TWI249907B - Method for fast mode decision of variable block size coding - Google Patents
Method for fast mode decision of variable block size coding Download PDFInfo
- Publication number
- TWI249907B TWI249907B TW94112623A TW94112623A TWI249907B TW I249907 B TWI249907 B TW I249907B TW 94112623 A TW94112623 A TW 94112623A TW 94112623 A TW94112623 A TW 94112623A TW I249907 B TWI249907 B TW I249907B
- Authority
- TW
- Taiwan
- Prior art keywords
- block
- mode
- dynamic
- block size
- current
- Prior art date
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
1249907 九、發明說明: 【發明所屬之技術領域】 [01]本發明關於一種用於可變大小區塊的編碼方法,尤其關 於一種快速決定視訊影像資料的可變大小區塊的最佳編碼模式的 方法。 【先前技術】 [02]透過通訊網路傳輸多媒體資料,尤其是動態視訊資料, 鲁 需要在傳輸前壓縮資料以符合可利用的網路頻寬。MPEG-2, MPEG-4及H.263等壓縮技術均為目前壓縮視訊資料的技術。最近 開發的H.264壓縮技術進一步提高了壓縮資料的品質。與先前的 廢縮技術相比,在獲得相同的壓縮品質情況下,Η·264技術可節省 頻見。然而,Η.264技術所需要的運算量遠大於先前壓縮技術所需 要的計算量。 [03] ITU-T 的 VCEG (Video ㈤ing 邮咖 Gr〇up)和肋 MPEG委員會較了 H.264規則。腿4技術包括用於訊框間編碼 的七個區塊模式和用於訊框内編碼的兩個區塊模式。用於訊框内 編碼的兩個區塊模式包括内部制6模式和柄模式。每個區塊 有8個_方向,以依照區塊的雜柄擇最適合的區塊模 式以提高壓縮效率。進—步地,爲了_觸,H264技術提供了 多個參考雜。從㈣參考訊框帽糾—倾目前訊框最相似 的,考_於_。按照這種方法,可提高編碼效率,且位移 向置預測的精準度可提高1/4畫素。 1249907 [〇4]儘管H.264技術大幅度提高 二因:、更:Γ實際上,在真實一 :“現_術成爲挑戰。因此,需要簡化編碼哭_, 使H.264技術在真實時間傳輸中更易於應用。 f發明内容】 [〇5]鑒加上的_,本發日摘 區塊大小編碼之快速模式判斷方法,可節省大約_、2:射變 需要的編碼時間且不犧牲過多的編碼品質。 則技術所 ,為達上述目的,本發明所揭露之—種可變區塊大 、、扁碼的快频式觸方法,祕有 龙大 獲得至少-參考模式;為至少一參考模式進行動令 =照動_储果從至少-參考模射決定及在目 目前動態區塊進行編碼。 ^式’以對 =7]本㈣露之—種可變區塊大小糾齡速 每個泉考複數參考動態區塊獲得複數參考模^為 考模式是否可=料估;及依照該動態評话結果判斷每個參 各,如果鮮考該參核式衫為最大區频 咖區塊的位移向量差別值是否小於-第 ^249907 ^ I難切㈣―難,確定轉考模式為可靠 的。如瓣姻羯烟賴,_崎 目可動態區塊内的位移向量變異量,並判斷該位移向量變里旦曰 否大於一第二難,如果大糊確定該參考模式係可_ Γ里疋 [09]本發騎揭露之—種可變區塊大 斷方法,包括有:依昭抑夫去^t「 撕夹逮挺式匈 定多於丰m二 顧得複數參寺模式;確 考^1_區塊採用—第—參寺模式,·對第-參 杲工進仃可紐朗’·及如果該第_ / 該第一參考模錢目前動魅塊進行編碼。、4為的,使用 採用陶進—步地,當確定沒有多於半數_複數參考動能區境 ‘用-相同的第一來考 助心[塊 模式進行動態評估:;確定多於半考區塊的所有參考 選擇_目數的該料模式是可靠的;及 塊進行編·Γ 成本柯,简目前動態區 細說3下有關本發明的特徵與實作,兹配合圖式作最佳實施例詳 【實施方式】 使用3方Y.t定用於可變大小區塊編碼的區塊大小模式,通常 法均需_ _㈣彻咖™1嫩。這兩種方 下分離爛卿_勝對於由上往 於可利用的區塊大小模式中選擇一個最小區塊大小模 1249907 .式作爲用於實現動態評估的雜區塊大小模式。相反地,對於由 下在上合併法,選擇最大區塊大小模式作爲起始區塊大小模式。 接者’這㈣方法依照祕綱結果確定起始區塊大小模式是否 滿足預定條件。如果滿足,❹該起始區塊大小模朗於編石馬。 否則二選擇其倾塊大小模式驗動態测,並從動態預測結果 中確定—個最佳區塊大小模式。通常,在錄高位元速率的情況 、鲁下’使用較小區塊大小模式驗編·機會歓,也就是說,使 下往上σ併法。在有較低位元速率的情況下,使用由上往下 分離法較好。 、Π6]也可制其它方法觸祕編碼的最佳區塊大小模 式例如’使用中等大小區塊模式作爲起始區賊式以進行動能 預^接著依縣果,_中等大小區塊模式是應與其他區塊I 、換式合城是分離成較小區塊大小模式。1249907 IX. Description of the Invention: [Technical Field] [01] The present invention relates to an encoding method for a variable size block, and more particularly to an optimal encoding mode for rapidly determining a variable size block of video image data Methods. [Prior Art] [02] To transmit multimedia data, especially dynamic video data, through a communication network, Lu needs to compress the data before transmission to match the available network bandwidth. Compression technologies such as MPEG-2, MPEG-4 and H.263 are currently technologies for compressing video data. The recently developed H.264 compression technology further improves the quality of compressed data. Compared with the previous shrinkage technology, the Η·264 technology can save time when the same compression quality is obtained. However, the amount of computation required by the 264.264 technology is much larger than the amount of computation required by previous compression techniques. [03] ITU-T's VCEG (Video) and the rib MPEG committee compared the H.264 rule. The Leg 4 technique includes seven block modes for inter-frame coding and two block modes for intra-frame coding. The two block modes used for intra-frame coding include the internal 6 mode and the handle mode. Each block has 8 _ directions to select the most suitable block mode according to the block's shank to improve compression efficiency. Further, for the _ touch, H264 technology provides multiple reference miscellaneous. From (4) reference frame cap correction - tilt the current frame most similar, test _ _. According to this method, the coding efficiency can be improved, and the accuracy of the displacement orientation prediction can be increased by 1/4 pixel. 1249907 [〇4] Although the H.264 technology has greatly improved the two causes: and more: Γ In fact, in the real one: "The current _ surgery becomes a challenge. Therefore, the need to simplify the coding cry _, so that H.264 technology in real time It is easier to apply in transmission. fInventive content] [〇5] Added _, the fast mode judgment method of the block size coding of this transmission day can save about _, 2: coding time required for the attack without sacrificing Excessive coding quality. In order to achieve the above object, the present invention discloses a variable-frequency touch method with a large variable block and a flat code, and it is known that Longda obtains at least a reference mode; The reference mode is executed = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Each spring test plural reference dynamic block obtains the complex reference mode test mode, whether it can be estimated; and according to the dynamic evaluation result, each parameter is judged, if the fresh reference test shirt is the largest regional frequency coffee area Whether the difference vector of the displacement vector of the block is smaller than - ^249907 ^ I is difficult to cut (four) - difficult, It is determined that the transfer mode is reliable. For example, the displacement vector variation in the dynamic block can be determined by the displacement vector, and it is determined whether the displacement vector is greater than a second difficulty. Reference mode can be _ Γ 疋 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ It is necessary to count the number of temples; the test ^1_ block adopts - the first - temple model, · the first - 杲 杲 仃 纽 纽 纽 纽 纽 · · 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果 如果Coding. 4, use the use of Tao Jin - step, when it is determined that there is no more than half _ complex reference kinetic energy region 'use the same first to help the heart [block mode for dynamic evaluation:; more than determined The reference mode of all the reference selections of the semi-test block is reliable; and the block is edited. 成本 Cost Co, the current dynamic zone details 3 features and implementations of the present invention, DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment] A 3-square Yt is used for the block size mode of variable-size block coding. The common method requires _ _ (four) 彻 咖 TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM TM The heteroblock size mode is evaluated. Conversely, for the bottom-up merge method, the maximum block size mode is selected as the starting block size mode. The receiver's (four) method determines the starting block size mode according to the secret result. Whether the predetermined condition is met. If it is satisfied, the starting block size is modeled on the stone. Otherwise, the tilt block mode is selected to check the dynamic measurement, and the optimal block size mode is determined from the dynamic prediction result. Usually, in the case of recording a high bit rate, Lu's use a smaller block size mode to verify the opportunity, that is, to make the bottom up σ. In the case of lower bit rates, it is better to use a top-down separation method. Π6] can also make the best block size mode for other methods of secret coding, such as 'use medium size block mode as the starting area thief type to perform kinetic energy pre-^ followed by county, _ medium size block mode should be It is separated from other blocks I and commutate into a smaller block size mode.
叼料-種方法係確定一個細區塊大小模式的位移向量 位移向量預測—個用於編碼整個動_的合適的區塊 hit。讀方法分析位移向量的機率以選擇—個合適的區塊 個人、2而不讀各麵塊知、模式進行㈣刪然後選擇-们5適_塊大小模如進行編碼。 模式财法可测—個_區塊中各種子區塊大小 式。獅財咖__爛大小模 取獲得四個位移向量。接著使用這四個位移向量 9 1249907 預測其他區塊大小模式的位移向量。這種方法僅可實現對那些與 四個娜向量有明麵別的位移向量的動態預測。 [19] 然而’以上的各種方法沒有考慮目前動態區塊和其相鄰 動態區塊之間的外部信息,而僅考慮了目前動態區塊中的子區 塊。众日、?、本發明之貫施例,快速模式判__演算法藉由決定參 考目¥j動,祕塊和與其相鄰的動態區塊的空_互關係以及目前 動態區塊和先前影像訊框的參考動態區塊的時間相互關係決定用 於動恶預測的最佳區塊大小模式,其中先前影像訊框位於對應於 目前影像訊框中之目前動態區塊的參考動態區塊的位置。 [20] 表1所示為不同的編碼器中目前動態區塊和與其相鄰的 動卷區塊的空間相互關係的實驗資料,例如foreman、 COASTGUARD、CARPHONE、CONTAINER 及 ΑΚΓΥΟ。如表 1 所示,與目前動態區塊相鄰的動態區塊極可能使用與目前動態區 塊相同的區塊大小模式以進行編碼。 表1 SPATIAL (2) SPATIAL (3) -——^ SPATIAL (4) FOREMAN 50·00ο/〇 56.77% 63.58% COASTGUARD 54.17% 60.21% 65.17% CAJRPHONE 51.90% 59.08% *— 66.14% COOTAINER 79.46% 81.76% ---— 84.43% AKIYO 86.58% 88.43% 90.69% 10 1249907 [21]表1顯不了在不同編碼器中目前動態區塊和與其相鄰的 動悲區塊使帛_的區塊大顿式以動態預_機率。spatial (2)代表目剛動祕塊參考其左側和上方的相鄰動態區塊(此處,左 側和上方的相鄰動態區塊爲參考動態區塊)並使用任何一個參考動 恕區塊的區塊大小模式以實現動態預測的機率。同樣地,即趟^ 鲁⑶* SPATIAL⑷分別代表目前動態區塊使用任何一其參考動態 區塊的區塊大小模式以實現動態預測的機率。在spatial⑶中, 參考動祕塊包括目肋態區塊的左側、上方及左側上方的相鄰 動態區塊,在SPA胤(4)中,參考動態區塊進-步包括目前動態 區塊的右側上方的相鄰動態區塊。依照表i,透過參考相鄰的動態 區塊的區塊大小模式,目前動態區塊精確預測其用於編碼的區: 大小模式的機率約為60%。 " • [22]除郎f訊外,本發明亦考慮到相鄰影像訊框之間的時 間相互關係。在視訊影像中,通常目前影像訊框與其相鄰影像訊 框非常相似。因此,包括靜態或低動態目標或背景的兩個相抑 像訊框中的動態區塊亦應非常相似,故可使用相同的區塊大小2 行編碼。也就是說,目前影像訊框的動態區塊可使用先前影像= 號的動態區塊的區塊大小模式作爲預測區塊大小模式,1中先义 影像訊框位於對應於目前影像訊框中之目前«區_參考^ 區塊的位置。目前先前。 w 11 1249907 ^ [ 3]表2所不為目則影像訊框中動態區塊使用先前影像訊框 ^考動心區塊的區塊大小模式的時間機率的實驗結果,其中參 :動態區塊在先前影像訊框中的位置係依照目前動態區塊所在目 月ί)影像訊框中的位置。The trick-method is to determine the displacement vector of a fine-block size pattern. The displacement vector prediction is a suitable block hit for encoding the entire motion_. The reading method analyzes the probability of the displacement vector to select a suitable block for the individual, 2 without reading each block, and the mode is performed. (4) Delete and then select - 5 are appropriate. The mode finance method can measure the size of various sub-blocks in a block. The lion money coffee __ rotten size model takes four displacement vectors. The displacement vectors of the other block size patterns are then predicted using these four displacement vectors 9 1249907. This method can only achieve dynamic prediction of displacement vectors that are distinct from the four nanovectors. [19] However, the above various methods do not consider the external information between the current dynamic block and its adjacent dynamic block, but only the sub-blocks in the current dynamic block. All the days, ?, the embodiment of the present invention, the fast mode judgment __ algorithm by determining the reference object, the secret block and the dynamic block of its adjacent dynamic block and the current dynamic block and the previous The temporal correlation of the reference dynamic blocks of the image frame determines the optimal block size mode for the doom prediction, wherein the previous image frame is located in the reference dynamic block corresponding to the current dynamic block in the current image frame. position. [20] Table 1 shows the experimental data of the spatial relationship between the current dynamic block and the adjacent scroll block in different encoders, such as foreman, COASTGUARD, CARPHONE, CONTAINER and ΑΚΓΥΟ. As shown in Table 1, the dynamic block adjacent to the current dynamic block is likely to be encoded using the same block size mode as the current dynamic block. Table 1 SPATIAL (2) SPATIAL (3) -——^ SPATIAL (4) FOREMAN 50·00ο/〇56.77% 63.58% COASTGUARD 54.17% 60.21% 65.17% CAJRPHONE 51.90% 59.08% *- 66.14% COOTAINER 79.46% 81.76% - --- 84.43% AKIYO 86.58% 88.43% 90.69% 10 1249907 [21] Table 1 shows that the current dynamic block and its adjacent sorrow block in different encoders make the 大_ block large dynamic Pre_ chance. Spatial (2) represents the adjacent dynamic block on the left and top of the target block (here, the adjacent dynamic block on the left and the top is the reference dynamic block) and uses any reference block. Block size mode to achieve the probability of dynamic prediction. Similarly, 趟^鲁(3)* SPATIAL(4) represents the probability that the current dynamic block uses any block size mode of its reference dynamic block to achieve dynamic prediction. In spatial(3), the reference moving block includes adjacent dynamic blocks on the left, upper and left sides of the ribbed block. In the SPA胤(4), the reference dynamic block further includes the right side of the current dynamic block. Adjacent dynamic block above. According to Table i, by referring to the block size mode of the adjacent dynamic block, the current dynamic block accurately predicts the area used for encoding: The probability of the size mode is about 60%. " • [22] In addition to the Lang, the present invention also considers the temporal relationship between adjacent image frames. In video images, the current video frame is usually very similar to its adjacent video frame. Therefore, dynamic blocks in two phase-inhibited frames, including static or low-dynamic targets or backgrounds, should be very similar, so the same block size can be encoded in 2 lines. That is to say, the dynamic block of the current video frame can use the block size mode of the dynamic block of the previous image = number as the prediction block size mode, and the first image frame in the first image frame is located in the corresponding image frame. The current location of the «Zone_Reference^ block. Currently before. w 11 1249907 ^ [ 3] Table 2 is not the result of the time interval of the dynamic block in the video frame using the previous image frame to test the block size mode of the heart block, where the parameter: dynamic block in The position in the previous image frame is in accordance with the position of the current frame of the current dynamic block.
[24]表3進-步說明了在參考郎和時間相互關係後,目前 • 動態區塊精確預測用於編碼的區塊大小模式的機率大於70%。 表3 —--- -—.— TEMPORAL. SPATIAL ⑷ foreman ^ 75.51% COASTGUARD 77.46% CARPHONE -----— 77.26% CONTAINER '—— —— 89.98% AKIYO ^____ ^ 一— 93.42% ~~------ 12 1249907 [25] 第1A圖和第1B圖所示為依照本發明實施例之目前動 態區塊用於獲得預測區塊大小模式的時間和空間資訊。第1A圖所 示係時間資訊,其中目前編碼動態區塊]yfB係與一時間參考動態 區塊相比較,其中該參考動態區塊所在先前影像訊框(第訊框) 中的位置係依照目前動態區塊位於目前影像訊框(第N訊框)中的 位置。第1B圖所示係空間資訊,其中目前編碼動態區塊碰係與 其左侧相鄰動悲區塊MB1、左上侧相鄰動態區塊Mg。及右上侧 相鄰動態區塊MB3比較。 [26] 如上所述,先前技術Η·264技術分析七種可能的區塊大 小模式(即16x16、16x8、8x16、8χ8、8χ4、4χ8和綱並從七種 區塊大小模式中選出一種用於編碼。另一方面,本發明僅需分析 七種區塊大小模式的一個子集合,以減少編碼時間。據上所述, 這種新型方法學可作爲一種快速模式決策(FMD)演算法。這種 FMD演算法大約節約49%的編碼時間。然❿,編瑪品質亦降低大 約 0.6dB。 ^ [27] 爲了提高上述FMD演算法的編碼品質,本發明另一實 婦’J進—步分析了在使用預麻塊大小模式進行編碼前先檢測預 測區塊大小核式的可靠性。如果預測區塊大小模式可靠,動態區 塊將使㈣魏塊大小模式用於編碼。否則,將在整個動態區塊 L行王邛模式搜索以找到最佳的區塊大小模式。這種方法係j 13 1249907 種有效快速模式決策(EFMD)演算法。 [28] 依照EFMD演算法,FMD演料獲得的預測資訊可用 於動態評估以獲得所有可能的預·塊大倾式。爲了判斷_ 區塊大小赋的可錄,職D演算法考慮了 __估獲得的 位移向量的變異和差別值。較佳地,如果多於半數的預測區塊大 小模式係可靠的, FMD觸資訊即可被認爲是可靠的並可用 於編碼。 [29] 第2A圖和第2B圖所示分別為具有很大及很小位移向 虿變兴的動祕塊。如圖所示,—16χ16動態區塊被分成四個% 8區塊,即區塊f 一贿、區塊_ 一娜2、區塊_一細、區塊 sub_MB4。在第2A圖中,四個8χ8區塊中每個均具有不同的位移 向1,這樣整個動態區塊即具有很大的位移向量變異。相反,在 第2Β圖中,四個8x8區塊中每個均具有相似的位移向量,這樣動 態區塊的位移向量變異报小。在這種情況下,16χ16動態區塊本身 可用作編碼。就是說,當較小區塊的位移向量變異很小時,環繞 較小區塊的較大區塊更適於用作編碼。然而,如果區塊大小模式 係16x16,那麼在動態評估後僅存在一組位移向量。因而,從中無 法計算出位移向量變異。因此,本實施例僅考慮到當預測區塊大 小模式小於16x16區塊大小模式時用於確定可靠性的位移向量變 異。 [30]位移向量變異可通過下述方程式計算得出。依照本發 14 1249907 明’位移向量變異大於變異閾值THvar的區塊大小模式可被確定為 可靠。 = (MVx^VARCUT + MJ^y _VMcm) / 2 ⑴ MVx ^ VARcur = /1J; (MVxCUT - MVx:UT )2 ⑵ MVy — VAReur = ]^±{MVy^ ^ MVy^f (3) V n w=0 v 7 鲁 MVxcur=(iMVCr)/n 9 MVycur^(^MVy^)/n (4) m=l MFxref = (gMVx::f)/n ^ MVy^ ^ };^ m=l 、’ 其中η係每個區塊中的位移向量的個數,·χ和_分別 係X方向和y方向的位移向量分哥, 作J里刀里MVcur和MVref分別係目前區 塊和參考區塊的位移向量。 [31]表4所示為制位移向量變異決定區塊大小模式的可靠 鲁性的統計結果。從表4種可看出,平均精確度大於85%。 表4 P(B|A) P(C|A) FOREMAN 81% ----~- 19% COASTGUARD ----— 84% —---— 16% CARPHONE -—---- 85% 15% CONTAINER 92% 8% AKIYO 87% ! ---- ~~~ -——— 13% ——.— 15 1249907[24] Table 3 further shows that after the reference lang and time correlation, the current dynamic block accurately predicts the probability of using the block size mode for encoding greater than 70%. Table 3 —--- -—.— TEMPORAL. SPATIAL (4) foreman ^ 75.51% COASTGUARD 77.46% CARPHONE ----- 77.26% CONTAINER '—— —— 89.98% AKIYO ^____ ^ 一—93.42% ~~-- 12 1249907 [25] FIGS. 1A and 1B are diagrams showing temporal and spatial information of a current dynamic block for obtaining a predicted block size pattern in accordance with an embodiment of the present invention. Figure 1A shows time information, wherein the current coded dynamic block]yfB is compared with a time reference dynamic block, wherein the position in the previous video frame (frame) of the reference dynamic block is in accordance with the current The dynamic block is located in the current image frame (Nth frame). Figure 1B shows spatial information, in which the current coded dynamic block touches the left adjacent neighboring block MB1 and the upper left adjacent dynamic block Mg. And the upper right side adjacent dynamic block MB3 is compared. [26] As mentioned above, the prior art Η264 technology analyzes seven possible block size patterns (ie 16x16, 16x8, 8x16, 8χ8, 8χ4, 4χ8 and CLASS) and selects one of the seven block size modes for Coding. On the other hand, the present invention only needs to analyze a subset of the seven block size patterns to reduce the coding time. According to the above, the new methodology can be used as a fast mode decision (FMD) algorithm. The FMD algorithm saves about 49% of the coding time. Then, the quality of the code is also reduced by about 0.6dB. ^ [27] In order to improve the coding quality of the above FMD algorithm, another real woman's J-step analysis The reliability of the prediction block size kernel is detected before encoding using the pre-hemp block size mode. If the prediction block size mode is reliable, the dynamic block will make the (four) Wei block size mode used for encoding. Otherwise, it will be throughout Dynamic block L-line Wang Hao mode search to find the best block size mode. This method is j 13 1249907 effective fast mode decision (EFMD) algorithm. [28] According to EFMD algorithm, FMD interpretation obtained Forecast It can be used for dynamic evaluation to obtain all possible pre-block large dumps. In order to judge the _ block size assignment, the job D algorithm considers the variation and difference value of the obtained displacement vector. If more than half of the predicted block size patterns are reliable, the FMD touch information can be considered reliable and can be used for encoding. [29] Figures 2A and 2B show large and small, respectively. The displacement is moving to the moving block. As shown in the figure, the -16χ16 dynamic block is divided into four% 8 blocks, that is, the block f is a bribe, the block _ one na 2, the block _ a fine, the district Block sub_MB4. In Figure 2A, each of the four 8χ8 blocks has a different displacement to 1, so that the entire dynamic block has a large displacement vector variation. In contrast, in the second diagram, four 8x8 Each block in the block has a similar displacement vector, so that the displacement vector variation of the dynamic block is small. In this case, the 16χ16 dynamic block itself can be used as the encoding. That is, when the displacement vector of the smaller block is used. When the variation is small, larger blocks surrounding smaller blocks are more suitable for coding. However, if the block size mode is 16x16, then there is only one set of displacement vectors after the dynamic evaluation. Therefore, the displacement vector variation cannot be calculated therefrom. Therefore, this embodiment only considers when the predicted block size mode is smaller than the 16x16 block. The displacement vector variation used to determine reliability in size mode. [30] The displacement vector variation can be calculated by the following equation. The block size pattern in which the displacement vector variation is greater than the variation threshold THvar can be determined according to the present invention 14 1249907 Reliable. = (MVx^VARCUT + MJ^y _VMcm) / 2 (1) MVx ^ VARcur = /1J; (MVxCUT - MVx:UT )2 (2) MVy — VAReur = ]^±{MVy^ ^ MVy^f (3) V nw=0 v 7 Lu MVxcur=(iMVCr)/n 9 MVycur^(^MVy^)/n (4) m=l MFxref = (gMVx::f)/n ^ MVy^ ^ };^ m=l , 'where η is the number of displacement vectors in each block, · χ and _ are the displacement vectors in the X direction and the y direction respectively, and the MVcur and MVref in the J knives are the current block and the reference area respectively. The displacement vector of the block. [31] Table 4 shows the statistical results of the reliable lure of the block size model for the displacement vector variation. As can be seen from Table 4, the average accuracy is greater than 85%. Table 4 P(B|A) P(C|A) FOREMAN 81% ----~- 19% COASTGUARD ----- 84% —---— 16% CARPHONE ------- 85% 15 % CONTAINER 92% 8% AKIYO 87% ! ---- ~~~ -———— 13% ——.— 15 1249907
Average g6% 14% A: MV VAR.^ > THvar B:預測區塊大小模式正確 C·預測區塊大小模式錯誤 [32]如上所述透過位移向量變異僅可確定小於ΐ6χΐ6區塊大 小模式的區塊大小模式的可靠性。對於16χ16區塊大小模式,可 從位移向量的差別值判斷其可靠性。如果兩個相鄰的區塊屬於同 一標的或具有相同運動執道,那麼這兩個相鄰區塊使用同一區塊 大小模式進行編碼的機率很高。因此,兩個相鄰的區塊的位移向 量亦相似’就是說,兩個相鄰的區塊的位移向量的差別值很小。 相反,如果兩個相鄰的區塊的位移向量不同,可預測這兩個兩個 相鄰的區塊具有不同的運動執道,即其不使用同一區塊大小模式 用於編碼。基於這種想法,如果目前區塊和與其相鄰的區塊的位 移向里的差別值小於差別閾值THmag,目前區塊即被認爲是可靠 的。差別值Mag一difcur可通過下述方程式計算得出。Average g6% 14% A: MV VAR.^ > THvar B: Predicted block size mode correct C·Predicted block size mode error [32] As described above, only the ΐ6χΐ6 block size mode can be determined by the displacement vector variation. The reliability of the block size mode. For the 16χ16 block size mode, the reliability of the displacement vector can be judged from the difference value. If two adjacent blocks belong to the same target or have the same motion, then the probability that the two adjacent blocks are encoded using the same block size mode is high. Therefore, the displacement vectors of two adjacent blocks are also similar', that is, the difference values of the displacement vectors of two adjacent blocks are small. Conversely, if the displacement vectors of two adjacent blocks are different, it can be predicted that the two adjacent blocks have different motions, i.e., they do not use the same block size mode for encoding. Based on this idea, if the difference between the current block and the block adjacent to it is smaller than the difference threshold THmag, the block is considered to be reliable. The difference value Mag-difcur can be calculated by the following equation.
Mag^difcm =\MVxcur-MVxT^\MVycm-MVyJ ⑹ [3 3]表5所示為透過計算位移向量的差別值得出的可靠的統 計結果。從表5中可看出,平均精確度大於8〇0/。。 表5 P(B|A) " ----~~-~_____ P(C|A) 75% ~—---- 25% ' ---——Mag^difcm =\MVxcur-MVxT^\MVycm-MVyJ (6) [3 3] Table 5 shows the reliable statistical results obtained by calculating the difference in displacement vectors. As can be seen from Table 5, the average accuracy is greater than 8〇0/. . Table 5 P(B|A) " ----~~-~_____ P(C|A) 75% ~------ 25% ' ---——
FOREMAN 16 1249907 COASTGUARD —.«««_ 70% —--- 30% CARPHONE —-—.—_ ------- 78% ___ 22% CONTAINER .....—------^ 93% —·~~~~-___ 7% AKIYO ""~™" 1 -—---- 94% -—-—__ 6% Average ---—1 82% — 18% A : MH < Thmag B·預測區塊大小模式係正確 C·預測區塊大小模式係錯誤 [34] 第3圖所示為通過位移向量變異和位移向量差別值判斷 可罪性的過程的流程圖。如步驟3G1所示,首先判斷預測區塊大 小核式(以下將之稱爲茶考模式,,)是否為歸S區塊大小模 式。如果疋’執灯步驟3〇2,即,通過位移向量差別值判斷參考模 式的可*性。如果判斷結果是否,即,參考模式小於施,執行 步驟303,即,通過位移向量變異判斷預測區塊大小模式的可靠性。 [35] 在步驟3〇2中,可依照上述方程式⑹計算參考模式的位 移的差別值(Mag一difcur)。在步驟3〇4巾,可比較位移的差別值 Mag—dlfcur與差別閾值ΤΗ·。如步驟3〇6所示,如果Mag』^ 大於THmag,可認爲參考模式為‘‘不可靠”。否則,如步驟撕所 示,認爲參考模式為“可靠,,。 [36] 在步驟3〇3中,由於參考模式非16χ16區塊大小模式, 即,較小d塊大小模式,可錢上述转式⑴至林如計算位 17 1249907 比較位移向量變異 如果位移向量變異 所示,可認爲參考模 認爲參考模式為“可 移向量變異MV一VARcur。在步驟305中, MV一VAR^與變異閾值THvar。如上所述, MV—VARcUr小於變異閾值THyar,如步驟3〇6 式為“不可靠”。否則,如步驟307所示, 靠”。 [37]透過上述參考第2A圖及第2B ^ 絶民广奋士〜曰 ° 9説明,爲了為目前 編碼區塊確疋最佳區塊大小模式,本發明〜〜FOREMAN 16 1249907 COASTGUARD —.«««_ 70% —--- 30% CARPHONE —-—. —_ —------ 78% ___ 22% CONTAINER .....—------ ^ 93% —·~~~~-___ 7% AKIYO ""~TM" 1 ------ 94% ----__ 6% Average ----1 82% — 18% A : MH < Thmag B·Predicted block size mode is correct C·Predicted block size mode error [34] Figure 3 is a flow chart showing the process of judging sin by displacement vector variation and displacement vector difference . As shown in step 3G1, it is first determined whether the prediction block size (hereinafter referred to as the tea test mode) is the S block size mode. If 疋' is to perform the lamp step 3〇2, that is, the reliability of the reference mode is judged by the displacement vector difference value. If the result of the judgment is negative, that is, the reference mode is smaller than the application, step 303 is performed, i.e., the reliability of the predicted block size mode is judged by the displacement vector variation. [35] In step 3〇2, the difference value (Mag-difcur) of the displacement of the reference pattern can be calculated in accordance with equation (6) above. In step 3〇4, the difference value of the displacement Mag-dlfcur and the difference threshold ΤΗ· can be compared. As shown in step 3〇6, if Mag′′ is greater than THmag, the reference mode is considered to be “‘unreliable.” Otherwise, the reference mode is considered “reliable,” as indicated by the step tear. [36] In step 3〇3, since the reference mode is not the 16χ16 block size mode, ie, the smaller d block size mode, it is possible to compare the displacement vector variation if the displacement vector variation is the above-mentioned transformation (1) to the forest calculation bit 17 1249907 As shown, the reference mode can be considered as the reference mode as "movable vector variation MV-VARcur. In step 305, MV-VAR^ and the variation threshold THvar. As described above, MV-VARcUr is smaller than the variation threshold THyar, as in the step 3〇6 is “unreliable.” Otherwise, as shown in step 307, rely on “. [37] Through the above reference to Figure 2A and 2B ^ 绝民广奋士~曰 °9, in order to determine the best block size mode for the current coding block, the present invention ~~
, 貧施例參考目前編碼 &塊的麥考區塊以獲得預測信息。透過分 、、刀析預測資訊,可獲得多 個區塊大小模式。通常,如果·些參考區塊__訊相同, 這些參考區塊使用的區塊大小模式也_。更進—步地,如果多 於半數的參考區塊使關—區塊大小模式,那麼目前編焉區塊使 兩相同區塊大小模式用於編碼的概率非常高。表6為這種假設提 供了實驗結果。 < 表6 P(B|A) P(C|A) FOREMAN 66% 34% COASTGUARD 62% 38% CARPHONE 70% ——— 30% ~— CONTAINER 93% ~——. 7% AKIYO —-—-_ 93% 7% Average ---——- ·—— 77% ~*---- 23% —-— -----—__ 18 1249907 A:多於半數的預測信息相同 B•使用大多數預測信息編碼目前區塊 C不使用大多數預測信息編碼目前區塊 大多Π如表6所目前區塊使用從其周圍的參考區塊獲得的 施例所升至77%°因此’依照本發明-實 式為法’如果多於半_參相摘使_區塊大小模 塊:===時’那麼這種方法可判斷這種多數都使用的區 係可靠的如果這種多數都使用的區塊顺 目前區塊ιΓΠ 多數都使用的區塊大小模式編碼 搜索,以選擇出大靠小^前動態區塊進行全部模式 式可撕她物判斷參考模 得參_中’依瓣考娜馳_測資訊獲 yf]在步驟術中,觸多於半數的參考模式是否相同(即 夕果相同,執行步驟403,否則,執行步驟術。 [42]在步驟4〇3中,盘 估,在步驟姻中,檢查式妨動態評 第3圖所述的方法判斷其可靠性。 ;祕取好依照 []在^驟4〇5中,如果這種大多數都使用的參考模式是可 19 1249907 靠的,執行步驟413。否則如步驟所 全部模式搜索以選擇出一最佳參考模式。_❿塊進行 同,在步驟4G7中’當多於半數的參考模式不相 △ / 又有夕於半數的參考區塊採用同—區塊大 所有芩相式騎動態估 、…可對 中檢查所有的泉考模式。如測可靠性,在步驟他 判斷其可靠性。、 ^取好依照第3圖所述的方法 1 [45]好驟412巾,_料有紐半 :。如果沒有,如步驟傷所述,可對目前動 式搜索以選擇出-最佳區塊大小模式。否則執行步驟;^王指 中’檢測步_至步驟犯獲得的最佳區 鬼大小核式疋否疋- δχ8區塊大小模式。如果是,如步驟似所 述,繼續為每個8χ8區塊檢測出—最佳子分區。由於每個_ 塊可被進-步分爲8χ4、4χ8及4χ4子區塊,進行步驟祀的優勢 在於當檢測出該Μ子區塊不是最佳模式時,不需要繼續分析小 於Μ子區塊的子區塊,因爲更小的子區塊成爲最佳模式的機率 非常低。這樣,編碼時間可大幅度降低。 曰[47]最後,在步驟仍中,如果一個-區塊大小模式不是 最j土的可採用個對於編碼目前動態區塊成本最小的模式。 [48]上述本發明所揭露用於可變區塊大小編碼的快速模式 決定方法可以很大程度地節省編石馬動態區塊的時間,而不犧牲編 20 1249907 碼品質。表7和表§所示為+ 得出結果的實驗資料(即,未=運Γ快速模式決策(聰)演算法 搜索演算树麵’聽驗_全部區塊The poor example refers to the current test block of the & block to obtain prediction information. Multiple block size patterns can be obtained by dividing and analyzing the prediction information. Usually, if some reference blocks are the same, the block size mode used by these reference blocks is also _. Further, if more than half of the reference blocks are off-block size mode, the probability that the current block is used to encode the same block size mode is very high. Table 6 provides experimental results for this hypothesis. < Table 6 P(B|A) P(C|A) FOREMAN 66% 34% COASTGUARD 62% 38% CARPHONE 70% ——— 30% ~—CONTAINER 93% ~——. 7% AKIYO —-—- _ 93% 7% Average --- --- · -- 77% ~*---- 23% —-— -----__ 18 1249907 A: More than half of the forecast information is the same B • Use large Most prediction information coding current block C does not use most prediction information coding. Most of the current blocks are as shown in Table 6. The current block uses the reference block obtained from its surrounding reference block to rise to 77%. Therefore, according to the present invention - Real method is 'if more than half _ reference phase _block size module: === time' then this method can judge that most of the fauna used is reliable if this majority is used The block is in the current block ιΓΠ Most of the blocks are used in the block size mode code search, in order to select the large dynamic block before the small block for all mode-style tearing her object judgment reference mode _ 中' 依考考娜驰_ The measurement information is obtained by yf] in the step operation, if more than half of the reference patterns are the same (ie, the same as the same day, step 403 is performed, otherwise, the step is performed. [42] in the step 4〇3, the disc estimate, in the step marriage, the inspection method can dynamically judge the reliability of the method described in Figure 3. The secret is good according to [] in ^4〇5, if this is the majority The reference mode used is 19 1249907, and step 413 is performed. Otherwise, all the modes are searched to select an optimal reference mode. _❿ block is the same, in step 4G7, when more than half of the reference modes are not Phase △ / Another half of the reference block uses the same - block large all-phase riding dynamic estimation, ... can check all the spring test mode. If the reliability is measured, he judges its reliability at the step. , ^ Take the method 1 according to Figure 3 [45] good 412 towel, _ material has a half: If not, as described in the step injury, the current dynamic search to select the best area Block size mode. Otherwise, the steps are executed; ^ Wang refers to the 'detection step _ to the best zone ghost size obtained by the step 核 no 疋 - δ χ 8 block size mode. If yes, as described in the step, continue for each 8 χ 8 blocks detect the best sub-partition. Since each _ block can be further divided into The 8χ4, 4χ8, and 4χ4 sub-blocks, the advantage of performing the step 在于 is that when it is detected that the dice block is not the best mode, it is not necessary to continue to analyze the sub-blocks smaller than the dice block, because the smaller sub-blocks The probability of becoming the best mode is very low. In this way, the coding time can be greatly reduced. 曰[47] Finally, in the still step, if the one-block size mode is not the most j-soil, it can be used to encode the current dynamic block. The mode with the lowest cost. [48] The fast mode decision method for variable block size coding disclosed in the above invention can greatly save the time of editing the dynamic block without compromising the code quality of the code 12 1249907. Table 7 and Table § show the experimental data of the results (ie, not = fast fast mode decision (Cong) algorithm search calculus tree face] listen _ all blocks
貝^果_本發明麵演算法降低編私質大約q遍仲 加咖位元速㈣狀㈣糊⑽〗。纽辦_ 的條件下,FMD演糞法隆极始^ 口_ 的編碼時間。 r-——----- 表7 QP = 28 PSNR 一 difference foreman -0.10 dB COASTGUARD ——^ — -0.03 dB CARPHONE — -0.24 dB CONTAINER ---- -0.10 dB AKIYO -0.12 dB Average -0.12 dB贝^果_ The surface algorithm of the present invention reduces the editing of the private mass by about q times and the continuation of the velocities (four) shape (four) paste (10). Under the condition of New Zealand _, the coding time of FMD is the beginning of the mouth. r-——---- Table 7 QP = 28 PSNR a difference foreman -0.10 dB COASTGUARD ——^ — -0.03 dB CARPHONE — -0.24 dB CONTAINER ---- -0.10 dB AKIYO -0.12 dB Average -0.12 dB
Bit rate difference 4.12% 2.47% 5.21 % 8.20 % 8.58 % 5.71 % 表8 QP-28 Original "—·—^ FMD FOREMAN 〜—. 47.3 sec ----— 29.18 sec COASTGUARD L— . 56.3 sec 30.73 sec 21 1249907 CARPHONE 42.01 sec 20.71 sec CONTAINER 40.63 sec 17.30 sec AKIYO 34.68 sec 16.19 sec Average 44.18 sec 22.82 sec [49]如表9和表10所示,本發明高效FMD(EFMD)演算法(即 檢測可靠性)顯示比FMD演算法具有更佳的結果。表9和表10的 實驗結果顯示使用EFMD演算法編碼視訊影像僅降低0.2 dB的編 碼品質,但節省大約44.3%的編碼時間。 表9 QP = 28 PSNR difference Bit rate difference FOREMAN -0.09 dB 1.16% COASTGUARD -0.04 dB 1.81 % CARPHONE -0.13 dB 1.38% CONTAINER -0.04 dB 2.98 % AKIYO -0.04 dB 1.42% Average -0.068 dB 1.75% 表10 QP = 28 Original EFMD FOREMAN 47.3 sec 30.74 sec 22Bit rate difference 4.12% 2.47% 5.21 % 8.20 % 8.58 % 5.71 % Table 8 QP-28 Original "—·—^ FMD FOREMAN ~—. 47.3 sec ----— 29.18 sec COASTGUARD L— . 56.3 sec 30.73 sec 21 1249907 CARPHONE 42.01 sec 20.71 sec CONTAINER 40.63 sec 17.30 sec AKIYO 34.68 sec 16.19 sec Average 44.18 sec 22.82 sec [49] As shown in Table 9 and Table 10, the efficient FMD (EFMD) algorithm (ie, detection reliability) display ratio of the present invention is shown. The FMD algorithm has better results. The experimental results in Tables 9 and 10 show that encoding video images using the EFMD algorithm only reduces the coding quality by 0.2 dB, but saves approximately 44.3% of the coding time. Table 9 QP = 28 PSNR difference Bit rate difference FOREMAN -0.09 dB 1.16% COASTGUARD -0.04 dB 1.81 % CARPHONE -0.13 dB 1.38% CONTAINER -0.04 dB 2.98 % AKIYO -0.04 dB 1.42% Average -0.068 dB 1.75% Table 10 QP = 28 Original EFMD FOREMAN 47.3 sec 30.74 sec 22
程圖 1249907 COASTGUARD 56.3 sec 31.41 sec CARPHONE ----— 42.01 sec ~— 25.12 sec CONTAINER 40.63 sec 19.13 sec AKIYO 34.68 sec "~~ ~~------_ 17.72 sec ' ~ ~~-~-~----- 24.82 sec Average 44.18 sec [50]雖然本發明以前述之較佳實施_露如上,然其並非用 錄定本發明,任何熟習相像技藝者,在不脫離本發日狀精神和 耗圍内,當可作些許之更域_ ’耻本發明之專利保護範圍 須視本說明書所附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1A圖及第1B圖所示分別為依照本發明之—實施例之目前 動態區塊參考的時間參考動態區塊及四齡間參考動態區塊的示 意圖。 咏Θ及第2B目戶斤示分別為具有很大及报小位移向量變異 的參考動態區塊的示意圖。 ^圖所*為依照本發明_實施例判斷參考模式可靠性的流 +弟4 _示為依照本發明_實關可·塊大小碼塊的快速 杈式確定方法的流程圖。 【主要元件符號說明】 23Cheng Tu 1249907 COASTGUARD 56.3 sec 31.41 sec CARPHONE ----— 42.01 sec ~— 25.12 sec CONTAINER 40.63 sec 19.13 sec AKIYO 34.68 sec "~~ ~~------_ 17.72 sec ' ~ ~~-~- ~----- 24.82 sec Average 44.18 sec [50] Although the present invention has been described above in the preferred embodiment, it is not intended to be used in the present invention, and any skilled person skilled in the art, without departing from the spirit of the present invention, Within the scope of the consumption, the scope of the patent protection of the invention shall be subject to the definition of the patent application scope attached to the specification. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are schematic views showing a time reference dynamic block and a four-year reference dynamic block of a current dynamic block reference according to an embodiment of the present invention, respectively.咏Θ and 2B are shown as schematic diagrams of reference dynamic blocks with large and small displacement vector variations. The figure is a flow chart for determining the reliability of the reference mode in accordance with the present invention, which is shown as a flow chart for determining the fast mode of the block size block according to the present invention. [Main component symbol description] 23
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94112623A TWI249907B (en) | 2005-04-20 | 2005-04-20 | Method for fast mode decision of variable block size coding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94112623A TWI249907B (en) | 2005-04-20 | 2005-04-20 | Method for fast mode decision of variable block size coding |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI249907B true TWI249907B (en) | 2006-02-21 |
TW200638689A TW200638689A (en) | 2006-11-01 |
Family
ID=37430251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94112623A TWI249907B (en) | 2005-04-20 | 2005-04-20 | Method for fast mode decision of variable block size coding |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI249907B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI699113B (en) * | 2009-03-23 | 2020-07-11 | 日商Ntt都科摩股份有限公司 | Image prediction decoding method and image prediction decoding device |
-
2005
- 2005-04-20 TW TW94112623A patent/TWI249907B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI699113B (en) * | 2009-03-23 | 2020-07-11 | 日商Ntt都科摩股份有限公司 | Image prediction decoding method and image prediction decoding device |
TWI735257B (en) * | 2009-03-23 | 2021-08-01 | 日商Ntt都科摩股份有限公司 | Image predictive decoding method, image predictive coding method, image predictive decoder, image predictive encoder, and non-transitory recording medium storing computer programs |
Also Published As
Publication number | Publication date |
---|---|
TW200638689A (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4140202B2 (en) | Moving object detection device | |
Shahid et al. | No-reference image and video quality assessment: a classification and review of recent approaches | |
KR101505195B1 (en) | Method for direct mode encoding and decoding | |
CN101453649B (en) | Key frame extracting method for compression domain video stream | |
TWI262724B (en) | Mosquito noise detection and reduction | |
US20120044998A1 (en) | Technique for estimating motion and occlusion | |
CN106507106B (en) | Video interprediction encoding method based on reference plate | |
JP2011510562A (en) | How to assess perceptual quality | |
WO2011153869A1 (en) | Method, device and system for partition/encoding image region | |
CN102801972A (en) | Characteristic-based motion vector estimation and transmission method | |
Shahid et al. | A reduced complexity no-reference artificial neural network based video quality predictor | |
CN101448159A (en) | Rapid interframe mode selection method based on rate-distortion cost and mode frequency | |
TWI535267B (en) | Coding and decoding method, coder and decoder | |
CN104853186B (en) | A kind of improved video steganalysis method that is replied based on motion vector | |
CN109194955B (en) | Scene switching detection method and system | |
CN101835040A (en) | Digital video source evidence forensics method | |
JP5911563B2 (en) | Method and apparatus for estimating video quality at bitstream level | |
TWI249907B (en) | Method for fast mode decision of variable block size coding | |
KR101346773B1 (en) | Detection and Analysis of Abnormal Crowd Behavior in H.264 Compression Domain | |
CN109002996A (en) | Methods of risk assessment and system based on water rate | |
JP2005348280A (en) | Image encoding method, image encoding apparatus, image encoding program, and computer readable recording medium recorded with the program | |
Marzuki et al. | Perceptual adaptive quantization parameter selection using deep convolutional features for HEVC encoder | |
Deng et al. | Digital video steganalysis based on motion vector statistical characteristics | |
WO2006050651A1 (en) | Method for performing motion estimation | |
CN102547264B (en) | Motion prediction method and system of interframe coding |