1250314 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學濾光片製造方法,尤其是一種 用於電漿顯示面板之光學濾光片製造方法。 【先前技術】 電漿顯示面板(Plasma Display Panel,PDP)係將惰性氣 體加以電漿放電,經由螢光粉的轉換而發出可見光的平面 顯示器,具有厚度薄、高晝質、視角廣等特性,在大尺寸 顯示器領域有逐漸取代陰極射線管(Cathode Ray Tube ; CRT)顯示器的趨勢。 電漿顯示面板除了發出可見光以外,還會發出霓虹光 (Neon Light ’波長約為560〜620nm)、電磁波 (Electro-Magnetic Wave)、以及近紅外線(Near Infrared1250314 IX. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing an optical filter, and more particularly to an optical filter manufacturing method for a plasma display panel. [Prior Art] A plasma display panel (PDP) is a flat-panel display that discharges an inert gas into a plasma and emits visible light through conversion of phosphor powder, and has the characteristics of thin thickness, high enamel quality, and wide viewing angle. In the field of large-sized displays, there is a tendency to gradually replace cathode ray tube (CRT) displays. In addition to emitting visible light, the plasma display panel emits neon light (Neon Light's wavelength of approximately 560 to 620 nm), electromagnetic waves (Electro-Magnetic Wave), and near-infrared (Near Infrared).
Ray,波長約為800〜lOOOnm)等等。其中,霓虹光會干擾 顯示器之呈色,而過量的電磁波係對人體有害,另外,近 紅外線由於接近家電的遙控器波長,故容易造成家中其他 電器設備的錯誤啟動。因此,如圖i所示,習知技術係在 電漿顯示面板1的前方,加裝一透明之光學濾光片1〇,以 遮蔽電磁波、霓虹光、以及近紅外線。其中,光學濾光片 一抗反射膜 以及一抗近 10係包含一基板11(例如為一強化玻璃)、 (Anti-Reflective Layer)12、一抗電磁波膜 13、 紅外線膜14。 抗反射膜I2係為了防止使用者在觀看時有反光的問 1250314 題,通常會貼在使用者側(Viewer Side)以避免反光。 抗電磁波膜13係用以遮蔽電磁波 貼合、或電鍍方式、或無電極電财式,於㈣〇 /zm的透明樹脂層131(例如pET膜)上,形成一金屬層。 然後,將金屬層經過曝光、㈣、㈣後,以形成一電磁 屏蔽網132(meSh) ’以完成抗電磁波膜13之製作,並達到 電磁遮蔽之效果。 另外,抗近紅外線膜14係用以遮蔽電虹及抗近紅外 線,其係選擇具有在特定波長吸㈣染料,例如:花青染 料,並將金屬複合物(metal complex)、二胺化合物⑷—此 compound)等,溶解在壓克力、聚碳酸酯、或聚乙烯 (Polyethylene)的光學級樹脂中,再利用塗佈的方式在一厚 約100~200/zm的透明樹脂層141(例如pET膜)上,形成 一抗近紅外線層142。 最後將各個光學濾光膜之一側,分別塗佈一感壓膠 15,然後以貼合的方式,逐層貼合在厚度約2·5〜35mm的 基板11上。 然而,在貼合抗電磁波膜13時,因電磁屏蔽網132 的而度差會使付其與感壓膠15貼合時,產生小氣泡。如 此一來,則導致光線通過光學濾光片時,產生不規則散 射、以及穿透率降低。因此,在貼合前需要進行抗電磁波 膜13的透明化處理(除氣泡處理),以減少氣泡之生成。 習知技術中,為了避免或者是去除氣泡有數種方式, 例如.一疋在抗電磁波膜13之電磁屏蔽網132上先塗佈 1250314 折射係數為1·4〜1.65之熱塑性樹脂如EVA(ethylene-vinyl acetate),再與抗近紅外線薄膜貼合。另一個方式,則是在 抗近紅外線膜14背面先塗上一層厚度約20〜30//m的黏合 樹脂後,再與抗電磁波膜之電磁屏蔽網132側貼合,最後 再以真空及高溫方式抽出氣泡,或是於攝式200度以下的 高溫及10kg重的壓力,使熱塑性樹脂的粘度降到液態狀 態,以進行透明化處理。 然而,先塗佈熱塑性樹脂於電磁屏蔽網132上的處理 方式,係將熱塑性樹脂進行塊狀塗佈(Sheet Coating),因此 所使用之塗佈設備非常昂貴,故會增加製程的生產成本; 另外,不管以真空及高溫方式,或是高溫及高壓方式來去 除氣泡,其所需要的製程成本較高,條件也較嚴格。而且, 於真空製程中抽取氣泡時,甚至係以單片批次的方式生 產,實在不符合經濟效益,更導致生產成本之增加。 有鑑於上述問題,本案發明人爰因於此,亟思一種可 以解決上述製程成本高、單片批次生產等問題之「光學濾 光片製造方法」。 【發明内容】 承上所述,本發明之目的為提供一種能去除光學濾光 片中之氣泡的光學濾光片製造方法。 為達上述目的,依本發明之光學濾光片製造方法,係 用於一電漿顯示面板,光學濾光片製造方法係包含設置一 金屬網層於一第一樹脂層之一第一表面,樹脂層係具有一 1250314 與第一表面相對之第二表面;將一球黏性值係小於9.5之 感壓膠塗佈於一第一濾光膜;黏合第一濾光膜及金屬網 層。 為達上述目的,依本發明之光學濾光片製造方法,係 用於一電漿顯示面板,光學濾光片製造方法係包含設置一 金屬網層於一第一樹脂層之一第一表面,樹脂層係具有一 與第一表面相對之第二表面;將一球黏性值係小於9.5之 感壓膠塗佈於一基板;黏合基板及金屬網層。 故,依本發明之光學濾光片製造方法,係利用球黏性 值(Ball Tack Value)小於9.5之感壓膠,黏合抗電磁波膜之 金屬網層與第一濾光膜、或是金屬網層與基板。與習知技 術相比,本發明之光學濾光片製造方法,能於較低溫、較 低壓的環境下,去除位於金屬網層與第一濾光膜之間、或 是金屬網層與基板之間之氣泡。如此一來,即能減少能源 之使用,進而能降低製程之生產成本。再者,本發明之光 學濾光片製造方法,係可於同一批次中,同時處理複數片 的光學濾光片,故也大幅降低了生產的成本。另外,本發 明之光學濾光片製造方法係將感壓膠塗佈於第一濾光膜 或是基板上,故能使用較便宜之連續塗佈機台來進行,因 此也能降低製程之生產成本。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之光 學濾光片製造方法。 1250314 本發明之光學濾光片製造方法,係用於製造電漿顯示 面板(Plasma Display Panel,PDP)之光學濾光片。 弟一實施例 如圖3所示,本發明之光學濾光片製造方法係包含設 置一金屬網層步驟(S100)、塗佈一感壓膠於一第一濾光膜 步驟(S200)、以及黏合該第一濾光膜及該金屬網層步驟 (S300) 〇 請參照圖3及圖4,於設置一金屬網層步驟(si〇〇)中, 係將金屬網層211設置於一第一樹脂層212之一第一表面 213,以形成一抗電磁波膜21。而第一樹脂層212係具有 —與第一表面213相對之第二表面214。 其中,第一樹脂層212係為聚對苯二曱酸乙二醇酯 (pBT),厚度約為75至125//m。而金屬網層211係以曝光 顯影蝕刻方式形成,其開口率為85〜95%,材質可為銅。 本實施例中,為達到良好的可見光穿透效率,此金屬網層 211的銅線高度約為5〜12//m、寬度約為8〜12/zm、線距 約為 200〜300//m。 於塗佈一感壓膠於一第一滤光膜步驟(S200)中,係將 —球黏性值(Ball Tack Value)小於9.5之感壓膠22塗佈於 於第一濾光膜23。其中,塗佈時係可採用價格較便宜之連 續塗佈設備。 感壓膠(Pressure Sensitive Adhesives)22 是指輕壓即可 勘著到物體表面的黏著劑,其是由彈性體、增黏樹脂、增 1250314 塑劑和填充料調配而成。而感壓膠之性能係隨著所使用I 體、聚合的方式、所控制膠體之分子量或玻璃轉化溫戶(了) 而有不同。常見的感壓膠22種類有天然橡膠、苯乙稀^ 二烯橡膠(SBR)、壓克力樹脂(丙烯酸酯共聚物)等等。 本實施例中,感壓勝22之材質係以壓克力樹脂為主 要成份,溶劑為乙酸乙脂/曱苯,調製成固形物含量約為 24〜26%、黏度為2500〜5000cps·之感壓膠22。塗佈厚度約 為20至30// m,而折射係數係約介於1·35至ι·5〇之間, 以確保較佳的穿透率。 另外,於攝氏80度時,感壓膠22以Jis κ 0237 U 規範量測,其球黏性值(Ball Tack Value)係小於9.5。如圖 4所示,依據JIS K 0237 12規範,係將切割成25mm χ 120mm之感壓膠測試片31,放在傾斜角度為30度之斜板 32上,測定不同大小鋼球33(1/32〜32/32, χ/32系列)於經 過助跑區311(長度為l〇〇mm)後,是否會繼續於測試區 312(長度為100mm)上滾動。而於測試區312上停止的最大 鋼球之χ值’即為感壓膠測試片31之球黏性值(Bau Tack Value) 〇 第一濾光膜23係選自一抗反射膜23a、以及一抗近紅 外線膜23b其中之一。 抗反射膜23a係具有一第二樹脂層231a、以及一抗反 射層232a。其中,第二樹脂層231a係可為聚對苯二曱酸 乙一醇酯(PET) ’厚度約為75至125 // m。通常,抗反射膜 23a係置於使用者侧(Viewer Side)。 1250314 抗近紅外線膜23b係具有—第三樹脂層231b、以及一 ,近紅外線層232b。其中’第三樹脂層咖係可為聚對 苯一曱酸乙二醇酯(PET),而塗佈厚度約為乃至125#瓜。 而抗近紅外線層232b係將能吸收霓虹光、及近紅外線之 染料’溶解於壓克力、聚碳酸g旨、聚乙烯的光學樹脂中, 經塗佈後形成。 請參照圖3及圖6所示,於黏合該第一濾光膜及該金 屬網層步驟(S300)中,係將第一濾光膜23與金屬網層211 黏合。其中,第一濾光膜23係選自一抗反射膜Ua、以及 一抗近紅外線膜23b其中之一。本實施例中,如圖6所示, 弟一濾光膜23係可為一抗近紅外線膜23b。 請參照圖5及圖6,本實施例中,光學濾光片製造方 法更包含設置一基板步驟(S400),其係將一基板24設置於 第一樹脂層212之第二表面214之上,可利用感壓膠22 將基板24之一側黏合於第一樹脂層212之第二表面214。 其中,基板24係可為一玻璃。 如圖5及圖6所示,本實施例中,光學濾光片製造方 法更可包含設置一第二濾光膜步驟(S500),其係將第二濾 光膜25設置於基板24之另一側,第二濾光膜25係選自 一抗反射膜25a、以及一抗近紅外線膜25b其中之一。其 中,抗反射膜25a、以及一抗近紅外線膜25b係與第一濾 光膜23之抗反射膜23a及抗近紅外線膜23b具有相同之功 效及特徵,於此不再贅述。 另外,請參照圖5至圖8,於設置一基板步驟(S400) 11 1250314 中,也可將基板24設置第一濾光膜23之上,而於設置一 第二濾光膜步驟(S500)中,可將第二濾光膜25設置於基板 24之另一側(如圖7),或是將第二濾光膜25設置於第一樹 脂層212之第二表面214(如圖8)。 各個膜層黏合時,均可於膜層之一侧塗佈感壓膠22, 以進行黏合。而黏合時,可利用滾輪施以2.0〜4.0公斤力, 以均勻黏合。另外’黏合完成之光學濾光片20並不限定 圖式之上方或下方為電漿顯示面板之使用者側(Viewer Side),例如圖6中係以圖式之下方為使用者侧為例,而圖 7則以圖式中的上方為使用者側為例。 本實施例中,光學濾·光片製造方法更包含一去除感壓 膠與金屬網層間氣泡之步驟(S600),其係將光學濾光片20 直立置於一壓力腔室,於攝氏約50至80度,灌入每平方 公分5.0至8.0公斤力之高壓空氣,並將光學濾光片20靜 置約30至120分鐘,以去除氣泡。其中,於一批次中, 可置入40〜50片之光學濾光片20。 第二實施例 請參照圖9,本發明之光學濾光片製造方法係包含設 置一金屬網層步驟(P100)、塗佈一感壓膠於一基板步驟 (P200)、以及黏合該基板及該金屬網層步驟(P300)。 其中,設置一金屬網層步驟(P100)係與第一實施例中 之設置一金屬網層步驟(S100)相同,於此不再贅述。另外, 本實施例中相同的元件符號,係代表相同之元件,詳細的 12 1250314 元件說明即不再贅述。 如圖9及圖1〇所示,於塗佈一感壓膠於一基板步驟 (P200)中,係將一球黏性值(Ball Tack Value)小於9.5之感 壓膠22,塗佈於基板24上。其中,塗佈時係可採用價格 較便宜之連續塗佈設備。 如圖10及圖11所示,於黏合該基板及該金屬網層步 驟(P300)中,係將基板24及該金屬網層211黏合。 本實施例中,光學濾光片製造方法更包含設置至少一 第一濾光膜步驟(P400),其係將第一濾光膜23設置於基板 24之另一側。當然,也可以設置二個第一濾光膜23於基 板24之另一側,例如一個是抗反射膜23a、一個是抗近紅 外線膜23b(如圖1〇),而抗反射膜23a以及抗近紅外線膜 23b之間,係可利用感壓膠22黏合。 請參照圖11及圖12所示,本實施例中,光學濾光片 製造方法更包含設置一第二濾光膜步驟(P500),其係將第 二濾光膜25設置於第一樹脂層212之第二表面214,第二 濾光膜25係選自一抗反射膜25a、以及一抗近紅外線膜25b 其中之一。如圖12示示’第二濾光膜25係可為一抗近紅 外線膜25b。 另外,如圖11及圖13所示,於設置至少一第一濾光 膜步驟(P400)中,也可將至少第一濾光膜23設置於第一樹 脂層212之第二表面214。如圖13所示,可設置二個第一 濾光膜23於第一樹脂層212之第二表面214。請參照圖 11及圖14,當然,也可以只設置一個第一濾光膜23於而 13 1250314 於第二表面214,而於設置一第二濾光膜步驟(P500)中, 係可將第二濾光膜25設置於基板24之另一側。 各個膜層黏合時,均可於膜層之一側塗佈感壓膠22, 以進行黏合。而黏合時,可利用滾輪施以2.0〜4.0公斤力, 以均勻黏合。另外,黏合完成之光學濾光片20並不限定 圖式之上方或下方為電漿顯示面板之使用者側(Viewer Side),例如圖6中係以圖式之下方為使用者側為例,而圖 7則以圖式中的上方為使用者側。 本實施例中,光學濾光片製造方法更包含一去除感壓 膠與金屬網層間氣泡之步驟(P600),其係將光學濾光片20 置於一壓力腔室,於攝氏約50至80度,灌入每平方公分 5·0至8.0公斤力之高壓空氣,並將光學濾光片20靜置約 30至120分鐘,以去除氣泡。其中,於一批次中,可置入 40〜50片之光學濾光片20。 綜上所述,本發明之光學濾光片製造方法,係利用球 黏性值(Ball Tack Value)小於9·5之感壓膠,黏合抗電磁波 膜之金屬網層與第一濾光膜之間、或是金屬網層與基板之 間。與習知技術相比,本發明之光學濾光片製造方法,能 於較低溫、較低壓的環境下,去除位於金屬網層與第一濾 光膜之間、或是金屬網層與基板之間的氣泡。如此一來, 即能減少能源之使用,進而能降低製程之生產成本。另 外,本發明之光學濾光片製造方法,係可於同一批次中, 同時處理複數片的光學濾光片,故也大幅降低了生產的成 本。另外,本發明之光學濾光片製造方法係將感壓膠塗佈 14 1250314 於第一渡光膜或是基板上,故能使用較便宜之連續塗佈機 台來進行,因此也能降低製程之生產成本。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1 係習知之電漿顯示面板與光學濾光片之一簡單 不意圖, 圖2 係習知之光學濾光片之一側視示意圖; 圖3 係本發明之光學濾光片製造方法第一實施例之 一流程不意圖, 圖4 係本發明之光學濾光片之感壓膠,依據JIS K 0237 12規範,所進行之球黏性實驗; 圖5 係本發明之光學濾光片製造方法第一實施例 之另一流程示意圖; 圖6 係本發明之光學濾光片第一實施例之一側視 不意圖, 圖7 係本發明之光學濾光片第一實施例之又一侧 視不意圖, 圖8 係本發明之光學濾光片第一實施例之再一侧 視不意圖, 圖9 係本發明之光學濾光片製造方法第二實施例 之一流程示意圖; 15 1250314 圖ίο 係本發明之光學濾光片第二實施例之一侧視 不意圖, 圖11 係本發明之光學濾光片製造方法第二實施例 之另一流程示意圖; 圖12 係本發明之光學濾光片第二實施例之另一侧 視不意圖, 圖13 係本發明之光學濾光片第二實施例之又一侧 視不意圖,以及 圖14 係本發明之光學濾光片第二實施例之再一侧 視不意圖 〇 元件符號說明: 1 電漿顯示面板 10 光學濾光片 11 基板 12 抗反射膜 13 抗電磁波膜 131 透明樹脂層 132 電磁屏蔽網 14 抗近紅外線膜 141 透明樹脂層 142 抗近紅外線層 15 感壓膠 20 光學濾光片 16 1250314 21 抗電磁波膜 211 金屬網層 212 第一樹脂層 213 第一表面 214 第二表面 22 感壓膠 23 第一渡光膜 23a 抗反射膜 231a 第二樹脂層 232a 抗反射層 23b 抗近紅外線膜 231b 第三樹脂層 232b 抗近紅外線層 24 基板 25 第二濾光膜 25a 抗反射膜 251a 第二樹脂層 252a 抗反射層 25b 抗近紅外線膜 251b 第三樹脂層 252b 抗近紅外線層 31 感壓膠測試片 311 助跑區 312 測試區 1250314 32 斜板 33 鋼球 S100 設置一金屬網層步驟 S200 塗佈一感壓膠於一第一濾光膜步驟 S300 黏合該第一濾光膜及該金屬網層步驟 S400 設置一基板步驟 S500 設置一第二濾光膜步驟 S600 去除感壓膠與金屬網層間氣泡之步驟 P100 設置一金屬網層步驟 P200 塗佈一感壓膠於一基板步驟 P300 黏合該基板及該金屬網層步驟 P400 設置至少一第一濾光膜步驟 P500 設置一第二濾光膜步驟 P600 去除感壓膠與金屬網層間氣泡之步驟Ray, wavelength is about 800~100onm) and so on. Among them, the neon light will interfere with the coloration of the display, and the excessive electromagnetic wave is harmful to the human body. In addition, the near-infrared light is close to the remote control wavelength of the home appliance, so it is easy to cause the wrong start of other electrical equipment in the home. Therefore, as shown in Fig. 1, a conventional technique is provided in front of the plasma display panel 1 with a transparent optical filter 1 遮蔽 to shield electromagnetic waves, neon light, and near infrared rays. The optical filter, the anti-reflection film, and the primary layer 10 comprise a substrate 11 (for example, a tempered glass), an anti-Reflective layer 12, an anti-electromagnetic wave film 13, and an infrared film 14. The anti-reflection film I2 is designed to prevent the user from having a reflective problem when viewing it, and is usually attached to the viewer side to avoid reflection. The anti-electromagnetic wave film 13 is used to shield electromagnetic wave bonding, plating, or electrodeless electricity, and a metal layer is formed on the transparent resin layer 131 (e.g., pET film) of (4) 〇 /zm. Then, the metal layer is exposed, (4), and (4) to form an electromagnetic shielding net 132 (meSh) ' to complete the fabrication of the anti-electromagnetic wave film 13, and the electromagnetic shielding effect is achieved. In addition, the anti-near-infrared film 14 is used to shield the electro-optical and anti-near-infrared rays, and is selected to have a dye at a specific wavelength, such as a cyanine dye, and a metal complex, a diamine compound (4). This compound or the like is dissolved in an optical grade resin of acrylic, polycarbonate, or polyethylene, and is coated by a transparent resin layer 141 (for example, pET) having a thickness of about 100 to 200/zm. On the film, an anti-infrared 142 layer is formed. Finally, one side of each of the optical filter films is coated with a pressure sensitive adhesive 15, and then laminated on the substrate 11 having a thickness of about 2.5 mm to 35 mm in a laminating manner. However, when the anti-electromagnetic wave film 13 is bonded, the difference in the electromagnetic shielding net 132 causes a small bubble to be generated when it is bonded to the pressure sensitive adhesive 15. As a result, irregular light is scattered and the transmittance is lowered when light passes through the optical filter. Therefore, it is necessary to perform the transparent treatment (excluding the bubble treatment) of the electromagnetic wave resistant film 13 before the bonding to reduce the generation of bubbles. In the prior art, in order to avoid or remove bubbles, for example, a thermoplastic resin such as EVA (ethylene-vinyl) having a refractive index of 1.4 to 1.65 is first coated on the electromagnetic shielding net 132 of the anti-electromagnetic wave film 13. Acetate), and then attached to the anti-near infrared film. Alternatively, the back surface of the anti-infrared film 14 is first coated with a layer of adhesive resin having a thickness of about 20 to 30/m, and then adhered to the electromagnetic shielding net 132 side of the anti-electromagnetic wave film, and finally vacuum and high temperature. The bubble is extracted in a manner, or the temperature of the thermoplastic resin is lowered to a liquid state by a high temperature of 200 degrees or less and a pressure of 10 kg, for transparency treatment. However, the method of applying the thermoplastic resin to the electromagnetic shielding net 132 first is to apply the thermoplastic resin to the sheath coating, so that the coating equipment used is very expensive, so the production cost of the process is increased; Whether it is vacuum or high temperature, or high temperature and high pressure to remove air bubbles, the process cost is higher and the conditions are stricter. Moreover, when bubbles are extracted in a vacuum process, even a single-piece batch is produced, which is not economical and leads to an increase in production costs. In view of the above problems, the inventors of the present invention have in view of the above-mentioned "optical filter manufacturing method" which can solve the above problems of high process cost and single-piece batch production. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide an optical filter manufacturing method capable of removing bubbles in an optical filter. In order to achieve the above object, an optical filter manufacturing method according to the present invention is used for a plasma display panel, and the optical filter manufacturing method includes disposing a metal mesh layer on a first surface of a first resin layer. The resin layer has a second surface opposite to the first surface of the 1250314; a pressure sensitive adhesive having a ball viscosity value of less than 9.5 is applied to the first filter film; and the first filter film and the metal mesh layer are bonded. In order to achieve the above object, an optical filter manufacturing method according to the present invention is used for a plasma display panel, and the optical filter manufacturing method includes disposing a metal mesh layer on a first surface of a first resin layer. The resin layer has a second surface opposite to the first surface; a pressure sensitive adhesive having a ball viscosity value of less than 9.5 is applied to a substrate; the substrate and the metal mesh layer are bonded. Therefore, according to the optical filter manufacturing method of the present invention, the pressure sensitive adhesive having a Ball Tack Value of less than 9.5 is used, and the metal mesh layer of the anti-electromagnetic wave film is bonded to the first filter film or the metal mesh. Layer and substrate. Compared with the prior art, the optical filter manufacturing method of the present invention can remove the metal mesh layer and the first filter film or the metal mesh layer and the substrate in a lower temperature and lower pressure environment. Bubble between. In this way, the use of energy can be reduced, which in turn can reduce the production cost of the process. Further, the optical filter manufacturing method of the present invention can simultaneously process a plurality of optical filters in the same batch, thereby greatly reducing the cost of production. In addition, the optical filter manufacturing method of the present invention applies the pressure sensitive adhesive to the first filter film or the substrate, so that it can be carried out using a relatively inexpensive continuous coating machine, thereby also reducing the production process. cost. [Embodiment] Hereinafter, a method of manufacturing an optical filter according to a preferred embodiment of the present invention will be described with reference to the related drawings. 1250314 The optical filter manufacturing method of the present invention is an optical filter for manufacturing a plasma display panel (PDP). As shown in FIG. 3, the optical filter manufacturing method of the present invention comprises the steps of: providing a metal mesh layer (S100), applying a pressure sensitive adhesive to a first filter film step (S200), and bonding. The first filter film and the metal mesh layer step (S300), please refer to FIG. 3 and FIG. 4, in the step of providing a metal mesh layer (si〇〇), the metal mesh layer 211 is disposed on a first resin. One of the first surfaces 213 of the layer 212 forms an anti-electromagnetic wave film 21. The first resin layer 212 has a second surface 214 opposite to the first surface 213. The first resin layer 212 is polyethylene terephthalate (pBT) and has a thickness of about 75 to 125 //m. The metal mesh layer 211 is formed by exposure development etching, and has an aperture ratio of 85 to 95%, and the material may be copper. In this embodiment, in order to achieve good visible light transmission efficiency, the metal mesh layer 211 has a copper wire height of about 5 to 12 / / m, a width of about 8 to 12 / zm, and a line spacing of about 200 to 300 / / m. In the step of applying a pressure sensitive adhesive to a first filter film (S200), a pressure sensitive adhesive 22 having a Ball Tack Value of less than 9.5 is applied to the first filter film 23. Among them, continuous coating equipment which is relatively inexpensive can be used for coating. Pressure Sensitive Adhesives 22 are adhesives that can be applied to the surface of a surface by light pressing. They are formulated from elastomers, tackifying resins, 1250314 plasticizers and fillers. The performance of the pressure sensitive adhesive varies with the type of I used, the way it is polymerized, the molecular weight of the controlled colloid, or the glass transition temperature. Common types of pressure sensitive adhesive 22 are natural rubber, styrene rubber (SBR), acrylic resin (acrylate copolymer) and the like. In this embodiment, the material of the pressure-sensing 22 is mainly composed of acrylic resin, and the solvent is ethyl acetate/nonylbenzene, and the solid content is about 24 to 26%, and the viscosity is 2500 to 5000 cps. Pressure glue 22. The coating thickness is about 20 to 30//m, and the refractive index is between about 1.35 and ι·5 , to ensure better penetration. In addition, at 80 degrees Celsius, the pressure sensitive adhesive 22 is measured by the Jis κ 0237 U specification, and its Ball Tack Value is less than 9.5. As shown in Fig. 4, according to the specification of JIS K 0237 12, a pressure sensitive adhesive test piece 31 cut into 25 mm χ 120 mm is placed on a swash plate 32 having an inclination angle of 30 degrees, and steel balls 33 of different sizes are measured. 32~32/32, χ/32 series) After passing through the running area 311 (length l〇〇mm), will it continue to scroll on the test area 312 (length 100mm). The maximum value of the steel ball stopped at the test zone 312 is the Bau Tack Value of the pressure sensitive adhesive test piece 31. The first filter film 23 is selected from an anti-reflection film 23a, and One of the primary anti-infrared films 23b. The anti-reflection film 23a has a second resin layer 231a and an anti-reflection layer 232a. The second resin layer 231a may be polyethylene terephthalate (PET) having a thickness of about 75 to 125 // m. Usually, the anti-reflection film 23a is placed on the user side (Viewer Side). The 1250314 anti-infrared ray film 23b has a third resin layer 231b and a near-infrared ray 232b. Wherein the third resin layer may be polyethylene terephthalate (PET), and the coating thickness is about 125# melon. On the other hand, the anti-near-infrared layer 232b is formed by dissolving a dye that absorbs neon light and near-infrared rays into an optical resin of acrylic, polycarbonate, or polyethylene, and is applied. Referring to FIGS. 3 and 6, in the step of bonding the first filter film and the metal mesh layer (S300), the first filter film 23 and the metal mesh layer 211 are bonded. The first filter film 23 is selected from one of an anti-reflection film Ua and an anti-near infrared film 23b. In this embodiment, as shown in FIG. 6, the filter film 23 can be a near-infrared film 23b. Referring to FIG. 5 and FIG. 6 , in the embodiment, the optical filter manufacturing method further includes a substrate step ( S400 ) of disposing a substrate 24 on the second surface 214 of the first resin layer 212 . One side of the substrate 24 may be adhered to the second surface 214 of the first resin layer 212 by the pressure sensitive adhesive 22. The substrate 24 can be a glass. As shown in FIG. 5 and FIG. 6 , in the embodiment, the optical filter manufacturing method may further include a second filter film step ( S500 ), wherein the second filter film 25 is disposed on the substrate 24 . On one side, the second filter film 25 is selected from one of an anti-reflection film 25a and an anti-near infrared film 25b. The anti-reflection film 25a and the anti-near-infrared film 25b have the same functions and features as the anti-reflection film 23a and the anti-infrared film 23b of the first filter film 23, and will not be described again. In addition, referring to FIG. 5 to FIG. 8 , in the step of disposing a substrate ( S400 ) 11 1250314 , the substrate 24 may be disposed on the first filter film 23 and the second filter film is disposed in the step ( S500 ). The second filter film 25 may be disposed on the other side of the substrate 24 (as shown in FIG. 7), or the second filter film 25 may be disposed on the second surface 214 of the first resin layer 212 (FIG. 8). . When each film layer is bonded, the pressure sensitive adhesive 22 can be applied to one side of the film layer for bonding. When bonding, the roller can be applied with a force of 2.0 to 4.0 kg to uniformly bond. In addition, the 'bonded optical filter 20 is not limited to the top or bottom of the figure as the user side of the plasma display panel. For example, in FIG. 6 , the lower side of the figure is the user side. In the figure, the upper side of the figure is the user side as an example. In this embodiment, the optical filter and optical sheet manufacturing method further comprises a step of removing bubbles between the pressure sensitive adhesive and the metal mesh layer (S600), wherein the optical filter 20 is placed upright in a pressure chamber at about 50 Celsius. At 80 degrees, high pressure air of 5.0 to 8.0 kilograms per square centimeter is poured, and the optical filter 20 is allowed to stand for about 30 to 120 minutes to remove air bubbles. Among them, in one batch, 40 to 50 optical filters 20 can be placed. Referring to FIG. 9 , the optical filter manufacturing method of the present invention comprises the steps of: providing a metal mesh layer (P100), coating a pressure sensitive adhesive on a substrate (P200), and bonding the substrate and the Metal mesh layer step (P300). The step of providing a metal mesh layer (P100) is the same as the step of providing a metal mesh layer (S100) in the first embodiment, and details are not described herein again. In addition, the same component symbols in the embodiment represent the same components, and the detailed description of the components of 12 1250314 will not be repeated. As shown in FIG. 9 and FIG. 1A, in applying a pressure sensitive adhesive to a substrate step (P200), a pressure sensitive adhesive 22 having a Ball Tack Value of less than 9.5 is applied to the substrate. 24 on. Among them, continuous coating equipment which is cheaper can be used for coating. As shown in Figs. 10 and 11, in the step of bonding the substrate and the metal mesh layer (P300), the substrate 24 and the metal mesh layer 211 are bonded. In this embodiment, the optical filter manufacturing method further comprises at least one first filter film step (P400), wherein the first filter film 23 is disposed on the other side of the substrate 24. Of course, two first filter films 23 may be disposed on the other side of the substrate 24, for example, one is an anti-reflection film 23a, and the other is an anti-infrared film 23b (as shown in FIG. 1), and the anti-reflection film 23a and the anti-reflection film 23a The near-infrared film 23b can be bonded by the pressure sensitive adhesive 22. Referring to FIG. 11 and FIG. 12, in the embodiment, the optical filter manufacturing method further includes a second filter film step (P500), wherein the second filter film 25 is disposed on the first resin layer. The second surface 214 of 212, the second filter film 25 is selected from one of an anti-reflection film 25a and an anti-near infrared film 25b. As shown in Fig. 12, the second filter film 25 can be a primary anti-infrared film 25b. Further, as shown in Figs. 11 and 13, at least one first filter film step (P400) may be provided, and at least the first filter film 23 may be provided on the second surface 214 of the first resin layer 212. As shown in Fig. 13, two first filter films 23 may be disposed on the second surface 214 of the first resin layer 212. Please refer to FIG. 11 and FIG. 14. Of course, only one first filter film 23 may be disposed on the second surface 214, and in the second filter film step (P500), The second filter film 25 is disposed on the other side of the substrate 24. When each film layer is bonded, the pressure sensitive adhesive 22 can be applied to one side of the film layer for bonding. When bonding, the roller can be applied with a force of 2.0 to 4.0 kg to uniformly bond. In addition, the optical filter 20 that is bonded is not limited to the user side (Viewer Side) of the plasma display panel above or below the drawing, for example, the user side of the figure is taken as an example in FIG. In Fig. 7, the upper side of the figure is the user side. In this embodiment, the optical filter manufacturing method further comprises a step of removing bubbles between the pressure sensitive adhesive and the metal mesh layer (P600), wherein the optical filter 20 is placed in a pressure chamber at about 50 to 80 Celsius. The high-pressure air of 5,000 to 8.0 kg per square centimeter is poured, and the optical filter 20 is allowed to stand for about 30 to 120 minutes to remove air bubbles. Among them, in one batch, 40 to 50 optical filters 20 can be placed. In summary, the optical filter manufacturing method of the present invention uses a pressure sensitive adhesive having a Ball Tack Value of less than 9.5, and adheres to the metal mesh layer of the anti-electromagnetic wave film and the first filter film. Between, or between the metal mesh layer and the substrate. Compared with the prior art, the optical filter manufacturing method of the present invention can remove the metal mesh layer and the first filter film or the metal mesh layer and the substrate in a lower temperature and lower pressure environment. Bubbles between. In this way, the use of energy can be reduced, thereby reducing the production cost of the process. Further, the optical filter manufacturing method of the present invention can simultaneously process a plurality of optical filters in the same batch, thereby greatly reducing the cost of production. In addition, the optical filter manufacturing method of the present invention applies the pressure sensitive adhesive 14 1250314 to the first light-receiving film or the substrate, so that it can be carried out using a relatively inexpensive continuous coating machine, thereby also reducing the process. Production costs. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of one of the conventional plasma display panels and optical filters, and FIG. 2 is a side view of one of the conventional optical filters; FIG. 3 is an optical filter of the present invention. The film manufacturing method is not intended to be a flow of the first embodiment. FIG. 4 is a pressure sensitive adhesive of the optical filter of the present invention, and the ball viscosity test is performed according to the specification of JIS K 0237 12; FIG. 6 is a side view of the first embodiment of the optical filter of the present invention. FIG. 6 is a side view of the optical filter of the present invention. FIG. 7 is a first embodiment of the optical filter of the present invention. FIG. 8 is a schematic view of a second embodiment of the optical filter of the present invention. FIG. 9 is a schematic flow diagram of a second embodiment of the optical filter manufacturing method of the present invention. 15 1250314 FIG. 1 is a side view of a second embodiment of an optical filter of the present invention, and FIG. 11 is another schematic flow chart of a second embodiment of the optical filter manufacturing method of the present invention; Invented optical filter second real The other side of the example is not intended to be, and FIG. 13 is a side view of the second embodiment of the optical filter of the present invention, and FIG. 14 is a further side of the second embodiment of the optical filter of the present invention.视 不 〇 〇 符号 电 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 pressure sensitive adhesive 20 optical filter 16 1250314 21 anti-electromagnetic wave film 211 metal mesh layer 212 first resin layer 213 first surface 214 second surface 22 pressure sensitive adhesive 23 first light-passing film 23a anti-reflective film 231a second resin Layer 232a Antireflection layer 23b Anti-infrared film 231b Third resin layer 232b Anti-infrared layer 24 Substrate 25 Second filter film 25a Antireflection film 251a Second resin layer 252a Antireflection layer 25b Anti-infrared film 251b Third resin Layer 252b anti-infrared layer 31 pressure sensitive rubber test piece 311 running area 312 test area 1250314 32 swash plate 33 steel ball S100 set a metal mesh layer step S200 applies a pressure sensitive adhesive to a first filter film step S300 to bond the first filter film and the metal mesh layer. Step S400 provides a substrate step S500, and a second filter film is disposed. Step S600 removes pressure sensitive adhesive and metal. Step of air bubble between the layers P100 Set a metal mesh layer Step P200 Apply a pressure sensitive adhesive to a substrate Step P300 Bond the substrate and the metal mesh layer Step P400 Set at least one first filter film Step P500 Set a second filter Film step P600 Step of removing bubbles between the pressure sensitive adhesive and the metal mesh layer