TWI252313B - Multiphoton excitation fluorescence microscopy for detecting biochips - Google Patents

Multiphoton excitation fluorescence microscopy for detecting biochips Download PDF

Info

Publication number
TWI252313B
TWI252313B TW91103484A TW91103484A TWI252313B TW I252313 B TWI252313 B TW I252313B TW 91103484 A TW91103484 A TW 91103484A TW 91103484 A TW91103484 A TW 91103484A TW I252313 B TWI252313 B TW I252313B
Authority
TW
Taiwan
Prior art keywords
multiphoton
fluorescence microscopy
biochip
light
complex array
Prior art date
Application number
TW91103484A
Other languages
Chinese (zh)
Inventor
Chen-Yuan Dong
Peter T C So
Sunney I Chan
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW91103484A priority Critical patent/TWI252313B/en
Application granted granted Critical
Publication of TWI252313B publication Critical patent/TWI252313B/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention provides a multiphoton excitation fluorescence microscopy, and also a phosphor analysis device for simultaneously detecting phosphor on biochip with different fluorescent material. The device comprises a biochip, a multiphoton excitation light source, object lens, and plural groups of detecting channels, in which the biochip has phosphor mark thereon through hybridization process to express the biological message after hybridization, multiphoton excitation light source can focus on a light spot after the reaction of object lens through exciting light to excite the phosphor mark bundled with the biochip, and then the phosphor with some different specific wavelength through excitation can be detected via plural groups of detecting channels.

Description

1252313 五、發明說明(1) 發明領域: 本發明係關於一種生物晶片之螢光分析 -種利用多光子激發螢光顯微裝置,同時y是 不同螢光性質之螢光物質,以有效增加 彳貝利夕種 之螢光分析裝置。 生物阳片分析欵率 發明背 隨 課題便 及蛋白 的最佳 向、分 一次的 以,生 發、臨 二十一 生 極精密 次序的 造,且 測。 生 及微流 之晶片 景: 著人類基 是了解數 質組之功 利器。生 析速度快 實驗就可 物晶片的 床檢驗、 世紀將是 物晶片, 的技術, 點製在一 非常微小 因圖譜 萬個基 能研究 物晶片 、所需 以獲得 應用範 菌種篩 生物晶 簡單的 並根據 片利用 的載體 即將定 因所代 。而生 技術的 使用的 整體性 圍含蓋 選以及 片蓬勃 說是一 序完成,科 表的意義和 物晶片正是 主要特點為 檢體樣品以 (平行化) 了基因功能 環境控制等 發展的世紀 種微型裝置 不同需求,將大量 紙、玻璃、;5夕或其 上,用以施行各種 學家們的下〜個 其相互關係,以 解決此複雜難蹲 其分析精確性 及試劑較少,I 之實驗數據。& 之研究、新藥開 。無庸置疑的, 〇 ’科學家們利用 特定生物材料t 他化學合成物製 生化實驗之檢 物晶片可分為DNA晶片(基因晶片)、蛋白質晶片 晶片等,而DNA晶片則是目前發展最迅速且最成熟 技術。其原理是將數千或數萬點的單股DNA (又稱1252313 V. INSTRUCTIONS (1) Field of the Invention: The present invention relates to a fluorescence analysis of a biochip - a multiphoton excitation fluorescence microscopy device, and y is a fluorescent substance of different fluorescent properties to effectively increase enthalpy Bailey's fluorescent analyzer. Bio-positive analysis of the rate of the invention The back of the subject and the best of the protein, the production, the production, and the production of the extremely precise order. Raw and microfluidic wafers: The human base is a tool for understanding the quality of the mass group. The rapid prototyping experiment can be carried out on the bed inspection of the wafer, the century will be the technology of the wafer, the technology is made in a very small factor map of the 10,000-molecular research wafer, and it is necessary to obtain the application of the strain sieve. And according to the carrier used by the film is about to be determined by the cause. The wholeness of the use of biotechnology is covered by the selection and the film is said to be completed in a sequence. The significance of the watch and the object wafer are the main features for the development of the sample sample (parallelization) of the functional environment control. Different kinds of micro-devices require a large amount of paper, glass, or on the eve, to implement the relationship between the various undergraduates, to solve this complexity, and to analyze the accuracy and reagents. Experimental data. & research, new drugs. Undoubtedly, 〇 'scientists use specific biomaterials t biochemical synthesis biochemical test specimens can be divided into DNA wafers (gene wafers), protein wafers, etc., while DNA wafers are currently the fastest growing and most Mature technology. The principle is to use thousands or tens of thousands of points of single-stranded DNA (also known as

1252313 五、發明說明(2) 為探針,probe ),以高密度的方式點製在玻璃片、尼龍 薄膜或其他物質製成之生物材料上(泛稱晶片)。其中此 單股DNA的主要來源有兩種:寡核苷酸 (oligonucleotide)及互補 DNA (complementary DNA ; cDNA)。寡核芽酸晶片主要是由Affymetrix生技公司所製 造,其利用組成DNA的A、T、C、G四種鹼基,以類似堆叠 的方式依序形成約20〜25個(層)之寡核苷酸;而互補DNa 晶片則是利用從病人的檢體或是其他的生物體抽取出的己 知互補DNA,然後再將這些寡核苷酸或互補DNA點製在晶片 上。 接著,將所欲偵測樣品之訊息RNA (messenger RNA ; mRNA )抽取出來’利用反轉錄(reverse transcript ion )的方式,將訊息r ΝΑ轉化成c DNA,並在 cDNA上標記螢光物質後,將已標記之樣品cdnA與晶片上文 探針進行雜合作用(hybridization ),接著利用共焦顯 微裝置判讀,且將雜合後之訊息傳送至電腦分析。1252313 V. INSTRUCTIONS (2) For probes, probes are made in a high-density manner on biomaterials made of glass sheets, nylon films or other materials (generalized wafers). Among them, there are two main sources of single-stranded DNA: oligonucleotides (oligonucleotide) and complementary DNA (complementary DNA; cDNA). Oligonucleotide wafers are mainly manufactured by Affymetrix Biotech Co., Ltd., which use the four bases A, T, C, and G that make up the DNA to form about 20 to 25 (layers) in a stack-like manner. Nucleotides; complementary DNa wafers use known complementary DNA extracted from a patient's specimen or other organism, and then these oligonucleotides or complementary DNA are spotted on the wafer. Next, the message RNA (messenger RNA; mRNA) of the sample to be detected is extracted and 'reverse transcript ion' is used to convert the message r 成 into c DNA and mark the fluorescent substance on the cDNA. The labeled sample cdnA was hybridized with the probe above the wafer, then interpreted using a confocal microscopy device, and the hybridized message was transmitted to a computer for analysis.

生物晶片最常被運用在疾病了解,因為人類百分之 十以上的疾病,和基因缺陷或異常有關,透過瞭解基因 能有助於釐清疾病機制,以找出預防或治療的方法。因 此,科學家們透過抽血、分離、擊破、萃取、篩選和放 訊號等一連串複雜之過程,從生物疾病帶原體中取得某 或蛋白質,再以這些基因或蛋白質為生物材料做成生ς 片(模擬病源體)’以供醫學人員利用這些具有模擬病 體的生物晶片進行檢測。Biochips are most commonly used in disease understanding because more than 10% of human diseases are associated with genetic defects or abnormalities. Understanding genes can help clarify disease mechanisms to find ways to prevent or treat them. Therefore, scientists use a series of complicated processes such as blood collection, separation, crushing, extraction, screening, and signal transmission to obtain a certain protein from the biological disease-bearing organism, and then use these genes or proteins as biomaterials to make oyster tablets. (simulated pathogens) 'for medical personnel to use these biofilms with simulated lesions for detection.

12523131252313

由於傳統生物晶片的判讀是利用共焦顯微裝 利用口男你。〇 -、疋 次收早一個光子以激發螢光,因此在螢光分析上呈 一些缺點: 〃 共焦顯微裝置所使用的光源只能激發螢光光譜接近之 、質’且由於單光子激發光源波長與螢光波長極為接 近^因此使得此種方法應用於多色生物晶片之螢光分 析多有限制,而無法提升生物晶片螢光分析之速度盘 效率; 〜 ()單光子螢光的激發並不僅侷限在光束聚焦的高強度 區,因此需要使用針孔作為濾波器; (3) 、利用單《光子激發會具有較多的光傷害(photodamaging )以^及光漂白(photobleaching)效應之缺點; (4) 單光子螢光共焦顯微術是採用較短波長的可見光,當 樣品符合雷力散射時,根據雷力散射(Rayleigh scattering )原理,樣品内光束受到衰減的程度反比 於波長的四次方,是以單光子激發之光束會大幅衰 減,而影響檢測效果。 發明目的及概述: _ 本發明之主要目的在於提供一種利用多光子激發螢光 顯微裝置,以偵測生物晶片上螢光標記之螢光分析裝置。 種利用多光子激發螢光 本發明之另一目的在於提供一 1252313 說明(4) " ' ^— 顯微裝置,以同步偵測生物晶片上不同螢光標記之螢光八 析裝置。 刀 本發明之再一目的在於提供一種具有複數組偵測頻道 之多光子激發螢光顯微裝置,以提高生物晶片螢光檢 率之螢光分析裝置。 本 質5而 置包括 鏡以及 點製數 物質之 基因晶 石雷射 成一光 記。隨 物鏡接 片上之 發明提供 有放增加 了基因晶 複數組偵 千或數萬 樣品cDNA 片上便會 系統所產 點後,可 後,這些 收後,利 生物訊息 一種以多光子同步激發不同性質 生物晶片分析效率之螢光激發裝 片、鈦藍寶石雷射系統、光束掃 測頻道。其中,在此基因晶片上 點的單股DNA,當此單股DNA與已 進行雜合作用(hybridization: 具有雜和後之生物訊息。接著, 生的光源’經過光束掃描器而被 用以掃瞒及激發與基因晶片結合 已激發且具有特定波長之螢光訊 用複數組偵測頻道以分別偵測位 置。此裝 描器、物 已高密度 標記螢光 後,在 由鈦藍寶 物鏡聚焦 之螢光標 號,經由 於基因晶 發明詳細說明·· 露了士單光子激發螢光所具有之缺點,本發明揭 傳统單光子丘隹分析上利用多光子激發螢光顯微裝置取代 傳統早先子共焦顯微裝置, / 之螢光分析裝S。以下约罝^ 升 析效率 以下間早敘述在多光子激發螢光顯微裝Since the interpretation of traditional biochips is the use of confocal microscopy, you can use it. 〇-, 疋 收 收 一个 一个 以 以 以 以 以 收 收 收 收 收 收 收 收 收 , , , , , , , , , , , , , , , , , 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤 萤It is very close to the fluorescence wavelength. Therefore, there is a limit to the fluorescence analysis of this method applied to multi-color biochips, and it cannot improve the speed disk efficiency of biochip fluorescence analysis; ~ () single photon fluorescence excitation is not only It is limited to the high-intensity area where the beam is focused, so it is necessary to use pinholes as a filter; (3), using a single photon excitation will have more photodamaging and photobleaching effects; 4) Single-photon fluorescent confocal microscopy uses shorter-wavelength visible light. When the sample conforms to lightning scattering, according to the Rayleigh scattering principle, the intensity of the beam in the sample is inversely proportional to the fourth power of the wavelength. The beam excited by a single photon will be greatly attenuated, which will affect the detection effect. OBJECT AND SUMMARY OF THE INVENTION: The main object of the present invention is to provide a fluorescence analysis device for detecting fluorescent marks on a biochip using a multiphoton excitation fluorescence microscopy apparatus. Multi-photon Excitation Fluorescence Another object of the present invention is to provide a 1252313 (4) " '^-microscopic device for simultaneous detection of different fluorescent markers on a biochip. Knife Another object of the present invention is to provide a multiphoton excited fluorescence microscopy apparatus having a complex array detection channel to enhance the fluorescence analysis apparatus for biochip fluorescence detection. The essence consists of a mirror and a point-based substance of the crystal spar laser into a light. With the invention of the objective lens, there is an increase in the number of gene crystal arrays or tens of thousands of sample cDNAs on the chip, and then the system produces the points, after which, after the harvest, the biological information is a multi-photon synchronization to excite different nature organisms. Fluorescence excitation loading for wafer analysis efficiency, titanium sapphire laser system, beam scanning channel. Wherein, a single strand of DNA is spotted on the gene chip, and when the single strand of DNA has been hybridized (hybridization: a biological message with a miscellaneous sum. Then, the raw light source is used to sweep through the beam scanner)瞒 激发 激发 激发 激发 激发 激发 激发 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与The firefly cursor number is described in detail by the gene crystal invention. The disadvantages of the single photon excitation fluorescence are disclosed. The invention discloses the use of multiphoton excitation fluorescence microscopy device to replace the traditional early precursor. Confocal microscopy device, / Fluorescence analysis device S. The following approximately 罝 ^ Ascending efficiency is described below in multiphoton excited fluorescence microscopy

1252313 五、發明說明(5) 置中,以雙光子激發螢光為例之原理。 雙光子激發是指受激分子同時吸收兩個頻率各為v 1和 v2之光子,而受到頻率相當於vi+v2單光子的激發。因為 雙光子的激發需要吸收兩個光子,因此其躍遷率正比於入 射光強度的平方’且因雙光子吸收截面極低,故需極高的 瞬間功率,才能有效的產生激發。 螢光產生的機制,主要來自原子或分子的電子躍遷。 第一圖是著名的Jab lonski diagram,用以描述營光產生 時典型的能階轉換情形,其中SO代表基態,S1與S2則分別 '代表電子的第一與第二激發態。在無任何激發光子被吸收 的情況下’依據波茲曼分佈,各個激發態相對於基,態分子 的比例(R )可以用下式表示:R = e — ΔΕ/KT其中,△ E代 表的是能階之間的能量差,k是波茲曼常數,τ則是絕對温 度。在室溫時’因大部分分子處於基態,故不會有螢光發 生。但當物體吸收了一特定波長之光子後,其中的螢光分 子吸收了適當波長的激發光子而躍遷到較高能階之S 1 (箭 號2 )或S2 (箭號1 )。一般而言,在S2的分子會快速以非 輻射型態落回S1 (箭號3 );而位於S1的分子亦在稍後落 _回基態S 0 (箭號4 )而放出螢光。這個轉換過程時間極 短’約在10-8秒内完成。值得注意的是,此螢光的激發亦 ▲可以利用吸收雙光子或多光子來完成。 接著請參閱第二圖,此圖揭露了本發明中可同步激發 生物晶片上不同螢光性質之螢光物質,而有效增加分析效 率且減少生物晶片消耗之多光子螢光顯微裝置丨2 〇。首先1252313 V. INSTRUCTIONS (5) Centering on the principle of two-photon excitation of fluorescence. Two-photon excitation means that the excited molecules simultaneously absorb two photons with frequencies v 1 and v 2 , and are excited by a single photon with a frequency equivalent to vi + v 2 . Since the excitation of two photons requires absorption of two photons, the transition rate is proportional to the square of the intensity of the incident light and because the two-photon absorption cross section is extremely low, an extremely high instantaneous power is required to effectively generate the excitation. The mechanism by which fluorescence is produced comes mainly from the electronic transition of atoms or molecules. The first picture is the famous Jab lonski diagram, which is used to describe the typical energy level transition in the case of camp light generation, where SO represents the ground state and S1 and S2 respectively represent the first and second excited states of the electron. In the absence of any excitation photons being absorbed, 'according to the Bozeman distribution, the ratio of each excited state to the base, the state of the molecule (R) can be expressed by: R = e - ΔΕ / KT where △ E represents Is the energy difference between the energy levels, k is the Boltzmann constant, and τ is the absolute temperature. At room temperature, since most of the molecules are in the ground state, no fluorescence will occur. However, when an object absorbs a photon of a specific wavelength, the fluorescent molecules therein absorb the excitation photons of the appropriate wavelength and transition to the higher energy level S 1 (arrow 2 ) or S 2 (arrow 1 ). In general, the molecules at S2 will quickly fall back to S1 (Arrow 3) in a non-radiative pattern; while the molecules at S1 will later fall back to the ground state S 0 (Arrow 4) and emit fluorescence. This conversion process takes a very short time' to be completed in about 10-8 seconds. It is worth noting that the excitation of this fluorescent light can also be achieved by absorbing two-photons or multiple photons. Referring to the second figure, the figure discloses a multiphoton fluorescence microscopy device that can synchronously excite fluorescent substances of different fluorescent properties on a biochip, thereby effectively increasing the efficiency of analysis and reducing the consumption of biochips. . First of all

12523131252313

在生物晶片l 〇上以高密度的方式點製數千或數萬點的單股 DNA20(稱為探針),其令,此生物晶片1〇的材料可選擇 玻璃片三尼龍薄膜或是其他物質,而單股DNA 2〇的來源則 可以為寡核苦酸或是互補DNA。其中,此單股dna亦可依實 際實施之需I,而選擇蛋白f、抗原或是抗體。接著,將 所欲偵測樣品之訊息RNA由樣品中抽取出來,再利用反轉 錄的方式,將此訊息RNA轉化成cDNA,並在cDNA上標記螢 光物質。隨後,將已標記螢光物質之樣品cDNA與晶片1〇上 之探針20 (即單股DNA)進行雜合作用 ,(hybridization)。 當探針20與樣品上已標記螢光物質之cDNA進行雜合作 用(hybridization)後,在此晶片1〇上會具有與其結合 之螢光物質,即雜和後之生物訊息。隨後,利用多光子激 發螢光顯微裝置檢測此生物訊息。在多光子激發螢光顯微 裝置中,多光子激發光源30可產生激發光,用以同步激發 生物晶片1 0上不同螢光性質之螢光物質。在一較佳的實施 例中,可選擇鈦藍寶石雷射系統為多光子激發光源,用以 激發波長為70 0 n m〜1 〇 〇 〇 n m之近紅外光。 / 當激發光從多光子激發光源30中發射後,經由第一面 ,80與第二面鏡90的反射,傳遞到光束掃描器4〇。緊接 -著,由光束掃描器40傳來之光線在經過光束鏡組1〇〇的作 用後,會成一放大之平行光束。當此光束被物鏡5〇聚焦成 一光點,而投射到樣品上,可激發與生物晶片丨〇結合之螢 光標記。 1252313Thousands or tens of thousands of single-stranded DNA 20 (referred to as probes) are spotted on a biochip in a high-density manner, so that the material of the biochip can be selected from a glass piece of three nylon film or the like. Substance, and the source of single stranded DNA 2〇 can be oligonucleic acid or complementary DNA. Among them, this single-strand dna can also select protein f, antigen or antibody according to the actual needs of I. Next, the RNA of the sample to be detected is extracted from the sample, and the RNA is converted into cDNA by reverse transcription, and the fluorescent substance is labeled on the cDNA. Subsequently, the sample cDNA of the labeled fluorescent substance is hybridized with the probe 20 (i.e., single-stranded DNA) on the wafer 1 (hybridization). After the probe 20 is hybridized with the cDNA of the labeled fluorescent substance on the sample, the wafer 1 has a fluorescent substance bound thereto, i.e., a hybrid and subsequent biological message. This biological message is then detected using a multiphoton excited fluorescence microscopy device. In a multiphoton excited fluorescence microscopy apparatus, multiphoton excitation source 30 produces excitation light for simultaneous excitation of phosphors of different fluorescent properties on biochip 10. In a preferred embodiment, the titanium sapphire laser system can be selected as a multi-photon excitation source for exciting near-infrared light having a wavelength of 70 0 n m~1 〇 〇 〇 n m . / After the excitation light is emitted from the multiphoton excitation light source 30, it is transmitted to the beam scanner 4A via the reflection of the first surface 80 and the second mirror 90. Immediately after this, the light transmitted by the beam scanner 40 will become an amplified parallel beam after passing through the beam mirror 1〇〇. When the beam is focused by the objective lens 5 into a spot and projected onto the sample, the fluorescent mark combined with the biochip can be excited. 1252313

五、發明說明(7) 值得注意的是,此光束掃描器4〇在根據操作者設定之 作用下,可使aa片1 0上之生物訊息皆能夠被逐一掃描。隨 這些已激發且具有特定波長之螢光訊號,由物鏡50接 收且經過分光鏡110的作用後,會有一部份的螢光反射回 樣品’而另一部份的螢光則通過此分光鏡11 0。通過分光 鏡11 〇*的螢光,在利用複數組濾鏡60而分別加以篩選後, 可接著利用對應於複數組濾鏡60之複數組偵測頻道70, 別偵測這些由複數組濾鏡60傳送之生物訊息。在本發明之 t施例中,複數組濾鏡與偵測頻道的數目可為四個,且 -硬數組濾鏡亦可選擇稜鏡或光柵。最後, 經由電腦進行數據分析之工作。 ^ 晶片上之生物 利用多光子激發螢光顯微裝置檢測生物 訊息,具有許多優點: (1)由於多光子的激發波長和螢光放射的波長差距甚大, 因此可輕易的得到完整的放射光譜。此外。亦由於多 光子可同時激發不同螢光性質之螢光物質,因此可同 步作多色=螢光分析,使其在應用上具有更多變化,V. INSTRUCTIONS (7) It is worth noting that the beam scanner 4 can enable the bio-message on the aa chip 10 to be scanned one by one according to the setting of the operator. With these excited and specific wavelength fluorescent signals, after receiving by the objective lens 50 and passing through the beam splitter 110, a portion of the fluorescent light is reflected back to the sample' while another portion of the fluorescent light passes through the beam splitter 11 0. The fluorescence of the spectroscope 11 〇* is separately filtered by the complex array filter 60, and then the complex array detection channel 70 corresponding to the complex array filter 60 can be used to detect the complex array filter. 60 transmitted biological messages. In the embodiment of the present invention, the number of complex array filters and detection channels can be four, and - the hard array filter can also select 稜鏡 or raster. Finally, work on data analysis via a computer. ^ On-wafer organisms The use of multiphoton-excited fluorescence microscopy devices to detect biological information has many advantages: (1) Since the excitation wavelength of multiphotons and the wavelength of fluorescence emission are very large, a complete emission spectrum can be easily obtained. Also. Also, since multiphotons can simultaneously excite fluorescent substances of different fluorescent properties, multicolor=fluorescence analysis can be performed simultaneously, which makes more changes in application.

=大幅提鬲生物晶片之分析效率以及減少生物晶片的 '耗 以避免晶片南成本之耗費; 避免聚焦點以外的光傷害以及光漂白效應; 2)多光子激發螢光是利用較長波長之激發光,根據雷力 月、原理,光的衰減現象可顯著降低,而達到更深入= Significantly improve the efficiency of biochip analysis and reduce the cost of biochips to avoid the cost of wafer south; avoid light damage and photobleaching effects outside the focus point; 2) Multiphoton excitation fluorescence is stimulated by longer wavelengths Light, according to Lei Liyue, principle, the attenuation of light can be significantly reduced, and reach a deeper

1252313 五、發明說明(8) 之觀測。 本發明雖以一較佳實例闡明如上,然其並非用以限定 本發明精神與發明實體,僅止於此一實施例爾。是以在不 脫離本發明之精神與範圍内所作之修改,均應包含在下述 申請專利範圍内。1252313 V. Observations of inventions (8). The present invention has been described above by way of a preferred embodiment, and is not intended to limit the spirit of the invention and the invention. Modifications made without departing from the spirit and scope of the invention are intended to be included within the scope of the appended claims.

第12頁 1252313Page 12 1252313

圖式簡單說明 圖式簡單說明 藉由以下詳細 一 上述内容及此項就描述結合所附圖示,將可輕易的瞭解 望一、、赞明之諸多優點,其中·· 弟一圖為Jablonski圖,顯示螢光產生時的典型能階 轉換情形;以及 白 第二圖為本發明之多光子激發螢光顯微裝置示意圖, 顯示各組成元件間的連結關係。 圖號對照表: 4 1 0生物晶片 30多光子激發光源 5 0物鏡 70偵測頻道 90第二面鏡 110分光鏡 20 單股DNA 4 0光束掃描器 60濾鏡 8 0第一面鏡 1 0 0光束鏡組 1 2 0螢光顯微裝置Brief Description of the Drawings The following is a detailed description of the above-mentioned contents and the description of the accompanying drawings, which will be able to easily understand the advantages and advantages of the drawings. Among them, the picture of the younger brother is Jablonski. A typical energy level conversion situation when fluorescence is generated is shown; and a white second diagram is a schematic diagram of the multiphoton excitation fluorescence microscopy apparatus of the present invention, showing the connection relationship between the constituent elements. Figure number comparison table: 4 1 0 biochip 30 multiphoton excitation source 5 0 objective lens 70 detection channel 90 second mirror 110 beam splitter 20 single strand DNA 4 0 beam scanner 60 filter 8 0 first mirror 1 0 0 beam mirror set 1 2 0 fluorescence microscopy device

第13頁Page 13

Claims (1)

ι::?ι::? 12523 六、申請專利範圍 1 · 一種用以偵測生物晶片光學訊號之多光子激發螢光顯 微裝置’其中該生物晶片係經過雜和作用而具有榮光標 記,用以表現雜和後之生物訊息,該裝置至少包括: 多光子激發光源,係用以產生激發光; 一光束掃描器,用以將該多光子激發光源產生之該激發 光,根據操作者設定逐一掃瞄該生物晶片; 一分光鏡,用以反射來自該光束掃描器之該激發光; 一物鏡’用以將該激發光聚焦成一光點,以激發該生物晶 片上之该螢光標記,其中該螢光標記之螢光訊號經由該物 鏡接受並與該分光鏡作用後,會有部分該螢光訊號通過該 分光鏡; 複數組濾鏡,用以使通過之該部分螢光訊號分成特定波長 螢光;及 複數組偵測頻道,用以對通過該複數組濾鏡之該特定波長 螢光同時進行偵測。 2 ·如申請專利範圍第1項所述之多光子激發螢光顯微裝 置’該多光子激發光源可為鈦藍寶石雷射系統,並可產生 波長為7 0 0 run〜1 〇 〇 〇 nm之近紅外光。 :鏡 第濾 圍組 範數 利複 專該 請中 申其 如, 3·置 裝 微 顯 光 螢 發 激 子 光 多 之 述 所 項 合 組 意 任 其 或 柵 光 鏡 棱 含 包 更 股 單 組 數 複 製 點 ο 度合 密铒 高意 可任 第上其 圍片 '或 範晶體 利物抗 專生、 請該原 申在抗 如,、 I·置質 白 裝蛋 微、 顯NA 光 螢 發 激 子 光 多 之 述 所 項12523 VI. Patent Application 1 · A multiphoton excited fluorescence microscopy device for detecting optical signals of biochips, wherein the biochip has a glory mark through heterogeneous interactions to express the biological information of the miscellaneous and subsequent The device comprises at least: a multiphoton excitation source for generating excitation light; a beam scanner for scanning the excitation light generated by the multiphoton excitation source, and scanning the biochip one by one according to an operator setting; a mirror for reflecting the excitation light from the beam scanner; an objective lens for focusing the excitation light into a spot to excite the fluorescent mark on the biochip, wherein the fluorescent mark fluorescent signal After receiving through the objective lens and interacting with the beam splitter, a portion of the fluorescent signal passes through the beam splitter; a complex array filter is configured to split the portion of the fluorescent signal that passes through the specific wavelength of fluorescence; and the complex array detection a channel for simultaneously detecting the specific wavelength of fluorescence passing through the complex array filter. 2. The multiphoton excited fluorescence microscopy apparatus as described in claim 1 'The multiphoton excitation light source can be a titanium sapphire laser system and can generate a wavelength of 700 rpm~1 〇〇〇nm Near infrared light. : Mirror filter group norm, re-recovery, please apply for it, 3, install micro-light, light, fluorescing, exciter, light, more than the group, or the grid light mirror, including package, more stocks The number of copies of the group ο degree is close to the height of the 可 可 可 第 其 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Excited light 第14頁 1252313 六、申請專利範圍 5.如申請專利範圍第4項所述之多光子激發螢光顯微裝 置,該複數組單股DNA之來源可為寡核苷酸、互補核苷酸 或其任意組合。 6· —種用以偵測生物晶片光學訊號之多光子激發螢光顯 微裝置’其中該生物晶片係經過雜和作用而具有螢光標 記,用以表現雜和後之生物訊息,該裝置至少包括: 多光子激發光源,係用以產生激發光;Page 14 1252313 6. Patent application scope 5. The multi-photon excited fluorescence microscopy apparatus described in claim 4, the source of the complex array of single-stranded DNA may be an oligonucleotide, a complementary nucleotide or Any combination thereof. a multi-photon excited fluorescence microscopy device for detecting a biological chip optical signal, wherein the biochip has a fluorescent mark by means of a heterogeneous action for expressing a mixed biological message, the device being at least The method includes: a multiphoton excitation light source for generating excitation light; 一羌束掃描器,用以將該多光子激發光源產生之該激發 光,根據操作者設定逐一掃猫該生物晶片; 一光束鏡組,用以將來自該光束掃描器之激發光放大成一 平行光束; 一分光鏡,用以反射來自光束鏡組之該平行光束; 一物鏡,用以將該平行光束聚焦成一光點,以激發該生物 晶片上之該螢光標記,其中該螢光標記之螢光訊號經由該 物鏡接受並與該分光鏡作用後,會有部分該螢光訊號通過 該分光鏡; 複數組濾鏡,用以使通過之該部分螢光訊號分成特定波長 螢光;及a beam scanner for stimulating the excitation light generated by the multiphoton excitation source to scan the biochip according to an operator setting; a beam mirror for amplifying the excitation light from the beam scanner into a parallel a beam splitter for reflecting the parallel beam from the beam mirror; an objective lens for focusing the parallel beam into a spot to excite the fluorescent mark on the biochip, wherein the fluorescent mark After the fluorescent signal is received by the objective lens and interacts with the beam splitter, a portion of the fluorescent signal passes through the beam splitter; and a plurality of array filters are used to divide the portion of the fluorescent signal passing through into a specific wavelength of fluorescence; 複數組偵測頻道,用以對通過該複數組濾鏡之該特定波長 螢光同時進行偵測。 7 ·如申請專利範圍第6項所述之多光子激發螢光顯微裝 置’該多光子激發光源可為鈦藍寶石雷射系統,並可產生 波長為70 0 nm〜1〇〇〇 nm之近紅外光。 8·如申請專利範圍第6項所述之多光子激發螢光顯微裝The complex array detection channel is used to simultaneously detect the specific wavelength of fluorescence passing through the complex array filter. 7. The multiphoton excitation fluorescence microscopy device as described in claim 6 of the patent application. The multiphoton excitation light source may be a titanium sapphire laser system and may have a wavelength of 70 nm to 1 〇〇〇 nm. Infrared light. 8. Multiphoton excited fluorescent microscopy as described in claim 6 第15頁 1252313 六、申請專利範圍 置,其中該複數組濾鏡更包含稜鏡、光柵或其任意組合。 9 ·如申請專利範圍第6項所述之多光子激發螢光顯微裝 置,該複數組偵測頻道之數目可為4個。 I 0 ·如申請專利範圍第6項所述之多光子激發螢光顯微裝 置,在該生物晶片上可高密度點製複數組單股D N A、蛋白 質、抗原、抗體或其任意組合。 II ·如申請專利範圍第1 〇項所述之多光子激發螢光顯微裝 置,該複數組單股DNA之來源可為寡核苷酸、互補核苷酸 或其任意組合。 1 2. —種用以偵測生物晶片光學訊號之多光子激發螢光顯 微裝置,其中該生物晶片係經過雜和作用而具有螢光標 記,用以表現雜和後之生物訊息,該裝置至少包括: 一鈦藍寶石雷射系統,係用以產生激發光,以激發該基因 晶片上之該螢光標記; 一光束掃描器,係用以將該鈦藍寶石雷射系統產生之該激 發光’根據操作者設定逐一掃瞒該基因晶片, 一光束鏡組,用以將來自該光束掃描器之激發光放大成一 平行光束; 一分光鏡,用以反射來自光束鏡組之該平行光束; 一物鏡,用以將該平行光束聚焦成一光點,以激發該生物 晶片上之該螢光標記,其中該螢光標記之螢光訊號經由該 物鏡接受並與該分光鏡作用後’會有部分該螢光訊號通過 該分光鏡; 複數組濾鏡,用以使通過之該部分螢光訊號分成特定波長Page 15 1252313 VI. Patent application scope, wherein the complex array filter further comprises 稜鏡, grating or any combination thereof. 9. The multi-photon excited fluorescence microscopy apparatus described in claim 6 of the patent application, the number of the complex array detection channels may be four. I 0. The multiphoton excited fluorescence microscopy apparatus of claim 6, wherein a plurality of complexes of D N A, a protein, an antigen, an antibody, or any combination thereof can be densely arrayed on the biochip. II. The multiphoton excited fluorescence microscopy apparatus of claim 1, wherein the source of the complex array of single strands of DNA may be an oligonucleotide, a complementary nucleotide, or any combination thereof. 1 2. A multiphoton excited fluorescence microscopy apparatus for detecting a biological chip optical signal, wherein the biochip is fluorescently labeled by a heteroduplex to express a mixed biological message, the device At least comprising: a titanium sapphire laser system for generating excitation light to excite the fluorescent mark on the gene wafer; a beam scanner for generating the excitation light by the titanium sapphire laser system Sweeping the gene wafer one by one according to an operator setting, a beam mirror group for amplifying the excitation light from the beam scanner into a parallel beam; a beam splitter for reflecting the parallel beam from the beam mirror; an objective lens And illuminating the parallel light beam into a light spot to excite the fluorescent mark on the biological chip, wherein the fluorescent mark fluorescent signal is received by the objective lens and interacts with the beam splitter to have a portion of the fluorescent light The optical signal passes through the beam splitter; a complex array filter is used to divide the portion of the fluorescent signal passing through into a specific wavelength 第16頁 1252313 六、申請專利範圍 螢光;及 複數組偵測頻道,用以對通過該複數組濾鏡之該特定波長 螢光同時進行偵測。 1 3 ·如申請專利$1圍第1 2項所述之多光子激發螢光顯微裝 置,該多光子激發光源可為鈦藍寶石雷射系統,並可產生 波長為70 0 run〜1 0 〇 〇 nm之近紅外光。 1 4 ·如申請專利範圍第1 2項所述之多光子激發螢光顯微裝 置,其中該複數組濾鏡更包含棱鏡、光柵或其任意組合。 1 5 ·如申請專利範圍第1 2項戶斤述之多光子激發螢光顯微裝 置,該複數組偵測頻道之數目可為4個。 1 6 ·如申請專利範圍第丨2項所述之多光子激發螢光顯微裝 置,在該生物晶片上可高密度點製複數組單股DNA、蛋白 質、抗原、抗體或其任意組合。 1 7 ·如申請專利範圍第丨6項所述之多光子激發螢光顯微裝 置’該複數組單股D N A之來源玎為寡核苷酸、互補核苷’酸 或其任意組合。Page 16 1252313 VI. Patent Application Range Fluorescence; and Complex array detection channel for simultaneous detection of the specific wavelength of fluorescence passing through the complex array filter. 1 3 · If the multiphoton excitation fluorescence microscopy device described in claim 1 of claim 1 is applied, the multiphoton excitation light source may be a titanium sapphire laser system and may generate a wavelength of 70 0 run~1 0 〇〇 Near-infrared light of nm. The multiphoton excited fluorescence microscopy apparatus of claim 12, wherein the multiple array filter further comprises a prism, a grating, or any combination thereof. 1 5 · If the multi-photon excitation fluorescence microscopy device of the 12th item of the patent application is applied, the number of the complex array detection channels can be four. A multiphoton excited fluorescence microscopy apparatus as described in claim 2, wherein a plurality of single-stranded DNA, proteins, antigens, antibodies, or any combination thereof can be densely arrayed on the biochip. 17. The multiphoton excited fluorescence microscopy apparatus as described in claim 6 of the patent application. The source of the complex array of single strands of D N A is an oligonucleotide, a complementary nucleoside 'acid or any combination thereof.
TW91103484A 2002-02-26 2002-02-26 Multiphoton excitation fluorescence microscopy for detecting biochips TWI252313B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91103484A TWI252313B (en) 2002-02-26 2002-02-26 Multiphoton excitation fluorescence microscopy for detecting biochips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91103484A TWI252313B (en) 2002-02-26 2002-02-26 Multiphoton excitation fluorescence microscopy for detecting biochips

Publications (1)

Publication Number Publication Date
TWI252313B true TWI252313B (en) 2006-04-01

Family

ID=37565383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91103484A TWI252313B (en) 2002-02-26 2002-02-26 Multiphoton excitation fluorescence microscopy for detecting biochips

Country Status (1)

Country Link
TW (1) TWI252313B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619937B (en) * 2016-01-15 2018-04-01 奇美視像科技股份有限公司 Method for inspecting an article and apparatus for measuring the article by multi-photon excitation technique
TWI690703B (en) * 2017-12-12 2020-04-11 國立成功大學 Microscopic imaging instrument for microfluidic chip
CN114813673A (en) * 2022-04-12 2022-07-29 深圳赛陆医疗科技有限公司 Multi-channel super-resolution gene detector and detection method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619937B (en) * 2016-01-15 2018-04-01 奇美視像科技股份有限公司 Method for inspecting an article and apparatus for measuring the article by multi-photon excitation technique
TWI690703B (en) * 2017-12-12 2020-04-11 國立成功大學 Microscopic imaging instrument for microfluidic chip
CN114813673A (en) * 2022-04-12 2022-07-29 深圳赛陆医疗科技有限公司 Multi-channel super-resolution gene detector and detection method thereof

Similar Documents

Publication Publication Date Title
USRE49884E1 (en) Compensator for multiple surface imaging
US6376177B1 (en) Apparatus and method for the analysis of nucleic acids hybridization on high density NA chips
CN1192745A (en) Chemical, Biochemical and biological processing in thin films
JP2000512744A (en) System and method for detecting label material
US6768122B2 (en) Multiphoton excitation microscope for biochip fluorescence assay
JP2001268318A (en) Image reading device
TWI252313B (en) Multiphoton excitation fluorescence microscopy for detecting biochips
CN115052995A (en) Analysis method, analysis system, and analysis surface
US7173701B2 (en) CCD-based biochip reader
JP2000228999A (en) Multi-genotype of population
JP2002168784A (en) Pinhole position adjustment/positioning method and device of confocal scanner
JP3913978B2 (en) Image analysis method and apparatus
US20020099511A1 (en) Scanner and method for setting voltage value of photomultiplier
US20230207063A1 (en) Dynamic graphical status summaries for nucelotide sequencing
US6814298B2 (en) Digital data producing system
CN212207113U (en) Optical system of microarray chip scanner
US20240209440A1 (en) Multi-surface biological sample imaging system and method
WO2023122363A1 (en) Dynamic graphical status summaries for nucelotide sequencing
EP4453947A1 (en) Dynamic graphical status summaries for nucelotide sequencing
CN116790736B (en) DNA sequencing method using single fluorescent tag
JP2002148265A (en) Biochemical analysis method, unit for biochemical analysis used therefor, and target detector for detecting target from unit for the biochemical analysis
CN108107031A (en) Method for detecting virus based on DNA microarray technology
JP2012220247A (en) Dna array, fluorescence detecting device, and fluorescence detecting method
CN1314587A (en) Method for detecting fluorescent label efficiency
JP2002195881A (en) Optical axis adjusting/positioning method for light beam and device therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees