本發明之-較佳實施例係著重於 MPEG-4標準中最為普遍的透視考量轉換。 圖1係顯示一透視考量模型中全域移動補償的示意 圖。其顯示現行圖框與參考圖框之間的關係。 依據本發明之一較佳實施例,使用習知的全域 15移動估測(GME)方法,將每一由數位相機所記錄的 影像圖框區分成多個移動向量(MV)區塊。在MPEg_2 至Μ P E G - 4視訊轉換編碼應用中,多個移動向量(μ v) 可由區塊配對(block-matching)方法而獲得。區塊 式移動估測(BME)方法所獲得的移動向量係移動向量 20場(MV field)中具有雜訊的取樣,實際的全域移動估 測(GME)方法的目的係達成快速且強健的全域移動 參數準確估測。 12 1254257 使用移動向量(M v )的全域 :::在於從移動向 移動向量(Mv)係可從影像壓縮資料流取得,並且 —義為{、·,,,)}_,其”嫌, 仃圖框^)的帛i個移動向量,㈣移動向量的總數目。 使用Euclidian空間的距離公式,由於該透視考量模 型為一非線性系統’故可由下列非線性最小平方⑽他職^ least-square)問題去計算參數m。 N-l N m = argmin{Ellr/|2} = argmin{y m i=0 m to MVxi " I m) + X.-力;(〜乃I m) +兄 (2)For example 'consider a point on a moving object in three dimensions. Its position can be expressed as a three-dimensional coordinate x = (U, z) r j3, where (X(7), 0 can define the 20 trajectories of the point in time in three-dimensional space. An image capture system projects the three-dimensional representation to two Dimension image plane, and then sample the two-dimensional image plane at a certain interval x = (x, 3;) r ei? 2. According to the two-dimensional image projection, a two-dimensional motion trace (X(1), 〇 can be obtained. In general, a moving vector field (MV field) is a function of the 1 1254 257 of the moving trajectory of a continuous space coordinate. In practical applications, the vector function is generally used by the parameter table. This parameter type field is used to convert A, and parameters, or to use the moving track of some reference points. In the MPEG-4 standard, a large number of two-dimensional parameter models, with eight parameters The transmissive M ^ thinks that the model is the most common. It can be defined as: 6*^ + 7 less + 1 m6x + m7y +1 where (4) and (Ο,) are respectively in the reference image frame and current The coordinates of the image frame 'm are eight global movement parameters (m.-m7) The set, which is also the preferred embodiment of the present invention, focuses on the most common perspective consideration conversion in the MPEG-4 standard. Figure 1 is a schematic diagram showing global motion compensation in a perspective consideration model. It shows the relationship between the current frame and the reference frame. According to a preferred embodiment of the present invention, each of the image frames recorded by the digital camera is used using the conventional Global 15 Motion Estimation (GME) method. The region is divided into a plurality of motion vector (MV) blocks. In the MPEg_2 to PEG PEG-4 video conversion coding application, multiple motion vectors (μ v) can be obtained by a block-matching method. The motion vector obtained by the estimation (BME) method has noise sampling in the MV field of the moving vector. The purpose of the actual global motion estimation (GME) method is to achieve a fast and robust estimation of the global motion parameters. 12 1254257 The global domain using the motion vector (M v )::: is from the moving to the motion vector (Mv) can be obtained from the image compression data stream, and - meaning {, ·,,,)}_," Suspect, 仃 frame ^) 帛i The number of motion vectors, (4) the total number of motion vectors. Using the distance formula of the Euclidian space, since the perspective model is a nonlinear system, the parameter m can be calculated by the following nonlinear least squares (10) problem. Nl N m = argmin{Ellr/|2} = argmin{ymi=0 m to MVxi " I m) + X.-force; (~ is I m) + brother (2)

然而,為解決上述之非線性最小平方問題,需使用一 重覆式最佳化程序。當重覆式的計算負擔會增加全域移動 估測(GME)的成本,故對許多運用而言,此等程序會因成 本過高而被不被採用。 依據本發明之一較佳實施例,一代數距離 15 (algebraic distance)被使用為標的函數,該最小平方計算可 化成線性且表示如下: 10However, in order to solve the above-described nonlinear least squares problem, a repetitive optimization procedure is required. When the recurring computational burden increases the cost of Global Mobile Estimation (GME), for many applications, such procedures are not used because they are too costly. In accordance with a preferred embodiment of the present invention, an algebraic distance is used as a function of the target, which can be linearized and expressed as follows:

7V-1/=Σ /=0 /=0 ^ '{m +ι) Αρψι +m +^)_yt +^. +1) Ατψ, +/^) (3) 其中,及乃·=Λ^+乃。熟於該技藝者可知在公式 (3 )中的最小平方公式係異常值,同時因區塊式移動估測 (ΒΜΕ)的不準確度及區域移動,最小平方公式係巨大的。 13 20 1254257 許多強健的退化演算法(例如Μ-估測器)被建立,以解決該 最小平方公式之異常問題。本發明之較佳實施例避免使用/ 重複式演算法,但仍能處理異常值。公式(3)可使用下列過 度確定(over-determined)線性系統求解: ί % 少〇 1 0 0 0 0 0 0 ¾ Μ Μ Μ Μ y-N-x ί 〇 -w - Λ i - W u〇, MM Μ M 0 0 -Λμ%-】 57V-1/=Σ /=0 /=0 ^ '{m +ι) Αρψι +m +^)_yt +^. +1) Ατψ, +/^) (3) where, and yes·=Λ^+ It is. Those skilled in the art will know that the least squares formula in equation (3) is an outlier, and the least squares formula is huge due to the inaccuracy of the block motion estimation (ΒΜΕ) and the region shift. 13 20 1254257 Many robust degradation algorithms (such as Μ-estimators) were built to solve the anomaly problem of the least squares formula. The preferred embodiment of the present invention avoids the use of / repetitive algorithms, but still handles outliers. Equation (3) can be solved using the following over-determined linear system: % % Less than 1 0 0 0 0 0 0 3⁄4 Μ Μ Μ Μ yNx ί 〇-w - Λ i - W u〇, MM Μ M 0 0 -Λμ%-】 5

mAmA

V V M W UW 或是 A2iVx8m8xl = b2_ (4)V V M W UW or A2iVx8m8xl = b2_ (4)

其係等效於ArAm = A、。該矩陣 方程式可用至少一標準反矩陣程序求解,或用奇異 值分解(Singular Value Decomposition,SVD)虛擬反矩陣 程序求解。 10 在標的函數中使用該代數距離,在習知技術中的估測 問題被徹底簡化。雖然該代數距離可能導致一些準確度偏 離,然而會在後面述及的圖5及圖6模擬結果顯示,該=能 退化並不明顯。It is equivalent to ArAm = A,. The matrix equation can be solved by at least one standard inverse matrix program, or by a Singular Value Decomposition (SVD) virtual inverse matrix program. 10 Using this algebraic distance in the target function, the estimation problem in the prior art is completely simplified. Although this algebraic distance may cause some accuracy deviation, the simulation results of Fig. 5 and Fig. 6 which will be described later show that the = energy degradation is not obvious.

圖2係本發明非反覆式全域移動估測方法之流程圖, 15 =先在步驟31中’係將該輸人影像資料流中的多個移動向 量三區分成J組移動向量。圖4係該分組步驟之示意圖。 在每一組中至少包含4個或更多的移動向量。 於步驟32中,每一組的全域移動估測(gme)由公式 (4) V Am = Arb經使用奇異值分解(s vd)虛擬反矩陣程 14 1254257 序求解。在—實施例中,A為8乘8矩陣。最後可 獲得一組全域移動參數㈦山=1 曰一般而言,在一組中的移動向量越是分離的,則移動2 is a flow chart of the non-repetitive global motion estimation method of the present invention, 15 = first in step 31, the plurality of motion vectors 3 in the input image data stream are divided into J group motion vectors. Figure 4 is a schematic illustration of the grouping step. There are at least 4 or more motion vectors in each group. In step 32, the global motion estimate (gme) for each group is solved by the formula (4) V Am = Arb using the singular value decomposition (s vd) virtual inverse matrix process 14 1254257. In an embodiment, A is an 8 by 8 matrix. Finally, a set of global mobility parameters can be obtained (7). Mountain=1. In general, the more separated the motion vectors in a group, the more mobile.

向里在估測全域移動參數之分離能量越好。上述可由A 5對反轉係如此不適當所說明,亦即,空間距離越 大,矩陣A的條件數目越少(其係與A、條件數目 相同)。特別地,在奇異值分解(s VD)中,條件數目係 疋義為一矩陣最大奇異值與最小奇異值的比例。 當條件數目足夠大時,該矩陣接近奇異,且其反 10 矩陣變得不可靠。 本發明的方法能挑選任何四個移動向量以產 生王域移動參數。例如,該四個移動向量可選自靠 近〜像的四個角落。然而,為防止所選四個移動 向Ϊ被區域移動所破壞,本發明之一較佳實施例 15係將所有移動向量分組,而每一組至少包含四個 移動向畺,以達到強健的估測。如圖4所示,該分 、、且係依據輸入之移動向量的固定空間樣型。在每 組中’所有移動向量之間係為固定空間距離, 同時每一組中具有相同及最大的空間分離度。 20 再清參考圖2,於步驟3 3中,/最後估測值由 °亥步驟32中獲得之該組全域移動參數= u計算 出。依據本發明之一較佳實施例,該最後估測值 系執行 直方圖後處理方法而獲得。亦即, (m j丨』=1;1直方圖使用在八個維度的每一個維度有 15 1254257 四個區隔(bln),再選出一個具有最多數量'的區 隔。區隔(bin)的數目係依據組的數目。在此討: 及模擬係在八個維度中每一個維度有四個區= (bin)。最後對由選出的區隔中的叫進行平岣阳 5算,以獲得最後的估測值。當每一維度所使用運 區隔(bin)數目越多,所求的的結果越準確。然= 由模擬結果顯示,四個區隔(bin)的模擬結果已P 示罕有的準確結果。 頌 耩由對移動向量分組,本發明將輸入的移動向量次 10料組分成沒有重疊的子組,纟由每一子組獲得一全域= 參數。有些全域移動參數叫被異常情形所破壞,但是多 會接近真實的全域移動值。 夕 上述之本發明方法可由圖3的系統予以實現。參考曰 3,系統40包含-區塊式配對裝置41,其輸人—影像資料: 15 401並產生多個移動向量。該多個移動向量再由分2 裝置42區分成J組具有預定數目的移動向量,每—組至少包 含四個移動向量,該分組係依據輸入之移動向量 固定空間樣型。在每一組中,所有移動向量:間 係為固定空間距離。 20 系統40更包含一計算裝置43,其計算每—电之全域 移動向量參數值。該計算依據具有八個全域移動 參數(m。〜所7)的透視式模型’其可由公式(1)〜(4)所描述。 計算之後,可獲得J組全域移動向量參數值{扣丨\〆 16 1254257 該J組全域移動向量參數值{Π1』}」= 1;;再由一後處 理裝置44處理。依據本發明一較佳實施例,後處理裝 置44首先由j組{mj} j = i 計算一直方圖,該直方圖使 用在八個維度的每一個維度有四個區隔(bin)。再 5 選出一個具有最多數量%的區隔,最後對由選出 的區隔中的mj進行平均運算,以獲得最後的估測 值4 0 2。最後的估測值4 0 2再輸出至一處理器(圖未 示)以進一步處理。 圖5 (a )、5 (b)及圖6係顯示本發明的方法及系 10 統與習知方法及系統比較的模擬結果。本發明的 全域移動估測(GME)方法係在MPEG-4編碼中當成 一個快速估測全域移動(GM),以取代在一參考軟體 Momusys中的預定像素重複全域移動估測(GME) 法。本發明的全域移動估測(GMe)方法標示為 15 MV-GME’其中由基於16x16巨集區塊之全搜尋區 塊式移動估測(BME)所產生的整數像素單位的移動 向量被輸入至該快速全域移動估測(GME)方法中。 一些CIF大小的影像資料流係用於模擬中,其 包含相機縮放及移動。圖5(a)、5(b)係顯示像素基 20 礎的全域移動估測(GME)法與MV-GME的速率_失真 比較示意圖。圖中,MV-GME在編碼效率上非常 接近像素基礎的全域移動估測(GME)法。圖6係顯示 當對ΜIT影像序列前3 〇個圖框進行編碼時所使用 位元的比較,其中固定QP之PSNR約為3〇 ^。 17 1254257 計算裝置 輸入影像資料流 43 後處理裝置 44 401 最後的估測值 402Inwardly, the better the separation energy of the global motion parameters is estimated. The above can be explained by the fact that the A 5 pair inversion system is so inappropriate, that is, the larger the spatial distance, the smaller the number of conditions of the matrix A (which is the same as A and the number of conditions). In particular, in singular value decomposition (s VD), the number of conditions is defined as the ratio of the largest singular value of a matrix to the smallest singular value. When the number of conditions is large enough, the matrix is close to singularity and its inverse 10 matrix becomes unreliable. The method of the present invention can pick any four motion vectors to produce a king domain mobility parameter. For example, the four motion vectors can be selected from four corners that are close to the ~ image. However, in order to prevent the selected four moving directions from being destroyed by the area moving, a preferred embodiment 15 of the present invention groups all the moving vectors, and each group contains at least four moving directions to achieve a robust estimation. Measurement. As shown in Figure 4, the sub-, and is based on the fixed space pattern of the input motion vector. In each group, 'all motion vectors are fixed space distances, while each group has the same and largest spatial separation. 20 Referring back to FIG. 2, in step 3 3, the /est estimated value is calculated from the set of global mobility parameters = u obtained in step 32. According to a preferred embodiment of the invention, the final estimate is obtained by performing a histogram post-processing method. That is, (mj丨』=1; 1 histogram uses 15 1254257 four partitions (bln) in each dimension of the eight dimensions, and then selects one with the largest number of divisions. The number is based on the number of groups. Here: and the simulation system has four areas = (bin) in each of the eight dimensions. Finally, the calculation is performed by the selected one in the interval. The final estimate. The more the number of bins used in each dimension, the more accurate the results are. However, the simulation results show that the simulation results for the four bins have been shown. Rarely accurate results. By grouping the motion vectors, the present invention divides the input motion vector into 10 sub-groups without overlap, and obtains a global = parameter from each sub-group. Some global mobile parameters are called abnormalities. The situation is destroyed, but more likely to be close to the true global mobile value. The method of the present invention described above can be implemented by the system of Figure 3. Referring to Figure 3, system 40 includes a block-type matching device 41 that inputs human-image data: 15 401 and generate multiple motion vectors. The multiple movement directions The quantity is further divided into two groups of devices 42 having a predetermined number of motion vectors, each group containing at least four motion vectors, the grouping being based on the input motion vector fixed spatial pattern. In each group, all motion vectors The system is a fixed spatial distance. The system 40 further includes a computing device 43 that calculates a global mobile vector parameter value for each of the electricity. The calculation is based on a perspective model having eight global motion parameters (m. ~ 7). 'It can be described by the formulas (1) to (4). After the calculation, the J group global motion vector parameter value can be obtained {丨丨\〆16 1254257 The J group global motion vector parameter value {Π1』}" = 1; Further processed by a post-processing device 44. In accordance with a preferred embodiment of the present invention, the post-processing device 44 first computes a histogram from the j-group {mj} j = i, which is used in each of the eight dimensions. Four partitions (bin). Then select a segment with the largest number of %, and finally average the mj in the selected segment to obtain the final estimated value of 410. The final estimated value 4 0 2 and then output to a processor (Figure not Figure 5 (a), 5 (b) and Figure 6 show simulation results of the method and system of the present invention compared to conventional methods and systems. Global Mobile Estimation (GME) of the present invention The method is used as a fast estimate global motion (GM) in MPEG-4 encoding to replace the predetermined pixel repeat global motion estimation (GME) method in a reference software Momusys. The Global Mobile Estimation (GMe) of the present invention. The method is labeled as 15 MV-GME' where the motion vector of integer pixel units generated by the full search block motion estimation (BME) based on the 16x16 macroblock is input to the fast global motion estimation (GME) method. in. Some CIF-sized image streams are used in simulations, including camera zooming and moving. Figures 5(a) and 5(b) show a comparison of the rate-distortion comparison between the pixel-based global motion estimation (GME) method and the MV-GME. In the figure, MV-GME is very close to the pixel-based Global Motion Estimation (GME) method in coding efficiency. Figure 6 shows a comparison of the bits used when encoding the first 3 frames of the ΜIT image sequence, where the fixed QP has a PSNR of approximately 3 〇 ^. 17 1254257 Computing device Input image data stream 43 Post-processing device 44 401 Final estimated value 402

2020

Claims (1)

1254257 拾、申請專利範圍·· 1· 一種非反覆式全域移動估測方法,用以在一輸入影 像資料流的多個影像圖框之間估測全域移動,該方法包含·· 一分組步驟’將該輪入影像資料流中的多個移動向量 5區分成具有預定數目的移動向量之群組; 计异步驟,係依據每一群組中之移動向量,求取 該等群組之全域移動向量參數值;以及 -處理步驟’係處理計算步驟中所計算出的每一群組 之群組全域移動向量參數值,以獲得—最後之全域 10 移動向量。 2.如申請專利範圍第丨項所述之全域移動估測方法, 其中,在該分組步驟中,每—群組具#N個移動向量,N為 一大於或等於4的整數。 叫不1只砑述炙坌域移動估測方法, :中’該輸人影像資料流中的多個移動向量係使用區塊移 動估測方法所獲得Λ 甘/如申請專利範圍第1項所述之全域移動估測方法, 20 :,δ亥分組步驟依據移動向量區間的固定空間距離,分 成具有預定數目的移動向量之群組。 5.如申請專利範圍第丨項所述之全域移動 f中’在該計算步驟中’所獲得-組全域移動向量:數 且計算該等全域移動向量估測係依據I Μ固王域移動參數(所。〜叫的透視 如下公式所描述: 4棋型 21 1254257 m0x + mxy + m2 m6x + m7y +1 ,^ , , , m3x + m4y + ms y =fy(x,y\^) =-r- 〇,少)和(/,y)係分別為在參考影像圖框及現行影像圖框的 座標,m為八個全域移動參數(m〇 - m7)的集合,亦即 ^二^。,···,%],八個全域移動參數(m〇 - m7)的m可由下列代 5 數距離(algebraic distance)公式計算:1254257 Picking up, patenting scope · 1 · A non-repetitive global mobile estimation method for estimating global movement between multiple image frames of an input image data stream, the method comprising: · a grouping step Dividing the plurality of motion vectors 5 in the image data stream into groups having a predetermined number of motion vectors; the counting step is to determine the global movement of the groups according to the motion vectors in each group The vector parameter value; and - the processing step 'processes the group global motion vector parameter value of each group calculated in the calculation step to obtain - the last global 10 motion vector. 2. The global motion estimation method according to claim 2, wherein, in the grouping step, each group has #N motion vectors, and N is an integer greater than or equal to 4. Calling no one to describe the mobile domain estimation method, : 'The multiple mobile vectors in the input image data stream are obtained using the block motion estimation method. The global mobile estimation method, 20:, the δ hai grouping step is divided into groups having a predetermined number of motion vectors according to the fixed spatial distance of the motion vector interval. 5. The global motion vector obtained by the 'in this calculation step' in the global mobile f as described in the scope of the patent application, and the calculation of the global motion vector estimation system based on the I Μ 王 王 移动 移动 移动(The so-called perspective is described by the following formula: 4 chess type 21 1254257 m0x + mxy + m2 m6x + m7y +1 , ^ , , , m3x + m4y + ms y =fy(x,y\^) =-r - 〇, 少) and (/, y) are the coordinates of the reference image frame and the current image frame, respectively, m is the set of eight global motion parameters (m〇-m7), that is, ^^^. ,···,%], m of the eight global mobility parameters (m〇 - m7) can be calculated by the following algebraic distance formula: V·(啊 +哪 +1) +哪 +%) ,·’.(啊 +哪 +1)-(叫 +哪+,)_ hm -π + V· + V wV 2 - π V % + +( 其中,及兄.’=从^+兄·。 6.如申請專利範圍第5項所述之全域移動估測方法, 其中,在一過度確定(over-determined)線性系統中,代數距 10 離(algebraic distance)公式可為: '^ Λ 1 〇 0 0 0 ¾ Μ Μ Μ Μ XN-l JVl 1 〇 00 ^-1 0 0 -W -少〇V y〇 1 -W -•M), Μ Μ Μ M 0 0 - -Wam ~yN-lXN-\ Λμ 1 · —Un-i ~"3Vi3V-i V π πV·(啊+哪+1) +你+%) ,·'.(啊+哪+1)-(叫+哪+,)_ hm -π + V· + V wV 2 - π V % + + (Where, and brother. '= From ^ + brother. 6. The global motion estimation method according to claim 5, wherein in an over-determined linear system, the algebraic distance is 10 The formula for algebraic distance can be: '^ Λ 1 〇0 0 0 3⁄4 Μ Μ Μ Μ XN-l JVl 1 〇00 ^-1 0 0 -W - less 〇V y〇1 -W -•M), Μ Μ Μ M 0 0 - -Wam ~yN-lXN-\ Λμ 1 · —Un-i ~"3Vi3V-i V π π =Μ ΧΝ-1 7·如申請專利範圍第6項所述之全域移動估測方法, 其中,在該矩陣方程式可用至少一標準反矩陣程序 求解’或用奇異值分解(Singular Value Decomposition) 15 虛擬反矩陣程序求解。 22 1254257 8·如申請專利範圍第5項所述之全域移動估測方法, 其更包含: 一使用直方圖(Histogram)計算步驟,其使用在 八個維度的每一個維度有四個區隔(bin)之直方 5圖’計算全域移動向量參數= i j ; 一選擇步驟,選出一個具有最多量%的區隔;以 及 一平均步驟,對由該選擇步驟選出的區隔中的 mj進行平均運算,以獲得最後的估測值。 10 9· 一種估測全域移動向量之方法,係在參考影像圖樞 及現行影像圖框之間的估測全域移動向量,該方法包含: 一使用透視考量模型步驟,其使用一具有八個全域移 動參數(m〇 - m?)的透視考量模型,該全域移動參數(叫〜 m7)可由下列公式所描述: xf = fx(x,y\m) = y' - fy(x,y I m)= 15 mox +所丨少+ ιηβχ + ιηΊγ + \ m6x + m7y + l 其中’㈣和(w)係分別為在參考影像圖框及現行影像 圖框的座標’ m為人個全域移動參數(mQ_㈣的集合,亦 即 ;以及 、一計算步驟,其使用下列代數距離⑷gehie distance) 公式計算具有人個全域移動參數d%)的集合m : 23 20 1254257 使用一過度樓定(over-determined)線性系統計 算該代數距離(algebraic distance);以及 一處理步驟,處理計算步驟中所計算出的每一群組之 群組全域移動向量參數值,以獲得一最後之全域移 5 動向量。 1 2 ·如申請專利範圍第1 1項所述之全域移動 估測方法,其中,該處理步驟更包含計算一全域移動 向量參數的直方圖。 10 15 20 13· —種估測全域移動之系統,用以在一輸入影像資 料流的多個影像圖框之間估測全域移動,該系統包含: 一分組裝置,係將該輸入影像資料流中的多個移動向 量區分成具有預定數目的移動向量之群組; 叫升衣 該等群組之全域移動向量參數值以,每—全 域移動向量估測值mj包含八個全域移動參數王〜 所7 );以及 。 鼻出的每一群 一最後之全 一後處理裝置,係處理計算裝置中所計 組之群組全域移動向量參數值,以獲得 域移動向量。 -群請專利範圍第13項所述之系統,#中,該每 群;、·且具有N個移動向量,㈣—大於或等於4的整數。 入旦」次如申請專利範圍第13項所述之系、统,其中,該於 獲:。流中的多個移動向量係使用區塊移動估測方: 25 1254257 16 如申請專利範圍第13項所述之系 ,其中,該分 間距離,分成具有預定 統 5 組裝置依據移動向量區間的固定空 數目的移動向量之群組 17.如申請專利範圍第13項所述之系統,豆中 算”計算獲得一組全域移動向量參數二: 计异該等全域移動向量估測係依據一具有八個全域 移動參數(m。〜所7)的透視考量模型,該模型如下公式所 描述: m6x + m7y-{-l m3x + m4y + i m6x + m7^ + l 10 (A少)和(/,少’)係分別為在參考影像圖框及現行影像圖框的 座標,m為八個全域移動參數(m〇 — m7)的集合,亦即 m =[所〇,· · ·,所7 ] 〇 18.如申請專利範圍第17項所述之系統’其中’該組 八個全域移動參數(m0 - m7)的m可由下列代數距離 15 (algebraic distance)公式計算: m ^=1 /=〇 其中 ^ '{m +1) -(^ +ΐΨι _γ. ^ +ι) +^). :Μί^· + 易及兄·’= + 兄·。 26=Μ ΧΝ-1 7· The global motion estimation method as described in claim 6, wherein the matrix equation can be solved by at least one standard inverse matrix program or singular value decomposition (Singular Value Decomposition) 15 virtual The inverse matrix program solves. 22 1254257 8. The global motion estimation method according to claim 5, further comprising: a histogram calculation step using four partitions in each dimension of eight dimensions ( Bin) the histogram 5 'calculates the global motion vector parameter = ij ; a selection step to select a segment with the largest amount of %; and an averaging step to average the mj in the segment selected by the selection step, Get the final estimate. 10 9· A method for estimating a global motion vector is an estimated global motion vector between a reference image map and a current image frame, the method comprising: a step of using a perspective consideration model, which uses one with eight global domains A perspective consideration model for the movement parameter (m〇-m?), which is described by the following formula: xf = fx(x,y\m) = y' - fy(x,y I m ) = 15 mox + total reduction + ιηβχ + ιηΊγ + \ m6x + m7y + l where '(4) and (w) are the coordinates of the reference image frame and the current image frame respectively, m is the global movement parameter ( a set of mQ_(d), that is, a calculation step that uses the following algebraic distance (4) gehie distance formula to calculate a set m with a global moving parameter d%): 23 20 1254257 using an over-determined linearity The system calculates the algebraic distance; and a processing step of processing the group global motion vector parameter values of each group calculated in the calculating step to obtain a final global shifting motion vector. The global mobile estimation method according to claim 11, wherein the processing step further comprises calculating a histogram of a global motion vector parameter. 10 15 20 13 - A system for estimating global motion for estimating global motion between multiple image frames of an input image stream, the system comprising: a grouping device for streaming the input image data The plurality of motion vectors in the group are divided into groups having a predetermined number of motion vectors; the global motion vector parameter values of the groups are called, and the global motion vector estimation value mj includes eight global motion parameters. 7); and. Each group of nasal discharges, a final one-time post-processing device, processes the group global motion vector parameter values of the groups counted in the computing device to obtain a domain motion vector. - The system described in item 13 of the patent scope, #, each group; and having N moving vectors, (4) - an integer greater than or equal to 4. In the case of the application, the system and system described in item 13 of the patent application, in which: The plurality of motion vectors in the stream uses the block motion estimation method: 25 1254257 16 as set forth in claim 13 wherein the inter-division distance is divided into fixed-group 5 devices according to the motion vector interval. Group of empty number of motion vectors 17. As in the system of claim 13 of the patent application, the calculation of the bean is calculated by obtaining a set of global motion vector parameters 2: the calculation of the global motion vector estimation system has A perspective consideration model for eight global motion parameters (m. ~ 7), which is described by the following formula: m6x + m7y-{-l m3x + m4y + i m6x + m7^ + l 10 (A less) and (/ , less ') are the coordinates of the reference image frame and the current image frame, respectively, m is the set of eight global motion parameters (m〇-m7), that is, m = [〇,····,7 〇 18. The system of claim 17 wherein the m of the set of eight global mobility parameters (m0 - m7) can be calculated by the following algebraic distance formula: m ^=1 /= 〇 where ^ '{m +1) -(^ +ΐΨι _γ. ^ +ι) +^). :Μί^ + · Easy and brother '= + · brother. 26
TW93126794A 2004-09-03 2004-09-03 Method and system for non-iterative global motion estimation TWI254257B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93126794A TWI254257B (en) 2004-09-03 2004-09-03 Method and system for non-iterative global motion estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93126794A TWI254257B (en) 2004-09-03 2004-09-03 Method and system for non-iterative global motion estimation

Publications (2)

Publication Number Publication Date
TW200609841A TW200609841A (en) 2006-03-16
TWI254257B true TWI254257B (en) 2006-05-01

Family

ID=37587264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93126794A TWI254257B (en) 2004-09-03 2004-09-03 Method and system for non-iterative global motion estimation

Country Status (1)

Country Link
TW (1) TWI254257B (en)

Also Published As

Publication number Publication date
TW200609841A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
Su et al. Global motion estimation from coarsely sampled motion vector field and the applications
EP3216216B1 (en) Methods and systems for multi-view high-speed motion capture
JP4780046B2 (en) Image processing method, image processing apparatus, and image processing program
US8903130B1 (en) Virtual camera operator
Yu et al. Multi-level video frame interpolation: Exploiting the interaction among different levels
JP2006512029A (en) Segment-based motion estimation
KR20110032157A (en) Method for producing high definition video from low definition video
KR20070079411A (en) Method and apparatus for estimating motion vector based on block
CN114339030B (en) Network live video image stabilizing method based on self-adaptive separable convolution
JPH0993614A (en) Three-dimension image coder
US8144775B2 (en) Method and device for generating candidate motion vectors from selected spatial and temporal motion vectors
US20060159177A1 (en) Motion estimation method, device, and system for image processing
Chen et al. Optical flow estimation for motion-compensated compression
Lee et al. Fast 3D video stabilization using ROI-based warping
KR101906173B1 (en) Method and Device of Zoom Motion Estimation for Depth Video
CN105678718A (en) Method and device for image denoising
Sun et al. Rolling shutter distortion removal based on curve interpolation
TWI254257B (en) Method and system for non-iterative global motion estimation
Sorwar et al. Fast global motion estimation using iterative least-square estimation technique
EP2424243B1 (en) Motion estimation using integral projection
US7684628B2 (en) System and method for non-iterative global motion estimation
US20140355682A1 (en) Image processing with segmentation
Satyawan et al. Motion estimation on fish-eye images
Ghutke et al. A novel approach for video frame interpolation using cubic motion compensation technique
JP2017005343A (en) Video quality estimation device, video quality estimation method and program