TWI252312B - Realtime microparticle sorting/manipulation system - Google Patents

Realtime microparticle sorting/manipulation system Download PDF

Info

Publication number
TWI252312B
TWI252312B TW94101851A TW94101851A TWI252312B TW I252312 B TWI252312 B TW I252312B TW 94101851 A TW94101851 A TW 94101851A TW 94101851 A TW94101851 A TW 94101851A TW I252312 B TWI252312 B TW I252312B
Authority
TW
Taiwan
Prior art keywords
particles
buffer
substrate
channel
flow channel
Prior art date
Application number
TW94101851A
Other languages
Chinese (zh)
Other versions
TW200626894A (en
Inventor
Che-Hsin Lin
Yu-Sheng Chien
Fu-Jen Kao
Cheng-Wen Ko
Hsiao-Wen Lee
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW94101851A priority Critical patent/TWI252312B/en
Application granted granted Critical
Publication of TWI252312B publication Critical patent/TWI252312B/en
Publication of TW200626894A publication Critical patent/TW200626894A/en

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This invention proposes a novel microfluidic system for realtime cell/microparticle sorting and counting utilizing imaging controlled optical tweezer. The system is composed of a substrate, a power supply, a digital image identification program and an optical tweezer device. Digital image processing technique is used to detect and recognize the size and the number of the cells/particles. During operation, microparticles are electrokinetically focused to flow in the center of the channel. The focused particles then flow pass through an image recognition area. An integrated optical tweezer system is used to switch the flow direction of the target particles at the downstream. Particle detection and sorting can be achieved using this invention. The proposed system is capable of catching, sorting and counting specific microparticles/cells within a mixed sample and results in a simple solution for cell/microparticle manipulation in the field of micro-total-analysis-systems.

Description

1252312 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種即時之粒子之分類及/或操作系 統,特別是一種結合數位影像處理技術及利用光鉗作動之 非接觸式且即時之粒子之分類及/或操作系統。 【先前技術】 在生化反應的過程當中,不外乎是需要藉由一些外力來 操控微流道中之生物樣本,使其於微尺度的空間裡進行樣 瞻 本傳輸、混合、微閥開關或者是分類等工作。而目前大部 分細胞分析的研究上,對於特定的細胞或是構成細胞之生 物分子的分離及計數有其必要性。傳統上,多利用離心法 來將細胞樣本加以分離,此法不僅耗時、不易分離體積相 近之細胞’且以離心方式分離細胞所需之樣品量極多,不 符合未來生化檢驗之發展方向。 較先進之細胞分類方式乃採用流式細胞儀,該系統雖可 以自動計數細胞,但其系統龐大昂貴,且利用其來分類細 鲁 胞之準確性尚待改進’如[M. R. Melamed,T. Lindm。,and M. L. Mendelsohn, (editors), Flow Cytometry and Sorting, 2nd. Edition,John Wiley & Sons (1991)]及美國專利第 _ 5,824,269號所揭示。此外,欲利用流式細胞儀分類細胞, 操作前必須透過複雜之前處理程序,將不同之細胞加以染 色,以符合機器内部螢光激發所需,M[j Krtiger,K· Smgh,A. O’Neill,c· Jackson,A· Morrison Ρ· 〇,Brien, "Development of a microfluidic device for fluorescence 98154.doc 1252312 activated cell sorting," J. Micromech. Microeng·, Vol. 12, pp. 486-494 (2002)及[Katsuragi,T. and Tani,Y·,’’Review:1252312 IX. Description of the invention: [Technical field of the invention] The present invention relates to an instant particle classification and/or operating system, in particular to a non-contact and instant combination of digital image processing technology and optical clamp operation. Classification of particles and / or operating system. [Prior Art] In the process of biochemical reaction, it is necessary to control the biological sample in the micro-channel by some external force, so that it can be sampled in a micro-scale space for transmission, mixing, micro-valve switch or Classification and other work. At present, in most researches on cell analysis, it is necessary to separate and count specific cells or biomolecules constituting cells. Traditionally, centrifugation has been used to separate cell samples. This method is not only time-consuming and difficult to separate cells of similar volume, and the amount of samples required to separate cells by centrifugation is extremely large, which does not meet the development direction of future biochemical tests. The more advanced cell classification method uses flow cytometry. Although the system can automatically count cells, its system is huge and expensive, and the accuracy of using it to classify fine cells needs to be improved. [MR Melamed, T. Lindm . And M. L. Mendelsohn, (editors), Flow Cytometry and Sorting, 2nd. Edition, John Wiley & Sons (1991), and U.S. Patent No. 5,824,269. In addition, in order to classify cells by flow cytometry, different cells must be dyed before the operation through complex pre-processing procedures to meet the needs of the internal fluorescence excitation of the machine, M[j Krtiger, K· Smgh, A. O' Neill, c· Jackson, A· Morrison Ρ· 〇, Brien, "Development of a microfluidic device for fluorescence 98154.doc 1252312 activated cell sorting," J. Micromech. Microeng·, Vol. 12, pp. 486-494 (2002) and [Katsuragi, T. and Tani, Y·, ''Review:

Screening for Microorganism with Specific Characteristics by Flow Cytometry and Single-Cell Sorting/1 Journal of Bioscience and Bioengineering, Vol. 89, No. 3, pp· 217-222 (2000)]所揭示,此舉不僅耗時,且螢光染料可能具有細胞 毒性,而損害細胞之活性。Screening for Microorganism with Specific Characteristics by Flow Cytometry and Single-Cell Sorting/1 Journal of Bioscience and Bioengineering, Vol. 89, No. 3, pp. 217-222 (2000)], which is not only time consuming, but also Light dyes may be cytotoxic and impair cell activity.

隨著微機電技術的發展,迄今亦有相當多位學者提出許 多種方法來對細胞及生物分子進行分類及計數。在分類方 面:有學者在微管道内利用微小電極組的設計,縮小其電 極之間距,即可在高頻率和低電壓下產生非均一性電場, 利用細胞在電場内被感應出不同的介電泳效應,而產生吸 附或排斥的原理來分類細胞,如[Pethig, R·, ” Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells,M Crit· Rev· 扪okc/z㈣/·,16, pp.33 1-348 (1996)]所揭示。或是在微管道 内以壓電材料製作一些微結構,利用超音波的效應來對微 粒子作操控,如[Dougherty,G. M· and Pisano,Α· P·, ”Ultrasonic Particle Manipulation in Microchannels Using Phased Co-planar Transducers,’’ IEEE Proc· solid-state sensors and actuators workshop, Vol.l, pp. 670-673 (2003)] 及[Jagannathan,H·,Yaralioglu,G. G·,Ergun,A. S.? Khuri-With the development of MEMS technology, so far many scholars have proposed a variety of methods to classify and count cells and biomolecules. In terms of classification: some scholars use the design of tiny electrode groups in the micro-pipeline to reduce the distance between the electrodes, which can generate a non-uniform electric field at high frequency and low voltage, and use the cells to induce different dielectrophoresis in the electric field. Effects, and the principle of adsorption or repulsion to classify cells, such as [Pethig, R·, ” Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells, M Crit· Rev· 扪okc/z (4)/·, 16, pp. 33 1-348 (1996)]. Or make some microstructures in the micro-pipeline with piezoelectric materials, using the effects of ultrasound to manipulate the particles, such as [Dougherty, G. M· and Pisano, Α· P·, “Ultrasonic Particle Manipulation in Microchannels Using Phased Co-planar Transducers,'' IEEE Proc·solid-state sensors and actuators workshop, Vol.l, pp. 670-673 (2003)] and [Jagannathan, H., Yaralioglu , G. G·, Ergun, AS? Khuri-

Yakub, B. T·,,fAn Implementation of a Microfluidic Mixer and Switch Using Micromachined Acoustic Transducers,M 98154.doc 1252312 也有學者開始利用光钳(Optical Tweezer )的特性,對 微流道中的細胞進行非接觸式的操控,以進行細胞分類的 目的,該光鉗之基本原理主要是將一道雷射光束經由一高 數值孔徑(numerical aperture,NA )之物鏡聚焦後,在雷射 聚焦之焦點會形成一穩定的位能阱。當微小粒子流經該焦 點周圍時,此一非機械接觸的光梯度力會將該微小粒子吸 引到該焦點之中心,進而達到三維捕捉與操控的目的。由 於該光鉗能捕捉到的微粒子大小約在nm〜μιη的等級’恰 好與生物學中微物的尺度相符,因此時常被運用在生物學 的研究上,如[Jonas Enger,Mattias Goks6r,Kerstin Ramser,Petter Hagberg and Dag Hanstorp,"Optical tweezers applied to a microfluidic system,” Lab on a Chip, Vol. 4,pp. 196_200, 2004]、美國專利第 6,734,436、 6,744,038及6,797,942等號,及中華民國專利公開第593683 號等所揭示,但其操縱方法的效率相當的低。 而在辨識、計數方面,有些學者利用在晶片上钱刻出的 微管道,將光纖伸入其管道内,以作為傳輸及接收雷射光 的元件,藉此來對生物樣本進行偵測,此舉之晶片製作的 手續亦相當繁雜且無法滿足量產的需求’如[Lin,C. H., Lee, G. Β· ’’Micromachined Flow Cytometers with Embedded Etched Optic Fibers for Optical Detection,11 J. M/cromecA. Vol. 13,pp· 447-453 (2003)]及中華 民國專利公開第164476號所揭示。還有學者利用昂貴的鍍 98154.doc 1252312Yakub, B. T·,, fAn Implementation of a Microfluidic Mixer and Switch Using Micromachined Acoustic Transducers, M 98154.doc 1252312 Some scholars have begun to use the characteristics of Optical Tweezer to make non-contact cells in microchannels. For the purpose of cell sorting, the basic principle of the optical clamp is to focus a laser beam through a high numerical aperture (NA) objective lens to form a stable position at the focus of the laser focus. Energy trap. When the tiny particles flow around the focal point, the non-mechanical contact light gradient force attracts the tiny particles to the center of the focus, thereby achieving the purpose of three-dimensional capture and manipulation. Since the size of the microcapsules that can be captured by the optical forceps is about the order of nm~μιη, which coincides with the scale of biological micro-objects, it is often used in biological research, such as [Jonas Enger, Mattias Goks6r, Kerstin Ramser , Petter Hagberg and Dag Hanstorp, "Optical tweezers applied to a microfluidic system," Lab on a Chip, Vol. 4, pp. 196_200, 2004], U.S. Patents 6,734,436, 6,744,038 and 6,797,942, and the Republic of China Patent Publication No. 593683, etc., but the efficiency of its manipulation method is rather low. In terms of identification and counting, some scholars use the micro-pipes carved out on the wafer to extend the fiber into its pipeline for transmission and reception. Laser light components, in order to detect biological samples, the process of making the wafer is also quite complicated and can not meet the needs of mass production 'such as [Lin, CH, Lee, G. Β · ''Micromachined Flow Cytometers With Embedded Etched Optic Fibers for Optical Detection, 11 J. M/cromecA. Vol. 13, pp. 447-453 (2003)] and the Republic of China Patent Disclosure Rev. 164476. There are also scholars who use expensive plating 98154.doc 1252312

膜製程’在晶片上製作電極,當粒子流過時,藉由阻抗的 變化訊號來產生計數及辨識,如[S(m,Sanguk,Ch〇i,γ . I ee’ S· S·, Fabrication of micro cell counter with boron diffused resistor,^ pr〇c, IEEE MEMS, pp. 311-314 (2003)]所揭示,但其製程繁複費時,因此並不適合製成可 抛棄式晶片。 綜觀上述之方法’大部分的設計均需提供-複雜之晶片 結構’很難整合成可靠的微流體系統,且其細胞分離的效 率相當的低。此外,部分的設計其製程非常的昂貴,不適 合製:成大量且可抛棄式之晶片。因此,有必要提供一創 新且富進步性的即時粒子之分類及/或操作系统,以解決 上述問題。 【發明内容】 本發明之主要目的#_ . r ]係徒供一種即時粒子之分類及/或操 作系統,其可利用一槿伴銪留+曰u w 霉w間早之日日片基板來實現,該晶片 不需複雜之微結構’因此其製程簡單,成本低。 本lx明之另-目的係提供—種即時粒子之分類及/或操 作糸統,其可即時對私2 Μ \ , ^ 士 〃子做/刀類或操作,可縮短分類或操 作枯間,提升分類或操作效 千且對粒子作動之外力可以 即時變更操控位置。 本發明之又一目的你担说 _ 仇么狄 係楗仏一種即時粒子之分類及/或操 作糸統,對於待分類之样σ 丁 +、 ^ .. ,^ 、 7 口口不而複雜之前處理,操作手續 間便及瘤時,且其為非 m 4 + Im u f式之作動,可減少對生化反應The film process 'produces electrodes on the wafer, and when the particles flow, the counting and identification are generated by the impedance change signal, such as [S(m, Sanguk, Ch〇i, γ. I ee' S· S·, Fabrication of Micro cell counter with boron diffused resistor, ^ pr〇c, IEEE MEMS, pp. 311-314 (2003)], but its process is complicated and time consuming, so it is not suitable for making disposable wafers. Part of the design needs to be provided - complex wafer structures 'hard to integrate into a reliable microfluidic system, and the efficiency of cell separation is quite low. In addition, part of the design process is very expensive, not suitable: a large number of Disposable wafers. Therefore, it is necessary to provide an innovative and progressive classification and/or operating system of real-time particles to solve the above problems. [Summary of the Invention] The main purpose of the present invention is to provide a kind of Instant particle classification and/or operating system, which can be realized by using a 日 铕 w w w w w w w 早 早 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The other purpose of this lx is to provide a sort of real-time particle classification and/or operation system, which can be used for real-time 2 Μ \ , ^ 士子子 / knife or operation, which can shorten the classification or operation, improve The classification or operation is effective and the force is applied to the particle to change the manipulation position in real time. Another object of the present invention is to say that _ 么 狄 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 楗仏 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时σ丁+, ^ .. , ^ , 7 mouth is not complicated before the treatment, the operation procedure and the tumor, and it is non-m 4 + Im uf-type action, can reduce the biochemical reaction

所產生之干擾及誤差。 U 98154.doc 1252312 為達^述目的,本發明提供一種即時之粒子之分類及/ 或操作系、純,包括:-基板、-電源供應器、一數位影像 處理裝置及-光钳襄置。該基板具有_微流道,該微流道 係用以供一流體於其内流動’該流體内有複數個粒子,該 微流道上纟有-辨識區。_電源供應器係電氣連接至該基 板’用以提供驅動該流體所需之電力。該數位影像處理裝 置係用以即時辨識該微流道内流經該辨識區之粒子,而產The resulting interference and errors. U 98154.doc 1252312 For purposes of the present invention, the present invention provides an instant particle classification and/or operation system, pure, including: - a substrate, a power supply, a digital image processing device, and an optical clamp device. The substrate has a microfluidic channel for supplying a fluid therein. The fluid has a plurality of particles therein, and the microchannel has a recognizable region. The power supply is electrically connected to the substrate ' to provide the power required to drive the fluid. The digital image processing device is configured to instantly identify particles flowing through the identification region in the microchannel.

生-辨識結果。該光钳裝置係根據該辨識結果而作動,用 以處理該辨識過之粒子。 【實施方式】 參考圖1 ’顯示本發明即時之粒子之分類及/或操作系統 之較佳實施例之示意圖。要注意的是,適用本發明之粒子 包含但不限於細胞、細菌、微小顆粒及血球等。該即時粒 子之分類及/或操作系統i包括:一基板10、一電源供應器 20、一數位影像處理裝置3〇及一光鉗裝置。 請同時參考圖2,顯示本發明即時之粒子之分類及/或操 作系統中基板10之俯視示意圖。該基板1〇 (例如一晶片) 具有一微液道,該微流道係用以供一流體於其内流動。在 本實施例中,微流道包括一主流道丨丨、一樣本進料槽12、 一第一緩衝液流道1 3 1、一第一緩衝液進料槽丨32、一第二 缓衝液流道133、一第二緩衝液進料槽134、一第一分流道 141 一第一儲存槽142、一第二分流道143及一第二儲存 槽 144。 該主流道丨丨之一端連接該樣本進料槽12,另一端連接該 98154.doc -9- 1252312 第刀々丨1道141及第二分流道143,且於其大約其中間部位 連接"亥第一緩衝液流道1 3 1及該第二緩衝液流道13 3。該主 流道11上具有一辨識區Π 1及一聚焦區112。在本實施例 中,該主流道11之長度為2.5cm,該第一分流道141、該第 二分流道143、該第一緩衝液流道131及該第二緩衝液流道 133之長度皆為〇 5cm,所有流道之寬度均為i〇〇^m,深度均 為40μηι。 該樣本進料槽12係用以注入一流體至該主流道丨丨,其流 φ 動方向為由圖中左側流向圖中右側,該流體内有複數個粒 子 在本貫施例中’該流體為1 mM的侧酸鈉溶液 (Na2B4〇7.l〇H2〇) (pH = 9.2),且其内含濃度 a1〇-3Mi Rhodamine B染料。該流體内混合有複數個粒子,該等粒 子係為聚苯乙烯(p〇lyStyrene,ps )材質之高分子小球 (Duke Scientific,USA ),折射率是l58,且其密度為 1.05g/cm3與細胞相當,所以適合用來取代生物樣品作測 试。其中” □”代表第一粒子5 1 (直徑為1 〇陣),,,〇,,代表第 鲁二粒子52(直徑為12 μιη)。 該第一緩衝液流道13 1之二端係分別連接該主流道丨i及 該第一緩衝液進料槽132,用以注入一第一緩衝液至該主 流道11。該第二緩衝液流道133之二端係分別連接該主流 道11及該第二緩衝液進料槽13 4,用以注入一第二緩衝液 至該主流道11。由於該第一緩衝液及該第二緩衝液之注 入,可將該流體之流動壓縮至單一粒子之寬度,使得該等 粒子可於該流體中依序排列流動前進,而不至發生同時有 98154.doc -10- 1252312 兩個以上之粒子通過該辨識區Π1,造成該光钳裝置4〇操 控錯誤的情形發生。在本實施例中,該第一緩衝液及該第 二緩衝液係相同,皆為1 mM的硼酸鈉溶液。在本實施例 中,該第一緩衝液流道131及該第二緩衝液流道133分別與 該主流道11垂直,然而在其他應用中,該第一緩衝液流道 1 3 1及該第二緩衝液流道13 3可以分別與該主流道11斜交。 該第一分流道141之二端係分別連接該主流道11及該第 一儲存槽142,用以將分類後之第一粒子51導入該第一儲 • 存槽142。該第二分流道143之二端係分別連接該主流道n 及該第二儲存槽144,用以將分類後之第二粒子52導入該 第二儲存槽144。在本實施例中,該第一分流道141及該第 二分流道143係分別與該主流道u斜交,然而在其他應用 中,該第一分流道141及該第二分流道143可以分別與該主 流道11垂直。Health - identification results. The optical caliper device is actuated based on the identification result to process the identified particles. [Embodiment] A schematic diagram showing a preferred embodiment of the classification and/or operating system of the instant particles of the present invention is shown with reference to FIG. It is to be noted that the particles to which the present invention is applied include, but are not limited to, cells, bacteria, fine particles, blood cells, and the like. The instant particle classification and/or operating system i includes a substrate 10, a power supply 20, a digital image processing device 3A, and an optical clamp device. Referring also to Figure 2, there is shown a top plan view of the substrate 10 in the classification and/or operation system of the instant particles of the present invention. The substrate 1 (e.g., a wafer) has a microchannel that is used to supply a fluid therein. In this embodiment, the microchannel comprises a main flow channel, the same feed channel 12, a first buffer flow channel 133, a first buffer feed channel 32, and a second buffer. The flow channel 133, a second buffer feed tank 134, a first splitter channel 141, a first storage tank 142, a second branch channel 143 and a second storage tank 144. One end of the main flow channel is connected to the sample feeding trough 12, and the other end is connected to the 98154.doc -9-1252312 first knives 141 and the second shunt 143, and is connected at about its middle portion. The first buffer flow channel 133 and the second buffer flow channel 13 3 . The main flow path 11 has an identification area Π 1 and a focus area 112. In this embodiment, the length of the main flow channel 11 is 2.5 cm, and the lengths of the first shunt channel 141, the second shunt channel 143, the first buffer flow channel 131, and the second buffer flow channel 133 are both For 〇5cm, all runners have a width of i〇〇^m and a depth of 40μηι. The sample feed tank 12 is configured to inject a fluid into the main flow channel, and the flow direction of the flow is from the left side in the figure to the right side in the figure, and the fluid has a plurality of particles in the present embodiment. It is a 1 mM side sodium solution (Na2B4 〇 7.l 〇 H2 〇) (pH = 9.2) and contains a concentration of a1〇-3Mi Rhodamine B dye. The fluid is mixed with a plurality of particles, which are polymer beads of polystyrene (p〇lyStyrene, ps), have a refractive index of l58, and have a density of 1.05 g/cm3. It is equivalent to cells, so it is suitable for replacing biological samples for testing. Wherein "□" represents the first particle 5 1 (diameter of 1 〇 array),,, 〇, and represents the second ruthenium particle 52 (diameter 12 μιη). The two ends of the first buffer flow channel 13 1 are respectively connected to the main flow channel 丨i and the first buffer liquid feeding groove 132 for injecting a first buffer liquid into the main flow channel 11. The two ends of the second buffer flow path 133 are respectively connected to the main flow channel 11 and the second buffer liquid feed channel 13 4 for injecting a second buffer to the main flow channel 11. Due to the injection of the first buffer and the second buffer, the flow of the fluid can be compressed to a width of a single particle, so that the particles can be sequentially flowed in the fluid, and there is no 98154 at the same time. .doc -10- 1252312 Two or more particles pass through the identification zone ,1, causing the optical clamp device 4 to mishandle. In this embodiment, the first buffer and the second buffer are the same, and each is a 1 mM sodium borate solution. In this embodiment, the first buffer flow channel 131 and the second buffer flow channel 133 are perpendicular to the main flow channel 11, respectively. However, in other applications, the first buffer flow channel 13 1 and the first The two buffer flow channels 13 3 may be obliquely intersected with the main flow path 11, respectively. The two ends of the first branching channel 141 are respectively connected to the main flow channel 11 and the first storage channel 142 for introducing the classified first particles 51 into the first storage slot 142. The two ends of the second branching channel 143 are respectively connected to the main flow channel n and the second storage groove 144 for introducing the classified second particles 52 into the second storage tank 144. In this embodiment, the first shunt 141 and the second shunt 143 are respectively oblique to the main channel u. However, in other applications, the first shunt 141 and the second shunt 143 may respectively It is perpendicular to the main channel 11.

該電源供應器20係分別電氣連接至該樣本進料槽12、該 第一緩衝液進料槽丨32、該第二緩衝液進料槽134、該第一 儲存槽142及該第二儲存槽144。該電源供應器加係為一高 壓之電源供應器以提供驅動該基板1()上之流體所需之電 力’利用電滲透流驅動之方式驅動該等流體。 參考圖1 ’該數位影像處理裝置30係用以即時辨識該主 流道U内流經該辨識區⑴之粒子,而產生一辨識結果。 該數位影像處理農置3〇包括一第一光源』、一第一透鏡 32、一分光鏡33、—遽鏡34、一第—物鏡%、—⑽攝影 機36及一處理單开17,"以 ^ (例’ 一電腦)。該第一光源3丨係用 98154.doc 1252312 以產生一第一光束,經由該第一透鏡32、該分光鏡33、該 據鏡34及該第一物鏡35投射至該基板10,該cCD攝影機% 係操取該基板10辨識區111附近之影像,且將該影像傳送 至該處理單元37。在本實施例中,該第—光源31係為 相干光源(incoherent light source )’該第一物鏡35之倍數 為20倍,NA值為0.4。 中The power supply 20 is electrically connected to the sample feeding tank 12, the first buffer feeding tank 32, the second buffer feeding tank 134, the first storage tank 142 and the second storage tank, respectively. 144. The power supply is coupled to a high voltage power supply to provide the power required to drive the fluid on the substrate 1 to drive the fluids by electroosmotic flow drive. Referring to FIG. 1 ', the digital image processing device 30 is configured to instantly recognize particles flowing through the identification region (1) in the main flow channel U to generate a recognition result. The digital image processing apparatus includes a first light source, a first lens 32, a beam splitter 33, a mirror 34, a first objective lens, a (10) camera 36, and a processing single opening 17, " Take ^ (example 'one computer'). The first light source 3 is configured to generate a first light beam, and is projected to the substrate 10 via the first lens 32, the beam splitter 33, the data mirror 34, and the first objective lens 35, the cCD camera The image is taken near the recognition area 111 of the substrate 10, and the image is transmitted to the processing unit 37. In the present embodiment, the first light source 31 is an incoherent light source. The first objective lens 35 is 20 times multiple and the NA value is 0.4. in

圖。該處理單元37具有-影像處理軟體,該影像處理軟體 包括-圖型使用者介面38,豸圖型使用者介面38包括—分 類器381、-計數器382及—顯示模組383,該分類器川係 參考圖3,顯示本發明即時之粒子之分類及/或操作系統 處理單元内之即時影像辨識之圖型使用者介面之示意 用以設^所欲分類之粒子類型,其可以根據粒子大小及顏 色的差別來進行辨識。該計數器382係為計算之結果。該 顯示模組383係顯示該辨識區U1附近之即時影像,該辨識 區111之大小係、可調整。本發明所使用之數位影像處理技Figure. The processing unit 37 has an image processing software, and the image processing software includes a user interface 38, and the user interface 38 includes a classifier 381, a counter 382, and a display module 383. Referring to FIG. 3, there is shown a schematic diagram of a user interface of the instant particle classification and/or real-time image recognition in the operating system processing unit of the present invention for designating the particle type to be classified according to the particle size and The difference in color is used for identification. This counter 382 is the result of the calculation. The display module 383 displays an instant image near the identification area U1, and the size of the identification area 111 is adjustable. Digital image processing technology used in the present invention

術可有效地將動態的物體從靜態的背景中分離出來,且在 分析的過程當中並不需將影像作任何的前處理動作,亦即 其具有即時辨識的功能。該處理單元37辨識後會產生一辨 識結果,且根據該辨識結果以衫是否驅動該光甜裝置 40,而處理該辨識後之粒子。 再參考圖1,該光鉗裝置40包括一第二光源41、一第二 透鏡42、-電子快門(Shutte⑽、—反射鏡44及—第二物 鏡45。該第二光源41係為一雷射光源,用以產生一雷射光 束’其可以是半導體雷射(SDmL2jDS Uniphase, 98154.doc -12- 1252312 USA )、鎖模鈦藍寶石()雷射(Mira9〇〇, Coherent,USA )、腔内倍頻的半導體激發固態雷射 (VenH-lOW,Coherent,USA)或氣體雷射。該雷射光束經 由該第二透鏡42、該電子快門(Shutter)43、該反射鏡44及 該第二物鏡45而聚焦至該基板1〇之聚焦區112 (圖2)。在 本只施例中,该第二物鏡45之倍數為1〇〇倍,值為〇·8。 孩弘子快門43可遮斷該雷射光束,用以控制該雷射光束導 通的時間點,且該電子快門43係電氣連接至該處理單元 3 7而接文s亥處理單元3 7之控制來決定該雷射導通的時間 點’而處理該辨識後之粒子。 再麥考圖2,本實施例之作動方式如下,首先提供一流 體於該樣本進料槽12内,該流體包括複數個第一粒子51及 複數個第一粒子52。接著,提供該第一緩衝液及該第二緩 衝液,用以將該流體之流動壓縮至單一粒子之寬度,使得 4等粒子5 1、52可於該流體中依序排列流動前進通過該辨 識區111。如果該數位影像處理裝置3〇辨識出此時通過該 辨4區111的粒子該為第一粒子5丨,則該處理單元3 7會使 該光鉗裝置40作動,亦即,使該雷射聚焦於該聚焦區 112。接著,當該第一粒子51接近該聚焦區時,隨即被 一光梯度力所橫向吸引,而向圖中上方偏移,此時立刻關 掉該光鉗裝置40作動(該處理單元37控制該電子快門43來 阻擋該雷射之導通),由於該流體之流動係呈現”層流,,的 片〜:口此w亥弟一粒子5 1會沿著該主流道11之上方繼續流 動,最後進入該第一分流道141及該第一儲存槽142。 98154.doc 13 1252312 如果該數位影像處理裝置3〇辨識出此時通過該辨識區 111的粒子為第二粒子52,則該處理單元37會使該光甜裝 置利不作動,亦即,該處理單元37控制該電子快門43來阻 擋°玄雷射之導通。因此,該第二粒子52會不受影響地沿著 該主流道11之下方繼續流動,最後進入該第二分流道143 及該第二儲存槽144。因此,該第—儲存槽142内皆為該第 粒子5 1,5亥第二儲存槽144内皆為該第二粒子w,而完 成粒子之分類。 以上是粒子分類的情況,然而在其他應用中,亦可以加 強该雷射之功率而將特定之粒子(例如該第一粒子$ 1 )直 接A化,或轟擊成二半。藉此,可以用來對有害細胞進行 破壞或刪除。 多考圖4a至4f,顯示本發明即時之粒子之分類及/或操作 系統之基板10之製程之較佳實施例之示意圖。首先提供一 第基材60,在本貫施例中該第一基材60係為顯微鏡所使 用之載玻片,然而在其他應用中,該第一基材6〇之材質可 以疋矽或尚分子材料。該第一基材6〇經4〇〇〇c退火處理四 t 乂釋放其&餘應力後’利用沸騰之溶液 (2S04(/^) · h202(%) = 3:1)清洗十分鐘。之後塗佈一厚度 約為3 μηι2 AZ4620正光阻薄膜7〇於該第一基材6〇之上表 面’作為該第一基材60於蝕刻緩衝液(buffered oxide etchant,BOE)中蝕刻之蝕刻罩幕,然後利用晝好之光罩8〇 進行標準之光刻程序,如圖4a所示。 之後,利用1M之鹽酸(HC1)除去蝕刻過程中所產生之 98154.doc 14 1252312 沈殿物 經過4 5分鐘的姓刻可於該第 到 12 —基材60之上表面得 40μιη深之微流道(包括該主流 、该弟一緩衝液流道1 3 1、該第— 道11、該樣本進料槽 緩衝液進料槽132、該 第二緩衝液流道133 流道141、該第一儲存槽142、 儲存槽144) ’如圖4b所示。 该第二緩衝液進料槽134、該第一分 該第二分流道143及該第二The technique can effectively separate the dynamic object from the static background, and does not need to perform any pre-processing on the image during the analysis process, that is, it has the function of instant recognition. After the processing unit 37 recognizes, an identification result is generated, and according to the identification result, the identified particle is processed by whether the shirt drives the light sweet device 40. Referring again to FIG. 1, the optical clamp device 40 includes a second light source 41, a second lens 42, an electronic shutter (Shutte (10), a mirror 44, and a second objective lens 45. The second light source 41 is a laser. a light source for generating a laser beam' which can be a semiconductor laser (SDmL2jDS Uniphase, 98154.doc -12-1252312 USA), a mode-locked titanium sapphire () laser (Mira9〇〇, Coherent, USA), intracavity The frequency doubled semiconductor excites a solid state laser (VenH-lOW, Coherent, USA) or a gas laser. The laser beam passes through the second lens 42, the electronic shutter (Shutter) 43, the mirror 44, and the second objective lens 45, focusing to the focus area 112 of the substrate 1 (Fig. 2). In the present embodiment, the second objective lens 45 is multiplied by 1〇〇, and the value is 〇·8. The child's shutter 43 can be interrupted. The laser beam is used to control the time point at which the laser beam is turned on, and the electronic shutter 43 is electrically connected to the processing unit 37 and controlled by the processing unit 37 to determine the time of the laser conduction. Processing the identified particles at point '. Again, the operation of this embodiment is as follows. First, a fluid is provided in the sample feed tank 12, the fluid includes a plurality of first particles 51 and a plurality of first particles 52. Next, the first buffer and the second buffer are provided for the fluid The flow is compressed to a width of a single particle such that the 4th particle 5 1 , 52 can be sequentially flowed through the identification zone 111 in the fluid. If the digital image processing device 3 〇 recognizes the passage through the identification zone 4 The particle of 111 is the first particle 5丨, and the processing unit 37 causes the optical clamp device 40 to actuate, that is, the laser is focused on the focal region 112. Then, when the first particle 51 is close to the When the focus area is in focus, it is then horizontally attracted by a light gradient force, and is shifted upwards in the figure. At this time, the optical clamp device 40 is immediately turned off (the processing unit 37 controls the electronic shutter 43 to block the conduction of the laser. ), since the flow of the fluid exhibits a "laminar flow," the sheet ~: mouth, a particle 5 1 will continue to flow along the upper side of the main flow path 11, and finally enter the first branch flow path 141 and the first A storage tank 142. 98154.doc 13 1252312 The digital image processing device 3 recognizes that the particles passing through the identification area 111 are the second particles 52, and the processing unit 37 causes the light sweet device to be disabled, that is, the processing unit 37 controls the electronic shutter. 43. The second particle 52 is continuously flowed along the lower side of the main flow path 11 without affecting, and finally enters the second distribution channel 143 and the second storage tank 144. The second storage tank 142 is the second particle w in the first storage tank 142, and the classification of the particles is completed. The above is the case of particle classification, however, in other applications, the power of the laser can be enhanced to directly A-specific particles (e.g., the first particle $1), or bombardment into two halves. This can be used to destroy or delete harmful cells. 4a to 4f, there are shown schematic views of a preferred embodiment of the process of substrate 10 for the classification and/or operation of the present invention. First, a first substrate 60 is provided. In the present embodiment, the first substrate 60 is a glass slide used in a microscope. However, in other applications, the material of the first substrate 6 can be used. Molecular material. The first substrate 6 was annealed by 4 〇〇〇c, and after releasing the & residual stress, it was washed with a boiling solution (2S04(/^) · h202(%) = 3:1) for ten minutes. Then, a thickness of about 3 μηι 2 AZ4620 positive photoresist film 7 is applied on the surface of the first substrate 6〇 as an etching mask for etching the first substrate 60 in a buffered oxide etchant (BOE). Curtain, then use the tuned mask 8 to perform standard lithography procedures, as shown in Figure 4a. Thereafter, 1M hydrochloric acid (HC1) is used to remove the 98154.doc 14 1252312 swell generated during the etching process, and the surface of the substrate can be 40 μm deep on the surface of the substrate 12 over a period of 45 minutes. (including the mainstream, the younger-buffer flow channel 133, the first channel 11, the sample feed tank buffer feed tank 132, the second buffer flow channel 133 flow channel 141, the first storage The groove 142 and the storage tank 144)' are as shown in Fig. 4b. The second buffer feed slot 134, the first split second split runner 143, and the second

隨後利用氫氧化卸(KQH)溶液將該光阻薄膜7〇去除, 如圖4c所示。接著’利用直徑15細的鑽石鑽頭於敍刻後 之該樣本進料槽12、言亥第一緩衝液進料槽132、該第二緩 衝液進料槽134、該第一儲存槽142及該第二儲存槽144分 別鑽出液體進出孔,如圖4d所示。 之後將該第一基材60倒置,且對位接合一第二基材9〇於 該第一基材60之上表面,在本實施例中’該第二基材9〇係 為一厚度為170μηι之蓋玻片,且於58〇γ之高溫爐中利用 熔融接合十分鐘,如圖4e所示。最後得到該基板1〇,如圖 4£所示。 上述實施例僅為說明本發明之原理及其功效,並非限制 本么明,因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明即時之粒子之分類及/或操作系統之較佳 實施例之示意圖; 圖2顯示本發明中基板之俯視示意圖; 98154.doc -15- 1252312 圖3顯示本發明中處理單元内之即時影像辨識之圖塑使 用者介面之示意圖;及 圖4a至竹顯示本發明中基板之製程之較佳實施例之示意 圖。 【主要元件符號說明】The photoresist film 7 is subsequently removed using a hydroxide desorption (KQH) solution, as shown in Figure 4c. Then, the sample feed tank 12, the first buffer feed tank 132, the second buffer feed tank 134, the first storage tank 142 and the The second storage tank 144 respectively drills a liquid inlet and outlet hole as shown in Fig. 4d. Then, the first substrate 60 is inverted, and a second substrate 9 is para-bonded to the upper surface of the first substrate 60. In the embodiment, the second substrate 9 is a thickness of A 170 μηη coverslip was spun and spun in a 58 〇 γ high temperature furnace for ten minutes, as shown in Figure 4e. Finally, the substrate 1 is obtained, as shown in FIG. The above embodiments are merely illustrative of the principles and functions of the present invention, and are not intended to limit the scope of the present invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a preferred embodiment of a particle and/or an operating system of the present invention; FIG. 2 is a schematic plan view showing a substrate of the present invention; 98154.doc -15- 1252312 A schematic diagram of a graphical user interface for instant image recognition in a processing unit of the present invention; and Figures 4a through 5 are schematic diagrams showing a preferred embodiment of the process of the substrate of the present invention. [Main component symbol description]

1 本發明之即時粒子之分類及/或操作 10 基板 11 主流道 12 樣本進料槽 20 電源供應器 30 數位影像處理裝置 31 第一光源 32 第一透鏡 33 分光鏡 34 濾鏡 35 第一物鏡 36 CCD攝影機 37 處理單元 38 圖型使用者介面 40 光鉗裝置 41 第二光源 42 弟'一透鏡 43 電子快門 44 反射鏡 98154.doc -16- 12523121 Classification and/or operation of the instant particles of the present invention 10 Substrate 11 Main channel 12 Sample feed slot 20 Power supply 30 Digital image processing device 31 First light source 32 First lens 33 Beam splitter 34 Filter 35 First objective lens 36 CCD camera 37 processing unit 38 graphic user interface 40 optical clamp device 41 second light source 42 brother 'one lens 43 electronic shutter 44 mirror 98154.doc -16- 1252312

45 51 52 60 70 80 90 111 112 131 132 133 134 141 142 143 144 381 382 383 第二物鏡 第一粒子 第二粒子 第一基材 正光阻薄膜 光罩 第二基材 辨識區 聚焦區 第一緩衝液流道 第一緩衝液進料槽 第二缓衝液流道 第二緩衝液進料槽 第一分流道 第一儲存槽 第二分流道 第二儲存槽 分類器 計數器 顯示模組 98154.doc -17-45 51 52 60 70 80 90 111 112 131 132 133 134 141 142 143 144 381 382 383 Second objective first particle second particle first substrate positive photoresist film mask second substrate identification area focus area first buffer Flow channel first buffer feed tank second buffer flow channel second buffer feed tank first split channel first storage tank second split runner second storage tank sorter counter display module 98154.doc -17-

Claims (1)

125231¾ 101851號專利申請案 文审請專利範圍替換本月}洲如 十、申請專利範圍·· 一 1.二種即時之粒子之分類及/或操作系統,包括: -基:,具有一微流道’該微流道係用以供一流體於其 ••動&流體内有複數個粒子,該微流道上具有一 辨識區; —電源供應器’電氣連接至該基板,用以提供驅動該流 體所需之電力; 一數位影像處理裝置,心即時辨識該微流道内流經該 一辨識區之粒子,而產生一辨識結果;及 光鉗襄置,根據該辨識結果而作動,用以處理該辨識 過之粒子。 2·如請求項1之系統 3 ·如請求項1之系統 4·如請求項1之系統 5.如請求項1之系統 6·如請求項1之系統 7·如請求項1之系統 8·如請求項1之系統 其中该等粒子係為細胞。 其中該等粒子係為細菌。 其中该等粒子係為血球。 其中該基板之材質係為玻璃。 其中該基板之材質係為矽。 其中該基板之材質係為高分子。 其中該微流道包括: 主流道’用以供該流體於其内流動,具有該辨識區; 第—緩衝液流道,連接該主流道,用以注入一第一缓 衝液至該主流道; 第二緩衝液流道,連接該主流道,用以注入一第二缓 衝液至該主流道,該第一緩衝液及該第二緩衝液之注 入,可將該流體之流動壓縮至單一粒子之寬度,使得 98154-941130.doc 1252312 該等粒子可於該辨識區中依序排列流動前進; 第分流道,連接該主流道,用以導出分類後之複數 個第一粒子;及 第一分流道,連接該主流道,用以導出分類後之複數 個第二粒子。 ^ θ求項8之系統,其中該第一緩衝液流道及該第二緩 衝液流道分別與該主流道垂直。 10·如μ求項8之系統,其中該第一緩衝液流道及該第二緩 衝液流道分別與該主流道斜交。 U.如請求項8之系統中該第一分流道及該第二分流道 分別與該主流道垂直。 12.如請求項8之系、统’其中該第一分流道及該第二分流道 分別與該主流道斜交。 Η·如睛求項1之系統,其中該數位影像處理裝置包括: 一第—光源’用以產生一第一光束,且投射至該基板上 之辨識區; 一 CCD攝影機,用以擷取該基板辨識區附近之影像;及 一處理單元,用以接受該CCD攝影機所傳來之影像,且 處理該影像後產生該辨識結果。 14·如明求項13之系統,該處理單元具有一圖型使用者介 面’該圖型使用者介面包括: 一分類器,係用以設定所欲分類之粒子類型; 一計數器,係為計算之結果;及 一顯示模組,顯示該辨識區附近之即時影像,該辨識區 98154-941130.doc 1252312 之大小係可調整。 15·如請求項1之系統,其中該該光钳裝置包括: 第-光源’用以產生一雷射光束,而聚焦至該基板上 之一聚焦區;及 電:陕門,其可遮斷該雷射光束,用以控制該雷射光 :一通的呀間·點’且該電子快門係電氣連接至該數位1252313⁄4 101851 Patent Application Text Applicable Patent Renewal This month}Zhouzhou 10, Patent Application Range··1. Two kinds of instant particle classification and/or operating system, including: -Base: with a micro flow channel 'The microchannel is used to supply a fluid to the fluid and a plurality of particles in the fluid, the microchannel has an identification zone; - a power supply is electrically connected to the substrate to provide driving The power required by the fluid; a digital image processing device that instantly recognizes particles flowing through the identification zone in the microchannel to generate an identification result; and an optical clamp device that operates according to the identification result for processing The identified particles. 2. System 3 as Request 1 • System 4 as Request 1 • System as Request 1 • System 6 as Request 1 • System 7 as Request 1 • System 8 as Request 1 The system of claim 1 wherein the particles are cells. Wherein the particles are bacteria. Wherein the particles are blood cells. The material of the substrate is glass. The material of the substrate is 矽. The material of the substrate is a polymer. The micro flow channel includes: a main flow channel for the fluid to flow therein, having the identification region; a first buffer flow channel connected to the main flow channel for injecting a first buffer liquid to the main flow channel; a second buffer flow channel is connected to the main flow channel for injecting a second buffer solution into the main flow channel, and the first buffer liquid and the second buffer liquid are injected to compress the flow of the fluid to a single particle Width, such that 98154-941130.doc 1252312 the particles can be sequentially flowed in the identification zone; the first flow channel is connected to the main channel for deriving the plurality of first particles after classification; and the first runner And connecting the main channel to derive a plurality of second particles after classification. ^ θ The system of claim 8, wherein the first buffer flow path and the second buffer flow path are perpendicular to the main flow path, respectively. 10. The system of claim 8, wherein the first buffer flow path and the second buffer flow path are respectively oblique to the main flow path. U. The system according to claim 8, wherein the first branch channel and the second branch channel are respectively perpendicular to the main channel. 12. The system of claim 8, wherein the first shunt and the second shunt are respectively oblique to the main flow. The system of claim 1, wherein the digital image processing device comprises: a first light source for generating a first light beam and projected onto the identification area on the substrate; a CCD camera for capturing the An image near the substrate identification area; and a processing unit for receiving the image transmitted by the CCD camera, and processing the image to generate the identification result. 14. The system of claim 13, wherein the processing unit has a graphical user interface. The graphical user interface includes: a classifier for setting a particle type to be classified; a counter for calculating The result is a display module that displays an instant image near the identification area, and the size of the identification area 98154-941130.doc 1252312 can be adjusted. The system of claim 1, wherein the optical clamp device comprises: a first light source for generating a laser beam and focusing to a focal region on the substrate; and an electric: Shaanxi gate, which is occludable The laser beam is used to control the laser light: a pass between the point and the electronic shutter is electrically connected to the digital 16. 17. <里扁置,而接受該數位影像處理裝置之控制來 決定該雷射光束導通的時間點。 如請求項1 5之系 射、寶石雷射、 如請求項1之系 粒子。 統,其中該雷射光束係選自由半導體雷 固態雷射及氣體雷射所組成,之群。 統,其中該光鉗裝置係吸引該辨識過之 18.如請求項1之系統 粒子。 其中該光钳裝置係破壞該辨識過之16. 17. < is flattened and controlled by the digital image processing device to determine the point in time at which the laser beam is turned on. Such as the priming of claim 1 5, the jewel laser, the particle of claim 1. The laser beam is selected from the group consisting of semiconductor lightning solid lasers and gas lasers. The optical clamp device is attracted to the identified system 18. The system particles of claim 1. Wherein the optical clamp device destroys the identified 98154-941130.doc98154-941130.doc
TW94101851A 2005-01-21 2005-01-21 Realtime microparticle sorting/manipulation system TWI252312B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94101851A TWI252312B (en) 2005-01-21 2005-01-21 Realtime microparticle sorting/manipulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94101851A TWI252312B (en) 2005-01-21 2005-01-21 Realtime microparticle sorting/manipulation system

Publications (2)

Publication Number Publication Date
TWI252312B true TWI252312B (en) 2006-04-01
TW200626894A TW200626894A (en) 2006-08-01

Family

ID=37565382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101851A TWI252312B (en) 2005-01-21 2005-01-21 Realtime microparticle sorting/manipulation system

Country Status (1)

Country Link
TW (1) TWI252312B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134513B2 (en) 2012-11-06 2015-09-15 Industrial Technology Research Institute Projection lens, projection device and optically-induced microparticle device
CN113502223A (en) * 2021-07-12 2021-10-15 桂林电子科技大学 Active optical control method and device for living body single cell rotation angle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134513B2 (en) 2012-11-06 2015-09-15 Industrial Technology Research Institute Projection lens, projection device and optically-induced microparticle device
CN113502223A (en) * 2021-07-12 2021-10-15 桂林电子科技大学 Active optical control method and device for living body single cell rotation angle

Also Published As

Publication number Publication date
TW200626894A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US11480516B2 (en) Method and system for microfluidic particle sorting
US9835540B2 (en) Devices and methods for manipulating components in a fluid sample
Chung et al. Recent advances in miniaturized microfluidic flow cytometry for clinical use
JP5910412B2 (en) Microparticle sorting method and microchip for sorting microparticles
JP6003020B2 (en) Microchip and fine particle analyzer
JP4047336B2 (en) Cell sorter chip with gel electrode
JP4572973B2 (en) Microchip and flow-feeding method in microchip
JP2009530618A5 (en)
JP2010252785A (en) Device for concentrating and separating cell
KR20130045236A (en) Microchip and particulate analyzing device
WO2021084814A1 (en) Minute particle collection method, microchip for aliquoting minute particles, minute particle collection device, production method for emulsion, and emulsion
TWI310786B (en) Method for sorting microfluidic particles and microfluidic chips therefor
JP7476483B2 (en) PARTICLE MANIPULATION METHOD, PARTICLE CAPTURE CHIP, PARTICLE MANIPULATION SYSTEM, AND PARTICLE CAPTURE CHAMBER
TWI252312B (en) Realtime microparticle sorting/manipulation system
CN109706053A (en) A kind of Raman activation drop separation system and method
CN108474727B (en) Flow cell for analysing particles in a liquid to be examined
Lin et al. A novel micro flow cytometer with 3-dimensional focusing utilizing dielectrophoretic and hydrodynamic forces
JP5092881B2 (en) Channel structure and microchip
US20180065120A1 (en) Particle manipulation system with multisort valve
Testa et al. Micro flow cytometer with 3D hydrodynamic focusing
Chien et al. A fully integrated system for cell/particle sorting in a microfluidic device utilizing an optical tweezing and DIP recognition approach
Jo et al. Acoustic microfluidic platform for size and density-based cell separation
CN117535113A (en) Microparticle sorting apparatus and method
Ferrara Design and Characterization of Integrated Optical Devices for Biophotonics
Jo et al. Two-stage microfluidic device for acoustic particle manipulation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees