TWI249777B - Gel imprinting process - Google Patents

Gel imprinting process Download PDF

Info

Publication number
TWI249777B
TWI249777B TW94105459A TW94105459A TWI249777B TW I249777 B TWI249777 B TW I249777B TW 94105459 A TW94105459 A TW 94105459A TW 94105459 A TW94105459 A TW 94105459A TW I249777 B TWI249777 B TW I249777B
Authority
TW
Taiwan
Prior art keywords
gel
layer
template
solution
gel solution
Prior art date
Application number
TW94105459A
Other languages
Chinese (zh)
Other versions
TW200631071A (en
Inventor
Yi-Chang Chung
Yi-Hong Chiu
Chau-Nan Hong
Min-Hsiung Hung
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94105459A priority Critical patent/TWI249777B/en
Application granted granted Critical
Publication of TWI249777B publication Critical patent/TWI249777B/en
Publication of TW200631071A publication Critical patent/TW200631071A/en

Links

Abstract

A gel imprinting process is described. In the gel imprinting process, a template is provided, in which a surface of the template includes at least one flat region and at least one open region, and the at least one flat region and the at least one open region form an imprinting pattern. Next, a surface modification step is performed on the surface of the template, to make the surface of the template have a hydrophilic property. A substrate is provided. Then, a gel solution layer is formed to cover a surface of the substrate. Subsequently, an imprinting step is performed, to make the surface of the template stay closely to the gel solution layer, so as to transfer the imprinting pattern of the template into the gel solution layer.

Description

1249777 φ 九、發明說明 ^ ^ 丨 ^ 【發明所屬之技術領域】 , 本發明是有關於一種壓印(Imprinting)製程,且特別是 V 有關於一種凝膠壓印製程。 【先前技術】1249777 φ IX. Description of the invention ^ ^ 丨 ^ [Technical field to which the invention pertains] The present invention relates to an imprinting process, and in particular to V, to a gel imprint process. [Prior Art]

奈米壓印微影(Nanoimprinting Lithography)係一種新 的奈米級圖案轉移技術。目前之奈米壓印技術係先將蝕刻阻 劑均勻地塗佈於基材,再以壓印模板下壓於蝕刻阻劑層的方 式’將圖案轉移到I虫刻阻劑層中。 以壓印溫度來區分壓印製程時,可將壓印製程分為高溫 壓印製程與低溫壓印製程。高溫壓印製程中,一般需選用熱 可塑性高分子材料來作為蝕刻阻劑,其中壓印步驟進行時, 係先將阻劑加熱至阻劑之玻璃轉換溫度以上,再將具有壓印 圖案之模板與基材上之阻劑層緊密壓合,然後降溫後離形, 即可得到與模板之壓印圖案結構互補之圖案結構於基材之 阻劑層中。另一方面’低溫壓印製程則通常係先在基材表面 上塗佈照光可聚合之光阻劑’再利用可透光模板與基材上之 光阻劑層緊密壓合,以使光阻劑填人模板之壓印圖案的微結 構中❿後利用短波長之紫外光進行短時間的照射處理,藉 以使光阻劑聚合固化,再經離形後,即可於基材之光阻劑層 中得到與模板之壓印圖案結構互補之微結構。 無論是高溫壓印技術’亦或是低溫壓印技術,均已應用 於微細結構之加工製造上。雖然高溫壓印技術能轉印較高圖 1249777 :解析之阻劑構形,但由於高溫壓印製程之操作需在高溫與 η £的條件下進行,方能將壓印模板之圖案轉印至阻劑中, 痛又塑膠基材較難承受,而且升降溫之過程需耗費相當長之 時間’嚴重影響產量。另_方面,雖然低溫㈣技術可在較 短時間完成光阻劑圖案之轉印,但由於照光聚合時,阻劑由 :體架橋成形為固體,因此圖案構形之體積收縮顯著,:易 造成圖案線條扭曲,進而嚴重影響光阻劑圖案之解析度。 【發明内容】 因此,本發明之目的就是在提供一種凝膠壓印梦苴 係利用凝膠作為壓印之材料。由於,凝 靈;目 ::特性,當升高溫度至凝膠之相轉換溫度時,凝 須::二有::於::。因此’無需如傳統高溢壓印技術般必 輕心#作’故除了—般之半導體基材外,亦 =可撓曲基材等無法承受高溫之基材上,而可適用二2 基材之圖案壓印上。 、夕種 。本I明之另目的是在提供一種凝膠壓印呈, 壓印材料之凝膠中更添加有一可照 ",、作為 完成後,且溫度降至凝膠之相轉換溫度;壓印 膠:’此時對成形之凝膠照射紫外光,使膠狀:;= :橋,讓構形更為穩固。由於本發明係在壓印材料成::子 再仃架橋反應,因此能有效改善壓印材料收,狀時 因為操作溫度、壓力及照射強度均溫和,喊。此外 基材之圖案製作。π應用於高分子 1249777 本發明之又-目的是在提供—種凝㈣印製程,由 ”、、堊印材料之凝膠的壓印操作溫度低,因此當壓 僅需將溫度降至凝膠之相轉換溫度以下,壓印材:即;固 化’此時再施以紫外光照射使架橋劑反應,即可完成 枓圖案轉印之目的。由於從壓印操作溫度降溫至凝膠 換溫度的區間不大,因此可大幅減少壓印所需的時間。 本發明之再一目的是在提供一種凝膠壓印製程,可選用 便宜且生物可分解之凝膝材料來作為壓印材料,因此能 白貝分解酵素進行㈣製程,故可降低製程 於生醫材料之製作。 J應用 根據本發明之上述目的,提出一種凝膠壓印製程,至少 供—模板,其中此模板之""表面具有至少—平面區 〃 一凹陷區’且平面區與凹陷區構成-壓印圖案;對 果板之上述表面進行―改質步驟,藉以使模板之此—表面具 :親水性質;提供-基材;形成-凝膠溶液層覆蓋在基材之 以及進:!于一壓印步驟’使模板之上述表面與凝膠 s μ在貼合’藉以將模板之壓印圖案轉移至凝膠溶液層 中0 #依照本發明-較佳實例,上述之改質步驟至少包括:對 核板進仃—清潔步驟;形成—脫膜層覆蓋在模板之上述表面 上;以及形纟一界面活性劑覆蓋在脫膜層±。此外,凝膠溶 液層係由溫度敏感性高分子材料所組成,凝膠溶液層之材質 係生物可分解材料,且凝膠溶液層内可進一步含有可照光反 應之架橋劑。 1249777 很艨本發明夕i 另一目的,更提出一種凝膠壓印製程 少包括··提# —伊』 丨衣狂至 '、果板,其令模板之一表面具有至少一平面區 以及至少一凹陷F D〇 ^ &,且平面區與凹陷區構成一壓印圖案;對 杈板之上述表面進行一改質步驟,藉以使模板之上述表面星 :親"生貝’形成_凝膠溶液層覆蓋在模板之上述表面上, 藉以將杈:反之表面上之壓印圖案轉移至凝膠溶液層之一第 表面,提供一基材;以及進行一壓印步驟,使基材之一 面與相對於凝勝、、交、为麻> _ ,Nanoimprinting Lithography is a new nanoscale pattern transfer technique. The current nanoimprint technique first applies an etch resist uniformly to a substrate, and then transfers the pattern to the I-etch resist layer by pressing the imprint template down the etch resist layer. When the imprinting process is used to distinguish the imprint process, the imprint process can be divided into a high temperature imprint process and a low temperature imprint process. In the high temperature imprinting process, a thermoplastic polymer material is generally selected as an etching resist. When the imprinting step is performed, the resist is heated to a temperature above the glass transition temperature of the resist, and then the template having the imprint pattern is used. The film is tightly pressed with the resist layer on the substrate, and then cooled and then released, and a pattern structure complementary to the embossed pattern structure of the template is obtained in the resist layer of the substrate. On the other hand, 'low-temperature imprinting process usually first coats the photopolymerizable photoresist on the surface of the substrate' and then uses a light-transmissive template to tightly bond with the photoresist layer on the substrate to make the photoresist The microstructure of the embossed pattern of the filling template is used for short-time irradiation treatment with short-wavelength ultraviolet light, whereby the photoresist is polymerized and cured, and then, after being released, the photoresist can be applied to the substrate. A microstructure complementary to the embossed pattern structure of the template is obtained in the layer. Both high-temperature imprinting technology and low-temperature imprinting technology have been applied to the fabrication of fine structures. Although the high-temperature imprinting technique can transfer the higher resist image configuration of 1279777: the high-temperature imprinting process requires high temperature and η £ conditions to transfer the pattern of the imprint template to In the resist, the pain and the plastic substrate are difficult to bear, and the process of raising and lowering the temperature takes a long time to seriously affect the yield. On the other hand, although the low temperature (four) technology can complete the transfer of the photoresist pattern in a short time, since the resist is formed into a solid by the bridge by the photopolymerization, the volume of the pattern configuration shrinks remarkably: The pattern lines are distorted, which in turn seriously affects the resolution of the photoresist pattern. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a gel imprinting nightmare system which utilizes a gel as an imprinting material. Because of the condensate; mesh: characteristics, when raising the temperature to the phase transition temperature of the gel, the condensate:: two has: : at::. Therefore, it is not necessary to be as light as the traditional high-overprinting technology. In addition to the semiconductor substrate, it can also be used on substrates that cannot withstand high temperatures, such as flexible substrates. The pattern is embossed. , the kind of evening. Another object of the present invention is to provide a gel embossing, the embossing material of the gel is further added with a "can be", as a completion, and the temperature is lowered to the phase transition temperature of the gel; embossing glue: 'At this time, the formed gel is irradiated with ultraviolet light to make a gel:; =: bridge, which makes the configuration more stable. Since the invention is based on the embossing material:: sub-rear truss bridge reaction, the embossing material can be effectively improved, and the operation temperature, pressure and irradiation intensity are mild, and shouting. In addition, the pattern of the substrate is produced. π applied to polymer 1249777 Another object of the present invention is to provide a condensing (four) printing process, wherein the embossing operation temperature of the gel of ",, 垩 printing material is low, so when the pressure only needs to lower the temperature to the gel Below the phase transition temperature, the imprinting material: ie; curing 'at this time, applying ultraviolet light to cause the bridging agent to react, the crucible pattern transfer can be completed. The temperature is lowered from the imprinting operation temperature to the gel exchange temperature interval. It is not so large, so the time required for imprinting can be greatly reduced. A further object of the present invention is to provide a gel imprinting process, which can be used as an imprinting material by using an inexpensive and biodegradable kneading material, thereby being white The shell decomposition enzyme is subjected to the (4) process, so that the process can be reduced in the production of the biomedical material. J Application According to the above object of the present invention, a gel imprint process is proposed, at least for the template, wherein the template has a "" At least - a planar region 〃 a recessed region' and a planar region and a recessed region constitute an embossed pattern; the surface of the fruit plate is subjected to a "modification step" whereby the surface of the template has a hydrophilic property; Providing a substrate; forming a layer of the gel solution overlying the substrate and: in an embossing step 'to make the surface of the template and the gel s μ in the fit' to transfer the embossed pattern of the template to the condensate In the layer of the glue solution, in accordance with the present invention - the preferred embodiment, the modifying step includes at least: a step of removing the core plate - a cleaning step; forming a release layer covering the surface of the template; and forming an interface activity The agent is coated on the release layer ±. In addition, the gel solution layer is composed of a temperature-sensitive polymer material, the material of the gel solution layer is a biodegradable material, and the gel solution layer may further contain an illuminable reaction. The bridging agent 1249777 is very useful for the purpose of the present invention, and further proposes that the gel imprinting process includes less ···提#—伊』 丨衣狂到', the fruit board, which has at least one plane on one surface of the template a region and at least one recess FD〇^ &, and the planar region and the recessed region form an embossed pattern; performing a modification step on the surface of the raft to thereby cause the surface star of the template to be formed: Gel solution layering Covering the surface of the template, thereby transferring the embossed pattern on the surface to the surface of one of the gel solution layers to provide a substrate; and performing an embossing step to make one side of the substrate opposite to Condensed, crossed, hemp > _ ,

如 胗/合液層之第一表面的一第二表面緊密貼 合’藉以將凝膠溶液層轉印至基材之表面上。 依照本發明一較佳實施例,凝膠溶液層係由内含可照光 反應之架橋劑之溫度敏感性高分子材料所組成,此外凝膠溶 液層更採用生物可分解材料。 由於所選用之凝膠材料為便宜之生物可分解材料,因此 可利用蛋白質分解酵素進行蝕刻製程,故可降低製程成本, 亚可應用於生醫材料之製作。此夕卜,由於所選用之凝膠材料 為溫度敏感性高分子材料,且更添加有可照光反應之架橋 劑,因此當反應溫度高於凝膠之相轉換溫度時,流動性可獲 得提升,而有助於壓印步驟之進行;另一方面,當反應溫度 下降時’凝膠會固化成膠狀,而在高分子成膠狀時,對凝膠 進行照光步驟’使膠狀之高分子架橋,因此可使轉印至凝膠 中之圖案構形更為穩固。再者,由於凝膠材料之壓印操作溫 度低’且當壓印操作完成後,僅需將反應溫度降回室溫以下 即可使凝膠層固化。因此,整個壓印步驟期間,降溫之區間 不大’故可大幅地減少壓印製程之時間。另外,由於在凝膠 1249777 層固化成膠狀時,再進行架橋反應,因此係由半固體狀轉變 成固體狀,而可有效降低壓印材料之收縮程度。而且,由於 操作溫度、壓力及光照射強度均溫和,因此可應用於可撓曲 基材之圖案製作。 【實施方式】 本發明揭露一種凝膠壓印製程。為了使本發明之敘述更 加詳盡與完備,可參照下列描述並配合第i圖至第17 圖示。 ° 請參照第i圖至第8圖,其、%示依照本發明—較佳實施 例的一種凝膠壓印製程的製程剖面圖。纟此凝膠壓印势程 中’首先提供模板⑽,其中此模板⑽可採心晶片或其 他適用之模板。此模板100之用以進行壓印的表面上且有平 =02以及凹陷區,其中這些平面區1〇2與凹陷區1〇4 構成壓印圖案1〇6,如第1圖所示。 接下來’為了在壓印後能順利 ^ Θ ^ ^ ^ 貝才J脫核,較佳係對模板100 之具有壓印圖案106的表面進 ..^ ^ ^ ^ 返仃改負處理。進行模板100 表面之改質處理時,先利用例如呈 、右、主、叙伊J , /、乳化力之酸性Piranha溶 液4春杈板100,以去除模板Μ ^ I百機附者物。接下夾, 將模板1 00浸入有機溶液中, ^ 叩此有機〉谷液主要传.古祕嗖 質與有機溶劑所組成,其中有機溶 =由術 高分子’例如長碳鏈有機錢分子:且二::數個長碳鏈 類溶劑。有機溶質之長碳鏈高分/至夕包括烷 8 ik 90 之長奴鏈的碳分子數量較 佳係;I於8與22之間。舉例而言, 在本毛明之一實施例中, 1249777 有機溶質内之長碳鍵有機錢分子可為具十人 有機錢分子,且有機溶質可至少包括十八燒基/氣=之 為十六烧溶劑。模…$於此;機溶二’ y有機洛液内之長碳鏈有機錢分子利用例如自我 式,形成分子單層來修飾模板100之表面。待 声;: 後,從有機溶液中取出模板⑽,並制例如氯仿等;= 二二ΓΓΓ劑’例如十六繼劑溶出,藉以使形 成刀子早層之有編分子之間產生分子級之空隙 脫=㈣覆蓋在模板⑽之表面上而形成脫膜層m。此 、曰之表面為疏水性’因此可使後續形成之凝膠溶液 :2'在壓印後能順利脫離模板⑽。待脫膜層108形成 ::將模板100浸入界面活性劑之稀薄溶液中,其中此界面 二性劑稀薄溶液之為帶有離子或中性之溶液, =!Γ多高分子,且這些高分子均至少包括具長碳鍵 —A s此基與親水官能基。在模板100浸入界面活性劑之 ::期間’每一個高分子之長碳鏈疏水官能基的部分填入脫 =曰⑽之有機錢分子間所形成之分子級空隙中 =活性層如第2圖所示。其中,每一個高分子之疏 t吕能基的部分可利用例如凡得瓦爾作用力吸附鄰近之脫 杈層二8的長碳鏈高分子,藉以使界面活性劑中之高分子的 :X “fa基朝外。上述於模& i⑼表面上形成脫模層刚 〇界面/#性層11 G之程序亦稱為模板表面重組程序,不僅有 助於順利脫模,亦可提高模板1〇〇之親水性。由於本發明所 、 堊P材料為凝膠溶液,因此模板1 〇〇之親水性提升, 10 1249777 有利於壓印材料填入模板1 〇〇之壓印圖案結構中,進而可改 善壓印材料不易填滿圖案之縱深的缺點。 在此同時’提供欲進行壓印製程之基材1 20,其中此基 材120可例如為可撓曲基材或一般之半導體基材。在本實施 例中’基材120上可設有材料層ι22,其中此材料層ι22係 右人利用壓印微影製程來進行定義之結構層,此材料層122 γ例如為氧化銦錫等材料所構成之透明氧化層。為有利於後 、、’只木橋反應之進行,模板1〇〇以及基材12〇/材料層122兩 、、。構中至;一者需為可透光。接下來,形成凝膠溶液層 覆=在材料層122上,而形成如第3圖所示之結構,其中凝 膠溶液層124可由天然膠體所構成,且凝膠溶液層124之溶 :含量可高達約70%。在本發明中,凝膠溶液層124係由 2度敏感性高分子材料所組成,且凝膠溶液層124之相轉換 μ度約在室溫附近。在本發明之一較佳實施例中,凝膠溶液 層124之材質更係為生物可分解材料,如此一來,可利用蛋 白質分解酵素來進行蝕刻製程。另外,凝膠溶液層124内更 添加有可照光反應之架橋劑,以促進凝膠溶液層124内之高 分子進行架橋反應。在本發明之一實施例巾,凝膠溶液層 124係添加由重鉻酸鉀組成之可照光反應之架橋劑的明膠曰。 後’即可進行壓印步驟。請參照第4圖,先進行力埶 步驟’藉以使凝膠溶液層124之溫度升高至超過凝膠^ 124之相轉換溫度,而使凝膠溶液層124成液狀,其、: 溶液層124之溫度主要係取決於凝膠溶液層124之材質? 此一較佳實施例中,此時之凝膠溶液層124的溫度較佳係^ 11 1249777 於約μ與約m:之間,更佳約大於6(rc。再將模板ι〇〇 具有壓印圖案106之表面與基材12〇上之凝膠溶液層以 予以緊搶壓合。此時,由於溫度超過凝膠溶液層i 24之相轉 #換溫度,使得凝膠溶液層124之流動性大幅增加,因此有利 於壓印之進行,而無須運用太大之壓力,再加上模板ι〇〇 表面具有親水性,如此_來,可使凝膠溶液層丨24輕易填入 模板100之凹陷區104中,進而可將模板1〇〇上之壓印圖案 106轉移至凝膠溶液層124中。完成壓印圖案1〇6之轉移 後,可利用快速降溫的方式,將凝膠溶液層丨24之溫度降至 相轉換溫度以下,例如將溫度降至室溫的狀態下,此時組成 凝膠溶液層124之高分子會固化成膠狀。其中,凝膠溶液層 124之相轉換溫度。在凝膠溶液層124成膠狀時,利用例如 紫外光並透過可透光之模板1〇〇或基材12〇,對凝膠溶液層 124進行照光處理。其中,紫外光之強度較佳係介於 mW/cm2與20 mW/cm2之間。在本發明之一較佳實施例中, 紫外光之強度約為1000瓦。凝膠溶液層124内之可照光反 鲁 應的架橋劑經光照射後,可促使凝膠溶液層1 24内之高分子 產生架橋反應,而使凝膠溶液層124轉變成網狀結構,進而 使凝膠溶液層124進一步固化成固體。 本發明之一特徵在於使用温度敏感之凝膠作為壓印材 料,且凝膠之相轉換溫度約在室溫附近,因此利用凝膠溫度 敏感的相轉換特性,可無需加高溫。再加上,壓印程序進行 時,凝膠之高分子受熱而變成流體狀,因此壓印材料黏度 低,而無需強大下壓力。如此一來,不僅可用於一般半導體 12 1249777 基材之[印,更可適用於可撓曲基材。其次,整個壓印過程 無須高溫操作,因此降溫之區間不大,如此一來可大大地縮 短£印所需之時間。再I,本發明係在凝膠材料層成膠狀 時,再利用照光處理促使凝膠材料層產生架橋反應,藉以穩 固旋膠材料層之圖案構形。由於係從半固體之膠狀體變成固 體,因此體積變化極小,故可確保轉移圖案之可靠度,而有 效提高壓印之圖案解析。 —完成凝膠溶液層124之固化後,進行脫模之動作,藉以 將杈板100從凝膠溶液層124上移開,而形成如第5圖所示 之結構。經壓印程序後,凝膠溶液層124具有圖案126,其 中此圖f 126與壓印圖帛1〇6成互補關係。接著,進行後洪 烤步驟,藉以烘乾凝膠溶液層124在壓印過程中因擠壓所擠 出之吟诏進而使凝膠溶液層124變成堅固之阻隔結構。在 本毛明中,後烘烤步驟之溫度較佳是控制在介於3〇它與 C之間’且後烘烤步驟較佳是持續進行5分鐘至分鐘之 間。。在本發明之一實施例中,後烘烤步驟之溫度較佳約為 7〇 C ’且後烘烤步驟持續進行約3〇分鐘。 接下來,睛參照第6圖,利用例如反應性離子蝕刻 (Reactive I〇n Etching ; RIE),移除凝膠溶液層124之殘餘 層,而留下凝膠溶液層124,,藉以暴露出基材124上部分 之材料層122。上述移除凝膠溶液層124之殘餘層的步驟, 亦可在凝膠溶液層124具有較低之架橋度下,使用蛋白質分 解酵素溶液來進行濕式蝕刻。 隨後,以剩下之凝膠溶液層124,作為罩幕,並利用利 13 Ϊ249777 用例如濕式蝕刻的方式,移除暴露出之材料層122 ,直至暴 鉻出基材120為止,而使材料層122形成所需圖案,如第7 圖所不。而後,可利用例如蛋白質分解酵素或反應性離子蝕 刻的方法去除剩下之凝膠溶液層124,,則可得到具有所需 之微細圖案的材料層122,如第8圖所示。 本發明之上述實施例係一正向壓印製程,本發明亦可應 用在逆向壓印製程中。請參照第13圖至第17圖,其係繪示 依照本發明另一較佳實施例的一種凝膠壓印製程的製程剖 面圖。如同上一實施例,先提供壓印之模板2〇〇,其中此模 板200可採用矽晶片或其他適用之模板。此模板2〇〇之壓印 表面上具有平面區202以及凹陷區204,而這些平面區2〇2 與凹陷區204構成壓印圖案206,如第9圖所示。 接著,同樣地,對模板200之壓印表面進行改質處理, 以利在壓印後能順利脫模。在模板2〇〇表面之改質處理中, 先利用例如具氧化力之酸性Piranha溶液清潔模板2〇〇。再 將模板200浸入有機溶液中,而此有機溶液至少包括有機溶 質與有機溶劑,其中有機溶質至少包括複數個長碳鏈高分 子,例如長碳鏈有機矽烷分子,而有機溶劑至少包括烷類溶 劑。有機溶質之長碳鏈高分子之長碳鏈的碳分子數量較佳係 介於8與22之間。在本發明之一實施例中,有機溶質内之 長碳鏈有機矽烷分子可例如為具十八個長碳鏈之有機矽烷 分子’有機溶質可例如為十八烷基三氣矽烷,而矽烷溶劑Z 可例如為十六烷溶劑。當模板200浸於此有機溶液時,有機 溶液内之長碳鏈有機矽烷分子利用例如自我組裝方式,形成 14A second surface of the first surface of the mash/liquid layer is intimately bonded to thereby transfer the layer of gel solution onto the surface of the substrate. According to a preferred embodiment of the present invention, the gel solution layer is composed of a temperature-sensitive polymer material containing a light-reactive bridge agent, and the gel solution layer is further made of a biodegradable material. Since the gel material selected is an inexpensive biodegradable material, the proteolytic enzyme can be used for the etching process, thereby reducing the process cost, and the sub-application can be applied to the production of biomedical materials. Further, since the gel material selected is a temperature-sensitive polymer material and a bridge agent capable of illuminating reaction is added, when the reaction temperature is higher than the phase transition temperature of the gel, the fluidity can be improved. It helps to carry out the embossing step; on the other hand, when the reaction temperature drops, the gel will solidify into a gel, and when the polymer is gelatinized, the gel will be irradiated to make the gel-like polymer Bridging, thus making the pattern that is transferred into the gel more stable. Furthermore, since the temperature of the imprinting operation of the gel material is low' and after the imprinting operation is completed, the gel layer is cured by simply lowering the reaction temperature back below room temperature. Therefore, during the entire imprinting step, the interval of cooling is not large, so the time of the imprint process can be greatly reduced. In addition, since the bridging reaction is carried out when the gel layer 1249777 is solidified into a gel form, it is converted into a solid state from a semi-solid state, and the degree of shrinkage of the imprint material can be effectively reduced. Moreover, since the operating temperature, pressure, and light irradiation intensity are mild, it can be applied to patterning of a flexible substrate. [Embodiment] The present invention discloses a gel imprint process. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the FIGS. Please refer to Figures i through 8, which show a cross-sectional view of a process of a gel imprint process in accordance with the present invention. In this gel imprinting potential, a template (10) is first provided, wherein the template (10) can be used as a core wafer or other suitable template. The surface of the template 100 for embossing has a flat = 02 and a recessed area, wherein the flat area 1 〇 2 and the recessed area 1 〇 4 constitute an embossed pattern 1 〇 6, as shown in Fig. 1. Next, in order to smooth the nucleus after the imprinting, it is preferable to carry out the negative treatment on the surface of the template 100 having the embossed pattern 106. When the surface modification of the template 100 is carried out, an acid Piranha solution 4 spring plate 100 such as a right, a right, a main, a syrup, or an emulsifying force is used to remove the template. After the clip is removed, the template 100 is immersed in the organic solution, ^ 叩 this organic> gluten liquid is mainly composed of ancient secret enamel and organic solvent, wherein the organic solution = the polymer of the polymer 'such as long carbon chain organic money molecule: And two:: several long carbon chain solvents. The long carbon chain of the organic solute is high in the number of carbon molecules including the long chain of the alkane 8 ik 90; I is between 8 and 22. For example, in one embodiment of the present invention, the long carbon bond organic money molecule in the 1249777 organic solute may be a molecule of ten organic money, and the organic solute may include at least eighteen alkyl groups/gas = sixteen Burn solvent. The mold ... ... this; the long carbon chain organic money molecules in the machine-dissolved two' y organic Loose solution utilize, for example, self-formation to form a molecular monolayer to modify the surface of the template 100. Waiting for the sound;: Thereafter, the template (10) is taken out from the organic solution, and, for example, chloroform or the like is formed; = the diterpenoid "e.g., the hexahydrate" is eluted, thereby causing a molecular-level void between the knitted molecules forming the early layer of the knife. Release = (4) overlying the surface of the template (10) to form a release layer m. The surface of the crucible is hydrophobic so that the subsequently formed gel solution: 2' can be smoothly separated from the template (10) after imprinting. The layer 108 to be formed is formed: immersing the template 100 in a thin solution of a surfactant, wherein the interface dilute solution is an ion or neutral solution, and the polymer is All include at least a long carbon bond - A s this group and a hydrophilic functional group. During the immersion of the template 100 into the surfactant: during the period in which the part of the long carbon chain hydrophobic functional group of each polymer is filled in the molecular-scale void formed between the organic molecules of the de-oxime (10) = active layer as shown in Fig. 2 Shown. Wherein, the portion of each of the polymer's hydrophobic groups can utilize, for example, the van der Waals force to adsorb the long carbon chain polymer of the adjacent debonding layer 2, thereby making the polymer in the surfactant: X "fa based The procedure of forming the release layer 〇 interface/# layer 11 G on the surface of the mold & i(9) is also called the template surface recombination program, which not only contributes to smooth demolding, but also improves the template. Hydrophilic. Since the 垩P material of the present invention is a gel solution, the hydrophilicity of the template 1 提升 is improved, and 10 1249777 is advantageous for the embossing material to be filled into the embossed pattern structure of the template 1 ,, thereby improving the pressure. The printing material is not easy to fill the defect of the depth of the pattern. At the same time, the substrate 120 to be subjected to the imprint process is provided, wherein the substrate 120 can be, for example, a flexible substrate or a general semiconductor substrate. In the example, the substrate 120 may be provided with a material layer ι22, wherein the material layer ι22 is a structural layer defined by the right embossing lithography process, and the material layer 122 γ is composed of, for example, indium tin oxide. Transparent oxide layer. After the 'wood bridge reaction, the template 1 〇〇 and the substrate 12 〇 / material layer 122 two,, the middle of the structure; one needs to be permeable to light. Next, the formation of a gel solution layer = On the material layer 122, a structure as shown in Fig. 3 is formed, wherein the gel solution layer 124 can be composed of a natural colloid, and the gel solution layer 124 can be dissolved in a content of up to about 70%. In the present invention, the gelation The glue solution layer 124 is composed of a 2 degree sensitive polymer material, and the phase transition μ of the gel solution layer 124 is about room temperature. In a preferred embodiment of the present invention, the gel solution layer 124 The material is more biodegradable material, so that the enzymatic process can be performed by using a proteolytic enzyme. In addition, a bridging agent capable of photoreaction is added to the gel solution layer 124 to promote the gel solution layer 124. The polymer carries out the bridging reaction. In one embodiment of the present invention, the gel solution layer 124 is a gelatin enamel which is composed of potassium dichromate and which is capable of illuminating the bridging agent. The embossing step can be carried out. Figure 4, take the first step The temperature of the gel solution layer 124 is raised to exceed the phase transition temperature of the gel 124, and the gel solution layer 124 is made into a liquid. The temperature of the solution layer 124 depends mainly on the material of the gel solution layer 124. In this preferred embodiment, the temperature of the gel solution layer 124 at this time is preferably between 11 μm and about m:, more preferably about 6 (rc). The surface of the embossed pattern 106 and the layer of the gel solution on the substrate 12 are pressed tightly. At this time, since the temperature exceeds the phase change of the gel solution layer i 24, the gel solution layer 124 is The fluidity is greatly increased, so it is advantageous for the imprinting to be carried out without using too much pressure, and the surface of the template is hydrophilic, so that the gel solution layer 24 can be easily filled into the template 100. In the recessed region 104, the embossed pattern 106 on the template 1 can be transferred to the gel solution layer 124. After the transfer of the embossed pattern 1〇6 is completed, the temperature of the gel solution layer 丨24 can be lowered to below the phase transition temperature by means of rapid cooling, for example, the temperature is lowered to room temperature, and the gel is formed at this time. The polymer of the solution layer 124 solidifies into a gel. Wherein, the phase transition temperature of the gel solution layer 124. When the gel solution layer 124 is gelatinized, the gel solution layer 124 is subjected to an illuminating treatment by, for example, ultraviolet light and through a permeable template 1 基材 or a substrate 12 。. Among them, the intensity of the ultraviolet light is preferably between mW/cm2 and 20 mW/cm2. In a preferred embodiment of the invention, the intensity of the ultraviolet light is about 1000 watts. After the light-irradiation of the light-reducing bridging agent in the gel solution layer 124, the polymer in the gel solution layer 14 can be caused to bridge the reaction, and the gel solution layer 124 is transformed into a network structure. The gel solution layer 124 is further cured to a solid. One of the features of the present invention is that a temperature-sensitive gel is used as the imprint material, and the phase transition temperature of the gel is about room temperature, so that the gel temperature-sensitive phase-conversion property can be used without adding a high temperature. In addition, when the imprinting process is performed, the polymer of the gel is heated and becomes fluid, so the imprinting material has a low viscosity without requiring a strong downforce. In this way, it can be used not only for the general semiconductor 12 1249777 substrate, but also for flexible substrates. Secondly, the entire imprint process does not require high temperature operation, so the temperature reduction interval is not large, which can greatly shorten the time required for printing. Further, in the present invention, when the gel material layer is gelatinized, the illuminating treatment is used to cause a bridging reaction of the gel material layer, thereby stabilizing the pattern configuration of the layer of the rotatory material. Since the solid is changed from a semi-solid colloid to a solid, the volume change is extremely small, so that the reliability of the transfer pattern can be ensured, and the pattern analysis of the imprint can be effectively improved. After completion of the solidification of the gel solution layer 124, the demolding operation is performed to remove the raft plate 100 from the gel solution layer 124 to form a structure as shown in Fig. 5. After the embossing process, the gel solution layer 124 has a pattern 126, wherein the figure f 126 is in complementary relationship with the embossed pattern 〇1〇6. Next, a post-bathing step is performed to dry the gel solution layer 124 to cause the gel solution layer 124 to become a strong barrier structure by extrusion of the crucible during the imprinting process. In the present invention, the temperature of the post-baking step is preferably controlled between 3 Torr and C and the post-baking step is preferably continued for 5 minutes to minutes. . In one embodiment of the invention, the post-baking step preferably has a temperature of about 7 〇 C ′ and the post-baking step continues for about 3 〇 minutes. Next, referring to FIG. 6, the residual layer of the gel solution layer 124 is removed by, for example, reactive ion etching (RIE), leaving the gel solution layer 124, thereby exposing the base. A portion of material 122 on the upper portion of material 124. The step of removing the residual layer of the gel solution layer 124 may also be performed by wet etching using the protein decomposing enzyme solution at a lower bridging degree of the gel solution layer 124. Subsequently, the remaining layer of gel solution 124 is used as a mask, and the exposed material layer 122 is removed by, for example, wet etching using Li 13 249777, until the substrate 120 is cratered, and the material is made Layer 122 forms the desired pattern, as shown in Figure 7. Thereafter, the remaining gel solution layer 124 can be removed by, for example, proteolytic enzyme or reactive ion etching, to obtain a material layer 122 having a desired fine pattern, as shown in Fig. 8. The above embodiment of the present invention is a forward imprint process, and the present invention can also be applied to a reverse imprint process. Referring to Figures 13 through 17, there is shown a process cross-sectional view of a gel imprint process in accordance with another embodiment of the present invention. As in the previous embodiment, an embossed template 2 is provided first, wherein the template 200 can be a ruthenium wafer or other suitable stencil. The embossed surface of the template has a planar region 202 and a recessed region 204, and the planar regions 2〇2 and recessed regions 204 constitute an embossed pattern 206, as shown in FIG. Next, similarly, the stamping surface of the template 200 is modified to facilitate smooth demolding after imprinting. In the modification treatment of the surface of the template 2, the template 2 is first cleaned using, for example, an acidic Piranha solution having an oxidizing power. The template 200 is further immersed in an organic solution, and the organic solution includes at least an organic solute and at least an organic solvent, wherein the organic solute comprises at least a plurality of long carbon chain polymers, such as long carbon chain organodecane molecules, and the organic solvent includes at least an alkane solvent. . The long carbon chain of the long carbon chain polymer of the organic solute preferably has a carbon number of between 8 and 22. In one embodiment of the present invention, the long carbon chain organodecane molecule in the organic solute may be, for example, an organic decane molecule having eighteen long carbon chains. The organic solute may be, for example, octadecyl trioxane, and the decane solvent. Z may, for example, be a cetane solvent. When the template 200 is immersed in the organic solution, the long carbon chain organodecane molecules in the organic solution are formed, for example, by self-assembly.

1249777 分子單層來修飾模板2〇〇 板200自有<表面“子早層形成後,將模 層内之右Μ、:合4 W出’並利用例如氯仿等溶劑將分子單 : 〜容劑溶出,藉以使形成分子單層之有機矽烷分子 2〇…生分子級之空隙,其中上述之分子單層覆蓋在模板 面上而形成脫膜層208。此脫膜層2〇8之表面為疏 水性,有利於後續形成之凝膠溶液層212順利脫離模板 接下來,將模板200浸入界面活性劑之離子或中性稀 薄溶液中,其中此界面活性劑至少包括許多高分子,且這些 南分子均至少包括具長碳鏈之疏水官能基與親水官能基。當 模板200浸入界面活性劑之溶液時,這些高分子之長碳鏈疏 水吕能基的部分填入脫模層208之有機矽烷分子間所形成 之分子級空隙中,而形成界面活性層21〇,如第1〇圖所示。 其中,每一個高分子之疏水官能基利用例如凡得瓦爾作用力 吸附鄰近之脫模層208的長碳鏈高分子,藉以使界面活性劑 中之高分子的親水官能基朝外,而使模板200具有親水性。 上述於模板200表面上形成脫模層208與界面活性層210 之程序’不僅有助於壓印材料的順利脫模,更可提高模板 200之親水性。如此一來,可使由凝膠溶液材料所構成之壓 印材料,順利填入模板200之壓印圖案結構中。 接著,形成凝膠溶液層212覆蓋在模板200表面之界面 活性層2 1 〇上,藉以將模板200之壓印表面上的壓印圖案 206轉移至凝膠溶液層2 12之一表面,而形成如第11圖所 示之結構。其中’凝膠溶液層212係在溫度超過其相轉換溫 度時,覆蓋在模板200之壓印表面上。由於模板200表面具 15 1249777 有親水性,且溫度超過凝膠溶液層212之相轉換溫度,而使 得凝膠溶液層212具有極高之流動性,因此可使凝膠溶液層 212輕易填人模板2⑽之凹陷區中。凝膠溶液層叫可 由天然膠體所構成,且凝膠溶液層212之溶劑含量可高達約 70%。在本發明中,凝膠溶液層212係由溫度敏感性高分子 材料所組成,且凝膠溶液層212之相轉換溫度約在室溫附 近。在本發明之一較佳實施例中,凝膠溶液層212之材質更 具有生物可分解特性’因而可利用蛋白f分解酵素來進行钱 刻製程。此外,凝膠溶液層212内更添加有可照光反應之架 橋劑’以促進凝膠溶液層212内之高分子之架橋反應。在本 發=之一實施例中,凝膠溶液層212由係明膠所組成,而此 明膠中添加有由重鉻酸鉀所組成之架橋劑。 同時,提供欲進行凝膠壓印製程之基材214,其中此基 材214可為可撓曲基材或一般之半導體基材。在本實施例 中,基材214上可設有欲利用壓印微影製程來定義之材料層 6如第12圖所示。其中,此材料層2 1 6可為透明氧化層, 例如氧化銦錫。模板2〇〇以及基材214/材料層216兩結構 中之至少一者需為可透光,以利於後續光照射架橋反應之進 行。 〜 接著,即可進行壓印步驟。首先,進行加熱步驟,藉以 使凝膠溶液層212之溫度升高至超過凝膠溶液層212之相轉 換溫度,而使凝膠溶液層212成液狀,其中凝膠溶液層212 之溫度主要係取決於凝膠溶液層212之材質。在此一較佳實 施例中,此時之凝膠溶液層212的溫度較佳係介於約5〇。〇 16 1249777 與約7 0 C之間’更佳約大於6 0 °C。再將模板2 Ο 0之凝膠溶 液層212與基材214上之材料層216緊密壓合。此時,由於 溫度超過凝膠溶液層2 1 2之相轉換溫度,使得凝膠溶液層 212之流動性大幅增加,因此不僅可更完全地填入模板2〇〇 之圖案結構中,更有利於壓印之進行,因而無需運用太大之 壓力。接著,可利用快速降溫的方式,將凝膠溶液層2 i 2 之溫度降至相轉換溫度,例如室溫以下,此時組成凝膠溶液 層212之高分子會固化成膠狀。在凝膠溶液層212成膠狀 時,利用例如紫外光,而透過可透光之模板2〇〇或基材214, 對凝膠溶液層2 12進行照光處理。其中,紫外光之強度較佳 係介於10 mW/cm2與20 mW/cm2之間。在本發明之一較佳 實施例中,紫外光之強度約為1000瓦。凝膠溶液層2i2X^ 之架橋劑經光照射後,可促使凝膠溶液層212内之高分子架 橋,而使凝膠溶液層212轉變成網狀之固體結構,如第13 圖所示。 接下來,進行脫模之動作,藉以將模板200從凝膠溶液 層212上移開,而形成如第14圖所示之結構。由於模板2⑽ 先前已進行改質處理’因此模板可順利脫離凝膠溶液層 2i2。此時,凝膠溶液層212具有圖案218,其中此圖案218 與壓印圖案206成互補關係。隨後,進行後烘烤步驟,藉以 烘乾凝膠溶液層212在壓印過程中因擠壓所擠出之溶劑,使 凝膠溶液層212變成更堅固之阻隔結構。在本發明中,後烘 烤步驟之温度較佳是控制在介於3(rc與8〇t之間,且後烘 烤步驟較佳是持續進行5分鐘至6〇分鐘之間。在本發明^ 17 1249777 只鼽例中,後烘烤步驟之溫度較佳約為7〇 步驟持續進行約30分鐘。 烤 接下來’凊參照第1 5圖,利用例如反應性離子蝕刻或 使用蛋白質分解酵素溶液之敍刻方式,去除凝膠溶液層212 之殘餘層,而留下凝勝溶㈣212,’藉以暴露出基材214 上部分之材料層2 1 6。 隨後,以剩下之凝膠溶液層212,作為罩幕,並利用利 用例如濕絲刻的方式’移除暴露出之材料層216,直至暴 露出基材2U為止’而使材料層216形成所需圖案,如第 16圖所示。待完成材料層216之圖案定義後,可利用例如 蛋白質分解酵素或反應性離子钱刻的方法,去除剩下之凝膠 溶液層212,’而得到具有所需圖案之材料層216,如第Η1249777 Molecular monolayer to modify the template 2 〇〇 plate 200 own < surface "formation of the early layer, the right Μ in the mold layer,: 4 W out ' and use a solvent such as chloroform to single molecule: ~ capacity The agent is dissolved, so that the organic decane molecule forming the molecular monolayer is formed into a molecular-level void, wherein the above-mentioned molecular monolayer covers the template surface to form the release layer 208. The surface of the release layer 2〇8 is Hydrophobic, facilitating the subsequent formation of the gel solution layer 212 to smoothly separate from the template. Next, the template 200 is immersed in an ion or neutral thin solution of a surfactant, wherein the surfactant includes at least a plurality of polymers, and these southern molecules Each of them includes at least a hydrophobic functional group having a long carbon chain and a hydrophilic functional group. When the template 200 is immersed in a solution of a surfactant, a portion of the long carbon chain hydrophobic Lueneng group of these polymers is filled in between the organic decane molecules of the release layer 208. Forming the molecular-scale voids to form the interface active layer 21〇, as shown in FIG. 1 , wherein each of the hydrophobic functional groups of the polymer adsorbs the adjacent release mold by, for example, van der Waals force The long carbon chain polymer of the layer 208 is such that the hydrophilic functional group of the polymer in the surfactant is outwardd, so that the template 200 is hydrophilic. The release layer 208 and the interface active layer 210 are formed on the surface of the template 200. The program 'not only facilitates the smooth demolding of the imprinting material, but also improves the hydrophilicity of the template 200. Thus, the imprinting material composed of the gel solution material can be smoothly filled into the imprint pattern of the template 200. Next, a gel solution layer 212 is formed covering the interface layer 2 1 表面 on the surface of the template 200, whereby the embossed pattern 206 on the embossed surface of the template 200 is transferred to one surface of the gel solution layer 12 And forming a structure as shown in Fig. 11. wherein the 'gel solution layer 212 is overlaid on the embossed surface of the stencil 200 when the temperature exceeds its phase transition temperature. Since the surface of the stencil 200 has a hydrophilicity of 15 1249777, And the temperature exceeds the phase transition temperature of the gel solution layer 212, so that the gel solution layer 212 has extremely high fluidity, so that the gel solution layer 212 can be easily filled in the recessed region of the template 2 (10). Can The natural colloid is composed, and the solvent content of the gel solution layer 212 can be up to about 70%. In the present invention, the gel solution layer 212 is composed of a temperature sensitive polymer material, and the phase transition of the gel solution layer 212 The temperature is about room temperature. In a preferred embodiment of the invention, the material of the gel solution layer 212 is more biodegradable. Thus, the protein f-decomposing enzyme can be used for the engraving process. The layer 212 is further provided with a light-reactive bridging agent' to promote the bridging reaction of the polymer in the gel solution layer 212. In one embodiment of the present invention, the gel solution layer 212 is composed of a gelatin. A bridging agent composed of potassium dichromate is added to the gelatin. At the same time, a substrate 214 for performing a gel imprint process is provided, wherein the substrate 214 can be a flexible substrate or a conventional semiconductor substrate. In the present embodiment, the substrate 214 may be provided with a material layer 6 to be defined by an imprint lithography process as shown in Fig. 12. Wherein, the material layer 2 16 may be a transparent oxide layer such as indium tin oxide. At least one of the two structures of the template 2 and the substrate 214 / material layer 216 need to be permeable to facilitate subsequent illumination of the bridging reaction. ~ Then, the imprinting step can be performed. First, a heating step is performed to raise the temperature of the gel solution layer 212 to exceed the phase transition temperature of the gel solution layer 212, and the gel solution layer 212 is formed into a liquid state, wherein the temperature of the gel solution layer 212 is mainly It depends on the material of the gel solution layer 212. In this preferred embodiment, the temperature of the gel solution layer 212 at this time is preferably about 5 Torr. 〇 16 1249777 and about 70 ° C 'better than about 60 ° C. The gel solution layer 212 of the template 2 Ο 0 is then tightly pressed against the material layer 216 on the substrate 214. At this time, since the temperature exceeds the phase transition temperature of the gel solution layer 2 1 2, the fluidity of the gel solution layer 212 is greatly increased, so that not only the pattern structure of the template 2〇〇 can be more completely filled, which is more advantageous. Embossing is carried out, so there is no need to apply too much pressure. Then, the temperature of the gel solution layer 2 i 2 can be lowered to a phase transition temperature, for example, room temperature by means of rapid cooling, at which time the polymer constituting the gel solution layer 212 solidifies into a gel. When the gel solution layer 212 is gelatinized, the gel solution layer 2 12 is subjected to an illuminating treatment by, for example, ultraviolet light through a permeable template 2 基材 or a substrate 214. Among them, the intensity of ultraviolet light is preferably between 10 mW/cm 2 and 20 mW/cm 2 . In a preferred embodiment of the invention, the intensity of the ultraviolet light is about 1000 watts. After the light-irradiation of the bridging agent of the gel solution layer 2i2X^, the polymer bridge layer in the gel solution layer 212 is promoted, and the gel solution layer 212 is transformed into a network-like solid structure, as shown in Fig. 13. Next, a demolding operation is performed to remove the template 200 from the gel solution layer 212 to form a structure as shown in Fig. 14. Since the template 2 (10) has been previously subjected to the modification treatment, the template can be smoothly separated from the gel solution layer 2i2. At this point, the gel solution layer 212 has a pattern 218 in which the pattern 218 is in complementary relationship with the embossed pattern 206. Subsequently, a post-baking step is performed whereby the gel solution layer 212 is dried to cause the gel solution layer 212 to become a more robust barrier structure by squeezing the extruded solvent during the imprinting process. In the present invention, the temperature of the post-baking step is preferably controlled between 3 (rc and 8 〇t, and the post-baking step is preferably continued for between 5 minutes and 6 〇 minutes. In the present invention ^ 17 1249777 In only one example, the temperature of the post-baking step is preferably about 7 〇 and the step is continued for about 30 minutes. Bake next '凊 with reference to Figure 15, using, for example, reactive ion etching or using a proteolytic enzyme solution In the sculpt manner, the residual layer of the gel solution layer 212 is removed, leaving a solution (4) 212, 'to expose the material layer 2 16 of the upper portion of the substrate 214. Subsequently, the remaining gel solution layer 212 As a mask, the material layer 216 is formed into a desired pattern by using a method such as wet silking to 'remove the exposed material layer 216 until the substrate 2U is exposed', as shown in Fig. 16. After the pattern definition of the material layer 216 is completed, the remaining gel solution layer 212 can be removed by, for example, a proteolytic enzyme or a reactive ion engraving method, to obtain a material layer 216 having a desired pattern, such as a third layer.

由上述本發明較佳實施例可知,本發明之—優點就是因 為本發明之凝膠壓印製程係利用凝膠作為壓印材料。由於, 凝膠具有溫度靈敏的相轉換特性,當溫度升高至凝膠之相轉 換溫度時’凝膠之流動性會大幅提高而有利於壓印。因此, 無須如傳統高溫壓印技術般必須在高溫操作,故除了 一般之 半導體基材外,亦可將㈣轉印至無法承受高溫之基材上, 而可適用於多種基材之圖案壓印。 、述本心明車乂佳實施例可知,本發明之另一優點就是 因為本發明之凝膠壓印材料中更添加有可照光反應之架橋 劑’當對凝膠照射紫外光時,可促使凝膠内之高分子架橋, 使L P構幵v固化。由於本發明係在壓印材料成膠狀時,再 18 1249777 仃照光而促成架橋反應,因此係從半固體轉變成固體,凝豚 構形之體積收縮程度相當小’而可確保圖案轉移之準確性/ 此外,由於操作溫度、遷力及照射強度均溫和,因此 於高分子基材之圖案製作。From the above-described preferred embodiments of the present invention, it is apparent that the present invention is advantageous in that the gel imprint process of the present invention utilizes a gel as an imprint material. Since the gel has a temperature-sensitive phase-converting property, when the temperature is raised to the phase transition temperature of the gel, the fluidity of the gel is greatly increased to facilitate imprinting. Therefore, it is not necessary to operate at a high temperature as in the conventional high-temperature imprinting technique, so that in addition to the general semiconductor substrate, (4) can be transferred to a substrate which cannot withstand high temperature, and can be applied to pattern imprinting of various substrates. . According to the embodiment of the present invention, another advantage of the present invention is that the gel-imprinting material of the present invention further has an optically responsive bridging agent, which can be promoted when the gel is irradiated with ultraviolet light. The polymer bridge in the gel causes the LP structure to cure. Since the invention is in the form of a gel when the imprinting material is gelatinized, the 18 1249777 illuminating light causes a bridging reaction, thereby converting from a semi-solid to a solid, and the volume of the porpoise configuration is relatively small, and the pattern transfer is ensured accurately. In addition, since the operating temperature, the migration force, and the irradiation intensity are mild, the pattern is produced on a polymer substrate.

由上述本發明較佳實施例可知,本發明之又一優點就曰 :為本發明之凝膠壓印材料的壓印操作溫度低,因此當壓: 完成後’《需將溫度降至凝膠之相轉換溫度以下,壓印材 即可固化。由於從壓印操作溫度降溫至凝膝之相轉換溫度的 區間不大’因此可達到縮減壓印製程之時間的目的。X 由上述本發明較佳實施例可知,本發明之再—優點就是 因為本發明之μ印材料可選用成本低廉之生物可分解膠體 H由於生物可分解材料可利用蛋白f分解酵素來進行钱 刻’因此除了可降低製程成本外,更可將應用擴及於 料之製作。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 ,定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖至第8圖係繪示依照本發明一較佳實施例的一種 凝膠壓印製程的製程剖面圖。 第9圖至帛17圖係緣示依照本發明另一較佳實施例的 一種凝膠壓印製程的製程剖面圖。 19 1249777 【主要元件符號說明】 1 0 0 :模板 102 : 104 :凹陷區 106 : 108 :脫膜層 110 : 120 :基材 122 : 124 :凝膠溶液層 124” 126 :圖案 200 : 202 :平面區 204 : 206 :壓印圖案 208 : 2 1 0 :界面活性層 212 : 2 1 2 ’ :凝膠溶液層 214 : 2 1 6 :材料層 218 : 平面區 壓印圖案 界面活性層 材料層 :凝膠溶液層 模板 凹陷區 脫膜層 凝膠溶液層 基材 圖案 20According to the preferred embodiment of the present invention described above, another advantage of the present invention is that the imprinting operation temperature of the gel imprinting material of the present invention is low, so when the pressure is completed, the temperature needs to be lowered to the gel. Below the phase transition temperature, the stamp material cures. Since the interval from the temperature of the imprint operation to the phase transition temperature of the knee is not large, the purpose of reducing the time of the printing process can be achieved. X is a further advantage of the present invention. The re-exposure of the present invention is that the bio-decomposable colloid H can be selected from the bio-decomposable material because the bio-decomposable material can be used for the engraving of the bio-decomposable material. 'In addition to reducing the cost of the process, the application can be extended to the production of materials. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to be a part of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 through 8 are cross-sectional views showing a process of a gel imprint process in accordance with a preferred embodiment of the present invention. 9 to 17 are cross-sectional views showing a process of a gel imprint process in accordance with another preferred embodiment of the present invention. 19 1249777 [Description of main component symbols] 1 0 0 : template 102 : 104 : recessed area 106 : 108 : release layer 110 : 120 : substrate 122 : 124 : gel solution layer 124 126 : pattern 200 : 202 : plane Area 204 : 206 : embossed pattern 208 : 2 1 0 : interface active layer 212 : 2 1 2 ' : gel solution layer 214 : 2 1 6 : material layer 218 : plane area imprint pattern interface layer material layer: condensation Glue solution layer template recessed area release layer gel solution layer substrate pattern 20

Claims (1)

1249777 十、申請專利範圍 1· 一種凝膠壓印製程,至少包括: ::-模板’其中該模板之一表面具有至少—平面區以 y凹陷區,且該平面區與該凹陷區構成一壓印圖宰. 2模板之該表面進行―改質步驟,藉以使該模板之該 衣面具有親水性質; ❿ 提供一基材; 形成H容液層覆蓋在該基材之一表面上;以及 @at^仃―屋印步驟,使該模板之該表面與該凝膠溶液層緊 也貝占合,莊丨、/收 错以將该模板之該壓印圖案轉移至該凝膠溶液層中。 f 4 2. 士°申請專利範圍帛1項所述之凝膠壓印製程,其中該 異板為一矽晶片。 3 炸勝·如申晴專利範圍第1項所述之凝膠壓印製程,其中該 、步驟至少包括·· 對該模板進行一清潔步驟; y成脫膜層覆蓋在該模板之該表面上;以及 $成一界面活性層覆蓋在該脫膜層上。 、、主.如申睛專利範圍第3項所述之凝膠壓印製程,其中該 潔步驟$小^ 乂匕括使用一具氧化力之酸性piranha溶液。 21 1249777 5 ·如申睛專利範圍第3項所述之凝膠壓印製程,其中形 成4脫膜層之步驟至少包括將該模板浸入一有機溶液中,且 該有機溶液至少包括複數個長碳鏈高分子。 6·如申請專利範圍第5項所述之凝膠壓印製程,其中該 些長碳鍵高分子之長碳鏈的碳分子數量介於8與22之間。 7 ·如申睛專利範圍第5項所述之凝膠壓印製程,其中該 有桟心液至夕包括一有機溶質以及一有機溶劑,該有機溶質 至少包括複數個長碳鏈有機矽烷分子,且該有機溶劑至少包 括一烷類溶劑。 8_如申請專利範圍第7項所述之凝膠壓印製程,其中該 一長反鏈有;燒分子係具十人個長碳鏈之複數個有機石夕烧 分子,且該烷類溶劑係一十六烷溶劑。 9.如申請專利範圍帛8項所述之凝膠壓印製程,其中該 脫膜層係利用一自我組裝方式所形成之一分子單層。 10·如申請專利範圍第9項所述之凝膠壓印製程,… 成該脫膜層之步驟更至少包括在從該有機溶液中取出該模板 後,以氣仿將該十六烷溶劑從該分子單層中溶出。 、 11.如申請專利範圍第8項所述之凝膝壓印製程,其中該 22 1249777 有機溶質至少包括十八烷基三氣矽烷。 • 12·如申請專利範圍第5項所述之凝膠壓印製程,其中形 ' 成该界面活性層之步驟至少包括將該模板浸入内含一界面活 性劑之離子或中性之一稀薄溶液中。 13 ·如申請專利範圍第12項所述之凝膠壓印製程,其中 該界面活性劑至少包括複數個高分子,且每一該些高分子至 ® 少包括具長碳鏈之一疏水官能基以及一親水官能基。 14.如申請專利範圍第1 3項所述之凝膠壓印製程,其中 每一該些高分子之該疏水官能基的部分填入該些長碳鏈高分 子之間,藉以使每一該些高分子之該親水官能基朝外。 15·如申請專利範圍第14項所述之凝膠壓印製程,其中 每一該些高分子之該疏水官能基的部分以凡得瓦爾作用力吸 _ 附鄰近之該些長碳鍵兩分子。 16 ·如申請專利範圍第1項所述之凝膠壓印製程,其中兮 基材係一可撓曲基材。 17 ·如申請專利範圍第1項所述之凝膠壓印製程,其中上 基材係一半導體基材。 ^ 4 23 1249777 該 19_如中請專利範圍第!項所述 凝膠溶液#仫山 — / i I表柱具f ,亥 ㈢糸由一溫度敏感性高分子材料所組成。 該 凝二 21. %申請專利範圍第⑼項所述之凝膠壓 该可照光反應之架橋劑之至少包括重路酸鉀。 ”中 22. 如申請專利範圍第2丨項所述之凝膠壓印 °亥綾膠溶液層係由一明膠所組成。 、 ^ =23·如申請專利範圍第20項所述之凝膠壓印製程,复 該基材與該模板中至少一者為可透光。 一 24·如申請專利範圍第23項所述之凝膠壓印製程,其 進行該壓印步驟至少包括: 〃中 對該凝膠溶液層進行一加熱步驟,藉以使該凝膠溶液層 具有一第一溫度,而使該凝膠溶液層成液狀; ’" 將該模板之該表面與該基材上之該凝膠溶液層緊穷壓 合’藉以使該模板之該壓印圖案轉移至該凝膠溶液層中· 24 1249777 進行一降溫步驟,藉以使該凝膠溶液層具有一第二溫 度’而使該凝膠溶液層成膠狀;以及 ‘進行一照光步驟,藉以透過該凝膠溶液層内之該可照光 反應之架橋劑,使該凝膠溶液層形成網狀之一架橋結構。 25 ·如申請專利範圍第24項所述之凝膠壓印製程,其中 該凝膠溶液層之該第一溫度介於5〇。〇與70°C之間。 26·如申請專利範圍第24項所述之凝膠壓印製程,其中 該凝膠溶液層之該第一溫度大於6(rc。 27·如申請專利範圍第24項所述之凝膠壓印製程,其中 該凝膠溶液層之該第二溫度為室溫。 28·如申請專利範圍第24項所述之凝膠壓印製程,其中 該照光步驟係利用一紫外光。 29·如申請專利範圍第24項所述之凝膠壓印製程,其中 該紫外光之強度介於10 mW/cm2與2〇 mW/cm2之間。 30·如申凊專利範圍第24項所述之凝膠壓印製程,其中 該紫外光之強度實質為1〇〇〇瓦。 ’、 3 1 ·如申明專利範圍第24項所述之凝膠壓印製程,其中 25 1249777 32·如申請專利範圍第31項所述之 少包括於該脫膜步驟後,進行一德& #本κ 俊進订後供烤步驟,藉以烘乾該凝 膠溶液層。 •如申明專利範圍第3 2項所述之凝膠壓印製程,該後 烘烤步驟之溫度介於3〇疒盥 、C與80 C之間,且該後烘烤步驟持續 進行5分鐘至60分鐘之間。 34·如中請專利範目帛3 1 J員所述之凝膠壓印製程,該後 烘烤步驟之溫度實質Α 7〇〇Γ 夏買為70 C,且该後烘烤步驟持續進行3〇分 鐘0 3 5 ·如申明專利範圍第1項所述之凝膠壓印製程,其中該 凝膠溶液層之溶劑含量實質為7〇% 。 36’如申明專利範圍第1項所述之凝膠壓印製程,其中於 省I印步驟後,更至少包括移除該凝膠溶液層之一殘餘部 分,藉以暴露出部分之該基材。 3 7 ·如申明專利範圍第3 6項所述之凝膠壓印製程,其中 移除4砝膠/奋液層之該殘餘部分的步驟係利用一反應性離子 26 1249777 蝕刻(RIE)法 3 8 ·如申請專利範圍 圍弟36項所述之凝膠壓印製程,JL中 移除該凝膠溶液層之嗲 ^ ?其f ^ 亥殘餘部分的步驟係利用一濕式蝕刻 法’且《式㈣法使用—蛋白質分解酵素溶液。 Μ·如申請專利範圍第36項所述之凝 於移除該凝膠溶液層之兮焱丛加、 其Τ 曰之4殘餘部分的步驟後,更至少包 利用剩餘之該凝膠溶液層 材的-部分,·以及 秒丨示恭路出之该基 移除剩餘之該凝膠溶液層。 4U. -裡破膠壓印製程,至少包括: 提供-模板’其中該模板之一表面具有至 及至少一凹陷區,且兮巫;广^ 十面£以 , μ千面區與該凹陷區構成一壓印圖宰; 對a亥模板之該表面進行 ’、 表面具有親水性質; “步驟’猎以使該模板之該 模板液層覆蓋在該模板之該表面上,藉以將該 亥表面上之該壓印圖案轉移至該凝膠溶液層之一第一 表面; W 提供一基材;以及 進行一壓印步驟, 液層之该弟一表面的一 液層轉印至該基材之該 使該基材之一表面與相對於該凝膠溶 第二表面緊密貼合,藉以將該凝膠溶 表面上。 27 1249777 4 1 ·如申請專利範圍第4〇 該模板為一矽θ y 員所述之凝膠壓印製程,其中 /日日〇 42·如申請專利範圍第4〇 該改質步驟至少包括· 、斤述之凝膠壓印製程,其中 對該模板進行一清潔步驟; ❿ 以及 形成一脫膜層覆蓋在該模板之該表面上 形成一界面活性層覆蓋在該脫膜層上。 .如申晴專利範圍第42 該清潔步驟至少勺“ 請述之轉壓印製程,其中 至夕包括使用一具氧化力之酸性Piranha溶液。 Ψ ,, 申明專利範圍第42項所述之凝膠壓印f裎,I + =脫膜層之步驟至少包括將該模板浸八一有中 且財機溶液至少包括複數個長碳鏈高分子。^液中’ 刀子之長奴鏈的奴分子數量介於8與22之間 46.⑹申請專利範圍第44項所述之凝膠 :有機溶液至少包括-有機溶質以及-有機溶齊:有:中 ^ 旻數個長碳鏈有機矽烷分子,且該有機溶劑至丨 匕括一烷類溶劑。 1 9 28 1249777 47·如申請專利範圍第46項所述之凝膠壓印製程,其中 該些長碳鏈有機石夕烧分子係具十八個長碳鏈之複數個有機石夕 烷分子,且該烷類溶劑係一十六烷溶劑。 48·如申請專利範圍第47項所述之凝膠壓印製程,其中 該脫膜層係利用一自我組裝方式所形成之一分子單;。 4 9 ·如申請專利範圍第4 8項所述之凝膠壓印製程,其中 形成該脫膜層之步驟更至少包括在從該有機溶液中取出該模 板後,以氣仿將該十六烷溶劑從該分子單層中溶出。 5 0·如申請專利範圍第47項所述之凝膠壓印製程,其中 遠有機溶質至少包括十八烧基三氯石夕烧。 5 1.如申請專利範圍第44項所述之凝膠壓印製程,其中 形成該界面活性層之步驟至少包括將該模板浸入内含—界面 活性劑之離子或中性之一稀薄溶液中。 52·如申請專利範圍第5 1項所述之凝膠壓印製程,其中 該界面活性劑至少包括複數個高分子,且每一該些高分子至 少包括具長碳鏈之一疏水官能基以及一親水官能基。 53·如申請專利範圍第52項所述之凝膠壓印製程,其中 29 1249777 母一该些高分子之該疏水官能基的部分填入該些長碳鏈高分 子之間’並以凡得瓦爾作用力吸附鄰近之該些長碳鏈高分 子’藉以使每一該些高分子之該親水官能基朝外。 54_如申請專利範圍第4〇項所述之凝膠壓印製程,其中 該基材係選自於可撓曲基材以及半導體基材所組成之一族 群。 55·如申請專利範圍第40項所述之凝膠壓印製程,其中 邊凝膠溶液層係由一生物可分解材料所組成。 5 6·如申請專利範圍第4〇項所述之凝膠壓印製程,其中 該凝膠溶液層係由一溫度敏感性高分子材料所組成。 57·如申請專利範圍第40項所述之凝膠壓印製程,其中 該凝膠溶液層係由一明膠所組成,且内含一可照光反應之架 橋劑。 5 8 ·如申睛專利範圍第5 7項所述之凝膠壓印製程,其中 該可照光反應之架橋劑之至少包括重鉻酸鉀。 59.如申a月專利範圍第”項所述之凝膠壓印製程,其中 該基材與該模板中至少一者為可透光。 、 30 1249777 6 Ο ·如申w專利範圍第5 9項所述之凝膠壓印製程,其中 進行該壓印步驟至少包括: 對該凝膠溶液層進行一加熱步驟,藉以使該凝膠溶液層 具有一第一溫度,而使該凝膠溶液層成液狀; 將該基材之該表面與該凝膠溶液層之該第二表面緊密壓 σ,藉以使該凝膠溶液層之該第二表面附著至該基材之該表 面上; 進行一降溫步驟,藉以使該凝膠溶液層具有一第二溫 度’而使該凝膠溶液層成膠狀; 進行一照光步驟,藉以透過該凝膠溶液層内之該可照光 反應之&橋#丨’使該凝膠溶液層形成網狀之—架橋結構;以 及 進仃一脫膜步驟,以將該模板從該凝膠溶液層之該第一 表面移開。 6 1 ·如申請專利範圍第6〇項所述之凝膠壓印製程,其中 該凝膠溶液;^ . 狀層之孩弟一溫度介於5〇〇c與7(rc之間。 2·如申請專利範圍第6〇項所述之凝膠壓印製程,其中 έ亥凝勝溶〉夜> 分饮增之该第二溫度為室溫。 60項所述之凝膠壓印製程,其中 υ〕.如申請專利範 該照光步驟係利用一紫 31 1249777 64.如申請專利範圍第6〇項所述之凝膠壓印製程,其中 该紫外光之強度介於1 〇 mW/cm2與20 mW/cm2之間。 65 ·如申請專利範圍第6〇項所述之凝膠壓印製程,更至 少包括於該脫膜步驟後,進行一後烘烤步驟,藉以烘 膠溶液層。 66.如申睛專利範圍第6〇項所述之凝膠壓印製程,該後 烘烤步驟之溫度介於3〇l鱼+ μ η μ ι仏π υ兴8〇 c之間,且該後烘烤步驟持 進行5分鐘至60分鐘之間。 、 67·如中請專利範圍第40項所述之凝膠壓印製程, 該凝膠溶液層之溶劑含量實質為70% 。 、1249777 X. Patent Application Scope 1. A gel imprint process comprising at least: ::-template 'where one surface of the template has at least a plane region with a recessed area of y, and the planar region forms a pressure with the recessed region The surface of the template is subjected to a "modification step" whereby the coating surface of the template has a hydrophilic property; ❿ providing a substrate; forming an H liquid layer covering a surface of the substrate; and @ At the step of printing, the surface of the template is tightly bound to the layer of the gel solution, and the embossing pattern of the template is transferred to the layer of the gel solution. f 4 2. The gel imprint process described in the scope of claim 1, wherein the dissimilar plate is a wafer. The invention relates to a gel imprinting process as described in claim 1, wherein the step comprises at least: performing a cleaning step on the template; y forming a release layer covering the surface of the template And a layer of interfacial active layer overlying the release layer. The main method of the invention is the gel imprinting process described in claim 3, wherein the cleaning step is a small acid solution using an oxidizing acidic piranha solution. 21 1249777 5 - The gel imprinting process of claim 3, wherein the step of forming the 4 stripping layer comprises at least immersing the template in an organic solution, and the organic solution comprises at least a plurality of long carbons Chain polymer. 6. The gel imprint process of claim 5, wherein the long carbon chain of the long carbon bond polymer has a carbon molecule number between 8 and 22. 7. The gel imprinting process of claim 5, wherein the liquid lysate comprises an organic solute and an organic solvent, the organic solute comprising at least a plurality of long carbon chain organodecane molecules, And the organic solvent includes at least a monoalkane solvent. 8_ The gel imprinting process according to Item 7 of the patent application, wherein the long reverse chain has; the burning molecule has a plurality of organic stone burning molecules of ten long carbon chains, and the alkane solvent A hexadecane solvent. 9. The gel imprint process of claim 8, wherein the release layer is formed by a self-assembly of a molecular monolayer. 10. The gel imprint process as described in claim 9, wherein the step of forming the release layer further comprises, after removing the template from the organic solution, the solvent to remove the cetane solvent The molecule is dissolved in a single layer. 11. The knee embossing process of claim 8, wherein the 22 1249777 organic solute comprises at least octadecyl trioxane. 12. The gel imprint process of claim 5, wherein the step of forming the interface active layer comprises at least immersing the template in one of an ion or a neutral thin solution containing a surfactant. in. 13. The gel imprint process of claim 12, wherein the surfactant comprises at least a plurality of polymers, and each of the polymers to include less than one of the long carbon chains And a hydrophilic functional group. 14. The gel imprint process of claim 13, wherein a portion of the hydrophobic functional group of each of the polymers is filled between the long carbon chain polymers, thereby The hydrophilic functional groups of some of the polymers are outward. 15. The gel imprinting process of claim 14, wherein the portion of the hydrophobic functional group of each of the polymers is occluded by van der Waals force to attach two molecules adjacent to the long carbon bond . The gel imprint process of claim 1, wherein the ruthenium substrate is a flexible substrate. The gel imprint process of claim 1, wherein the upper substrate is a semiconductor substrate. ^ 4 23 1249777 The 19_ is the scope of the patent! The gel solution #仫山 — / i I table column with f, Hai (3) 组成 consists of a temperature-sensitive polymer material. The condensed gel 21. The gel pressure described in item (9) of the patent application scope includes at least potassium potassium citrate. [22] The gel embossing solution according to the second paragraph of claim 2 is composed of a gelatin. ^, 23 · The gel pressure as described in claim 20 In the printing process, at least one of the substrate and the template is permeable to light. The gel imprinting process of claim 23, wherein the step of performing the imprinting comprises at least: The gel solution layer is subjected to a heating step, so that the gel solution layer has a first temperature, and the gel solution layer is liquid; '" the surface of the template and the substrate The gel solution layer is tightly pressed to 'transfer the embossed pattern of the template into the gel solution layer. 24 1249777 to perform a temperature lowering step, so that the gel solution layer has a second temperature' The gel solution layer is gelatinized; and 'passing a photo-illuminating step to pass through the photo-reactive bridging agent in the gel solution layer to form the gel solution layer into a mesh-like bridging structure. The gel imprint process described in claim 24 of the patent scope, The first temperature of the gel solution layer is between 5 〇 and 70 ° C. The gel imprint process of claim 24, wherein the gel solution layer The first temperature is greater than 6 (rc. 27) The gel imprinting process of claim 24, wherein the second temperature of the gel solution layer is room temperature. The gel imprinting process, wherein the illuminating step utilizes an ultraviolet ray. The gel imprinting process of claim 24, wherein the intensity of the ultraviolet light is between 10 mW/cm 2 and 30. Between mW/cm2. 30. The gel imprint process described in claim 24, wherein the intensity of the ultraviolet light is substantially 1 watt. ', 3 1 · If the patent scope is claimed The gel imprinting process according to Item 24, wherein 25 1249777 32· as described in Item 31 of the patent application scope is less included in the film removing step, and is subjected to a German &#本κ俊订订a step of drying the layer of the gel solution. • The gel imprint process as described in claim 3, The temperature of the post-baking step is between 3 〇疒盥, C and 80 C, and the post-baking step is continued for between 5 minutes and 60 minutes. 34·If the patent is required, the 范3 1 J member The gel imprinting process, the temperature of the post-baking step is substantially Α 7〇〇Γ, the summer is 70 C, and the post-baking step is continued for 3 〇 0 3 5 · If the patent scope is the first item The gel imprinting process, wherein the solvent solution layer has a solvent content of substantially 7%. 36. The gel imprinting process of claim 1, wherein after the process of printing, More preferably, at least removing a residual portion of the layer of gel solution to expose a portion of the substrate. 3 7 · The gel imprint process described in claim 3, wherein the step of removing the residual portion of the 4 gel/repray layer utilizes a reactive ion 26 1249777 etching (RIE) method 3 8 · As in the gel imprinting process described in the 36th patent application scope, the step of removing the gel solution layer from the layer of the gel solution in JL is performed by a wet etching method and The method of formula (4) uses a protein degrading enzyme solution. Μ· As described in claim 36 of the patent application, after the step of removing the ruthenium of the layer of the gel solution and the remaining portion of the Τ4, the remaining layer of the gel solution is further utilized. The - part, and the seconds indicate that the base is removed from the remaining layer of the gel solution. 4U. - The inner offset embossing process comprises at least: providing - template 'where one surface of the template has at least one recessed area, and the sorcerer; the wide ^ ten face, the μ thousand face area and the recessed area Forming an embossed image; performing a surface on the surface of the template, and having a hydrophilic property on the surface; and "stepping" to cover the surface of the template on the surface of the template, thereby Transferring the embossed pattern to a first surface of the gel solution layer; W providing a substrate; and performing an imprinting step, wherein a liquid layer of the surface of the liquid layer is transferred to the substrate The surface of one of the substrates is brought into close contact with the second surface of the gel, thereby dissolving the gel on the surface. 27 1249777 4 1 · If the scope of the patent application is 4, the template is a 矽θ y member The gel embossing process, wherein the day/day 〇 42 · the patent application scope 第 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 凝胶 凝胶 凝胶 凝胶 凝胶 凝胶 凝胶 凝胶 凝胶 凝胶And forming a release layer covering the mold An interface layer is formed on the surface of the board to cover the stripping layer. For example, the cleaning step of the patent is in the form of 42. The cleaning step is at least scooping, "Please describe the transfer printing process, in which the use of an oxidizing power is included. Acidic Piranha solution. Ψ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . ^The number of slaves in the liquid's long slave chain is between 8 and 22. 46. (6) The gel described in claim 44: The organic solution includes at least - organic solutes and - organic dissolves: Medium ^ a number of long carbon chain organodecane molecules, and the organic solvent to a monoalkane solvent. 1 9 28 1249777 47. The gel imprinting process of claim 46, wherein the long carbon chain organic stone has a plurality of organic stone molecules of eighteen long carbon chains, And the alkane solvent is a hexadecane solvent. 48. The gel imprint process of claim 47, wherein the release layer is formed by a self-assembly method. 4 9 · The gel imprint process of claim 4, wherein the step of forming the release layer further comprises at least after removing the template from the organic solution, the hexadecane is gas-molded The solvent is dissolved from the monolayer of the molecule. The gel imprinting process of claim 47, wherein the far organic solute comprises at least octadecyl triclosan. 5. The gel imprint process of claim 44, wherein the step of forming the interfacial layer comprises at least immersing the template in one of an ion or a neutral thin solution of the intrinsic-surfactant. 52. The gel imprint process of claim 5, wherein the surfactant comprises at least a plurality of polymers, and each of the polymers comprises at least one of a hydrophobic functional group having a long carbon chain and a hydrophilic functional group. 53. The gel imprinting process as described in claim 52, wherein 29 1249777 maternal part of the hydrophobic functional group of the polymer is filled between the long carbon chain polymers The Val force acts to adsorb the adjacent long carbon chain polymers 'so that the hydrophilic functional groups of each of the polymers are outward. 54. The gel imprint process of claim 4, wherein the substrate is selected from the group consisting of a flexible substrate and a semiconductor substrate. 55. The gel imprint process of claim 40, wherein the layer of the gel solution consists of a biodegradable material. The gel imprint process described in claim 4, wherein the gel solution layer is composed of a temperature sensitive polymer material. 57. The gel imprint process of claim 40, wherein the gel solution layer consists of a gelatin and comprises a photoreceptor bridging agent. 5 8 The gel imprinting process of claim 57, wherein the photo-reactive bridging agent comprises at least potassium dichromate. 59. The gel imprinting process of claim 1, wherein at least one of the substrate and the template is permeable to light. 30 1249777 6 Ο 如 专利 专利 patent scope 5 9 The gel imprinting process, wherein the performing the imprinting step comprises at least: performing a heating step on the gel solution layer, so that the gel solution layer has a first temperature, and the gel solution layer is Forming a liquid; sealing the surface of the substrate with the second surface of the gel solution layer by σ, thereby attaching the second surface of the gel solution layer to the surface of the substrate; Cooling step, wherein the gel solution layer has a second temperature' to make the gel solution layer gelatinous; performing a photo-illuminating step to pass the photo-reflective reaction &bridge# in the gel solution layer丨 'Making the gel solution layer into a network-like bridging structure; and introducing a stripping step to remove the template from the first surface of the gel solution layer. 6 1 · As claimed in the patent scope The gel imprinting process of item 6, wherein the gel Liquid; ^. The temperature of the child of the layer is between 5〇〇c and 7(rc. 2) The gel imprinting process as described in the sixth paragraph of the patent application, in which the έ海凝胜溶〉 Night > The second temperature is room temperature. The gel imprint process described in 60 items, wherein υ]. If the patent application method is used, the photo-lighting step utilizes a purple 31 1249777 64. The gel imprinting process of item 6, wherein the intensity of the ultraviolet light is between 1 〇mW/cm 2 and 20 mW/cm 2 . 65 · The gel embossing as described in claim 6 The process further comprises, after at least the stripping step, performing a post-baking step to dry the solution layer. 66. The gel imprinting process as described in claim 6 of the claim, the post-baking step The temperature is between 3〇l fish + μ η μ ι仏π υ 〇 8〇c, and the post-baking step is carried out for between 5 minutes and 60 minutes. 67, as in the patent scope, item 40 In the gel imprinting process, the solvent content of the gel solution layer is substantially 70%. 68.如申請專利範圍第4〇項所述之凝膠壓印製程 於該壓印步驟後,更至少包括移除該凝膠溶液層之-中 分’藉以暴露出部分之該基材 69·如申請專利範圍第68 移除該凝膠溶液層之該殘餘部 敍刻法。 項所述之凝膠壓印製程,其中 分的步驟係利用一反應性離子 70·如申請專利範圍第 移除部分之該凝膠溶液層的 6 8項所述之凝膠壓印製程 步驟係利用一濕式蝕刻法 其中 且該 32 1249777 濕式蝕刻法使用一蛋白質分解酵素溶液。 7 1.如申請專利範圍第68項所述之凝膠壓印製程,其中 於移除該凝膠溶液層之該殘餘部分的步驟後,更至少包括: 利用剩餘之該凝膠溶液層作為罩幕,移除暴露出之該基 材的一部分;以及 移除剩餘之該凝膠溶液層。68. The gel imprint process of claim 4, after the embossing step, further comprises removing at least a portion of the layer of the gel solution to expose a portion of the substrate 69. This residual engraving of the layer of gel solution is removed as in claim 68. The gel imprinting process described in the section, wherein the step of using a reactive ion 70 is as described in the gel electroplating process step of the gel solution layer of the removed portion of the patent application. A wet etching method is used in which the 32 1249777 wet etching method uses a proteolytic enzyme solution. 7. The gel imprint process of claim 68, wherein after the step of removing the residual portion of the layer of the gel solution, the method further comprises: using the remaining layer of the gel solution as a cover a curtain that removes a portion of the exposed substrate; and removes the remaining layer of the gel solution. 3333
TW94105459A 2005-02-23 2005-02-23 Gel imprinting process TWI249777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94105459A TWI249777B (en) 2005-02-23 2005-02-23 Gel imprinting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94105459A TWI249777B (en) 2005-02-23 2005-02-23 Gel imprinting process

Publications (2)

Publication Number Publication Date
TWI249777B true TWI249777B (en) 2006-02-21
TW200631071A TW200631071A (en) 2006-09-01

Family

ID=37430203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94105459A TWI249777B (en) 2005-02-23 2005-02-23 Gel imprinting process

Country Status (1)

Country Link
TW (1) TWI249777B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394241B (en) * 2008-06-17 2013-04-21 Univ Nat Chunghsing An electronic component with viscose self - forming structure
TWI415735B (en) * 2006-10-25 2013-11-21 Agency Science Tech & Res Modification of surface wetting properties of a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415735B (en) * 2006-10-25 2013-11-21 Agency Science Tech & Res Modification of surface wetting properties of a substrate
TWI394241B (en) * 2008-06-17 2013-04-21 Univ Nat Chunghsing An electronic component with viscose self - forming structure

Also Published As

Publication number Publication date
TW200631071A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
Brittain et al. Soft lithography and microfabrication
JP3469204B2 (en) Method for patterning a polymer film and use of the method
Rogers et al. Unconventional nanopatterning techniques and applications
Lipomi et al. 7.11: soft lithographic approaches to nanofabrication
CN101505969B (en) Method to form a pattern of functional material on a substrate
Choi et al. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials
JP2010525961A (en) Method of forming a pattern of functional material on a substrate by treating the surface of the stamp
CN101627336A (en) Method to form a pattern of functional material on a substrate using a stamp having a surface modifying material
TW200848956A (en) Devices and methods for pattern generation by ink lithography
CN100514185C (en) Method for making polymer self-supporting nano-micron-line
WO2004021084A2 (en) Decal transfer microfabrication
JP2010511998A (en) Paste pattern forming method and transfer film used therefor
KR20070001956A (en) Structured materials and methods
US10189203B2 (en) Method for forming micropattern of polyimide using imprinting
CN102060262B (en) Method for manufacturing micro-nano fluid control system by using low-pressure bonding technology
JP5282510B2 (en) Manufacturing method of stamp for micro contact printing (μCP)
TWI249777B (en) Gel imprinting process
CN109609907B (en) Method for preparing metal nanostructure by self-absorption nanoimprint lithography
JP2005519456A5 (en)
CN102799066B (en) Method for preparing concave lens array structure on titanium dioxide inorganic-organic photosensitive composite film
JP2007220797A (en) Nanoimprint lithography method
CN101165591A (en) Method for producing two-dimensional polymer photon crystal using flexible offset printing
CN110441838A (en) Preparation method based on titanium dioxide organic and inorganic photosensitive composite film abnormity convex lens array
Xue et al. Simplest method for creating micropatterned nanostructures on PDMS with UV Light
KR20050019557A (en) nano imprinting method and the polymerizable composite

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees