TWI251361B - High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery - Google Patents

High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery Download PDF

Info

Publication number
TWI251361B
TWI251361B TW093123114A TW93123114A TWI251361B TW I251361 B TWI251361 B TW I251361B TW 093123114 A TW093123114 A TW 093123114A TW 93123114 A TW93123114 A TW 93123114A TW I251361 B TWI251361 B TW I251361B
Authority
TW
Taiwan
Prior art keywords
bismaleimide
methyl
polymer electrolyte
group
precursor composition
Prior art date
Application number
TW093123114A
Other languages
Chinese (zh)
Other versions
TW200607132A (en
Inventor
Yueh-Wei Lin
Jing-Pin Pan
Mao-Sung Wu
Jyh-Tsung Lee
Jung-Mu Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW093123114A priority Critical patent/TWI251361B/en
Publication of TW200607132A publication Critical patent/TW200607132A/en
Application granted granted Critical
Publication of TWI251361B publication Critical patent/TWI251361B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is directed to a gel polymer electrolyte for use in rechargeable polymer secondary batteries and a precursor composition thereof. The precursor composition can be injected into an aluminum shell of a battery cell shell, which undergoes in-situ heating polymerization by heating and forms a gel polymer electrolyte penetrating a partition membrane therein. The precursor composition contains (meth)acrylic (acrylate) monomes and a modified bismaleimide oligomer resulting from a reaction of barbituric acid and bismaleimide.

Description

!251361 九、發明說明: 發明所屬之技術領域 本發明係關於一種二次電池的膠態高八 甘兄 刀于電解質,及 其則驅物組合物,尤其該前驅物組合物 、、± λ + 卜、 柳j从液體灌液過程 /主入包池外殼鋁洎袋内,經由即時加埶取 · …、…、永合(in-situ heatmg p〇iymerizati〇n),並穿透隔離 ^ ^ K 1"產生膠態高分 子電解質。 先前技術 隨著可攜式電子產品之快速發展和普 3,鐘離子二 次電池因重量輕與具高電壓與高能量密 t荷點,使得多 需求與日遽增。另外,當雷;± 力Γ w電子產口口之而求朝薄小化和具相 曲性發展時,使用高分子電解質於鋰離子二 八电 >也囚而 切需要’並引起廣泛研究。 鐘離子高分子電池使用高分子電解質有許多的優點, 無電解液洩漏的危險、可以製造超薄大面積或有角卢的赤 池、重量輕、較低的蒸氣壓和自放電率,大大地增二 子二次電池在商業上的功效。 為了研究具柔軟度薄片型外殼之薄型電池(thin typ battery) ’已有數種膠態高分子材料配合電解液組成被砰 究,諸如聚環氧乙燒(PE〇)、聚甲基丙稀酸甲醋(PM·、 聚偏氟乙烯〇>卿)、聚_腈(削)㈣統及其衍线聚洽 體或共聚體。一般高分子電池用之膠態高分子電解質之集 程’是先將其成膜後去溶劑,再將高分子膜放置於活性拍 1251361 質層間堆疊或塗佈於活性併 /古r生物貝表面製成電池芯, 液態電解質,並將命朽祐夕|令入 將私極板之間黏著,因此在充放電過程φ 鐘離子之嵌入及與φ,队& & L a Ύ 人出ρ牛低極板多層結構之膨脹或收缔, 電池使用壽命長,但是製程複雜。 、、, 發明内容 本發明之膠態高分子電解質沒有電解液漏液的問題, 因此包池有較好的可靠度(reliability);另外此膠態高分子 材料與電解液互溶性佳;產生之架橋結構將溶劑保持於内 口P,包解液保持度(retainability)佳且對鋰鹽溶解度很高, 有很高的離子導電度;本發明之此高分子前驅物配方,依 一般液體灌液過程注入電池外殼鋁箔袋内,經由即時加熱 熱聚合(in-situ heating polymerization),並穿透隔離膜聚合 產生膠態高分子電解質,其中兩種高分子前驅物形成交聯 共聚體(copolymers),製程簡易便利。 本發明之鋰高分子二次電池之高分子電解質組成(一) 電解液用高分子前驅物,組成有(1) 一種先經改質雙馬來醯 亞胺养聚體(modified-bismaleimide oligomer)(2)— 種可聚 合之單體(monomers)或寡聚體(〇lig〇mers),包含烷基丙烯 酸甲酯基(alkyl methacrylate groups),丙烯酯基(acrylate groups),烯酸曱醋基(methacrylate groups)等,以化學式 CHfC^CHdC^C^CKCyHhOhRi,表示,其中 y = 〇 〜3, m= 1〜9,上述包含一種或多種;或包含烧丙稀氰基(alky 1 acrylnitrile groups),丙稀氰基(acrylnitrile groups)等,以 1251361 化學式R2,-CH=C(CN)表示,此二種組成所產生之共聚物。 (二)至少含有兩種混合溶劑,第一種溶劑具有極高的界電 常數和高黏度。第二種溶劑具有較低的界電常數和低黏度 等特性。碳酸乙烯醋(Ethylene Carbonate,EC)、和碳酸丙烯 酯(Propylene Carbonate,EC)及 γ_丁基内酯([butyr〇lact〇ne GBL)等其具有極高的介電常數。(三)鐘解離鹽類LipF6、 LiBF4等。(四)自由基起始劑。(五)添加劑,常見的添加劑 有石反酸乙烯基S旨(Vinylene Carbonate)、亞硫酸烧類 (sulfates)、硫酸烷類(suifates)、膦酸酯或其衍生物化合物。 上述之冋刀子電解質如驅物配方’依^一般液體電解液 灌液過程注入電池外殼紹箔袋内,電池經封裝程序後,再 經即時加熱產生熱聚合(in-situ heating p〇lymerizati〇n), 當熱聚合反應進行中分子穿透隔離膜聚合產生膠態高分 子電%貝’熱聚合溫度範圍30〜130 °C,其中兩種高分子前 驅物形成交聯型共聚合物(C〇P〇lymerS),膠態高分子電解 貝可黏結正負極極板,製程簡易。 實施方式 本發明的較佳具體實施態樣包括(但不限於)下列項 g : 1. 一種可用於二次電池的膠態高分子電解質前驅物 組合物,包含: a)改質之雙馬來醯亞胺寡聚體,由巴比托酸 (barbituric acid)與雙馬來醮亞胺(bismaleimide)反應生成; 1251361 b) —種或多種以 CH2 = c(R〇)c(〇)(MCyH2y〇)mRi 表示 的丙烯酸(酯)類單體,其中y=1〜3, m=:0〜9,R〇為氫或曱基, I為氫,羥基,C1-C6烷基,C1-C6烷氧基,C2_C6烯基, C3-C6環烷基或苯基;一種或多種以R2-CH=c(r〇)(cn)表 示的烯腈類單體,其中R0的定義同上,r2為氫,羥基,C1_C6 烧基’ C1-C6烷氧基,C2-C6烯基,C3-C6環烷基或苯基; 或它們的募聚體; c) 非水性金屬鹽電解質; d) 非質子溶劑;及 e) 自由基起始劑, 其中以a)至d)的重量和為基準,a)佔1-50% ; b)佔1-50% ; c)在d)之濃度為0.5M至2M ;及d)佔10_90°/〇 ;而e)為成分 b)的重量之0· 1-5%。 2.如以上項目第1項的膠態高分子電解質前驅物組合 物,其中成分a)由下列的巴比托酸的一種或多種製備:BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a colloidal Gaogangan knife for a secondary battery, and a composition thereof, particularly the precursor composition, ± λ + Bu, Liu j from the liquid filling process / main into the pool shell aluminum crucible bag, through the instant addition ... ..., ..., (in-situ heatmg p〇iymerizati〇n), and penetrate the isolation ^ ^ K 1" produces a colloidal polymer electrolyte. Prior Art With the rapid development of portable electronic products and the advantages of light weight and high voltage and high energy density, the demand for the secondary battery has increased. In addition, when Ray; ± force Γ w electronic production mouth to seek to become thinner and have a competing development, the use of polymer electrolytes in lithium ion twenty-eight electricity > also need to cut and cut 'and cause extensive research . The use of polymer electrolytes in bell-ion polymer batteries has many advantages. It has no danger of electrolyte leakage, can produce ultra-thin large-area or angular red pools, light weight, low vapor pressure and self-discharge rate, greatly increasing The commercial efficacy of the two sub-secondary batteries. In order to study thin typ battery with soft sheet-shaped outer casing, there have been several kinds of colloidal polymer materials combined with electrolyte composition, such as polyepoxyethylene (PE) and polymethyl acrylate. Methyl vinegar (PM·, polyvinylidene fluoride 〇> qing), poly-nitrile (cut) (four) and its derivative network or copolymer. In general, the collection of colloidal polymer electrolytes for polymer batteries is obtained by first forming a film and then removing the solvent, and then placing the polymer film on the active film 1251361, stacking or coating the active layer and the surface of the active material. Made of battery core, liquid electrolyte, and will die the bond between the private plates, so in the charge and discharge process φ clock ion embedded and with φ, team &&&& The expansion or stagnation of the multi-layer structure of the low-profile plate of the cattle has a long battery life, but the process is complicated. SUMMARY OF THE INVENTION The colloidal polymer electrolyte of the present invention has no problem of electrolyte leakage, so that the pool has good reliability; in addition, the colloidal polymer material has good compatibility with the electrolyte; The bridging structure maintains the solvent at the inner port P, has good retaining property and high solubility to the lithium salt, and has high ion conductivity; the polymer precursor formulation of the present invention is generally filled with liquid. The process is injected into the aluminum foil bag of the battery casing, and is polymerized by in-situ heating polymerization and penetrated through the separator to produce a colloidal polymer electrolyte, wherein the two polymer precursors form cross-linking copolymers. The process is simple and convenient. The polymer electrolyte composition of the lithium polymer secondary battery of the present invention (1) The polymer precursor for the electrolyte is composed of (1) a modified-bismaleimide oligomer (modified) (2) a polymerizable monomer or oligomer (〇lig〇mers) comprising alkyl methacrylate groups, acrylate groups, ceric acid sulfonate (methacrylate groups), etc., represented by the chemical formula CHfC^CHdC^C^CKCyHhOhRi, wherein y = 〇~3, m=1~9, the above contains one or more; or contains alky 1 acrylnitrile groups , acrylnitrile groups, etc., represented by 1251361 chemical formula R2, -CH=C(CN), the copolymer produced by the two compositions. (2) Containing at least two mixed solvents, the first solvent having a very high boundary constant and a high viscosity. The second solvent has characteristics such as lower boundary constant and low viscosity. Ethylene Carbonate (EC), and Propylene Carbonate (EC) and γ-butyl lactone ([butyr〇lact〇ne GBL) have extremely high dielectric constants. (3) The bell is separated from the salt LipF6 and LiBF4. (4) Free radical initiators. (5) Additives, common additives There are Vinylene Carbonate, sulfates, suifates, phosphonates or derivatives thereof. The above-mentioned squeegee electrolyte, such as the squirting formula, is injected into the foil casing of the battery casing according to the general liquid electrolyte filling process, and after the battery is packaged, it is heated by instant heating to generate thermal polymerization (in-situ heating p〇lymerizati〇n When the thermal polymerization is carried out, the molecular penetrating separator is polymerized to produce a colloidal polymer, which has a thermal polymerization temperature range of 30 to 130 ° C, in which two polymer precursors form a crosslinked copolymer (C〇). P〇lymerS), colloidal polymer electrolysis can bond positive and negative plates, and the process is simple. Embodiments Preferred embodiments of the present invention include, but are not limited to, the following item g: 1. A colloidal polymer electrolyte precursor composition useful for a secondary battery, comprising: a) a modified double horse A quinone imine oligomer formed by the reaction of barbituric acid with bismaleimide; 1251361 b) one or more of CH2 = c(R〇)c(〇)(MCyH2y 〇) an acrylate monomer represented by mRi, wherein y=1~3, m=:0~9, R〇 is hydrogen or fluorenyl, I is hydrogen, hydroxy, C1-C6 alkyl, C1-C6 Alkoxy, C2_C6 alkenyl, C3-C6 cycloalkyl or phenyl; one or more acrylonitrile monomers represented by R2-CH=c(r〇)(cn), wherein R0 is as defined above, r2 is Hydrogen, hydroxy, C1_C6 alkyl "C1-C6 alkoxy, C2-C6 alkenyl, C3-C6 cycloalkyl or phenyl; or their polymerases; c) non-aqueous metal salt electrolyte; d) aprotic a solvent; and e) a radical initiator, wherein a) is 1-50% based on the weight of a) to d); b) is 1-50%; c) is at a concentration of 0.5M at d) To 2M; and d) to 10_90°/〇; and e) to be 0·1-5% of the weight of component b). 2. A colloidal polymer electrolyte precursor composition according to item 1 above, wherein component a) is prepared from one or more of the following barbituric acids:

„R ,R ο 其中 R’ 與 R” 各別為-H,-CH3, -C2H5, -C6H5, -CH(CH3)2, -CH2CH(CH3)2, -ch2ch2ch(ch3)2,或-c(ch3)hch(ch3)2。 3 ·如以上項目第2項的膠態高分子電解質前驅物組合 物,其中R’與R”同時為-H。 1251361 4·如以上項目第1、2或3項的膠態高分子電解質前 驅物組合物,其中成分a)由下列的雙馬來醯亞胺的一種或 多種製備:„R , R ο where R′ and R” are each -H, -CH3, -C2H5, -C6H5, -CH(CH3)2, -CH2CH(CH3)2, -ch2ch2ch(ch3)2, or -c (ch3)hch(ch3)2. 3. The colloidal polymer electrolyte precursor composition according to item 2 of the above item, wherein R' and R" are simultaneously -H. 1251361 4. The colloidal polymer electrolyte precursor of item 1, 2 or 3 of the above item Composition, wherein component a) is prepared from one or more of the following bismaleimine:

〇 〇〇 〇

其中 R3 為 C1-4 伸烷基,-CH2NHCH2-,-C2H4NHC2H4-, -c(o)ch2·,-CH2OCH2-,_C(0)_,-Ο-,00-,-S-,-S-S-, -S(o)-,-CH2S(0)CH2-,-(O)S(O)-,-CH2(C6H4)CH2-, -CH2(C6H4)0-,伸苯基,伸聯苯基,取代的伸苯基或取代 的伸聯苯基;及R4為Cl_4伸烷基,-C(0)_,-C(CH3)2-,-Ο-, -0-0-,-S-,-s-s-,-(o)s(o)-,或-s(o)-。 5 .如以上項目第4項的膠態高分子電解質前驅物組合 物,其中的雙馬來醯亞胺選自N,N’-雙馬來醯亞胺-4,4’_二苯 基代甲烧(N,N’_bismaleimide-4,4’-diphenylmethane)、1,Γ-(亞甲基雙_4,1_ 亞苯基)雙馬來亞胺[1,l’-(methylenedi-4,1 -phenylene)bismaleimide]、 Ν,Ν’-(1,Γ-二苯基-4,4’-二亞甲基)雙馬來酷亞胺[N,N’-(l,l’-biphenyl-4,4’-diyl) bismaleimide]、N,N’-(4-曱基-1,3-亞苯基)雙馬來醯亞胺 [N,N’-(4-methyl-l,3-phenylene)bismaleimide]、1,1’-(3,3’-二曱基-1,Γ-二苯基 1251361 -4,4’-二亞曱基)雙馬來醯亞胺 [1,1’-(3,3’dimethyl-1,1 ’_bipheny 1-4,4’-diyl)bismaleimide]、N,N’,乙烯基二馬來 酉龜亞胺(N,N’_ethylenedimaleimide)、凡>1’-(1,2-亞苯基)二馬來酸亞胺 [N,N’-(l,2-phenylene)dimaleimide]、>^,>1’-(1,3-亞苯基)二馬來酸亞胺 [N,N’-(l,3_phenylene)dimaleimide]、1,Γ_己烧基二亞亞基雙α比σ各-2,5-二酮 (l,r,hexanediyl-bis-pyrrole-2,5-dione)、凡1^’_雙-(2,5·雙魏基-2,5·雙氫基比口各 -1-羧基亞甲基醯胺 [N,N’-bis-(2,5-dioxo-2,5-dihydro-pyrrole,1 -carboxyl)-methylenediamine]、 1,Γ-(3,3piperazine-1,4·二亞基-二丙基)雙°比洛-2,5-二酮 [1,l’-(3,3’-piperazine-1,4-diyl-dipropyl)bis-pyrrole-2,5-dione]、N,N’-雙馬來酿 亞胺硫(N,N’-thiodimaleimid)、N,N’-雙馬來醯亞胺二硫 (N,N’-dithiodimaleimid)、N,N’-雙馬來酿亞胺_(N,N’-ketonedimaleimid)、 N,N’-亞甲基雙馬來醯亞胺(N,N’-methylene-bis-maleinimid)、雙馬來醯亞胺甲 -醚(bis-maleinimidomethyl-ether)、1,2-雙馬來酿亞胺基-1,2-乙二醇 [l,2-bis-(maleimido)-l,2-ethandiol]、>^,>1’-4,4’-二苯醚-雙馬來醯亞胺 (凡>1’-4,4’-(^1^11}^1:]161*-1^8-11^16111^(1)、4,4’-雙馬來驢亞胺-二苯石風[4, 4 ’ -bis(maleimido)-diphenylsulfone]之族群。 6.如以上項目第1、2或3項的膠態高分子電解質前 驅物組合物,其中成分a)雙馬來醯亞胺寡聚體由巴比托酸 與雙馬來醯亞胺在100〜150°C及0.5〜8小時的反應而生成。 7·如以上項目第1項的膠態高分子電解質前驅物組合 物’其中的成分b)包含一種以 1251361 CHfC^DCCCOCMCyEhyOURi表示的丙烯酸(酯)類單體, 其中y=l〜3, m=l〜9,R〇為甲基,及Ri為氫。 8·如以上項目第7項的膠態高分子電解質前驅物組合 物,其中的成分b)進一步包含曱基丙烯酸甲酯單體。 9·如以上項目第1項的膠態高分子電解質前驅物組合 物,其中的成分b)包含甲基丙烯酸甲酯單體。 10·如以上項目第1項的膠態高分子電解質前驅物紱 合物,其中的成分 c)選自 LiPF6、LiBF4、LiAsF6、LiSbF6、 LiC104、LiAlCl4、LiGaCl4、LiN03、LiC(S02CF3)3、 LiN(S02CF3)2、LiSCN、Li03SCF2CF3、LiC6F5S03、 Li02CCF3、LiS03F、LiB(C6H5)4 及 LiCF3S03 及其混合物所 組成的族群。 11 ·如以上項目第1項的膠態高分子電解質前驅物組 合物,其中成分d)的非質子溶劑為包含選自下列兩種溶劑 的一混合溶劑,第一種溶劑具有極高的介電常數和高黏 度,第二種溶劑具有較低的介電常數和低黏度,該第一種 溶劑選自碳酸乙烯酯(ethylene carbonate,EC),碳酸丙烯酯 (propylene carbonate,PC),碳酸 丁烯酯(butylene carbonate),石炭酸二丙基酯(dipropyl carb〇nate),酸酐(acid anhydride),N-甲基 °比洛烧酮(N-methyl pyrrolidone),N-甲 1251361 基乙酸胺(N_methyl acetamide),N-甲基曱酸胺(N-methyl formamide),二甲基甲驢胺(dimethyl formamide),γ-丁基内 酉旨(γ-butyrolactone),乙腈(acetonitrile),二甲亞颯 (dimethyl sulfoxide)和亞硫酸二甲酯(dimethyl sulfite)所組 成的族群;該第二種溶劑係醚類、酯類或碳酸酯,該醚類 係選自1,2 -二乙氧基乙烧(1,2-diethoxy ethane), 1,2二甲氧 基乙烧(1,2-dimethoxyethane),1,2 二丁氧基乙烧 (l,2_dibutoxyethane),四氫吱喃(tetrahydrofuran),2-甲基 四氫吱喃(2-methyl tetrahydrofuran),環氧丙烧(propylene oxide)所組成的族群;該酯類選自乙酸甲|旨(methyl acetate), 乙酸乙酯(ethyl acetate),丁 酸曱醋(methyl butyrate),丁酸 乙醋(ethyl butyrate),丙酸甲酯(methyl proionate),丙酸 乙酯(ethyl proionate)所組成的族群;及該碳酸酯選自碳酸 二甲酯(Dimethyl Carbonate,DMC),碳酸二乙酯(Diethyl Carbonate,DEC)和碳酸曱基乙基醋(Ethyl MethylWherein R3 is C1-4 alkylene, -CH2NHCH2-, -C2H4NHC2H4-, -c(o)ch2., -CH2OCH2-, _C(0)_, -Ο-, 00-, -S-, -SS- , -S(o)-,-CH2S(0)CH2-,-(O)S(O)-,-CH2(C6H4)CH2-, -CH2(C6H4)0-,phenylene,phenylene Substituted phenyl or substituted biphenyl; and R4 is Cl_4 alkyl, -C(0)_, -C(CH3)2-, -Ο-, -0-0-, -S- , -ss-, -(o)s(o)-, or -s(o)-. 5. The colloidal polymer electrolyte precursor composition according to item 4 of the above item, wherein the bismaleimide is selected from the group consisting of N, N'-bismaleimide-4, 4'-diphenyl N,N'_bismaleimide-4,4'-diphenylmethane, 1, Γ-(methylenebis-4,1_phenylene) bismaleimide [1,l'-(methylenedi-4, 1 -phenylene)bismaleimide], Ν,Ν'-(1,Γ-diphenyl-4,4'-dimethylene) bismaleimide [N,N'-(l,l'-biphenyl -4,4'-diyl) bismaleimide], N,N'-(4-mercapto-1,3-phenylene) bismaleimide [N,N'-(4-methyl-l,3 -phenylene)bismaleimide], 1,1'-(3,3'-dimercapto-1, fluorene-diphenyl 1251361 -4,4'-di-indenylene) bismaleimide [1,1 '-(3,3'dimethyl-1,1 '_bipheny 1-4,4'-diyl)bismaleimide], N,N', vinyl dimaleimine imine (N,N'_ethylenedimaleimide),fan>1 '-(1,2-phenylene)dimaleimide [N,N'-(l,2-phenylene)dimaleimide],>^,>1'-(1,3-phenylene) ) dimaleimide [N,N'-(l,3_phenylene)dimaleimide], 1, Γ_hexanyldi Base double α ratio σ each-2,5-dione (l,r,hexanediyl-bis-pyrrole-2,5-dione), where 1^'_bis-(2,5·bis-weiyl-2,5 ·N-N-bis-(2,5-dioxo-2,5-dihydro-pyrrole, 1-carboxyl-methylenediamine), 1, Γ -(3,3piperazine-1,4·diylidene-dipropyl) bis-pyrrol-2,5-dione [1,l'-(3,3'-piperazine-1,4-diyl-dipropyl Bis-pyrrole-2,5-dione], N,N'-Bismaleimide (N,N'-thiodimaleimid), N,N'-Bismaleimide Disulfide (N,N) '-dithiodimaleimid), N, N'-Bismaleimide _ (N, N'-ketonedimaleimid), N, N'-methylene bismaleimide (N, N'-methylene-bis- Maleinimid), bis-maleinimidomethyl-ether, 1,2-bismaleimine-1,2-ethanediol [l,2-bis-(maleimido)- l,2-ethandiol],>^,>1'-4,4'-diphenyl ether-bismaleimide (Where >1'-4,4'-(^1^11}^ 1:] 161 * -1 ^ 8-11 ^ 16111 ^ (1), 4, 4 '- bismaleimine - biphenyl stone [4, 4 '-bis (maleimido)-diphenylsulfone] group. 6. The colloidal polymer electrolyte precursor composition according to item 1, 2 or 3 of the above item, wherein the component a) the bismaleimide oligomer is composed of barbituric acid and bismaleimide at 100 It is formed by reaction at ~150 ° C and 0.5 to 8 hours. 7. The colloidal polymer electrolyte precursor composition of item 1 of the above item, wherein component b) comprises an acrylic monomer represented by 1251361 CHfC^DCCCOCMCyEhyOURi, wherein y=l~3, m= l~9, R〇 is a methyl group, and Ri is hydrogen. 8. The colloidal polymer electrolyte precursor composition according to item 7 above, wherein the component b) further comprises a methyl methacrylate monomer. 9. The colloidal polymer electrolyte precursor composition according to item 1 above, wherein the component b) comprises a methyl methacrylate monomer. 10. The colloidal polymer electrolyte precursor composition according to item 1 of the above item, wherein component c) is selected from the group consisting of LiPF6, LiBF4, LiAsF6, LiSbF6, LiC104, LiAlCl4, LiGaCl4, LiN03, LiC(S02CF3)3, LiN (S02CF3)2, LiSCN, Li03SCF2CF3, LiC6F5S03, Li02CCF3, LiS03F, LiB(C6H5)4, and LiCF3S03 and their mixtures. 11. The colloidal polymer electrolyte precursor composition according to item 1 above, wherein the aprotic solvent of the component d) is a mixed solvent comprising a solvent selected from the group consisting of the following two solvents, the first solvent having a very high dielectric Constant and high viscosity, the second solvent has a lower dielectric constant and a lower viscosity. The first solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate. Butylene carbonate, dipropyl carb〇nate, acid anhydride, N-methyl pyrrolidone, N-methyl 1251361 amine acetate (N_methyl acetamide) ), N-methyl formamide, dimethyl formamide, γ-butyrolactone, acetonitrile, dimethyl hydrazine a group consisting of dimethyl sulfoxide) and dimethyl sulfite; the second solvent being an ether, an ester or a carbonate selected from the group consisting of 1,2-diethoxyethane ( 1,2-diethoxy ethane), 1,2-dimethoxyethane (1,2-dimethoxyethane), 1,2,2-dibutoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene-propylene a group of (propylene oxide); the ester is selected from the group consisting of methyl acetate, ethyl acetate, methyl butyrate, ethyl butyrate, a group consisting of methyl proionate and ethyl proionate; and the carbonate is selected from the group consisting of Dimethyl Carbonate (DMC), Diethyl Carbonate (DEC) and Carbonic Acid. Ethyl Methyl Ethyl Acetate

Carbonate,EMC)所組成的族群。 12·如以上項目第11項的膠態高分子電解質前驅物組 合物,其中成分d)的非質子溶劑包含碳酸乙烯酯(ethylene carbonate,EC) ’ 石反酸丙稀醋(pr〇pyiene carb〇nate,PC),及 碳酸二乙酯(Diethyl Carbonate,DEC)。 13·如以上項目第12項的膠態高分子電解質前驅物組 合物,其中成分d)的非質子溶劑,以體積計,碳酸乙烯酯 12 1251361 的範圍是10%至50%,碳酸丙烯酯的範圍是5%至8〇%,及 碳酸二乙酯的範圍是3%至75%。 14.如以上項目第1項的膠態高分子電解質前驅物組 合物’其中成分e)的自由基起始劑選自過氧化酮類(ket〇ne peroxide),過氧化縮酮類(peroxy ketal),過氧化氫氧類 (hydroperoxide),過氧化雙烷類(dialkyl peroxide),過氧化 非環狀烷類(diacyl peroxide),過氧化酯類(peroxy ester), 及偶氮化合物(azo compound)所組成的族群。 1 5 ·如以上項目第1項的膠態高分子電解質前驅物組 合物,其中成分e)的自由基起始劑係偶氮雙異丁基睛 (2,2-azo-bis-isobutyronitrile,AIBN),苯基偶氮三苯曱烧 (phenyl-azo-triphenylmethane),過氧化第三丁烷(t_butyl peroxide,TBP),過氧化異丙基苯(cumylper〇xide),過氧化 乙醯(acetyl peroxide),過氧化二苯甲醯(benz〇yl per〇xide, BPO),過氧化十二醯(lauroyl peroxide),第三丁基過氧化 氫(t-butyl hydroperoxide),或第三丁基過苯甲酸酯(t_butyl perbenzoate) ° 16· —種高分子鋰二次電池,其包含: i) 一個負極,其可電化學嵌入/遷出鹼金屬; ii) 一個正極,包含電化學嵌入/遷出鹼金屬的電極活 性物質;及 13 1251361 p U二—種可活化負極及正極的膠態高分子電解-,立 中该膠態高分子電解質係經 貝,,、 筮1 $ κ r …、來口 / 乂聯如以上項目 5項中任一項所述的谬態高分、 物而製備。 解貝則驅物組合 1 7 ·如以上項目第1 6項夕古八7 ^ 貞之冋刀子鋰二次電池,复 負極包含一個負極活化物f, ’、 ^ 具係造自包括··穩相球狀碳 山垔 氣相成長石反纖維(VGCF)、奈米碳管(CNT)、焦炭、 人,、石墨、乙炔黑、碳纖維及玻璃質碳和其混合物所組 成的族群。 汝以上項目第16項之高分子鋰二次電池,其中該 負極進一步包含氟樹脂黏合劑。 20·如以上項目第16項之高分子鋰二次電池,其中該 正極的電極活性物質係選自釩、鈦、鉻、銅、鉬、鈮、鐵、 錄、始及猛之鐘化氧化物、鋰化硫化物、鋰化硒化物、及 鐘化碲化物和其混合物所組成的族群。 22·如以上項目第17項之高分子鋰二次電池,其中該 正極進一步包含氟樹脂黏合劑。 23.如以上項目第I?項之高分子鐘二次電池,其中該 正極進一步包含選自乙炔黑、碳黑、石墨、鎳粉、鋁粉、 14 1251361 鈦粕及不鏽鋼粉和其混合物所組成族群之一導電性添加 物。 本赉月了藉由以下貫施例被進一步了解,該等實施例 僅作為說明之用,而非用於限制本發明範圍。 實施例一:改質之雙馬來醯亞胺寡聚體之製備 雙馬來醯亞胺(bismaleimide)與巴比托酸(barbituric acid)以莫耳比3/1〜10/1混合,加入溶劑γ- 丁基内酯 (γ-butyrolactone,GBL)或碳酸丙烯酯(propylene carb〇nates) 等,加熱應溫度在100〜150t:,反應時間0.5〜8小時,反應 生成雙馬來亞胺券聚體(bismaleimide oligomer)。在本例 中使用表一所列的配分及在130°C製備改質之雙馬來醯亞 胺寡聚體。 表一 重量 N,N’-雙馬來醯亞胺-4,4’-二苯基代甲烷 (N,N,-bismaleimide-4,4,-diphenylmethane) 59.613 g 巴比托酸 2.132 g γ- 丁基内酯 247.059 g 實施例二:膠態高分子的製備 本實施例使用表二的配方來製備膠態面分子,其中包 括使用有實施例一的改質之雙馬來醯亞胺募聚體的本發明 例子及不含改質之雙馬來酸亞胺募聚體的對照例。表二中 15 1251361 同時列出膠態高分子配方在25 °C及80°C下是否產生膠化 的膠化時間。 ,膠化時間(小時) 配方* 25°C 80°C l)AN:5g5 PEGMA: lg 未膠化 <1 2)UMA: 5 g? PEGMA: 1 g 未膠化 <1 3) M-BMI: 5 g? PEGMA: 1 g 未膠化 <1 4) M-BMI: 25 g? PEGDA: 1 g 未膠化 <0.5 5) M-BMI: 25 g 未膠化 <0.5 *該配方含有以單體及寡聚體的總重量計1%的偶氮雙異丁基 腈(2,2-azo-bis-isobutyronitrile,AIBN)自由基起始劑 AN:丙烯腈(acrylnitrile) MMA:甲基丙晞酸甲酯(methyl methacrylate) M-BMI:實施例一的改質之雙馬來醯亞胺寡聚體 PEGMA:甲基丙烯酸聚乙二醇酯(P〇ly(ethylene glycol) methacrylate) PEGDA:聚乙二醇二丙烯酸酯(p〇ly(ethylene glycol) diacrylate) 從表二的結果可以看出實施例一的改質之雙馬來醯亞 胺募聚體在加熱下及AIBN自由基起始劑存在下和短時間 内0. 5〜1小時會聚合形成膠態高分子,反應速率快。 實施例三:膠態高分子電解質的製備及離子導電度 本實施例中使用多種不同的配方來製備膠態高分子電 16 1251361 解質前驅物,再於80°C進行膠化。以交流阻抗分析(AC impendance)量測得離子擴散段的阻抗,再帶入離子導電度 公式求得離子導電度σ = L/AxR求得離子導電度,其中L 為厚度,A為面積及R為電阻。 一通用的製備步驟為將鋰金屬鹽電解質與非質子溶劑 混合,獲得一電解質溶液;製備單體/寡聚體/自由基起劑的 混合物;混合該電解質溶液與該混合物,獲得膠態高分子 電解質前驅物;再加熱之形成膠態高分子電解質。 以下表三列出傳統液態電解質及本發明膠態高分子電 解質的配方,及離子導電度。 表三 實驗 配方組成 膠化時間 (小時) 在室溫的離子導電度 (mS/cm) 1.1 M LiPF6 (3EC/2PC/5DEC) - 7.1 1 M LiPF6 EC/GBL - 10.1 1 MMA: M-BMI = 1 : 1 高分子前驅物:電解質溶液1 (%) =18 : 82 M-BMI: 9% <3 2 MMA:MBMI 二 2:1 高分子前驅物:電解質溶液1 (%)=14 : 86 M-BMI: 5% <3 7.5 3 MMA:M-BMI=1:1 高分子前驅物:電解質溶液1 (%) = 10 : 90 M-BMI: 5% <3 9.3 17 1 電解質溶液由LiPF6濃度為1M的EC/GBL二1/3組成;高 分子前驅物由含MMA及本發明實施例一的改質之雙馬來 醯亞胺募聚體組成(内含AIBN 1%) 1251361 由上述表二之貫驗結果得知’當配方中南分子前驅物 的含量為1 〇重量%及本發明的改質之雙馬來醯亞胺寡聚體 (M-BMI)含量為5重量%時,經80°C加熱後可聚合成膠態高 分子電解質,且其離子導電度雖小於液態電解質的10.1 mS/cm,但維持很高的離子導電度9.3 mS/cm。 實施例四:膠態高分子電解質的製備及離子導電度 重覆實施例三的步驟製備膠態高分子電解質,其中的 高分子前驅物中分別使用實施例一的改質雙馬來醯亞胺寡 聚體(M-BMI)及對照比較用的聚乙二醇二丙烯酸酯(PEGDA)單 體,來彰顯前者之本發明的膠態高分子電解質具有明顯改 善的離子導電度。表四列出配方的組成及結果。 表四 實驗 配方組成 膠化時間 (8(TC)(小時) 在室溫的離子導電度 (mS/cm) 4 MMA:PEGDA=6: 1 高分子前驅物:電解質溶液* (%) = 43 : 57 PGEDA: 6% (EC/GBL) <3 1.2 5 MMA: M-BMI = 6:1 高分子前驅物:電解質溶液* (%) = 43 : 57 M-BMI: 6% (EC/GBL) <3 1.6 6 MMA:PEGDA=6: 1 高分子前驅物:電解質溶液* (%) = 43 : 57 PEGDA: 6% (EC/PC) <3 0.2 7 MMA: M-BMI = 6:1 高分子前驅物:電解質溶液*(%) = 43 :57 M-BMI: 6% (EC/PC) <3 0.87 18 1251361 *實驗4和5之電解質溶液由LiPF6濃度為1M的EC/GBL = 1/3組成’·實驗6和7之電解質溶液由upF6濃度為的 EC/PC = 1/1 組成The group of Carbonate, EMC). 12. The colloidal polymer electrolyte precursor composition according to item 11 above, wherein the aprotic solvent of component d) comprises ethylene carbonate (EC) 'pr〇pyiene carb 醋Nate, PC), and Diethyl Carbonate (DEC). 13. The colloidal polymer electrolyte precursor composition according to item 12 of the above item, wherein the aprotic solvent of the component d), the range of the ethylene carbonate 12 1251361 is 10% to 50% by volume, the propylene carbonate The range is 5% to 8%, and the range of diethyl carbonate is 3% to 75%. 14. The colloidal polymer electrolyte precursor composition of item 1 of the above item, wherein the radical initiator of component e) is selected from the group consisting of ketoxime peroxide, peroxy ketal (peroxy ketal) Hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester, and azo compound The group of people formed. 1 5 · A colloidal polymer electrolyte precursor composition according to item 1 of the above item, wherein the radical initiator of component e) is 2,2-azo-bis-isobutyronitrile (AIBN) ), phenyl-azo-triphenylmethane, t-butyl peroxide (TBP), cumylper〇xide, acetyl peroxide ), benz〇yl per〇xide (BPO), lauroyl peroxide, t-butyl hydroperoxide, or tert-butylperbenzene (t-butyl perbenzoate) ° 16 - a polymer lithium secondary battery comprising: i) a negative electrode capable of electrochemically intercalating/migrating out of an alkali metal; ii) a positive electrode comprising electrochemical embedding/migrating An electrode active material of an alkali metal; and 13 1251361 p U bis-activated negative electrode and a colloidal polymer electrolysis of a positive electrode - the colloidal polymer electrolyte of Lizhong is via B, 、, 筮1 $ κ r ... The mouth/link is prepared as described in any of the above items 5 of the above-mentioned items. The solution of the shellfish is 1 7 · As in the above item, the 16th item of the ancient octagonal 7 7 ^ 贞 冋 knife lithium secondary battery, the complex anode contains a negative active material f, ', ^ has been made from including · stable phase A group of spherical carbon fiber stellite gas-grown stone anti-fiber (VGCF), carbon nanotube (CNT), coke, human, graphite, acetylene black, carbon fiber, and vitreous carbon and mixtures thereof. The polymer lithium secondary battery of item 16 of the above item, wherein the negative electrode further comprises a fluororesin binder. 20. The polymer lithium secondary battery according to item 16 of the above item, wherein the electrode active material of the positive electrode is selected from the group consisting of vanadium, titanium, chromium, copper, molybdenum, niobium, iron, ruthenium, ruthenium and ruthenium oxide a group of lithiated sulfides, lithiated selenides, and sulphurized tellurides and mixtures thereof. 22. The polymer lithium secondary battery according to item 17 of the above item, wherein the positive electrode further comprises a fluororesin binder. 23. The polymer clock secondary battery according to item I above, wherein the positive electrode further comprises a composition selected from the group consisting of acetylene black, carbon black, graphite, nickel powder, aluminum powder, 14 1251361 titanium niobium, and stainless steel powder and a mixture thereof. One of the ethnic group's conductive additives. The present invention is further understood by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. Example 1: Preparation of modified bismaleimide oligomers Bismaleimide and barbituric acid were mixed at a molar ratio of 3/1 to 10/1. The solvent γ-butyrolactone (GBL) or propylene carb〇nates, etc., should be heated at a temperature of 100~150t:, the reaction time is 0.5~8 hours, and the reaction produces a double maleimide coupon. Bismaleimide oligomer. In this example, the components listed in Table 1 were used and the modified bismaleimide oligomer was prepared at 130 °C. Table 1 Weight N,N'-Bismaleimide-4,4'-Diphenylmethane (N,N,-bismaleimide-4,4,-diphenylmethane) 59.613 g Barbituric acid 2.132 g γ- Butyl lactone 247.059 g Example 2: Preparation of colloidal polymer This example uses the formulation of Table 2 to prepare colloidal surface molecules, including the use of modified bismaleimide with the modification of Example 1. Examples of the invention of the invention and comparative examples of the modified bismaleimide-aggregates without modification. In Table 2, 15 1251361 also lists whether the colloidal polymer formulation has gelation time at 25 °C and 80 °C. , Gel time (hours) Formulation * 25 ° C 80 ° C l) AN: 5g5 PEGMA: lg Ungelatinized <1 2) UMA: 5 g? PEGMA: 1 g Ungelatinized <1 3) M- BMI: 5 g? PEGMA: 1 g ungelatinized <1 4) M-BMI: 25 g? PEGDA: 1 g ungelatinized <0.5 5) M-BMI: 25 g ungelatinized <0.5 * The formulation contains 1% azobisisobutyronitrile (AIBN) radical initiator AN: acrylnitrile MMA based on the total weight of the monomers and oligomers. Methyl methacrylate M-BMI: modified bismaleimide oligomer PEGMA of Example 1: polyethylene glycol methacrylate (P〇ly(ethylene glycol) methacrylate PEGDA: pethylene glycol diacrylate. From the results of Table 2, it can be seen that the modified bismaleimide polymerase of Example 1 is heated and AIBN free. In the presence of a base initiator and a short time of 0.5 to 1 hour, it will polymerize to form a colloidal polymer, and the reaction rate is fast. Example 3: Preparation and Ionic Conductivity of Colloidal Polymer Electrolyte A variety of different formulations were used in this example to prepare a colloidal polymer 161251361 cleavage precursor, which was then gelled at 80 °C. The impedance of the ion diffusion section is measured by AC impendance, and then the ionic conductivity formula is obtained to obtain the ionic conductivity σ = L/AxR to obtain the ionic conductivity, where L is the thickness, A is the area and R For resistance. A general preparation step is to mix a lithium metal salt electrolyte with an aprotic solvent to obtain an electrolyte solution; prepare a mixture of monomer/oligomer/radical initiator; mix the electrolyte solution with the mixture to obtain a colloidal polymer. Electrolyte precursor; reheated to form a colloidal polymer electrolyte. Table 3 below lists the formulation of the conventional liquid electrolyte and the colloidal polymer electrolyte of the present invention, and the ionic conductivity. Table 3 Experimental Formula Composition Gel Time (hours) Ionic Conductivity at Room Temperature (mS/cm) 1.1 M LiPF6 (3EC/2PC/5DEC) - 7.1 1 M LiPF6 EC/GBL - 10.1 1 MMA: M-BMI = 1 : 1 Polymer precursor: electrolyte solution 1 (%) = 18 : 82 M-BMI: 9% < 3 2 MMA: MBMI 2:1 Polymer precursor: electrolyte solution 1 (%) = 14 : 86 M-BMI: 5% <3 7.5 3 MMA: M-BMI = 1:1 Polymer precursor: electrolyte solution 1 (%) = 10 : 90 M-BMI: 5% < 3 9.3 17 1 Electrolyte solution LiPF6 is composed of 1M EC/GBL 1/3 composition; the polymer precursor is composed of MMA and the modified Bismaleimide polymer of the first embodiment of the present invention (containing AIBN 1%) 1251361 The results of the above Table 2 are found to be 'when the content of the southern molecular precursor in the formulation is 1% by weight and the modified double-maleimide oligomer (M-BMI) content of the present invention is 5% by weight. After heating at 80 ° C, it can be polymerized into a colloidal polymer electrolyte, and its ionic conductivity is less than 10.1 mS/cm of the liquid electrolyte, but maintains a high ionic conductivity of 9.3 mS/cm. Example 4: Preparation of colloidal polymer electrolyte and ionic conductivity repeating the procedure of Example 3 to prepare a colloidal polymer electrolyte in which the modified bismaleimide of Example 1 was used in the polymer precursor, respectively. The oligomeric (M-BMI) and the comparative polyethylene glycol diacrylate (PEGDA) monomer were used to demonstrate that the colloidal polymer electrolyte of the present invention has significantly improved ionic conductivity. Table 4 lists the composition and results of the formulation. Table 4 Experimental Formula Composition Gelation Time (8 (TC) (hours) Ionic Conductivity (mS/cm) at Room Temperature 4 MMA: PEGDA = 6: 1 Polymer Precursor: Electrolyte Solution * (%) = 43 : 57 PGEDA: 6% (EC/GBL) <3 1.2 5 MMA: M-BMI = 6:1 Polymer precursor: electrolyte solution* (%) = 43 : 57 M-BMI: 6% (EC/GBL) <3 1.6 6 MMA: PEGDA = 6: 1 Polymer precursor: electrolyte solution * (%) = 43 : 57 PEGDA: 6% (EC/PC) <3 0.2 7 MMA: M-BMI = 6:1 Polymer precursor: electrolyte solution * (%) = 43 : 57 M-BMI: 6% (EC / PC) <3 0.87 18 1251361 * The electrolyte solution of experiments 4 and 5 was made of LiPF6 with a concentration of 1M EC/GBL = 1/3 composition '·Experiments 6 and 7 electrolyte solution consists of EC/PC = 1/1 of upF6 concentration

上述實驗4-7之高分子前驅物/電解質溶液配方經加熱 聚合形成膠態高分子電解質,其中實驗4和5的電解質溶 液為 1M LiPF6 EC/GBL = 1/3,比較加入 M_BMI 和 pEGDA 之高分子前驅物組成,可見離子導電度很明顯的提高25 % ;而在實驗6和7之電解質溶液iM LiPF6 Ec/pc = m 系統’加入M-BMI之南分子前驅物組成比加入pegda者 之離子導電度很明顯的提高四倍。 實施例五:膠態高分子電解質的製備及離子導電度 重覆實施例三的步驟製備膠態高分子電解質,其中的 兩分子前驅物中分別使用貫施例一的改質雙馬來醯亞胺寡 聚體(M-BMI)及對照比較用的不同單體。表五列出配方的組 成及結果。 19 1251361 表五 實 膠化時間在室溫的離子導電度 ^_配方組成*_ (80°C)(小時) (mS/cm) 8 TEGEEA: M-BMI = 7:1 高分子前驅物:電解質溶液*(%) = 20 :80 M-BMI: 3% (EC/GBL) 9 TEGEEA : PEGDMA330 二 7 : 1 高分子前驅物:電解質溶液* (%) = 20 :80 PEGDMA: 3% (EC/GBL) 10 TEGEEA: PEGDA258 = 7 : 1 高分子前驅物:電解質溶液* (%) = 20 : 80 PEGDA258: 3% (EC/GBL) 11 MMA: PEGDA258 = 7:1 高分子前驅物:電解質溶液* (%) = 20 : 80 PEGDA258: 3% (EC/GBL)_ *實驗8-11之電解質溶液由LiPF6濃度為1M的EC/GBL = 1/3 組成;TEGEEA : Tri(ethylene glycol) ethyl ether acrylate,乙基三乙二醇醚丙稀酸酯;PEGDMA: polyethylene glycol dimethacrylate 5聚乙二醇二甲基丙烯酸酉旨 <3 4.75 <3 4.57 <3 4.66The polymer precursor/electrolyte solution formulation of the above experiment 4-7 was heated and polymerized to form a colloidal polymer electrolyte, wherein the electrolyte solutions of experiments 4 and 5 were 1M LiPF6 EC/GBL = 1/3, and the heights of M_BMI and pEGDA were compared. The molecular precursor composition shows a significant increase in ionic conductivity of 25%. In the electrolyte solutions of experiments 6 and 7, iM LiPF6 Ec/pc = m system 'adds M-BMI to the south molecular precursor composition than the ion added to the pegda The conductivity is obviously four times higher. Example 5: Preparation of a colloidal polymer electrolyte and ionic conductivity repeating the procedure of the third embodiment to prepare a colloidal polymer electrolyte, wherein the two molecules of the precursor are respectively modified by the modified double Malay Amine oligomers (M-BMI) and different monomers used for comparison. Table 5 lists the composition and results of the formulations. 19 1251361 Table 5 Solidification time ionic conductivity at room temperature ^_Formula composition *_ (80 ° C) (hours) (mS / cm) 8 TEGEEA: M-BMI = 7:1 Polymer precursor: electrolyte Solution * (%) = 20 : 80 M-BMI: 3% (EC / GBL) 9 TEGEEA : PEGDMA330 II 7 : 1 Polymer precursor: electrolyte solution * (%) = 20 : 80 PEGDMA: 3% (EC / GBL) 10 TEGEEA: PEGDA258 = 7 : 1 Polymer precursor: electrolyte solution * (%) = 20 : 80 PEGDA258: 3% (EC/GBL) 11 MMA: PEGDA258 = 7:1 Polymer precursor: electrolyte solution* (%) = 20 : 80 PEGDA258: 3% (EC/GBL)_ * The electrolyte solution of Experiment 8-11 consists of EC/GBL = 1/3 with LiPF6 concentration of 1M; TEGEEA: Tri(ethylene glycol) ethyl ether acrylate , Ethylene triethylene glycol ether acrylate; PEGDMA: polyethylene glycol dimethacrylate 5 polyethylene glycol dimethacrylate & 3 3.3 4.75 <3 4.57 <3 4.66

<3 3.9<3 3.9

上述實驗8-11之高分子前驅物/電解質溶液配方經加 熱聚合形成膠態高分子電解質,其中實驗8加入有M-BMI 之本發明組成其離子導電度明顯的較高為4.75 mS/cm。膠態高分子鋰二次電池的製備及電容量特性 20 1251361 膠態高分子鐘二次電池之製備包含部分··正、負極板 之製造’隔離膜’膠態高分子電解質;膠態高分子電解質 包含高分子前驅物和液態電解質溶液。 正、負極極板製作方式與習知鋰離子二次電池相同, 皆為透過塗佈方式進行,正極漿料為8〇〜95%的Lic0〇2、 乙炔黑3〜15%與黏著劑pvDF 3〜1〇%溶於nmP (N-曱基 -2-吡咯烷酮)溶劑所組成,所形成的墨水般漿料均勻塗佈 在長300米,寬35公分,厚20 μιη的鋁箔捲,乾燥後的 正極捲需要碾壓以及分條,最後再以11(rc真空乾燥4小 時。正極活性物可為釩、鈦、鉻、銅、鉬、鈮、鐵、鎳、 鈷與錳等金屬之鋰化氧化物、鋰化硫化物、鋰化硒化物與 Μ化碲化物;氟樹脂黏合劑例如聚偏二氟乙烯(pVDF);導 電性活化物可為碳黑、石墨、乙炔黑、鎳粉、鋁粉、鈦粉 和不銹鋼粉等等。 負極漿料則為直徑1 μπι〜3〇 μηι的碳粉體9〇0/〇溶於 10%的PVDF與ΝΜΡ所組成的溶液,待攪拌均勻後,塗佈 在長300米,寬35公分,厚1〇 μηι的銅箔捲,所形成的 負極捲經碾壓以及分條後,同樣再以u〇t:真空乾燥4小 時。負極活性物可以是介穩相球狀碳(Mcmb)、氣相成長 碳纖維(VGCF)、奈米碳管(CNT)、焦炭、碳黑、石墨、乙 炔黑、碳纖維和玻璃質碳;氟樹脂黏合劑例如聚偏二氟乙 烯(PVDF)。經真空乾燥所製成正、負極卷置於乾燥的環境 如手套箱或乾燥室。 21 1251361 實施例六: 取6顆電池分成兩組貫驗’貫驗A南分子前驅物組成 為:MEMA : Μ-BMI =7:1,電解質溶液為LiPF6濃度1Μ 的EC/DEC/PC = 3/5/2;及高分子前驅物:電解質溶液=20 : 80,Μ-ΒΜΙ: 3%,其中 ΜΕΜΑ 代表 methoxy tri(ethylene glycol) methacrylate,甲基三乙二醇醚甲基丙烤酸醋。實 驗B高分子前驅物組成為:MEMA : PEGDA2 5 8 =7 : 1,電 解質溶液為LiPF6濃度1M的EC/DEC/PC = 3/5/2 ;及高分 子前驅物:電解質溶液=20 ·· 80, PEGDA258·· 3%。鋁箔袋高 分子電池型號383562,電池組裝完成經85°C加熱3小時 高分子前驅物在電池内部聚合,電池充放電速率採0.2C 充電和放電。如圖1的充放電循ί哀所不’貫驗A的電池· 初始電容量760 mAh,經過50次充放電之後電容量維持 在710 mAh ;實驗B的電池:初始電容量710 mAh,經過 50次充放電之後電容量維持在410 mAh。實驗結果得知配 方含M-BMI有比較好的電容量和電池壽命。 實施例七: 取6顆電池分成兩組實驗,實驗C高分子前驅物組成 為:MEMA : M-BMI =7:1,電解質溶液為LiPF6濃度1M 的EC/GBL = 1/3 ;及高分子前驅物:電解質溶液=20 : 80, M-BML· 3%。實驗D高分子前驅物組成為:MEMA : PEGDA258 =7 : 1?電解質溶液為LiPF6濃度1Μ的 EC/GBL = 1/3 ;及高分子前驅物:電解質溶液=20 : 80, 22 1251361 PEGDA25 8: 3%。#呂箔袋高分子電池型號383562,電池組 裝完成經851:加熱3小時高分子前驅物在電池内部聚 合,電池充放電速率採0.2C充電和放電。如圖2的充放 電循環所示’貫驗C的電池:初始電容量650 mAh,經過 60次充放電之後電容量維持在560 mAh ;實驗D的電池: 初始電容量730 mAh,經過60次充放電之後電容量維持 在43 0 mAh。實驗結果得知配方含m-BMI有比較好的電 容量和電池壽命。 實施例八: 取1 5顆電池分成五組實驗,每組高分子前驅物組成 為:MEMA : M-BMI =7:1,電解質溶液為upF6濃度1M 的EC/DEC/PC = 3/5/2;及高分子前驅物:電解質溶液=2〇 . 80, M-BMI: 3%。鋁箔袋高分子電池型號383562,經不同 溫度加熱3小時’高分子前驅物在電池内部聚合,電池充 放電速率採0.2C充電和放電。實驗e,F,G,η及I加熱溫 度分別是75。(3, 85°C,9(TC,95t:及l〇(TC。圖3顯示充放 電結果:實驗G,9(TC有較佳的電池壽命,初始電容量66〇 mAh,經過20次充放電之後電容量維持在636 mAh。 圖式簡單說明 圖1顯示本發明實施例六所製備的本發明與習知膠態 高分子鋰二次電池的充放電循環。 圖2顯示本發明實施例七所製備的本發明與習知膠態 23 1251361 高分子鋰二次電池的充放電循環。 圖3顯示本發明實施例八於不同膠化溫度下所製備的 本發明膠態高分子鋰二次電池的充放電循環。The polymer precursor/electrolyte solution formulation of the above experiment 8-11 was subjected to thermal polymerization to form a colloidal polymer electrolyte, wherein the composition of the present invention in which M-BMI was added in Experiment 8 was markedly higher in ion conductivity to 4.75 mS/cm. Preparation and capacitance characteristics of colloidal polymer lithium secondary battery 20 1251361 Preparation of colloidal polymer clock secondary battery includes partial · positive and negative plate manufacturing 'separator' colloidal polymer electrolyte; colloidal polymer The electrolyte contains a polymer precursor and a liquid electrolyte solution. The positive and negative electrode plates are produced in the same manner as the conventional lithium ion secondary batteries, and are all applied by a coating method. The positive electrode slurry is 8 〇 95% of Lic 〇 2, acetylene black 3 〜 15%, and the adhesive pvDF 3 ~1〇% is dissolved in nmP (N-nonyl-2-pyrrolidone) solvent, and the resulting ink-like slurry is uniformly coated on an aluminum foil roll having a length of 300 meters, a width of 35 cm and a thickness of 20 μm. The positive electrode roll needs to be crushed and slit, and finally dried at 11 (rc vacuum for 4 hours. The positive electrode active material can be lithiated oxidation of metals such as vanadium, titanium, chromium, copper, molybdenum, niobium, iron, nickel, cobalt and manganese. , lithiated sulfide, lithiated selenide and telluride telluride; fluororesin binder such as polyvinylidene fluoride (pVDF); conductive activator may be carbon black, graphite, acetylene black, nickel powder, aluminum powder Titanium powder, stainless steel powder, etc. The negative electrode slurry is a solution of carbon powder 9〇0/〇 dissolved in 10% PVDF and yttrium with a diameter of 1 μπι to 3〇μηι, and after being uniformly stirred, coated. In a copper foil roll with a length of 300 meters, a width of 35 cm and a thickness of 1 〇μηι, the formed negative electrode roll is rolled and slit, and the same Then dry in vacuum for 4 hours. The negative electrode active material may be metastable phase spheroidal carbon (Mcmb), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), coke, carbon black, graphite, acetylene. Black, carbon fiber and vitreous carbon; fluororesin binder such as polyvinylidene fluoride (PVDF). The positive and negative coils are vacuum dried to be placed in a dry environment such as a glove box or a drying chamber. 21 1251361 Example 6: Take 6 batteries into two groups of tests. The composition of the precursors of South A molecule is: MEMA: Μ-BMI = 7:1, and the electrolyte solution is EC/DEC/PC = 3/5/2 of LiPF6 concentration of 1Μ; Polymer precursor: electrolyte solution = 20: 80, Μ-ΒΜΙ: 3%, of which ΜΕΜΑ represents methoxy tri(ethylene glycol) methacrylate, methyl triethylene glycol ether methyl propylene vinegar. Experimental B polymer precursor The composition is: MEMA : PEGDA2 5 8 =7 : 1, the electrolyte solution is LiPF6 concentration 1M EC / DEC / PC = 3/5 / 2; and polymer precursor: electrolyte solution = 20 · · 80, PEGDA258 · · 3 %. Aluminum foil bag polymer battery model 383562, battery assembly completed by heating at 85 ° C for 3 hours polymer precursor in electricity Internal polymerization, battery charging and discharging rate is 0.2C charging and discharging. As shown in Figure 1, the battery is charged and discharged. The initial battery capacity is 760 mAh. After 50 charge and discharge, the capacity is maintained at 710 mAh. The battery of Experiment B: initial capacitance 710 mAh, the capacity was maintained at 410 mAh after 50 charge and discharge. The experimental results show that the formulation contains M-BMI with better capacitance and battery life. Example 7: Six batteries were divided into two groups. The composition of the polymer C precursor was: MEMA: M-BMI = 7:1, and the electrolyte solution was EC/GBL = 1/3 of LiPF6 concentration of 1 M; Precursor: electrolyte solution = 20: 80, M-BML · 3%. The composition of the polymer D precursor was: MEMA: PEGDA258 = 7: 1? The electrolyte solution was LiPF6 concentration of 1Μ EC/GBL = 1/3; and the polymer precursor: electrolyte solution = 20: 80, 22 1251361 PEGDA25 8: 3%. #吕箔袋聚合物电池模型383562,Battery pack Completed after 851: Heating for 3 hours, the polymer precursor is polymerized inside the battery, and the battery charge and discharge rate is 0.2C charging and discharging. As shown in the charge and discharge cycle of Figure 2, the battery of the test C: initial capacitance 650 mAh, the capacity was maintained at 560 mAh after 60 charge and discharge; the battery of experiment D: initial capacitance 730 mAh, after 60 charge The capacity was maintained at 43 0 mAh after discharge. The experimental results show that the formulation contains m-BMI with better capacitance and battery life. Example 8: Five batteries were divided into five groups. The composition of each group of polymer precursors was: MEMA: M-BMI = 7:1, and the electrolyte solution was EC/DEC/PC = 3/5/ of the concentration of upF6 1M. 2; and polymer precursor: electrolyte solution = 2 〇. 80, M-BMI: 3%. Aluminum foil bag polymer battery model 383562, heated at different temperatures for 3 hours' polymer precursors are polymerized inside the battery, and the battery charge and discharge rate is 0.2C charging and discharging. The experimental e, F, G, η and I heating temperatures were 75, respectively. (3, 85 ° C, 9 (TC, 95t: and l〇 (TC. Figure 3 shows the results of charge and discharge: Experiment G, 9 (TC has better battery life, initial capacity 66〇mAh, after 20 charge) The capacity is maintained at 636 mAh after discharge. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the charge and discharge cycle of the present invention and a conventional colloidal polymer lithium secondary battery prepared in Example 6 of the present invention. Figure 2 shows Embodiment 7 of the present invention. The prepared charge and discharge cycle of the present invention and the conventional colloidal 23 1251361 polymer lithium secondary battery. Figure 3 shows the colloidal polymer lithium secondary battery of the present invention prepared at different gelation temperatures according to the eighth embodiment of the present invention. Charge and discharge cycle.

24twenty four

Claims (1)

1251361 十、申請專利範圍: 1 · 一種可用於二次電池的膠態高分子電解質前驅物 組合物,包含: a) 改質之雙馬來醯亞胺寡聚體,由巴比托酸 (barbituric acid)與雙馬來醯亞胺(bismaleimide)反應生成; b) —種或多種以 CH2 = c(R〇)c(〇)(MCyH2y〇)mRi 表示 的丙烯酸(酯)類單體,其中y=l〜3, m=0〜9, R〇為氫或甲基, Ri為氫,羥基,C1-C6烷基,C1-C6烷氧基,C2-C6烯基, C3_C6環烷基或苯基;一種或多種以r2-CH=C(R〇)(CN)表 示的烯腈類單體,其中R0的定義同上,R2為氫,羥基,C1_C6 燒基,C1_C6烷氧基,C2-C6烯基,C3-C6環烷基或苯基; 或它們的募聚體; c) 非水性金屬鹽電解質; d) 非質子溶劑;及 e) 自由基起始劑, 其中以a)至d)的重量和為基準,a)佔卜50% ; b)佔丨·50% ; c)在d)之濃度為〇·5Μ至2M ;及d)佔1〇_9〇% ;而e)為成分 b)的重量之0.1-5%。 2.如中請專利範圍冑1項的膠態高分子1解質前驅物 組合物,其中成分a)由下列的巴比托酸的一種或多種製備: 〇 HK1il R» Ν _乂 J.'R’ 25 1251361 其中 R,與 R,,各別為-H, -CH3, -C2H5, -C6H5, -CH(CH3)2, _CH2CH(CH3)2, -CH2CH2CH(CH3)2, *_c(ch3)hch(ch3)2。 3·如申請專利範圍第2項的膠態高分子電解質前驅物 組合物,其中R’與R”同時為-H。 4.如申請專利範圍第1、2或3項的膠態高分子電解 質前驅物組合物,其中成分a)由下列的雙馬來酸亞胺的一 種或多種製備:1251361 X. Patent application scope: 1 · A colloidal polymer electrolyte precursor composition for secondary batteries, comprising: a) a modified bismaleimide oligomer, by barbituric acid (barbituric acid) Acid) is formed by reaction with bismaleimide; b) one or more acrylic monomers represented by CH2 = c(R〇)c(〇)(MCyH2y〇)mRi, where y =l~3, m=0~9, R〇 is hydrogen or methyl, Ri is hydrogen, hydroxy, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkenyl, C3_C6 cycloalkyl or benzene One or more acrylonitrile monomers represented by r2-CH=C(R〇)(CN), wherein R0 is as defined above, R2 is hydrogen, hydroxy, C1_C6 alkyl, C1_C6 alkoxy, C2-C6 Alkenyl, C3-C6 cycloalkyl or phenyl; or a polymer thereof; c) a non-aqueous metal salt electrolyte; d) an aprotic solvent; and e) a radical initiator, wherein a) to d) The weight and the benchmark, a) divination 50%; b) accounted for 50%; c) the concentration in d) is 〇·5Μ to 2M; and d) is 1〇_9〇%; and e) is the composition b) 0.1-5% by weight. 2. A colloidal polymer 1 cleavage precursor composition according to the scope of patent 胄1, wherein component a) is prepared from one or more of the following barbituric acids: 〇 HK1il R» Ν _乂 J.' R' 25 1251361 where R, and R, are each -H, -CH3, -C2H5, -C6H5, -CH(CH3)2, _CH2CH(CH3)2, -CH2CH2CH(CH3)2, *_c(ch3 )hch(ch3)2. 3. A colloidal polymer electrolyte precursor composition according to claim 2, wherein R' and R" are simultaneously -H. 4. Colloidal polymer electrolyte according to claim 1, 2 or 3 A precursor composition wherein component a) is prepared from one or more of the following bismaleimine: 其中 R3 為 C1-4 伸烷基,-CH2NHCH2-,-C2H4NHC2H4- ’ -C(0)CH2-,-CH2OCH2-,-c(o)-,-ο- ’ ’ -s(0)-,-CH2S(0)CH2·,-(O)S(O)-,-CH2(C6H4)CH2-, -ch2(c6h4)o-,伸苯基,伸聯苯基,取代的伸苯基或取代 的伸聯苯基;及R4為CP4伸烷基,-c(0)-’ -C(CH3)2_’ -Ο· ’ _〇-〇-,-S-,_S-S_,-(0)S(0)-,或,s(0),。 5 ·如申請專利範圍第4項的膠態高分子電解質前驅物 組合物,其中的雙馬來醯亞胺選自N,N,-雙馬來醢亞胺_4,4’- 26 1251361 二苯基代甲烧(N,N’-bismaleimide-4,4’-diphenylmethane)、1,Γ-(亞甲基雙 -4,1 -亞苯基)雙馬來醢亞胺[1,l’-(methylenedi-4,1 -phenylene)bismaleimide]、 风1^’-(1,1’-二苯基-4,4’-二亞甲基)雙馬來醯亞胺[^>1’-(1,1’-1^1把11斤4,4’-(%1) bismaleimide]、N,N’-(4-甲基-1,3-亞苯基)雙馬來醯亞胺 [N,N’-(4,methyl-l,3-phenylene)bismaleimide]、1,Γ·(3,3’_二甲基-1,1’,二苯基 -4,4’-二亞甲基)雙馬來醯亞胺 [l,l’-(3,3’dimethyl-l,r-biphenyl-4,4’-diyl)bismaleimide]、Ν,Ν’-乙浠基二馬來 酉i 亞胺(N,N’-ethylenedimaleimide)、Ν,Ν’-( 1,2-亞苯基)二馬來醯亞胺 [N,N’-(l,2-phenylene)dimaleimide]、1^^’-(1,3-亞苯基)二馬來醢亞胺 [N,N’-(l,3_phenylene)dimaleimide]、1,Γ-己烧基二亞亞基雙σ比嘻-2,5-二酮 (l,r-hexanediyl_biS"pyrrole-2,5-dione)、N,N’-雙-(2,5-雙魏基-2,5-雙氫基比口各 -1-羧基亞甲基醯胺 [N,N’-bis-(2,5-dioxo-2,5-dihydro-pyrrole-1 -carboxyl)-methylenediamine]、 1,Γ-(3,3 piperazine-1,4-二亞基-二丙基)雙σ比洛-2,5-二酮 [l,l’-(3,3’-piperazine-l,4-diyl-dipropyl)bis-pyrrole-2,5-dione]、N,N’-雙馬來醯 亞胺硫(N,N’-thiodimaleimid)、N,N’-雙馬來醯亞胺二硫 (N,N,_dithiodimaleimid)、N,N,_雙馬來醯亞胺酮(N,N,-ketonedimaleimid)、 N,N’-亞甲基雙馬來醯亞胺(N,N’-methylene-bis-maleinimid)、雙馬來醯亞胺甲 -醚(bis-maleinimidomethyl-ether)、1,2-雙馬來酿亞胺基-1,2-乙二醇 [l,2_bis-(maleimido)-l,2-ethandiol]、1^,]^’-4,4’-二苯醚_雙馬來酸亞胺 (N,N,-4,4,-diphenylether_bis-maleimid)、4,4,-雙馬來醯亞胺-二苯砜[4, 4 ’ -bis(maleimido)-diphenylsulfone]之族君夺。 6.如申請專利範圍第1、2或3項的膠態高分子電解 1251361 質前驅物組合物,其中成分a)雙馬來醯亞胺寡聚體由巴比 托酸與雙馬來醯亞胺在1〇〇〜150°C及0.5〜8小時的反應而 生成。 7·如申請專利範圍第1項的膠態高分子電解質前驅物 組合物’其中的成分b)包含一種以 CHfC^DCHCOCKCyHhCOmRi表示的丙烯酸(酯)類單體, 其中y=l〜3, m=l〜9,R〇為甲基,及Ri為氫。 8·如申請專利範圍第7項的膠態高分子電解質前驅物 組合物,其中的成分b)進一步包含甲基丙烯酸甲酯單體。 9·如申請專利範圍第1項的膠態高分子電解質前驅物 組合物,其中的成分b)包含甲基丙烯酸甲酯單體。 10.如申請專利範圍第i項的膠態高分子電解質前驅 物組合物’其中的成分c)選自LiPF6、LiBF4、LiAsF6、 LiSbF6、LiC104、LiAlCl4、LiGaCl4、LiN03、LiC(S02CF3)3、 LiN(S02CF3)2、LiSCN、Li03SCF2CF3、LiC6F5S03、 Li02CCF3、LiS03F、LiB(C6H5)4 及 UCF3S03 及其混合物所 組成的族群。 11 ·如申請專利範圍第丨項的膠態高分子電解質前驅 物組合物’其中成分d)的非質子溶劑為包含選自下列兩種 28 1251361 溶劑的一混合溶劑,第一種溶劑具有極高的介電常數和高 黏度,第二種溶劑具有較低的介電常數和低黏度,該第一 種溶劑選自碳酸乙稀酯(ethylene carbonate,EC),碳酸丙烯 酯(propylene carbonate,PC),石炭酸 丁烯酯(butylene carbonate),碳酸二丙基酯(dipropyl carbonate),酸酐(acid anhydride),Ν·曱基 π比口各烧酮(N-methyl pyrrolidone),N-甲 基乙 月女(N-methyl acetamide),N-甲基甲酿胺(N-methyl formamide),二甲基甲醯胺(dimethyl formamide),γ-丁基内 酯(γ-butyrolactone),乙腈(acetonitrile),二甲亞砜 (dimethyl sulfoxide)和亞硫酸二甲酯(dimethyl sulfite)所組 成的族群;該第二種溶劑係醚類、酯類或碳酸酯,該醚類 係選自1,2-二乙氧基乙烧(i,2-diethoxyethane),1,2二甲氧 基乙烷(l,2-dimethoxyethane),1,2 二丁氧基乙烷 (l?2-dibutoxyethane),四氫吱喃(tetrahydrofuran),2-甲基 四氫吱喃(2-methyl tetrahydrofuran),環氧丙烧(propylene oxide)所組成的族群;該酉旨類選自乙酸甲酉旨(methyl acetate), 乙酸乙酉旨(ethyl acetate),丁 酸曱醋(methyl butyrate),丁酸 乙酯(ethyl butyrate),丙酸甲酉旨(methyl proionate),丙酸 乙酯(ethyl proionate)所組成的族群;及該碳酸酯選自碳酸 二甲酯(Dimethyl Carbonate,DMC),碳酸二乙酯(Diethyl Carbonate,DEC)和碳酸甲基乙基酯(Ethyl Methyl Carbonate,EMC)所組成的族群。 12·如申請專利範圍第丨丨項的膠態高分子電解質前驅 29 1251361 物組合物,其中成分d)的非質子溶劑包含碳酸乙烯酯 (ethylene carbonate,EC),碳酸丙烯酯(ProPylene carbonate, PC),及碳酸二乙酯(Diethyl Carbonate,DEC)。 1 3 .如申請專利範圍第12項的膠態高分子電解質前驅 物組合物,其中成分d)的非質子溶劑,以體積計,碳酸乙 稀醋的範圍是至50%,破酸丙稀醋的範圍是5%至 80%,及碳酸二乙酯的範圍是3%至75%。 14.如申請專利範圍第1項的膠態高分子電解質前驅 物組合物,其中成分e)的自由基起始劑選自過氧化酮類 (ketone peroxide),過氧化縮酮類(peroxy ketal),過氧化氣 氧類(hydroperoxide),過氧化雙烷類(dialkyl peroxide),過 氧化非環狀烧類(diacyl peroxide),過氧化醋類(per0Xy ester),及偶氮化合物(azo compound)所組成的族群。 1 5 ·如申請專利範圍第1項的膠態高分子電解質前驅 物組合物’其中成分e)的自由基起始劑係偶氮雙異丁基睛 (2,2-azo-bis-isobutyronitrile, AIBN),苯基偶氮三苯甲烧 (phenyl-azo-triphenylmethane),過氧化第三丁烷(t_butyl peroxide, TBP),過氧化異丙基苯(cumylper〇xide),過氧化 乙醯(acetyl peroxide),過氧化二苯甲醯(benz〇yl per〇xide, BPO),過氧化十二醯(iauroyl per〇xide),第三丁基過氧化 氫(t-butyl hydroperoxide),或第三丁基過苯甲酸酯 30Wherein R3 is C1-4 alkylene, -CH2NHCH2-, -C2H4NHC2H4-'-C(0)CH2-, -CH2OCH2-, -c(o)-, -ο- ' ' -s(0)-,- CH2S(0)CH2·,-(O)S(O)-, -CH2(C6H4)CH2-, -ch2(c6h4)o-, phenyl, phenyl, substituted phenyl or substituted Strend biphenyl; and R4 is CP4 alkyl, -c(0)-' -C(CH3)2_' -Ο· ' _〇-〇-, -S-, _S-S_,-(0)S (0)-, or, s(0),. 5. A colloidal polymer electrolyte precursor composition according to claim 4, wherein the bismaleimide is selected from the group consisting of N, N, - bismaleimide _4, 4'- 26 1251361 N,N'-bismaleimide-4,4'-diphenylmethane, 1, Γ-(methylenebis-4,1-phenylene) bismaleimide [1,l' -(methylenedi-4,1 -phenylene)bismaleimide], wind 1^'-(1,1'-diphenyl-4,4'-dimethylene) bismaleimide [^>1' -(1,1'-1^1 put 11 kg of 4,4'-(%1) bismaleimide], N,N'-(4-methyl-1,3-phenylene) bismaleimide [N,N'-(4,methyl-l,3-phenylene)bismaleimide], 1, Γ·(3,3'-dimethyl-1,1', diphenyl-4,4'-di Methyl) bismaleimine [l,l'-(3,3'dimethyl-l,r-biphenyl-4,4'-diyl)bismaleimide], Ν,Ν'-ethylidene 2 Malay 酉i Amine (N,N'-ethylenedimaleimide), Ν,Ν'-( 1,2-phenylene) dimaleimide [N,N'-(l,2-phenylene)dimaleimide],1^^' -(1,3-phenylene) dimaleimide [N,N'-(l,3_phenylene)dimaleimide], 1, Γ-hexanyl Sub-subunit double σ than 嘻-2,5-dione (l,r-hexanediyl_biS"pyrrole-2,5-dione), N,N'-bis-(2,5-bis-weiyl-2,5- [N,N'-bis-(2,5-dioxo-2,5-dihydro-pyrrole-1 -carboxyl)-methylenediamine], 1,Γ- (3,3 piperazine-1,4-diylidene-dipropyl) double σ-pyrrol-2,5-dione [l,l'-(3,3'-piperazine-l,4-diyl-dipropyl Bis-pyrrole-2,5-dione], N,N'-Bismineimine (N,N'-thiodimaleimid), N,N'-Bismaleimide Disulfide (N,N) , _dithiodimaleimid), N, N, _ Bismaleimide (N, N, -ketonedimaleimid), N, N'-methylene bismaleimide (N, N'-methylene-bis-maleinimid ), bis-maleinimidomethyl-ether, 1,2-bismaleimine-1,2-ethanediol [l,2_bis-(maleimido)-l,2 -ethandiol], 1^,]^'-4,4'-diphenyl ether_bi-maleic acid imine (N,N,-4,4,-diphenylether_bis-maleimid), 4,4,-double Malay The family of bismuth imide-diphenyl sulfone [4, 4 '-bis (maleimido)-diphenylsulfone]. 6. A colloidal polymer electrolysis 1251361 precursor composition according to claim 1, 2 or 3, wherein component a) bismaleimide oligomer is composed of barbituric acid and double malayan The amine is formed by a reaction at 1 to 150 ° C for 0.5 to 8 hours. 7. The colloidal polymer electrolyte precursor composition of claim 1 wherein component b) comprises an acrylic monomer represented by CHfC^DCHCOCKCyHhCOmRi, wherein y=l~3, m= l~9, R〇 is a methyl group, and Ri is hydrogen. 8. The colloidal polymer electrolyte precursor composition of claim 7, wherein component b) further comprises a methyl methacrylate monomer. 9. The colloidal polymer electrolyte precursor composition of claim 1, wherein component b) comprises a methyl methacrylate monomer. 10. The colloidal polymer electrolyte precursor composition of claim i, wherein component c) is selected from the group consisting of LiPF6, LiBF4, LiAsF6, LiSbF6, LiC104, LiAlCl4, LiGaCl4, LiN03, LiC(S02CF3)3, LiN (S02CF3)2, a group consisting of LiSCN, Li03SCF2CF3, LiC6F5S03, Li02CCF3, LiS03F, LiB(C6H5)4, and UCF3S03 and mixtures thereof. 11. The aprotic solvent of the colloidal polymer electrolyte precursor composition 'in which component d) of the scope of the patent application is a mixed solvent comprising two solvents selected from the following 28 1251361, the first solvent is extremely high The dielectric constant and high viscosity, the second solvent has a lower dielectric constant and a lower viscosity. The first solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC). , butylene carbonate, dipropyl carbonate, acid anhydride, N-methyl pyrrolidone, N-methyl-ethyl female (N-methyl acetamide), N-methyl formamide, dimethyl formamide, γ-butyrolactone, acetonitrile, a group consisting of dimethyl sulfoxide and dimethyl sulfite; the second solvent being an ether, an ester or a carbonate selected from the group consisting of 1,2-diethoxy I,2-diethoxyethane,1 2,2-dimethoxyethane, 1,2-dibutoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran (2 -methyl tetrahydrofuran), a group consisting of propylene oxide; the target is selected from the group consisting of methyl acetate, ethyl acetate, methyl butyrate, a group consisting of ethyl butyrate, methyl proionate, and ethyl proionate; and the carbonate is selected from the group consisting of Dimethyl Carbonate (DMC), carbonic acid A group consisting of Diethyl Carbonate (DEC) and Ethyl Methyl Carbonate (EMC). 12. The colloidal polymer electrolyte precursor 29 1251361 composition according to the scope of the patent application, wherein the aprotic solvent of component d) comprises ethylene carbonate (EC), propylene carbonate (ProPylene carbonate, PC) ), and diethyl carbonate (DEC). A colloidal polymer electrolyte precursor composition according to claim 12, wherein the aprotic solvent of the component d) is in a range of 50% by volume of ethylene carbonate, and the acid propylene vinegar is broken. The range is 5% to 80%, and the range of diethyl carbonate is 3% to 75%. 14. The colloidal polymer electrolyte precursor composition of claim 1, wherein the radical initiator of component e) is selected from the group consisting of ketone peroxide, peroxy ketal. , hydroperoxide, dialkyl peroxide, diacyl peroxide, per0Xy ester, and azo compound The group of people. 1 5 · The free radical initiator of the colloidal polymer electrolyte precursor composition 'in which component e) of claim 1 is a 2,2-azo-bis-isobutyronitrile, AIBN), phenyl-azo-triphenylmethane, t-butyl peroxide (TBP), cumylper〇xide, acetyl peroxide Peroxide), benz〇yl per〇xide (BPO), iauroyl per〇xide, t-butyl hydroperoxide, or third Base benzoate 30
TW093123114A 2004-08-02 2004-08-02 High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery TWI251361B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW093123114A TWI251361B (en) 2004-08-02 2004-08-02 High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093123114A TWI251361B (en) 2004-08-02 2004-08-02 High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery

Publications (2)

Publication Number Publication Date
TW200607132A TW200607132A (en) 2006-02-16
TWI251361B true TWI251361B (en) 2006-03-11

Family

ID=37433560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093123114A TWI251361B (en) 2004-08-02 2004-08-02 High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery

Country Status (1)

Country Link
TW (1) TWI251361B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304117B2 (en) * 2006-12-29 2012-11-06 Industrial Technology Research Institute Gel polymer electrolyte precursor and rechargeable cell comprising the same
US9166254B2 (en) 2012-12-28 2015-10-20 Industrial Technology Research Institute Gel polymer electrolyte and lithium polymer battery
TWI509870B (en) * 2014-07-18 2015-11-21 Inst Nuclear Energy Res Atomic Energy Council Method of Charging and Discharging Power by Using Electrolyte Fluid Lines
US9450247B2 (en) 2013-09-26 2016-09-20 National Taiwan University Of Science And Technology Preparation method of oligomer-polymer and lithium battery
US10566626B2 (en) 2016-11-07 2020-02-18 National Taiwan University Of Science And Technology Oligomer-polymer and lithium battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI377717B (en) 2006-12-29 2012-11-21 Ind Tech Res Inst Nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same
TWI332284B (en) 2006-12-29 2010-10-21 Ind Tech Res Inst A battery electrode paste composition containing modified maleimides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304117B2 (en) * 2006-12-29 2012-11-06 Industrial Technology Research Institute Gel polymer electrolyte precursor and rechargeable cell comprising the same
US9166254B2 (en) 2012-12-28 2015-10-20 Industrial Technology Research Institute Gel polymer electrolyte and lithium polymer battery
US9450247B2 (en) 2013-09-26 2016-09-20 National Taiwan University Of Science And Technology Preparation method of oligomer-polymer and lithium battery
TWI509870B (en) * 2014-07-18 2015-11-21 Inst Nuclear Energy Res Atomic Energy Council Method of Charging and Discharging Power by Using Electrolyte Fluid Lines
US10566626B2 (en) 2016-11-07 2020-02-18 National Taiwan University Of Science And Technology Oligomer-polymer and lithium battery

Also Published As

Publication number Publication date
TW200607132A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
TWI422089B (en) Gel-type polymer electrolyte precursor and rechargeable cells employing the same
US7560194B2 (en) High ionic conductivity gel polymer electrolyte for rechargeble polymber secondary battery
TWI377717B (en) Nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same
JP6005626B2 (en) Lithium iron phosphate secondary battery, method for producing the same, and method for producing gel electrolyte contained therein
KR101911431B1 (en) Electrolyte Composition, Gel polymer electrolyte and Lithium battery comprising gel polymer electrolyte
TWI279935B (en) Composition for electrolyte, polymer electrolyte, and battery using the same
TWI376828B (en) Electrolytic solution and lithium battery employing the same
TWI238554B (en) Non-water solvent system secondary cell
JP7003663B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery and non-aqueous secondary battery
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
WO2006061948A1 (en) Process for producing polyradical compound and battery
TW201727986A (en) Oligomer additive and lithium battery
Huang et al. A facile in situ approach to ion gel based polymer electrolytes for flexible lithium batteries
WO2019230912A1 (en) Method for manufacturing lithium ion cell
WO2024066422A1 (en) Bab type block copolymer, preparation method, binder, positive electrode plate, secondary battery, and electric device
CN113161608A (en) Polymer solid electrolyte with excellent performance at room temperature and application thereof in lithium ion battery
CN108923064A (en) A kind of solid macromolecule electrolyte and preparation method thereof and lithium ion secondary battery
TWI251361B (en) High ionic conductivity gel polymer electrolyte for rechargeable polymer secondary battery
CN100424926C (en) High ion conductivity colloid polyelectrolyte for chargeable and dischargeable polymer secondary battery
CN101471453B (en) Colloidal condition macromolecule electrolyte precursor composition and secondary battery containing the same
CN111816925A (en) Solid-state battery and preparation method thereof
CN109851704A (en) Membrane for polymer and its preparation method and application and lithium battery
WO2011132717A1 (en) Non-aqueous electrolyte for electrical device and secondary battery using same
TWI682578B (en) Positive electrode plate and method of forming slurry for positive electrode plate
CN109728245B (en) Positive pole piece and electrochemical energy storage device