TWI251065B - Composite thermostatic refrigerating system - Google Patents

Composite thermostatic refrigerating system Download PDF

Info

Publication number
TWI251065B
TWI251065B TW092137394A TW92137394A TWI251065B TW I251065 B TWI251065 B TW I251065B TW 092137394 A TW092137394 A TW 092137394A TW 92137394 A TW92137394 A TW 92137394A TW I251065 B TWI251065 B TW I251065B
Authority
TW
Taiwan
Prior art keywords
constant temperature
refrigeration system
composite
temperature refrigeration
composite constant
Prior art date
Application number
TW092137394A
Other languages
Chinese (zh)
Other versions
TW200521392A (en
Inventor
Wen-Ruey Chang
Nan-Yi Wu
San-Guei Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW092137394A priority Critical patent/TWI251065B/en
Publication of TW200521392A publication Critical patent/TW200521392A/en
Application granted granted Critical
Publication of TWI251065B publication Critical patent/TWI251065B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A composite thermostatic refrigerating system, including: a thermos chest having therein a receiving compartment sealed by a sealing element; a refrigerator and a heat exchanger that are arranged in the thermos chest and alternately contact each other; and an energy source supplying energy to the heat exchanger. When the energy source is a cold source, the refrigerator contacts the heat exchanger via its hot end such that the cold end of the refrigerator would transfer the heat energy in the receiving compartment to the hot end and the heat exchanger would absorb the heat energy so as to discharge heat energy of the refrigerator, thereby maintaining the receiving compartment at an extremely low-temperature condition. When the energy source is a heat source, the refrigerator contacts the heat exchanger via its cold end so as to generate heat in the thermos chest, and to use the heat exchanger to carry the cold energy from the end of the refrigerator, thereby maintaining the interior of the thermos chest at an appropriate, thermostatic condition, and thus improving the operation efficiency of the entire system.

Description

1251065 狄、發明說明: 【發明所屬之技術領域】 本發明係有關於—種冷n统,尤指_種可供應並穩 疋、、、持極低溫環境之複合式恆溫冷凍系統者。 【先前技術】 、钕,近年來在材料製程與生物醫學產業之快速發展, =連帶使得小型極低溫冷凍的需求高度成長,特別是應用 /諸如生物醫學極低溫儲存、生物醫學研究、材料科學基 楚研究、光電材料製程、及低溫物理研究等領域之需求更 =之。大體而言,此種複合式值溫冷凍系統係指溫度可達 、下6〇c至令下12〇C左右而言,而目前常見的複合式恆 *冷凍系統區分為:液態氮直膨系統、雙壓縮機(cascade) 系統、單壓縮機非共沸冷煤雙膨脹復熱循環(auto cascade) 二、、先以及多級熱電制冷晶片(thermoelectric chip)串級系 统等數種,茲分別說明如後。 習用的液態氮直膨系統,係利用液態氮蒸發吸收試驗 槽或載體(欲凍存物)之熱量,而形成低溫之環境。然而, 匕種系統必須不斷供應穩定的液態氮,且試驗槽内或載體 之μ度分佈不均勻,同時更有著氮氣排出易受病毒污染等 問題,亦不適於小型極低溫冷凍之應用場合。 請苓閱第1圖所示,習用的雙壓縮機系統丨〇〇,係具 有条發益1 0 1、與該瘵發器1 〇 1連接之低溫壓縮機丨〇2、與 /沓务杰1 0 1及泫低溫壓縮機1 02連接之低溫凝結器 〇 3與该低溫凝結杰1 〇 3連接之咼溫壓縮機1 0 4、以及與 17640 5 1251065 該高溫壓縮機104連接之凝結器ι〇5。惟,此種雙壓縮機 系統100因採兩部壓縮機,故體積大、操控複雜、且噪音 大’不適於小型極低溫冷凍之應用場合。 w茶閱第2圖所示,習用的單壓縮機非共沸冷媒雙膨 脹復熱循環系統2 0 0,係具有蒸發器2 〇 1、與該蒸發器2 〇 j 連接且係由兩區段202a與202b組成之具恢復力的熱交換 态202、§史於该瘵發态20 1與該熱交換器2〇2間之膨脹裝 置203、與該熱交換器202連接之液氣分離器2〇4、設於該 液氣分離器204與該熱交換器2〇2之區段2〇2&及2〇2b間 之膨脹裝置205、與該膨脹裝置2〇5連接之過濾乾燥器 2〇6、與該過濾乾燥器206連接之凝結器2〇7、與該凝結器 2〇7連接之壓縮機208、以及連接該壓縮機2〇8與該凝結器 2〇7之填充閥209。 此種單壓縮機非共沸冷媒雙膨脹復熱循環系統2〇〇雖 在體積、噪音、及操控方面均較雙壓縮⑽統丨⑼略具優 勢’以及具有體積與噪音適中、製冷能力與製冷效率高等 優點’但係採用二元或多元非共沸混合冷媒,@多元冷媒 混合物彼此間的溫度滑差(tempem㈣gHde)必須非常大 ▲才足以達到極低溫,不僅造成冷媒管路非f複雜,且製冷 能力亦較難調節。-旦冷媒管路發生茂漏,多元冷媒混合 物的比例必^不正(將造成致冷能力下_,必須重新茂 掉全部冷媒、抽真空後再重新灌入正確比例的多元冷媒混 合物,對使用者而言實為一項不可忽略的不安定因素。再 者’因係利用壓縮機208之啟動,停止進行溫度控制,故 17640 6 1251065 溫度控制之精密度亦不佳,難 果。整體觀之,此種單壓縮機 系統200,仍有製冷能力不穩 養不易等明顯缺憾。 以維持極低溫環境之恆溫效 非共沸冷煤雙膨脹復熱循環 定、調節不易、以及維修保 irV甲 '、叹糸統,係採斥 具冷端與熱端之多層式熱電制冷晶片,利用該熱端將轨須 排至外部氣冷或以水冷方式冷卻,該冷端依熱電制冷晶月 之級數(層數)可以降至零下6〇〇c甚至零下以下,卫 可透過輸人電壓之變化進行溫度調節。因此,此種多級: 電制冷晶片串級系統具有可擴充性高、體積小、噪音低’:’ 電控调郎單純以及可依需求調整尺寸等優點。 然而,由於熱電制冷晶片之能源轉換效率不佳 COP約在0.09至().12W/W),致使其製冷效率非常差。又1251065 Di, invention description: [Technical field to which the invention pertains] The present invention relates to a cold-type system, in particular, a compound constant-temperature refrigeration system capable of supplying and stabilizing, and holding a very low temperature environment. [Prior Art] 钕, in recent years, the rapid development of the material manufacturing process and the biomedical industry, coupled with the demand for small ultra-low temperature freezing, especially applications / such as biomedical cryogenic storage, biomedical research, materials science The demand for Chu research, photovoltaic material processing, and low temperature physics research is even more. In general, this type of composite temperature refrigeration system refers to the temperature up to the next 6〇c to the next 12〇C, and the current common compound constant* refrigeration system is divided into: liquid nitrogen direct expansion system , double compressor (cascade) system, single compressor non-azeotropic cold coal double expansion reheat cycle (auto cascade) second, first and multi-stage thermoelectric cooling chip (thermoelectric chip) cascade system, etc., respectively As after. The conventional liquid nitrogen direct expansion system uses liquid nitrogen to evaporate the heat of the test tank or carrier (to be frozen) to form a low temperature environment. However, the system must continuously supply a stable liquid nitrogen, and the μ degree distribution in the test tank or the carrier is uneven, and there is also a problem that the nitrogen gas is easily contaminated by the virus, and it is not suitable for the application of small cryogenic freezing. Please refer to the dual-compressor system shown in Figure 1, which is a low-temperature compressor connected to the hair dryer 1 11, and has a low-temperature compressor. 1 0 1 and 泫 low temperature compressor 102 connected low temperature condenser 〇 3 and the low temperature condensation Jie 1 〇 3 connected to the temperature compressor 1 0 4, and 17640 5 1251065 the high temperature compressor 104 connected to the condenser ι 〇 5. However, since the two-compressor system 100 employs two compressors, it is bulky, complicated to operate, and has a large noise, which is not suitable for small-scale cryogenic freezing applications. w tea reading Figure 2, the conventional single compressor non-azeotropic refrigerant double expansion reheat cycle system 2000 has an evaporator 2 〇1, connected to the evaporator 2 〇j and is divided into two sections a resilience heat exchange state 202 composed of 202a and 202b, an expansion device 203 between the burst state 20 1 and the heat exchanger 2〇2, and a liquid gas separator 2 connected to the heat exchanger 202 〇4, an expansion device 205 disposed between the liquid gas separator 204 and the sections 2〇2& and 2〇2b of the heat exchanger 2〇2, and a filter dryer 2 connected to the expansion device 2〇5〇 6. A condenser 2〇7 connected to the filter dryer 206, a compressor 208 connected to the condenser 2〇7, and a filling valve 209 connecting the compressor 2〇8 and the condenser 2〇7. This single-compressor non-azeotropic refrigerant double-expansion reheat cycle system is more advantageous in terms of volume, noise, and handling than double compression (10) rectification (9) and has moderate volume and noise, refrigeration capacity and refrigeration. High efficiency and other advantages 'But the binary or multi-equivalent non-azeotropic refrigerant mixture is used. The temperature slip of the multi-component refrigerant mixture (tempem(4)gHde) must be very large enough to reach the extremely low temperature, which not only causes the refrigerant pipeline to be non-f complex, but also Refrigeration capacity is also difficult to adjust. - When the refrigerant pipeline leaks, the proportion of the multi-component refrigerant mixture will be unreasonable (it will cause the cooling capacity to be _, all the refrigerant must be removed again, and the vacuum will be refilled into the correct proportion of the multi-component refrigerant mixture for the user. In fact, it is a non-negligible unstable factor. In addition, because the start of the compressor 208 is used to stop the temperature control, the precision of the temperature control of 17640 6 1251065 is also poor, and it is difficult. Such a single compressor system 200, there are still obvious shortcomings such as unstable refrigeration capacity, etc. In order to maintain the extremely low temperature environment, the constant temperature effect non-azeotropic cold coal double expansion and reheat cycle is set, the adjustment is not easy, and the maintenance guarantees irV A', The sigh system is a multi-layer thermoelectric cooling chip with a cold end and a hot end. The hot end is used to discharge the rails to the outside for air cooling or water cooling, and the cold end is based on the number of thermoelectric cooling crystals ( The number of layers can be reduced to minus 6〇〇c or even below zero, and the temperature can be adjusted by the change of the input voltage. Therefore, this multi-stage: the electric refrigeration chip cascade system has high expandability. Small accumulation, low noise ':' The advantages of electronic control and simple adjustment and size adjustment according to demand. However, due to the poor energy conversion efficiency of thermoelectric cooling wafers, the COP is about 0.09 to ().12W/W), causing it to be cooled. Very inefficient. also

且,採用多層式熱電制冷晶片雖然可以達到約零下H 之極低溫狀態’但隨著熱電致冷晶片層數 A ^ , 曰 77 也造成 二、:下降’相對導致單位製冷之能源成本 …另夕卜’若停止電源供應,熱電制冷晶片之晶 :即處於可導熱狀態,導致外部熱量(例如室溫)、、,向 知,故難以維持極低溫環境之恆溫效果。 。 哭内部談4 Α方 ^ U此目月丨J仍以儀 口口 — 口功率晶肢等重要元件的散熱應用為主。 【發明内容】 種可供應並穩 以確保載體之 由疋’本發明之主要目的,即在提供一 疋、准持極低溫環境之複合式恆溫冷凍系統, 極低溫恆溫凍存品質。 17640 7 1251065 、卜本务明之另一目的,係提供一種可維持高效率運轉之 複合式:溫冷凍系統,以節省能源並降低能源成本。 本毛月之再一目的,係提供一種可彈性調整製冷能力 之複合式恆溫冷凍系統。 、本卷月之又一目的,係提供一種易於維修之複合式恆 溫冷凍系統。 本电明之又另—目&,係提供_種可變頻調節而降低 °呆音之複合式恆溫冷凍系統。 本發明之又再—目的,係提供一種體積較小之複合式 恒溫冷m以適料型極低溫冷料合之應用。 為達上述目的及其它目的,本發明提供一種複合式恆 溫冷象系統’係包括:一保溫箱冑,内部具有一可藉密封 予以密閉之容置空間;纟冷器與熱交換器,係相互接 :也°又置方…亥保溫_體内部;以及-能源,係提供該埶交 換器能源者。 …又 二:能源係為一冷源/熱源,而當該能源為一冷源 ^ 益係以其熱端與該熱交換器接觸,以㈣心 ,之冷端將該容置空間中的熱量傳導至該熱端,並透過; 熱父換器吸收並排出該致冷器之熱量,維持該容置空間: :低溫環…之,當該能源為一熱源時,該 其冷端與該熱交換器接觸’…改變致冷器 二以 向,使其在該保溫箱體内產生致熱,並利用談轨 該致冷器之冷端將其冷能帶走,亦可 q二又、益自 一適當地恆溫環境。 -保溫箱體内具備 Π640 8 1251065 同時,若該能源為一冷源,則該熱交換器係可採用一 蒸發器,並與該冷源組合為一冷;東循環裝置,此時該冷〉東 循環裝置則係用以循環傳送低溫流體,且係具有至少一對 應導接於該熱端之蒸發器,藉以透過該蒸發器吸收並排出 該致冷器之熱量,維持該容置空間之極低溫環境。 該複合式恆溫冷凍系統復包括一分別與該致冷器及冷 凍循環裝置連接之控制單元,用以調節控制前述兩者之製 冷能力,以令該極低溫狀態維持恆定。其中,該控制單元 復可選擇與一設置於該保溫箱體中的溫度感測單元連接, 藉以進行對於致冷器與冷凍循環裝置在製冷能力調節上之 回授控制。 此外,該保溫箱體至少包括由内層結構體與外層結構 體構成雙層結構,且内層結構體與外層結構體之間預留一 中空夾層,於該保溫箱體内部則具有一可藉密封元件予以 封閉之容置空間供容置載體。 本發明之特徵在於本發明之複合式恆溫冷凍系統主要 利用該能源與熱交換器來維持致冷器之低溫或適當恆溫之 工作環境,並利用致冷器以及保溫箱體之隔熱保溫效果來 創造且穩定維持容置空間之溫度環境,因此可確保載體之 極低溫恆溫凍存品質。再者,由於利用冷凍循環裝置與致 冷器之相輔運作,可避免外部熱量入侵容置空間,因此可 維持複合式恆溫冷凍系統之高效率運轉,相對可節省能源 並降低能源成本,並且可提供調整製冷能力之高度彈性。 另外,由於冷凍循環裝置可採用一種純冷媒式之變頻式單 9 1 7640 1251065 聖縮機冷凍循環裝置,因此不僅可 頻調節I縮機之轉速而降低噪 、门“、並可利用變 小,及冷庚抵严壯姐 因致冷器之體積極 及0凍循%裝置之體積亦屬適中 積較小之複合式但溫冷滚系統,足以、J此可提供一種體 場合之應用。 k於小型極低溫冷凍 【實施方式】 熟悉二由TT明本發明之實施方式’ 。议人士可由本說明書所 本發明之1y、之内谷輕易地瞭解 俨:例力〃"點與功效。本發明亦可藉由其他不同的且 二“加以施行或應用’本說明書中的各項細節亦可心 不同硯點與應用’在不脖離本發明之二 與變更。 r進仃各種修飾 以下即以本發明之能源為-冷源時的實施例,具體說 發:維持極低溫恆温之功效,惟該能源亦可為—熱 箱本發明之致冷器的電流方向,使其在保溫 相肢内產生致熱’並利用熱交換器自該致冷器之 冷能帶走,亦可使該保溫箱體内具備—適當地恆溫環境了 其具體實施例即不予贅述。 請參閱第3圖所示,本發明之複合式忮溫冷凍系統工 主要包括一保溫箱體U、一致冷器13、以及一冷凍循環裝 置15。其中,本發明之實施例之圖式俱為簡化之示意圖 式,且僅顯示與本發明有關之元件,該等元件並非以Moreover, the use of multi-layer thermoelectric cooling wafers can reach an extremely low temperature state of about zero H. But with the number of thermoelectrically cooled wafer layers A ^, 曰77 also causes two: "decrease" relative energy costs per unit of cooling... If the power supply is stopped, the crystal of the thermoelectric cooling chip: that is, in a heat-conducting state, causes external heat (for example, room temperature), and is known, so it is difficult to maintain the constant temperature effect of the extremely low temperature environment. . Crying inside to talk about 4 Α方 ^ U This month is still based on the mouthpiece - mouth power crystal limbs and other important components of the heat application. SUMMARY OF THE INVENTION The present invention is capable of supplying and stabilizing the carrier. The main purpose of the present invention is to provide a composite thermostatic refrigeration system that is capable of holding a low temperature environment at a very low temperature. 17640 7 1251065 Another purpose of the book is to provide a hybrid: warm freezing system that maintains high efficiency to save energy and reduce energy costs. A further objective of this month is to provide a composite constant temperature refrigeration system that can flexibly adjust the cooling capacity. Another purpose of this volume is to provide a compound constant temperature refrigeration system that is easy to maintain. This electric power is also another - the purpose &, provides a kind of compound constant temperature refrigeration system that can be adjusted by frequency conversion to reduce the sound. Still another object of the present invention is to provide a compact, constant temperature cold m with a small volume suitable for use in an extremely low temperature cold feed. To achieve the above and other objects, the present invention provides a composite constant temperature cold image system comprising: an incubator having an internal accommodating space sealed by a seal; the chiller and the heat exchanger are mutually Connected: Also ° set again ... Hai insulation _ body inside; and - energy, is the source of the 埶 exchanger energy. ...two: the energy system is a cold source/heat source, and when the energy source is a cold source, the heat is in contact with the heat exchanger at its hot end, and the heat in the accommodating space is (4) Conducted to the hot end and transmitted through; the hot parent replaces and discharges the heat of the refrigerator to maintain the accommodating space: a low temperature ring, when the energy source is a heat source, the cold end and the heat The exchanger contacts '...changes the direction of the refrigerator to cause it to generate heat in the incubator, and uses the cold end of the refrigerator to take its cold energy away. Since a suitable constant temperature environment. - The incubator body is provided with Π640 8 1251065. Meanwhile, if the energy source is a cold source, the heat exchanger can adopt an evaporator and combine with the cold source to be a cold; the east circulation device, at this time the cold> The east circulation device is configured to circulate the cryogenic fluid, and has at least one evaporator corresponding to the hot end, thereby absorbing and discharging the heat of the refrigerator through the evaporator to maintain the extreme of the accommodating space. Low temperature environment. The composite constant temperature refrigeration system further includes a control unit respectively connected to the refrigerator and the refrigeration cycle device for regulating the cooling capacity of the two to maintain the extremely low temperature state constant. Wherein, the control unit can be selectively connected to a temperature sensing unit disposed in the heat insulating box, thereby performing feedback control on the cooling capacity adjustment of the refrigerator and the refrigeration cycle device. In addition, the heat insulating box body comprises at least a double layer structure formed by the inner layer structure body and the outer layer structure body, and a hollow interlayer is reserved between the inner layer structure body and the outer layer structure body, and a sealable component is provided inside the heat insulation box body. The enclosed space is accommodated for receiving the carrier. The invention is characterized in that the composite constant temperature refrigeration system of the invention mainly utilizes the energy source and the heat exchanger to maintain the low temperature or the proper constant temperature working environment of the refrigerator, and utilizes the heat insulation effect of the refrigerator and the heat insulation box body. The temperature environment in which the space is accommodated is created and stabilized, thus ensuring the cryostat quality of the carrier. Moreover, since the external operation of the refrigerating cycle device and the chiller can prevent the external heat from invading the accommodating space, the high-efficiency operation of the composite constant temperature refrigerating system can be maintained, thereby saving energy and reducing energy costs, and Provides a high degree of flexibility in adjusting cooling capacity. In addition, since the refrigeration cycle device can adopt a pure refrigerant type variable frequency single 9 1 7640 1251065 shrinking machine refrigeration cycle device, it can not only adjust the speed of the I reducer, but also reduce the noise and the door, and the use can be reduced. And the cold Geng to Yan Zhuang sister because of the positive body of the refrigerator and the volume of the zero-free device is also a moderately integrated but cold-rolling system, which can provide a suitable application. [Embodiment] The following is a description of the present invention by the TT. The invention may also be modified or modified by the various other details and applications of the present invention. r 仃 various modifications The following is an embodiment in which the energy source of the present invention is a cold source, specifically, the effect of maintaining a very low temperature constant temperature, but the energy source may also be a heat box current direction of the refrigerator of the present invention. So that it generates heat in the heat-insulating limbs and is carried away by the cold energy of the refrigerator by means of a heat exchanger, or the inside of the incubator is provided with a suitable constant temperature environment. Narration. Referring to Fig. 3, the composite enthalpy refrigeration system of the present invention mainly comprises an incubator U, a chiller 13, and a refrigerating cycle device 15. The drawings of the embodiments of the present invention are simplified and only the components related to the present invention are shown, and the components are not

數量或尺寸比例繪製,合先敘明。 T 17640 10 1251065 :保溫箱體u為一種可密閉或開啟之隔熱箱體,係包 括-箱體iu、以及—蓋接於該箱體lu之密封元件⑴, 而於該保溫箱體η内部則具有一可藉該密封元件⑴予以 封閉之容置空間11 a。 該箱體111可選擇由金屬鈑金件成型腔體,且係包括 由内層結構體ηη與外層結構體1113構成雙層結構,並 於内層結構體mi與外層結構體1113之間預留一中空夾 層1115。該内層結構體lln可選擇由高熱傳導性之金屬 材料所構成,而外層結構體1113可選擇由低熱傳導性之金 屬材7或塑膠材料所構成。中空夾層1115係可容置諸如多 孔性聚苯乙烯(polystyrene )、多孔性氣凝膠(ae⑺#〇、 多孔性聚胺基曱酸酯(p〇lyurethane,pu )等多孔性填充 物、或其他具良好隔熱保溫性質之適當材料,並可予以抽 真空呈負壓環境,以提供較佳之隔熱保溫效果。 該密封元件113係為一可蓋接於前述箱體丨丨丨一側用 來封閉容置空間lla之中空蓋體,可選擇由金屬鈑金件成 型腔體,且内部預留一中空部11 3 1。該中空部1 i 3 i同樣 係T谷置為如多孔性本乙稀(p〇lystyrene )、多孔性氣凝 膠(aero gel )、多孔性聚胺基曱酸醋(p〇j^urethane,pu ) 等多孔性填充物、或其他具良好隔熱保溫性質之適當材 料,亚可予以抽真空呈負壓環境,以提供較佳之隔熱保溫 效果。 珂揭中空夾層111 5及中空部丨丨3丨所述之負壓環境係 以介於10-4〜10-2大氣壓之間者為較佳,而該等多孔性填 17640 11 !25l〇65 充物之開孔率可選擇大於或等於95%,且該多孔性填充物 之孔徑可選擇介於50〜5〇〇〇nm之間。當然,該中空夾層 1115及中空部1131皆非以經真空處理而呈負壓環境者: 限;換言之,該中空夾層1115及中空部1131亦可填充諸 如氪氣、氬氣、或其他具良好隔熱保溫性質之氣體、甚至 =他具良好隔熱保溫性質之液體’以維持極低溫:操作環 1兄’而非以本實施例中所述者為限。 該致冷器13係設置於該保溫箱體u中,且係具有一 =端131及一熱端133,並可藉由外部供電透過一直流電 壓驅動模組135供應直流電源,以令該致冷器㈣藉由該The quantity or size ratio is drawn, which is described first. T 17640 10 1251065 : The heat insulating box u is a heat-insulating box which can be sealed or opened, and includes a box body iu and a sealing member (1) which is attached to the box body lu, and is inside the heat insulating box body η There is an accommodating space 11 a which can be closed by the sealing element (1). The casing 111 may be formed of a metal sheet metal forming cavity, and includes a double layer structure composed of the inner layer structure ηη and the outer layer structure 1113, and a hollow interlayer is reserved between the inner layer structure body mi and the outer layer structure body 1113. 1115. The inner structural body 11n may be selected from a highly thermally conductive metal material, and the outer structural member 1113 may be selected from a low thermal conductivity metal material 7 or a plastic material. The hollow interlayer 1115 can accommodate a porous filler such as porous polystyrene, porous aerogel (ae(7)#〇, porous polyphthalate (pu), or other Suitable materials with good thermal insulation properties, and can be vacuumed in a negative pressure environment to provide better thermal insulation effect. The sealing element 113 is a cover that can be used to cover the side of the casing. The hollow cover body of the closed accommodating space 11a is selected to be formed by a metal sheet metal member, and a hollow portion 11 3 1 is reserved inside. The hollow portion 1 i 3 i is also set as a porous substrate such as porous metal. (p〇lystyrene), porous aerogel, porous polyacrylic acid vinegar (p〇j^urethane, pu) and other porous fillers, or other suitable materials with good thermal insulation properties The sub-vacuum is vacuumed to provide a better thermal insulation effect. The negative pressure environment described in the hollow interlayer 111 5 and the hollow portion 丨3丨 is between 10-4 and 10-2. It is better between atmospheric pressure, and the porosity is filled in 17640 11 !25l〇65 The opening ratio of the material may be selected to be greater than or equal to 95%, and the pore size of the porous filler may be selected to be between 50 and 5 〇〇〇 nm. Of course, the hollow interlayer 1115 and the hollow portion 1131 are not vacuum-treated. The treatment is negative pressure environment: limit; in other words, the hollow interlayer 1115 and the hollow portion 1131 can also be filled with gas such as helium, argon, or other gas with good thermal insulation properties, or even = it has good thermal insulation properties. The liquid 'to maintain the extremely low temperature: the operating ring 1 brother' is not limited to the one described in this embodiment. The refrigerator 13 is disposed in the heat insulating box u, and has a = end 131 and a a hot end 133, and the DC power supply can be supplied through the DC voltage driving module 135 by external power supply, so that the refrigerator (4) is used by the

冷端131吸收熱量並傳導至該熱端133。 X ,該致冷器13可選擇為複數個並排設置,且進一步而t 係設置於保溫箱體u之箱冑lu 二The cold end 131 absorbs heat and conducts to the hot end 133. X, the refrigerator 13 can be selected as a plurality of side by side, and further t is set in the box of the incubator u

1111對應位於容置1 m 置MU 罝工間lla之底側,因此可藉由致冷器13 之冷端Π1持續吸收容 量並傳導至該埶端13::間1U或载體(欲;東存物)之熱 ^ 133,進而創造該容置空間lla之朽你 溫環境。該致冷器13罝工間lla之極低 係可璉擇為為一單層式敎曰 (TE chip)或一多居^ I、、、日日片 可在冷請與=電;編。單層式熱電致冷晶片 而多層式熱電致冷曰片7:生的溫呈範圍約⑽〜㈣’ 差範圍約㈣〜二可在冷端131與熱端⑴產生的溫 t之極低溫環境需/下,在系統欲達到零下⑽〜零下⑵ 較佳。 而衣下,係以選擇多層式熱電致冷晶片為 前述致冷器 13配置在内層結構體丨丨丨】對應位於容置 17640 12 l25l〇65 間11 a底侧之設計,传 八 係了&供谷置空間1 la中產生溫度 刀s的效果,亦即容詈办 a 二間11 a中位於上層的溫度會略高 不g的1度因此内部空氣流動的速度極為緩慢,適於 生空氣擾動需求之載體凍存。 该冷〉東循環裝置1 5用L、2诚:/奎、、,化 一 用以循壌傳达低溫流體,係包括由 例如蒸發器1 5 1之埶$施哭 把、应士从 —、人 …乂換益、一低溫流體供應單元1 53、 〆令凝器1 5 5、以及一膨胳留一 低况法 /脹早兀157依序相互串接以形成 造二":供應迴路。該蒸發器151係設置於箱體1U中, 於」D Λ ’、、、么盗151係配置於内層結構體1111對應位 之底側’並且對應與致冷器13之熱端ΐ3ι 1、: v接4體。而該低溫流體供應單元153、哭 15 5、以及膨脹單亓】ς 7 α 1 h οσ 係可匕裝為一共構體,以提供設置 於保溫箱體u底部兼具底座功能。 …置 該低溫流體供應單元153可將低溫 冷凝器155,透過冷凝哭 铷出至4 一 σσ 加以散熱後再傳送至膨脹單 兀1 5 7,利用膨賬單元斤 ^ , , 之毛細管杉脹現象將液態的低 /皿机體加以降壓及备、'w ^ ^ ^ /J2L 再、工由洛發器1 5 1吸敎增溫接\^7 到低溫流體供應單亓]q 甘A …、9 /皿後回 ^兀153。其中,由於該蒸發器151俜腎 岔導接於致冷器13之& ^ i 1 i 係緊 六、、而13 1 ,因此利用蒸發器i 5 i蔣 可持續吸收載於該埶# 芩 # _ 女 …、碥13 1之熱ϊ並傳送至低溫流體供庫 早兀1 53,亦即致Α哭η。、来、ra 應 π °。13透過其冷端131傳導至埶 之熱量將持續透過該A、垂伧p # …、而133 ~凍循%裝置15而排出,相當 該冷凍循環裝置u 田方、利用1111 corresponds to the bottom side of the MU 罝 ll ll 容 , , , , , , , , , , , , , , , , , , , , , , MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU Store the heat ^ 133, and then create the accommodating space lla of your warm environment. The extremely low level of the chiller 13 of the chiller 13 can be selected as a single layer 敎曰 (TE chip) or a multi-layer I, I, 日 日片 can be cold and = electric; Single-layer thermoelectrically cooled wafers and multi-layer thermoelectrically cooled crucibles 7: The temperature of the raw heat is in the range of about (10) to (four)'. The difference range is about (4) to two. The extremely low temperature environment can be generated at the cold end 131 and the hot end (1). Need / down, in the system to achieve zero (10) ~ minus (2) is better. Under the clothing, the multi-layer thermoelectric cooling chip is selected as the inner structure of the refrigerator 13 as described above, corresponding to the design of the bottom side of the housing 17640 12 l25l 〇 65, and the octagonal & The effect of the temperature knife s is generated in the valley space 1 la, that is, the temperature in the upper layer of the two chambers 11 a is slightly higher than 1 degree, so the internal air flow rate is extremely slow, suitable for the production. The carrier of the air disturbance demand is frozen. The cold-to-east circulation device 15 uses L, 2, and/or, and is used to convey the low-temperature fluid, including, for example, the evaporator 1 5 1 施 施 施 施 、 应 应 应 应 应 应 应 应 应 应 应 应 应, human... 乂 益, a cryogenic fluid supply unit 1 53 , 〆 凝 1 5 5 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 低 低 低 低 低 低 低 低 低 低 低 低 低 兀 兀 兀 兀 兀 兀 兀 兀 兀 依 依 依 依 依 依 依Loop. The evaporator 151 is disposed in the casing 1U, and the "D Λ ', 么 151 is disposed on the bottom side of the corresponding position of the inner structural body 1111 and corresponds to the hot end 致 3 1 of the refrigerator 13 : v is connected to 4 bodies. The cryogenic fluid supply unit 153, the crying 15 5 , and the expansion unit ς 7 α 1 h οσ can be assembled as a common structure to provide a base function at the bottom of the heat preservation box u. The cryogenic fluid supply unit 153 can dissipate the cryogenic condenser 155 through the condensation to 4 σσ to dissipate heat and then transfer it to the expansion unit 157, using the expansion tube capillary, and the capillary expansion phenomenon The liquid low/dish body is depressurized and prepared, 'w ^ ^ ^ /J2L, and the work is carried out by the hair dryer 1 5 1 to absorb the temperature and increase the temperature to the low temperature fluid supply unit 亓 ...... , 9 / dish back to ^ 153. Wherein, since the evaporator 151 and the renal pelvis are connected to the & ^ i 1 i of the refrigerator 13 and tied to the sixth, and 13 1 , the evaporator i 5 i can be continuously absorbed by the evaporator 埶# 芩# _ Female..., 碥13 1 ϊ ϊ 传送 ϊ ϊ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 。 , come, ra should be π °. 13 The heat conducted to the crucible through the cold end 131 will continue to be exhausted through the A, the drooping p # ..., and the 133 ~ freezing cycle % device 15, which is equivalent to the refrigeration cycle device

使致θ為13之熱端133維持於低、'囚 環境,則逸過致A $ , m /J2L 7為13將可輕易令保溫箱體U内之容置 17640 13 1251065 空間11 a達到更低之極低溫環境。 該冷凍循環裝置15可選擇為一種純冷媒式之變頻式 單壓縮機冷凍循環裝置(或稱變頻冷凍系統),因此低溫流 供應單元1 5 3可選擇為一部可藉由外部供電透過一變頻 驅動模組1 5 3 1供應交流電源之變頻式壓縮機,而膨脹單元 1 57可選擇為例如一感溫式膨脹裝置、電子式膨脹裝置或 毛細管。其中,變頻式壓縮機可採用直流無刷馬達無感測 驅動方式進行變轉速控制,即透過變頻驅動模組1 5 3 1將輸 入市電(110V/60HZ)之交流波形轉換為直流波形,然後以 六部功率晶體,依直流無刷馬達轉動瞬間的磁極位置,以 脈寬調變(PWM,Pulse Width Modulation)法則進行直流無 刷馬達之變轉速控制介於18〇〇rpm〜43〇〇rpm之間左右。藉 此,使該變頻式單壓縮機冷凍循環裝置之製冷能力可依容 置空間11a、載體或熱端133之溫度等參數而調節介於5〇 瓦〜5 0 0瓦之間左右’而蒸發器1 5丨之溫度則可介於〇。〇〜 零下30°C之間。據此,利用該蒸發器ι51將該熱端I”之 熱量透過該變頻式單壓縮機冷凍循環裝置而排出,可使致 冷為1 3之熱端1 3 3維持介於〇它〜零下3 〇之間的低溫環 土兄,則致冷β 1 3之冷端1 3 1或容置空間丨丨a將可維持介於 零下60°C〜零下120°C之間的極低溫環境。 純冷媒式之變頻式單壓縮機冷凍循環裝置雖然具有維 修簡易、製冷能力可調節、噪音及體積較小等優點,但該 冷凍循環裝置1 5並非以前揭純冷媒式之變頻式單壓縮機 冷凍循環裝置為限,舉凡循環傳送諸如共沸冷媒、近共沸 14 17640 1251065 ^媒或冰水寻低溫流體之冷 f A Η罢 m L 東循裱裝置均可實現相同之 衣々效果,因此亦可採用諸如 ;太火,而1 ,水機、冰水機來增壓輸出 冰水,而非以採用壓縮機之冷 ㊅么 果循裱裝置為限。 、不刖對本貫施例之說明可知 凌系钵! + a ’本發明之複合式恆溫冷 凍糸統1主要利用冷凍循環裝 、、西工祚严位 夏1 5來維持致冷器1 3之低 皿工作裱境,並利用致冷器13 溫效果也、皮 乂及保溫箱體Π之隔熱保 /皿效果來創造且穩定維持容 此可確伴盤雕夕工間之極低溫環境,因 康循環2 溫;東存品質。再者,由於利用冷 衣置1 5與致冷器13之相 入侵容置命門u <相輔運作,可避免外部熱量 置工間 1 1 a,因此可維 高效率運轉,相^ /隹持複合式怪溫冷康系統1之 供調整製冷能力之”强神p牛低-源成本’亚且可提 ^ # ""又 另外,由於冷凍循環裝置15 此不僅可易於维代 項式早壓縮機冷凍循環裝置,因 低哮立η、准知’並可利用變頻調節壓縮機之轉速而降 ::又因致冷器13之體積極小,爾循環裝置15 之肢和亦屬適中,因此可提供一 Α渣糸试1 種月丑矛貝車乂小之複合式恆溫 ^ 一二足以適於小型極低溫冷凍場合之應用。 請參閱第4圖所示,本實 每 、, 在於致冷器13之配置 、_ ’、 “歹1之差異僅 及 置位置不同,其餘相關保溫箱體U以 置15之設計均相同,因此不再重複說明相同 說明二I:,定義元件符號,以免過於費述1下僅 ,、相丹處,特此敘明。 如第4圖所示’在内層結構體iiu對應位於容置空間 17640 15 1251065 :二兩側,各配置一相互對稱排列於上層之致冷器", ―兩側之致冷器13的冷端131均朝向容置^ iia,^ 洛發器1 5 1必須盘料旛叙曰α从 田一 於第-錢串接。而此種設計相較 針二Γ ,將可提供容置空rs”ia中較快的空氣 對〉’丨1_速度以及較為半於的、、w # 乂 竿乂為干均的度分配,適於些微空氣擾動需 求之載體凍存。 而 #三實施例 請參閱第5圖所示,本實施例與第二實施例之差異僅 在於致冷益13之配置數量不同’其餘相關保溫箱體u以 及冷床循環裝置15之設計均相同,因此同樣不再重複說明 相同料,也不再重新定義元件符號,以免過於贅述,以 下僅說明其相異處,特此敘明。 如第5圖所示,在内層結構體"11對應位於容置空間 1 a之兩側,各配置一個相互對稱並排於上層之致冷哭 13’且兩側之致冷器13的冷端⑴同樣均朝向容置空:; 11a’當然、蒸發胃151亦必須為對應數量且彼此串接。而此 種設計相較於第二實施例而言,將可提供容置空間⑴中 更快的空氣對流速度以及更為平均的温度分配,適於空氣 擾動需求適中之載體凍存。 第四貫施例 口月’閱第6圖所不’本實施例與第二實施例之差異僅 在方、致~ ☆ 1 3之配置位置不同,其餘相關保溫箱體η以 及東德% U 1 5之設計土句才目同,因此亦不再重複說明相 同部份,也不再重新定義元杜# . 我70件付號,以免過於贅述,以下 16 17640 1251065 僅說明其相異處,特此敘明。 如第6圖所示,在内層結構體⑴丄對 Π a之兩側,夂g 一 w位於谷 列之致 容置空 串接。 將可提 均的溫 冷哭13,且^ °。刀上層與下層相互交錯排 口。 兩側之致冷器13的Α γ 13 j 間11 a,去妙#政 7 ^ 13 1亦均朝向 4条發器151也必須為對應數量且彼此 而此種設計相較於第一、 彼此 供容置空間Ua中U—與第三實施例而言, …中取快的空氣對流速度以及最為平 f分適於劇烈空氣㈣需求之載體;東存。 身五貫施例 差異僅 溫箱體 重複說 ,以免 請參閱第7圖所示,本實施例與第一實施例之 在於增設-控制…7,其餘相關致冷器η、保 η以及冷錢«置15之設計均相同,因此不再 明相同部份’也不再重新定義相同部份之元件符號 過於贅述,以下僅說明其相異處,特此敘明。 如第7圖所示,本實施例中係增設一控制單元17,且 該控制單元17中並内含一直流電壓驅動模組173(相當於 第一實施例中所述之直流電壓驅動模組135)及一變頻驅動 模組1 7 1 (相當於第一實施例中所述之變頻驅動模組 1 5 3 1 ),該直流電壓驅動模組丨7 3係連接於致冷器丨3,而 變頻驅動模組1 7 1則同樣連接至冷凍循環裝置1 5中諸如變 頻式壓縮機之低溫流體供應單元1 5 3。另外該控制單元17 復包括與一設置於該保溫箱體1 1中的溫度感測單元1 75 連接。 該溫度感測單元1 7 5係設置於諸如容置空間丨丨a或致 17 17640 1251065 以獲得相之關^置1Γ門以及至冷器13與蒸發器15之接面, 並透過押制:二 a、載體或熱端133之溫度等參數, 二: 以對於致冷器13及〜凌循環裝置 元17:=能力適當調節上之回授控制。而該溫度感測單 〜奋、、擇諸如適當形式之溫度計或溫度感測元件。 貫施 :奢芩閱第8圖所示’本實施例與第_實施例之差 於:體U2之局部構造不同’其餘相關保溫箱體^之穷 Η113、致冷器13以及冷康循環袭置15之設計均: 同之=不再重複說明相同部份,也不再重新定義相同部 知之兀件符號,以免過於贅述’以下僅說明其相異處,特 此敛明。 、 如第8圖所示,該箱體112可選擇由金屬飯金件 腔體’且係包括由内層結構體1121與外層結構體仙構 成雙層結構,並於内層結構體llu與外層結構體""之 間預@中空夾層1125 ’另於外層結構體I】”外表包覆 -:如塑膠材料所構成之隔熱層1127。該内層結構體Mi 可選擇由高熱傳導性之金屬材料所構成,而外層結構體 1123可選擇由低熱傳導性之金屬材料所構成。中空爽層 11乃係可容置諸如多孔性聚苯乙烯(polystyrene)、多孔 性氣《 u⑽gel)、多孔性聚胺基甲酸&旨(pGiyurethane, PU)等多孔性填充物、或其他具良好隔熱保溫性質之適當 材料’並可予以抽真空呈負壓環境,α提供較佳之隔熱保 溫效果。另於箱體Η2與密封元件]13之間,係可增設一 17640 18 1251065 採取諸如橡膠材料所製成之墊圈i129, — ⑴蓋接於該箱體112之密閉效果,相對可= 體U之保溫隔熱效果。 ’、相 」前揭中空夾層1125所述之負壓環境係以介於1〇_4〜 10大乳壓之間者為較佳,而該等多孔性填充物之開孔 可選擇大於或等於95%,且該多孔性填充物之孔徑 :於50〜亀m之間。當然,該中空失層1125亦非以紋 亦而呈負壓環境者為限;換言之,該中空夾層"25 ’I ^ ^如亂氣、氬氣、或其他具良好隔熱保溫性質之 亂體、甚至其他具良好隔熱保溫性質之液體,以維持極低 溫之操作環境,而非以本實施例中所述者為限。 一 综合前揭諸多實施例之說明可知,本發明之複合式怪 東系統確實具有:可創造且敎維持極低溫環境以破 保载體之極低溫怪溫;東存品質、可維持複合式恆溫冷束系 ^之兩效率運轉以節省能源並降低能源成本、可提供調整 衣冷能力之高度彈性、彳易於維修、可降低噪音、以及足 =適於小型極低溫冷;東場合之應用等諸多實質功效增進, :已避免習用技術之諸多缺"且更具高度之產業利用 價值。 ^上述各實施例僅為例示性說明本發明之原理及其功 效’:非用於限制本發明。任何熟習此項技藝之人士均可 ^不違背本發明之精神及範4下,對上述各實施例進行修 4與變化。因&,本發明之權利保護範圍,應如後述之申 凊專利範圍所列。 17640 19 1251065 【圖式簡單說明】 第1圖係顯示習用雙壓縮機系統之示意圖; 第2圖係顯示習用單壓縮機非共沸冷煤雙膨脹復熱循 壤糸統之不意圖, 第3圖係顯示本發明之第一實施例示意圖; 第4圖係顯示本發明之第二實施例示意圖; 第5圖係顯示本發明之第三實施例示意圖; 第6圖係顯示本發明之第四實施例示意圖; 第7圖係顯示本發明之第五實施例示意圖;以及 第8圖係顯示本發明之第六實施例示意圖。 1 複合式恆溫冷凍系統 11 保溫箱體 111 箱體 1111 内層結構體 1113 外層結構體 1115 中空夾層 112 箱體 1121 内層結構體 1123 外層結構體 1125 中空夾層 1127 隔熱層 1129 墊圈 113 密封元件 1131 中空部 11a 容置空間 13 致冷器 131 冷端 133 熱端 135 直流電壓驅動模組 15 冷凍循環裝置 151 蒸發器 153 低溫流體供應單元 1531 變頻驅動模組 155 冷凝器 157 膨脹單元 17 控制單元 20 17640 1251065 171 變頻驅動模組 173 直流電壓驅動模組 175 溫度感測單元 100 雙壓縮機系統 101 蒸發器 102 低溫壓縮機 103 低溫凝結器 104 高溫壓縮機 105 水冷式凝結器 200 單壓縮機非共沸冷煤雙膨脹復熱循環系統 201 蒸發器/熱交換器 202 熱交換器 202a 區段 202b 區段 203 膨脹裝置 204 液相分離器 205 膨脹裝置 206 過濾乾燥器 207 凝結器 208 壓縮機 209 填充閥 21 17640Keeping the hot end 133 of θ 13 low, 'in a prison environment, then letting A $, m / J2L 7 being 13 will easily accommodate 17640 13 1251065 space 11 a in the incubator U. Low to very low temperature environment. The refrigeration cycle device 15 can be selected as a pure refrigerant type variable frequency single compressor refrigeration cycle device (or variable frequency refrigeration system), so the low temperature flow supply unit 1 5 3 can be selected as a part that can be transmitted through an external power supply. The drive module 1 5 3 1 supplies a variable frequency compressor of an alternating current power source, and the expansion unit 1 57 can be selected, for example, as a temperature sensitive expansion device, an electronic expansion device or a capillary tube. Among them, the variable frequency compressor can be controlled by the DC brushless motor without sensing drive mode, that is, the AC waveform input to the mains (110V/60HZ) is converted into a DC waveform by the variable frequency drive module 1 5 3 1 , and then Six power crystals, according to the magnetic pole position of the DC brushless motor rotating moment, the pulse speed modulation (PWM, Pulse Width Modulation) rule is used to control the speed of the DC brushless motor between 18〇〇rpm~43〇〇rpm about. Thereby, the refrigeration capacity of the variable frequency single compressor refrigeration cycle device can be adjusted according to parameters such as the temperature of the accommodating space 11a, the carrier or the hot end 133, and is between about 5 watts and 500 watts. The temperature of the device 1 5 可 can be between 〇. 〇 ~ minus 30 ° C between. According to this, the heat of the hot end I" is discharged through the inverter type single compressor refrigeration cycle device by the evaporator ι51, so that the hot end 1 3 3 of the cooling is maintained at 〜 ~ it is minus 3 The low temperature ring between the 〇, the cold end of the β 1 3 or the accommodating space 丨丨a will maintain a very low temperature environment between 60 ° C and 120 ° C. The refrigerant type single-compressor refrigeration cycle device has the advantages of simple maintenance, adjustable refrigeration capacity, low noise and small volume, but the refrigeration cycle device 15 is not a previously disclosed refrigerant-type single-compressor refrigeration cycle. The device is limited to the same, such as the azeotropic refrigerant, near azeotrope 14 17640 1251065 ^ medium or ice water to find the low temperature fluid cold f A Η m m L East 裱 device can achieve the same clothing effect, so it can also Use such as; too fire, and 1, water machine, ice water machine to pressurize the output of ice water, not limited to the use of the compressor's cold six-fruit cycle device. System 钵! + a 'The composite thermostat frozen system 1 of the present invention It is necessary to use the refrigeration cycle installation, the Xigong stern position Xia 1 5 to maintain the low working condition of the refrigerator 13 and use the chiller 13 temperature effect, the skin 乂 and the insulation box 隔热 insulation protection The effect of the dish is to create and maintain a stable environment. It can be accompanied by the extremely low temperature environment of the plate carving workshop, because of the temperature of the Kang cycle; the quality of the east storage. Moreover, due to the use of the cold clothes to set the phase of the refrigerator 13 The intrusion allows the life door u < complementing the operation, can avoid the external heat to work in the labor room 1 1 a, so it can operate at high efficiency, and the composite refrigeration system can adjust the cooling capacity. God p cattle low-source cost 'Asia and can be raised ^ # "" In addition, due to the refrigeration cycle device 15, this can not only easily replace the early-type compressor refrigeration cycle device, because of low sway η, quasi-knowledge It can be adjusted by the frequency converter to adjust the speed of the compressor:: Because the body of the refrigerator 13 is actively small, the limbs of the circulator 15 are also moderate, so it can provide a slag smash test 1 month ugly spear car乂Small composite thermostat ^ one or two enough for small ultra-low temperature freezing applications. Please refer to Fig. 4, in fact, the configuration of the refrigerator 13, _ ', "歹1 difference only and the position is different, the other related insulation box U is set to the same design of 15, so I will not repeat the description of the same description II I:, the definition of the component symbol, so as not to mention too much, only, the phase of the Dan, hereby clarified. As shown in Figure 4, the inner layer structure iiu corresponds to the accommodating space 17640 15 1251065: two sides, each of which is arranged symmetrically arranged on the upper layer of the refrigerator, "the cold end 131 of the two sides of the refrigerator 13 are oriented toward the accommodation ^ iia, ^ Luofa 1 1 1 must be disk幡 曰 曰 α from Tian Yi in the first - money series. And this design will provide a faster air pair 〉 丨 1 _ speed and more than half of the design , w # 乂竿乂 is the dryness of the degree of distribution, suitable for some micro-air disturbance demand of the carrier frozen. For the three embodiments, please refer to FIG. 5, the difference between this embodiment and the second embodiment is only that the configuration of the cooling element 13 is different. The design of the remaining related thermal insulation box u and the cooling bed circulation device 15 are the same. Therefore, the same materials are not repeated and the component symbols are not re-defined, so as not to be overstated. The following only explains the differences, and is hereby described. As shown in Fig. 5, the inner structure body "11 corresponds to the two sides of the accommodating space 1a, and each of them is provided with a cold end which is symmetrical with each other and arranged in the upper layer, and the cold end of the refrigerator 13 on both sides. (1) The same is toward the accommodation space: 11a' Of course, the evaporation stomach 151 must also be the corresponding number and connected in series. This design, in comparison with the second embodiment, will provide a faster air convection speed and a more even temperature distribution in the accommodating space (1), suitable for carrier freeze storage where moderate air disturbance demand is required. The fourth embodiment is the same as the second embodiment. The difference between the embodiment and the second embodiment is only in the position of the square, the ~ ☆ 13 is different, and the other related insulation boxes η and East Germany% U The design of the 1 5 is similar, so the same part will not be repeated, and the definition of Yuan Du will not be repeated. I will pay 70 to avoid overstatement. The following 16 17640 1251065 only explains the difference. Hereby clarify. As shown in Fig. 6, on both sides of the inner layer structure (1) 丄 Π a, 夂g a w is located in the valley and is vacantly connected in series. Will be able to lift the warmth to cry 13 and ^ °. The upper and lower layers of the knife are interleaved with each other. Α γ 13 j between the two sides of the refrigerator 13 11 a, go to Miao # 政 7 ^ 13 1 also towards the four hair 151 also must be the corresponding number and each other and this design compared to the first, each other For the U in the accommodating space Ua - in the third embodiment, the fast air convection speed and the most flat f is suitable for the carrier of the intense air (four) demand; The difference between the five embodiments is only repeated in the temperature box, so as to avoid the reference to Fig. 7, the first embodiment and the first embodiment are in addition-control...7, and the remaining related refrigerators η, η, and cold money. «The design of the 15th is the same, so the same part is no longer known.' It is not to redefine the component symbols of the same part too much. The following is only a description of the differences, and is hereby stated. As shown in FIG. 7 , in the embodiment, a control unit 17 is added, and the control unit 17 includes a DC voltage driving module 173 (corresponding to the DC voltage driving module described in the first embodiment). 135) and a variable frequency drive module 1 7 1 (corresponding to the variable frequency drive module 1 5 3 1 described in the first embodiment), the DC voltage drive module 丨7 3 is connected to the refrigerator 丨3, The variable frequency drive module 177 is also connected to the cryogenic fluid supply unit 153 such as a variable frequency compressor in the refrigeration cycle device 15. In addition, the control unit 17 is further connected to a temperature sensing unit 1 75 disposed in the incubator 11 . The temperature sensing unit 175 is disposed on, for example, the accommodating space 丨丨a or the 17 17640 1251065 to obtain the phase of the gate and the junction of the cooler 13 and the evaporator 15, and is entangled: Two a, the temperature of the carrier or the hot end 133 and the like, and two: the feedback control is appropriately adjusted for the refrigerator 13 and the slewing device element 17:= capability. The temperature sensing unit is selected from a thermometer or a temperature sensing element such as a suitable form. Throughout: extravagantly read Figure 8 shows the difference between the present embodiment and the first embodiment: the local structure of the body U2 is different, the remaining related thermal insulation chambers are inferior 113, the refrigerator 13 and the cold-cold cycle The design of the 15th is the same as: the same part is not repeated, and the same part of the symbol is not redefined, so as not to overstate the following. As shown in FIG. 8, the case 112 may be selected from a metal meal cavity 'and includes a double layer structure composed of the inner layer structure 1121 and the outer layer structure body, and the inner layer structure body llu and the outer layer structure body. "" between the pre-@ hollow interlayer 1125 'in addition to the outer structure I] "outer cladding -: such as plastic material composed of thermal insulation layer 1127. The inner structural body Mi can be selected from high thermal conductivity of metal materials The outer layer structure 1123 may be selected from a low thermal conductivity metal material. The hollow layer 11 is capable of accommodating, for example, porous polystyrene, porous gas "u(10)gel), porous polyamine. Porous fillers such as carboxylic acid & (pGiyurethane, PU), or other suitable materials with good thermal insulation properties can be vacuumed to a negative pressure environment, and α provides better thermal insulation effect. Between the body 2 and the sealing member 13 , a 17640 18 1251065 can be added. A gasket i129 made of a rubber material is used, (1) the sealing effect of the cover 112 is closed, and the thermal insulation of the body U can be relatively Effect. The negative pressure environment described in the first embodiment of the hollow interlayer 1125 is preferably between 1 〇 4 and 10 mils, and the openings of the porous fillers may be greater than or equal to 95. %, and the pore size of the porous filler is between 50 and 亀m. Of course, the hollow loss layer 1125 is not limited to the negative pressure environment; in other words, the hollow interlayer "25 'I ^ ^ such as chaos, argon, or other mess with good thermal insulation properties Body, or even other liquids with good thermal insulation properties, to maintain an extremely low temperature operating environment, and not limited to those described in this embodiment. As can be seen from the description of the various embodiments, the composite strange system of the present invention does have the ability to create and maintain a very low temperature environment to protect the carrier from the extremely low temperature; the east storage quality can maintain the composite constant temperature. The two technologies of the cold beam system operate to save energy and reduce energy costs, provide high flexibility to adjust clothes cooling capacity, are easy to maintain, reduce noise, and are suitable for small and extremely low temperature cold applications; The actual effect is improved: it has avoided many of the shortcomings of the conventional technology and has a higher industrial utilization value. The above embodiments are merely illustrative of the principles of the invention and its functions. Any person skilled in the art can make modifications and variations to the above embodiments without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be as set forth in the appended claims. 17640 19 1251065 [Simple description of the diagram] Figure 1 shows the schematic diagram of the conventional dual compressor system; Figure 2 shows the unintention of the conventional single compressor non-azeotropic cold coal double expansion and reheating 3 is a schematic view showing a first embodiment of the present invention; FIG. 4 is a schematic view showing a second embodiment of the present invention; FIG. 5 is a view showing a third embodiment of the present invention; 4 is a schematic view showing a fifth embodiment of the present invention; and FIG. 8 is a view showing a sixth embodiment of the present invention. 1 Composite constant temperature freezing system 11 Insulation tank 111 Box 1111 Inner structure 1113 Outer structure 1115 Hollow interlayer 112 Box 1121 Inner structure 1123 Outer structure 1125 Hollow interlayer 1127 Insulation 1129 Washer 113 Sealing element 1131 Hollow 11a accommodating space 13 chiller 131 cold end 133 hot end 135 DC voltage drive module 15 refrigeration cycle unit 151 evaporator 153 low temperature fluid supply unit 1531 variable frequency drive module 155 condenser 157 expansion unit 17 control unit 20 17640 1251065 171 Variable frequency drive module 173 DC voltage drive module 175 Temperature sensing unit 100 Dual compressor system 101 Evaporator 102 Low temperature compressor 103 Low temperature condenser 104 High temperature compressor 105 Water-cooled condenser 200 Single compressor non-azeotropic cold coal double Expansion reheat cycle system 201 evaporator/heat exchanger 202 heat exchanger 202a section 202b section 203 expansion unit 204 liquid phase separator 205 expansion unit 206 filter dryer 207 condenser 208 compressor 209 filling valve 21 17640

Claims (1)

1251065 拾、申請專利範圍: 1. 一種複合式恆溫冷凍系統,係包括: 一保溫箱體,内部具有一可藉密封元件予以密閉之 容置空間; 一致冷器與一熱交換器,係相互接觸地設置於該保 溫箱體内部;以及 一能源,係提供該熱交換器能源者。 2. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該能源係為一冷源/熱源。 3. 如申請專利範圍第2項所述之複合式恆溫冷凍系統,其 中,當該能源為一熱源時,該致冷器係以其冷端與該熱 交換器接觸。 4. 如申請專利範圍第2項所述之複合式恆溫冷凍系統,其 中,當該能源為一冷源時,該致冷器係以其熱端與該熱 交換器接觸。 5. 如申請專利範圍第4項所述之複合式恆溫冷凍系統,其 中,當該能源為一冷源時,該熱交換器係可為一蒸發 器。 6. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該致冷器係為一單層式熱電致冷晶片。 7. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該致冷器係為一多層式熱電致冷晶片。 8. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該致冷器係配置於容置空間之一側。 22 17640 1251065 9.如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該保溫箱體中具有複數個致冷器及對應數量且彼此 串接之熱交換器。 1 0.如申請專利範圍第9項所述之複合式恆溫冷凍系統,其 中,複數個致冷器皆配置於容置空間之同一側。 11. 如申請專利範圍第9項所述之複合式恆溫冷凍系統,其 中,複數個致冷器係分別配置於容置空間之不同側。 12. 如申請專利範圍第9項所述之複合式恆溫冷凍系統,其 中,複數個致冷器係分別配置於容置空間之兩側。 1 3 .如申請專利範圍第1 2項所述之複合式恆溫冷凍系統, 其中,兩側之致冷器係相互對稱排列。 14. 如申請專利範圍第12項所述之複合式恆溫冷凍系統, 其中,兩側之致冷器係區分上、下相互交錯排列。 15. 如申請專利範圍第2項所述之複合式恆溫冷凍系統,其 中,當該能源為一冷源時,該熱交換器與該冷源係可組 合為一冷束循環裝置。 16. 如申請專利範圍第15項所述之複合式恆溫冷凍系統, 其中,該冷凍循環裝置係為一變頻式單壓縮機冷凍循環 裝置。 1 7.如申請專利範圍第1 5項所述之複合式恆溫冷凍系統, 其中,該冷凍循環裝置復包括一連接於熱交換器以循環 供應低溫流體之低溫流體供應單元。 18.如申請專利範圍第17項所述之複合式恆溫冷凍系統, 其中,該低溫流體供應單元係為一壓縮機。 23 17640 1251065 19.如申請專利範圍第17項所述之複合式恆溫冷凍系統, 其中,該低溫流體供應單元係為一冰水機。 2 0.如申請專利範圍第1 7項所述之複合式恆溫冷凍系統, 其中,該熱交換器與低溫流體供應單元之間復包括連接 一冷凝器。 2 1.如申請專利範圍第20項所述之複合式恆溫冷凍系統, 其中,該熱交換器與冷凝器之間復包括連接一膨脹單 元。 22. 如申請專利範圍第21項所述之複合式恆溫冷凍系統, 其中,該膨脹單元係為一毛細管。 23. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中,該致冷器係配置於該容置空間之底部。 24. 如申請專利範圍第23項所述之複合式恆溫冷凍系統, 其中,該膨脹裝置係為一感溫式膨脹裝置。 25. 如申請專利範圍第23項所述之複合式恆溫冷凍系統, 其中,該膨脹裝置係為一電子式膨脹裝置。 2 6.如申請專利範圍第1或1 5項所述之複合式恆溫冷凍系 統,復包括一分別與該致冷器及冷凍循環裝置連接之控 制單元,用以調節控制前述兩者之製冷能力,以令該極 低溫狀態維持恆定。 27. 如申請專利範圍第26項所述之複合式恆溫冷凍系統, 其中,該控制單元復包括與一設置於該保溫箱體中的溫 度感測單元連接。 28. 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 24 17640 1251065 中’該密封元件係為一蓋體。 29. 30. 31. 32. 33. 34. 35. 36. 37 38 如申明專利範圍第丨或2 8項所述之複合式恆溫冷凍系 、、充 /、中’ 5亥岔封元件具有一呈負壓環境之中空部。 如申請專利範圍第29項所述之複合式恆溫冷凍系統, 其中’該負壓環境介於10-4〜1〇-2大氣壓之間。 如申請專利範圍第29項所述之複合式恆溫冷凍系統, 其中’該中空部係内置多孔性填充物。 如申請專利範圍第3 1項所述之複合式恆溫冷凍系統, 其中’該多孔性填充物之材料係至少選自聚苯乙烯 (Polystyrene)、氣凝膠(Aer〇 gei)與聚胺基曱酸酯 (Polyurethane)之其中一者。 如申請專利範圍第3 1項所述之複合式恆溫冷凍系統, 其中’該多孔性填充物之開孔率大於等於95〇/〇。 如申請專利範圍第3丨項所述之複合式恆溫冷凍系統, 其中’该多孔性填充物之孔徑介於50〜500Onm之間。 如申請專利範圍第1項所述之複合式恆溫冷凍系統,其 中’該保溫箱體係為一隔熱箱體。 如申請專利範圍第1或35項所述之複合式恆溫冷凍系 統’其中’該保溫箱體至少包括由内層結構體與外層結 構體構成雙層結構,且内層結構體與外層結構體之間預 留一呈負壓環境之中空夾層。 如申請專利範圍第36項所述之複合式恆溫冷凍系統, 其中’該負壓環境介於1〇-4〜1〇-2大氣壓之間。 .如申請專利範圍第36項所述之複合式恆溫冷凍系統, 25 17640 1251065 其中’該内層結構體之材料係為高熱傳導性全屬。 39=請專利範圍第36項所述之複合式恆溫冷滚系統, -中,該外層結構體之材料係為塑膠材料者。 1 專利摩巳圍第36項所述之複合式怔溫冷滚系統, 4外層結構體之材料係為低熱傳性金屬,且該外 層結構體外表具有一隔熱層者。 申請專利範圍第40項所述之複合式恆溫冷來系統, 其中,該隔熱層之材料係為塑膠者。 士申π專利靶圍第36項所述之複合式恆溫冷凍系統, 其中,該中空夾層係内置多孔性填充物。 Μ·如申請專利範圍第42項所述之複合式怪溫冷床系統, 〃中孩夕孔性填充物之材料係至少選自聚苯乙烯 (Polystyrene)、氣凝膠(Aer〇㈣)與聚胺基甲酸酯 (Polyurethane)之其中一者。 认如申請專利範圍第42項所述之複合式怪溫冷康系統, 其中,該多孔性填充物之開孔率大於等於95%。 45·如申請專利範圍第42項所述之複合式恆溫冷束系統, 八中°亥夕孔性填充物之孔徑介於50〜5 OOOnm之間。 46·如申请專利範圍第i項所述之複合式怪溫冷洗系統,其 中ϋ玄谷置空間之極低溫環境係為零下6 〇 °c以下。 47·如申晴專利範圍第i項所述之複合式恆溫冷:東系…统,其 中°亥谷置空間之極低溫環境係介於降至零下6 〇。(^至 零下12〇t:之間。 17640 261251065 Pickup, patent application scope: 1. A composite constant temperature refrigeration system, comprising: an insulation box, the interior has a receiving space which can be sealed by a sealing element; the constant cooler and a heat exchanger are in contact with each other The ground is disposed inside the heat preservation box; and an energy source is provided by the heat exchanger energy source. 2. The composite constant temperature refrigeration system of claim 1, wherein the energy source is a cold source/heat source. 3. The composite constant temperature refrigeration system of claim 2, wherein when the energy source is a heat source, the refrigerator is in contact with the heat exchanger with its cold end. 4. The composite constant temperature refrigeration system of claim 2, wherein when the energy source is a cold source, the refrigerator is in contact with the heat exchanger at its hot end. 5. The composite constant temperature refrigeration system of claim 4, wherein the heat exchanger is an evaporator when the energy source is a cold source. 6. The composite constant temperature refrigeration system of claim 1, wherein the refrigerator is a single layer thermoelectrically cooled wafer. 7. The composite constant temperature refrigeration system of claim 1, wherein the refrigerator is a multilayer thermoelectric cooled wafer. 8. The composite constant temperature refrigeration system according to claim 1, wherein the refrigerator is disposed on one side of the accommodating space. The composite thermostat refrigeration system of claim 1, wherein the incubator has a plurality of refrigerators and a corresponding number of heat exchangers connected in series. The composite constant temperature refrigeration system of claim 9, wherein the plurality of refrigerators are disposed on the same side of the accommodation space. 11. The composite constant temperature refrigeration system according to claim 9, wherein the plurality of refrigerators are respectively disposed on different sides of the accommodating space. 12. The composite constant temperature refrigeration system according to claim 9, wherein the plurality of refrigerators are respectively disposed on both sides of the accommodating space. The composite constant temperature refrigeration system according to claim 12, wherein the refrigerators on both sides are symmetrically arranged with each other. 14. The composite constant temperature refrigeration system according to claim 12, wherein the refrigerators on both sides are arranged in a staggered manner. 15. The composite constant temperature refrigeration system of claim 2, wherein when the energy source is a cold source, the heat exchanger and the cold source system can be combined into a cold beam circulation device. 16. The composite constant temperature refrigeration system according to claim 15, wherein the refrigeration cycle device is a variable frequency single compressor refrigeration cycle device. The composite thermostat refrigeration system of claim 15, wherein the refrigeration cycle apparatus further comprises a cryogenic fluid supply unit coupled to the heat exchanger for circulating the cryogenic fluid. 18. The composite constant temperature refrigeration system of claim 17, wherein the cryogenic fluid supply unit is a compressor. The composite thermostat refrigeration system of claim 17, wherein the cryogenic fluid supply unit is a chiller. The composite constant temperature refrigeration system of claim 17, wherein the heat exchanger and the cryogenic fluid supply unit further comprise a condenser. 2 1. The composite constant temperature refrigeration system according to claim 20, wherein the heat exchanger and the condenser further comprise an expansion unit. 22. The composite constant temperature refrigeration system of claim 21, wherein the expansion unit is a capillary tube. 23. The composite constant temperature refrigeration system according to claim 1, wherein the refrigerator is disposed at the bottom of the accommodating space. 24. The composite constant temperature refrigeration system of claim 23, wherein the expansion device is a temperature sensitive expansion device. 25. The composite constant temperature refrigeration system of claim 23, wherein the expansion device is an electronic expansion device. 2 6. The composite constant temperature refrigeration system according to claim 1 or 5, further comprising a control unit respectively connected to the refrigerator and the refrigeration cycle device for adjusting and controlling the cooling capacity of the two To keep the extremely low temperature state constant. 27. The composite constant temperature refrigeration system of claim 26, wherein the control unit comprises a temperature sensing unit disposed in the thermal insulation box. 28. The composite thermostat refrigeration system of claim 1, wherein the sealing element is a lid. 29. 30. 31. 32. 33. 34. 35. 36. 37 38 The composite constant temperature refrigeration system, the charge/, and the '5 岔 岔 sealing element as described in the scope of claim 丨 2 or 28 Hollow part in a negative pressure environment. The composite constant temperature refrigeration system of claim 29, wherein the negative pressure environment is between 10-4 and 1 Torr to 2 atmospheres. The composite constant temperature refrigeration system according to claim 29, wherein the hollow portion is provided with a porous filler. The composite constant temperature refrigeration system according to claim 31, wherein the material of the porous filler is at least selected from the group consisting of polystyrene, aerogel (Aer〇gei) and polyamine hydrazine. One of the polymers (Polyurethane). The composite constant temperature refrigeration system according to claim 31, wherein the porous filler has an opening ratio of 95 Å/Å or more. The composite constant temperature refrigeration system of claim 3, wherein the porosity of the porous filler is between 50 and 500 nm. The composite constant temperature refrigeration system according to claim 1, wherein the insulation system is a heat insulation box. The composite constant temperature refrigeration system according to claim 1 or claim 35, wherein the heat insulating box comprises at least a double layer structure composed of an inner layer structure and an outer layer structure, and between the inner layer structure and the outer layer structure Leave a hollow sandwich in a negative pressure environment. A composite constant temperature refrigeration system according to claim 36, wherein the negative pressure environment is between 1 〇 4 and 1 〇 2 atmospheres. The composite constant temperature refrigeration system of claim 36, wherein the material of the inner structure is a high thermal conductivity. 39=Please refer to the composite constant temperature cold rolling system described in claim 36 of the patent scope, wherein the material of the outer structural body is a plastic material. 1 The composite enthalpy cold rolling system described in the 36th patent of Capricorn, the material of the outer layer structure is a low heat transfer metal, and the outer layer has an insulation layer on the outer surface. The composite constant temperature cold-cooling system according to claim 40, wherein the material of the heat insulation layer is a plastic. The composite constant temperature refrigeration system according to Item 36 of the patent application of the present invention, wherein the hollow interlayer is provided with a porous filler. Μ· As claimed in the patent application scope of the compound type 42 cold bed system, the material of the 〃 孩 孩 孔 性 填充 至少 至少 至少 is selected from at least polystyrene (Polystyrene), aerogel (Aer 〇 (4)) and One of the polyurethanes (Polyurethane). A compound type strange temperature cold-warming system according to the invention of claim 42, wherein the porous filler has an opening ratio of 95% or more. 45. The composite constant temperature cold beam system according to claim 42 of the patent application, wherein the aperture of the eight-in-one hole-filled filler is between 50 and 5 OOOnm. 46. If the composite type strange temperature cold washing system described in the scope of claim patent item i is in the range of less than 6 〇 °c. 47. For example, the compound type constant temperature cooling mentioned in item yi of the Shenqing patent range: the east system, in which the extremely low temperature environment of the Hegu space is reduced to minus 6 〇. (^ to minus 12〇t: between. 17640 26
TW092137394A 2003-12-30 2003-12-30 Composite thermostatic refrigerating system TWI251065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW092137394A TWI251065B (en) 2003-12-30 2003-12-30 Composite thermostatic refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092137394A TWI251065B (en) 2003-12-30 2003-12-30 Composite thermostatic refrigerating system

Publications (2)

Publication Number Publication Date
TW200521392A TW200521392A (en) 2005-07-01
TWI251065B true TWI251065B (en) 2006-03-11

Family

ID=37433502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092137394A TWI251065B (en) 2003-12-30 2003-12-30 Composite thermostatic refrigerating system

Country Status (1)

Country Link
TW (1) TWI251065B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451500C (en) * 2005-11-08 2009-01-14 财团法人工业技术研究院 Minitype constant temperature chiller
US11472264B2 (en) * 2018-03-07 2022-10-18 Gogoro Inc. Apparatuses for controlling environmental conditions and associated methods
TWI645146B (en) * 2018-03-16 2018-12-21 張育樺 Binary refrigeration system

Also Published As

Publication number Publication date
TW200521392A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
US5505046A (en) Control system for thermoelectric refrigerator
US5522216A (en) Thermoelectric refrigerator
US6003319A (en) Thermoelectric refrigerator with evaporating/condensing heat exchanger
US5605047A (en) Enclosure for thermoelectric refrigerator and method
TW544506B (en) Cold reserving device
WO2011014508A1 (en) Refrigeration devices based on polar-popymers
JP2007139328A (en) Cooling/cold insulating vessel and peltier module thereof
JP2008514892A (en) Food cooling equipment
TWI251065B (en) Composite thermostatic refrigerating system
Patil et al. Review on thermoelectric devices
JP2004020007A (en) Electronic temperature control cabinet
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP2001221553A (en) Cold insulation cabinet
JP2003035480A (en) Electronic cold and hot storage chamber
JP4422989B2 (en) Quick freezing and storage
Manohar et al. Comparison of the experimental performance of a thermoelectric refrigerator with a vapour compression refrigerator
Haryanti et al. Cooling system design based on thermoelectric using fan motor on-off control
Adeyanju et al. Experimental and theoretical analysis of a beverage chiller
JPH04116907A (en) Superconductive cooling device
KR20010017708A (en) Cold-hot storage fixtures
WO1999011986A1 (en) Home and commercial refrigeration devices with thermoelectrical elements and pwm electronic control circuit
JP2001330355A (en) Refrigerator
Bhat et al. A short review on utility of solar energy in refrigeration and fabrication of a mini solar fridge
Harivardhanreddy et al. Design and Analysis of Solar Refrigeration Using Peltier Plate
WO2022013655A1 (en) Combined cooling and heating system

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent